151
|
Breger JC, Susumu K, Lasarte-Aragonés G, Díaz SA, Brask J, Medintz IL. Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sens 2020; 5:1295-1304. [PMID: 32096987 DOI: 10.1021/acssensors.9b02291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipases are an important class of lipid hydrolyzing enzymes that play significant roles in many aspects of cell biology and digestion; they also have large roles in commercial food and biofuel preparation and are being targeted for pharmaceutical development. Given these, and many other biotechnological roles, sensitive and specific biosensors capable of monitoring lipase activity in a quantitative manner are critical. Here, we describe a Förster resonance energy transfer (FRET)-based biosensor that originates from a custom-synthesized ester substrate displaying a peptide at one end and a dye acceptor at the other. These substrates were ratiometrically self-assembled to luminescent semiconductor quantum dot (QD) donors by metal affinity coordination using the appended peptide's terminal hexahistidine motif to give rise to the full biosensing construct. This resulted in a high rate of FRET between the QD donor and the proximal substrate's dye acceptor. The lipase hydrolyzed the intervening target ester bond in the peptide substrate which, in turn, displaced the dye acceptor containing component and altered the rate of FRET in a concentration-dependent manner. Specifics of the substrate's stepwise synthesis are described along with the sensors assembly, characterization, and application in a quantitative proof-of-concept demonstration assay that is based on an integrated Michaelis-Menten kinetic approach. The utility of this unique nanoparticle-based architecture within a sensor configuration is then discussed.
Collapse
Affiliation(s)
- Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Code 5600, Washington, District of Columbia 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| |
Collapse
|
152
|
Chen S, Li J, Fu Z, Wei G, Li H, Zhang B, Zheng L, Deng Z. Enzymatic Synthesis of β-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle. Appl Biochem Biotechnol 2020; 192:392-414. [DOI: 10.1007/s12010-020-03302-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
|
153
|
Rade LL, da Silva MNP, Vieira PS, Milan N, de Souza CM, de Melo RR, Klein BC, Bonomi A, de Castro HF, Murakami MT, Zanphorlin LM. A Novel Fungal Lipase With Methanol Tolerance and Preference for Macaw Palm Oil. Front Bioeng Biotechnol 2020; 8:304. [PMID: 32435636 PMCID: PMC7218172 DOI: 10.3389/fbioe.2020.00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of "drop-in" biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents.
Collapse
Affiliation(s)
- Letícia L. Rade
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Melque N. P. da Silva
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Plínio S. Vieira
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Natalia Milan
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Claudia M. de Souza
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Ricardo R. de Melo
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bruno C. Klein
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Antonio Bonomi
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Heizir F. de Castro
- Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Mário T. Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Leticia M. Zanphorlin
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
154
|
Rodríguez K, Martinez R, Bernal C. Selective immobilization of Bacillus subtilis lipase A from cell culture supernatant: Improving catalytic performance and thermal resistance. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
155
|
Park H, Ha ES, Kim MS. Current Status of Supersaturable Self-Emulsifying Drug Delivery Systems. Pharmaceutics 2020; 12:pharmaceutics12040365. [PMID: 32316199 PMCID: PMC7238279 DOI: 10.3390/pharmaceutics12040365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are a vital strategy to enhance the bioavailability (BA) of formulations of poorly water-soluble compounds. However, these formulations have certain limitations, including in vivo drug precipitation, poor in vitro in vivo correlation due to a lack of predictive in vitro tests, issues in handling of liquid formulation, and physico-chemical instability of drug and/or vehicle components. To overcome these limitations, which restrict the potential usage of such systems, the supersaturable SEDDSs (su-SEDDSs) have gained attention based on the fact that the inclusion of precipitation inhibitors (PIs) within SEDDSs helps maintain drug supersaturation after dispersion and digestion in the gastrointestinal tract. This improves the BA of drugs and reduces the variability of exposure. In addition, the formulation of solid su-SEDDSs has helped to overcome disadvantages of liquid or capsule dosage form. This review article discusses, in detail, the current status of su-SEDDSs that overcome the limitations of conventional SEDDSs. It discusses the definition and range of su-SEDDSs, the principle mechanisms underlying precipitation inhibition and enhanced in vivo absorption, drug application cases, biorelevance in vitro digestion models, and the development of liquid su-SEDDSs to solid dosage forms. This review also describes the effects of various physiological factors and the potential interactions between PIs and lipid, lipase or lipid digested products on the in vivo performance of su-SEDDSs. In particular, several considerations relating to the properties of PIs are discussed from various perspectives.
Collapse
|
156
|
Joyce P, Ulmefors H, Garcia-Bennett A, Prestidge CA. Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3367-3376. [PMID: 32167765 DOI: 10.1021/acs.langmuir.0c00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding lipase-mediated hydrolysis mechanisms within solid-state nanocarriers is fundamental for the rational design of lipid-based formulations. In this study, SBA-15 ordered mesoporous silica (MPS) particles were engineered with well-controlled nanostructural properties to systematically elucidate the role of intrawall microporosity, mesopore size, and particle structure on lipase activity. The microporosity and diffusional path length were shown to be key modulators for lipase-provoked hydrolysis of medium chain triglycerides confined within MPS, with small changes in the pore size, between 9 and 13 nm, showing now a clear correlation to lipase activity. Lipid speciation within MPS after lipolysis, obtained through 1H NMR, indicated that free fatty acids preferentially adsorbed to rod-shaped MPS (RodMPS) particles with high microporosity. MPS that formed aggregated spindle-like structures (AggMPS) had intrinsically reduced microporosity, which was hypothesized to limit lipase/lipid diffusion to and from the MPS pores and thus retard lipolysis kinetics. A linear correlation between the microporosity and the extent of lipase-provoked hydrolysis was observed within both AggMPS and RodMPS, ultimately indicating that the intricate interplay between the microporosity and lipid/lipase diffusion can be harnessed to optimize lipolysis kinetics for silica-lipid hybrid carriers. The new insights derived in this study are integral to the future development of solid-state lipid-based nanocarriers that control the lipase activity for improving the absorption of poorly soluble bio-active compounds.
Collapse
Affiliation(s)
- Paul Joyce
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | - Hanna Ulmefors
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| | | | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
157
|
Petry FC, Mercadante AZ. Bile amount affects both the degree of micellarization and the hydrolysis extent of carotenoid esters during in vitro digestion. Food Funct 2020; 10:8250-8262. [PMID: 31720652 DOI: 10.1039/c9fo01453e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carotenoid esters are present in considerable amounts in most fruits, such as in citrus. Although the bioavailability of carotenoid esters is similar or even higher compared to that of free carotenoids, these molecules are generally detected only in the free form in human plasma, suggesting that hydrolysis of carotenoid esters occurs in vivo. However, the available in vitro digestion methods were not able to achieve satisfactory carotenoid ester hydrolysis so far. As bile salts play an essential role in the hydrolytic action of lipolytic enzymes from pancreatin, we evaluated the effect of increasing the bile extract/food ratio from 0.045 to 0.12 (g g-1) on the hydrolysis of β-cryptoxanthin esters from mandarin pulp during in vitro digestion. Additionally, considering the positive effect of lipids on carotenoid bioavailability, the impact of soybean oil addition on carotenoid ester hydrolysis was studied. Finally, bioaccessibility and recovery of 33 carotenoids were assessed by LC-DAD-MS. The hydrolysis extent of β-cryptoxanthin esters enhanced from 29% to 55% by increasing the bile extract/food ratio, but reduced respectively to 28% and 11% by the addition of 1% and 10% oil (p < 0.05). The bioaccessibility of overall carotenoids improved from 19% to 35% by increasing the bile extract/food ratio, along with that of (all-E)-β-carotene (from 19 to 31%) and total (all-E)-β-cryptoxanthin (17% to 49%). Soybean oil addition reduced carotenoid micellarization, regardless of the concentration (p < 0.05). Irrespective of the bile extract amount and oil addition, the bioaccessibility of carotenoids was inversely related to its hydrophobicity, with respect to the following ranking: free xanthophylls > carotenes ≥ xanthophyll esters. Altogether, these results indicate that increasing the bile extract amount is a simple and inexpensive option to improve carotenoid ester hydrolysis in in vitro digestion protocols. Additionally, the constant amounts of bile (and possibly enzymes) of static methods, such as INFOGEST, should be further optimized for experiments involving lipid addition in which carotenoid bioaccessibility is evaluated.
Collapse
Affiliation(s)
- Fabiane Cristina Petry
- Food Research Center (FoRC), Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, SP, Brazil, Campinas, SP, Brazil.
| | | |
Collapse
|
158
|
Comparison of anaerobic digesters performance treating palmitic, stearic and oleic acid: determination of the LCFA kinetic constants using ADM1. Bioprocess Biosyst Eng 2020; 43:1329-1338. [DOI: 10.1007/s00449-020-02328-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
|
159
|
Zhang S, Deng Q, Shangguan H, Zheng C, Shi J, Huang F, Tang B. Design and Preparation of Carbon Nitride-Based Amphiphilic Janus N-Doped Carbon/MoS 2 Nanosheets for Interfacial Enzyme Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12227-12237. [PMID: 32053348 DOI: 10.1021/acsami.9b18735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Janus amphiphilic particles have gained much attention for their important application value in areas as diverse as interfacial modification, sensors, drug delivery, optics, and actuators. In this work, we prepared Janus amphiphilic nanosheets composed of nitrogen-doped stratiform meso-macroporous carbons (NMC) and molybdenum sulfide (MoS2) for hydrophilic and hydrophobic sides, respectively. The dicyandiamide and glucose were used as precursors for synthesizing two-dimensional nitrogen-doped meso-macroporous carbons, and the molybdate could be anchored by the functional groups on the surface of carbon layers and then transform into uniformly MoS2 to form the Janus amphiphilic layer by layer NMC/MoS2 support. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are used to demonstrate the successful preparation of Janus materials. As the typical interfacial enzyme, Candida rugosa lipase (CRL) immobilized on the Janus amphiphilic NMC/MoS2 support brought forth to improvement of its performance because the Janus nanosheets can be easily attached on the oil-aqueous interface for better catalytic activity (interfacial activation of lipases). The obtained immobilized lipase (NMC/MoS2@CRL) exhibited satisfactory lipase loading (193.1 mg protein per g), specific hydrolytic activity (95.76 U g-1), thermostability (at 55 °C, 84% of the initial activity remained after 210 min), pH flexibility, and recyclability (60% of the initial activity remained after nine runs). In terms of its application, the esterification rate of using NMC/MoS2@CRL (75%) is higher than those of NMC@CRL (20%) and MoS2@CRL (11.8%) in the "oil-water" biphase and CRL as well as NMC/MoS2@CRL in the one-phase. Comparing with the free CRL, NMC@CRL, and MoS2@CRL, the Janus amphiphilic NMC/MoS2 served as a carrier that exhibited more optimal performance and practicability.
Collapse
Affiliation(s)
- Shan Zhang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huijuan Shangguan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chang Zheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jie Shi
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghong Huang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
160
|
Knob A, Izidoro SC, Lacerda LT, Rodrigues A, de Lima VA. A novel lipolytic yeast Meyerozyma guilliermondii: Efficient and low-cost production of acid and promising feed lipase using cheese whey. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101565] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
161
|
Pabois O, Antoine-Michard A, Zhao X, Omar J, Ahmed F, Alexis F, Harvey RD, Grillo I, Gerelli Y, Grundy MML, Bajka B, Wilde PJ, Dreiss CA. Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydr Polym 2020; 231:115741. [PMID: 31888817 DOI: 10.1016/j.carbpol.2019.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, and compared the influence of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting functions during lipolysis. BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat method. Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at lower concentrations, which may explain its higher propensity to destabilise emulsions.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble, 38000, France; Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Xi Zhao
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Faizah Ahmed
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06099, Germany.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, 38000, France.
| | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, United Kingdom.
| | - Balazs Bajka
- Department of Nutritional Sciences, King's College London, London, SE1 9NH, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, United Kingdom.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
162
|
Bacterial lipase triggers the release of antibiotics from digestible liquid crystal nanoparticles. J Control Release 2020; 319:168-182. [DOI: 10.1016/j.jconrel.2019.12.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
|
163
|
Arana-Peña S, Rios NS, Carballares D, Mendez-Sanchez C, Lokha Y, Gonçalves LRB, Fernandez-Lafuente R. Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Pseudomonas fluorescens Immobilized on Octyl-Agarose Beads. Front Bioeng Biotechnol 2020; 8:36. [PMID: 32181245 PMCID: PMC7059646 DOI: 10.3389/fbioe.2020.00036] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/15/2020] [Indexed: 01/28/2023] Open
Abstract
The lipase from Pseudomonas fluorescens (PFL) has been immobilized on octyl-agarose beads under 16 different conditions (varying pH, ionic strength, buffer, adding some additives) at two different loadings, 1 and 60 mg of enzyme/g of support with the objective of check if this can alter the biocatalyst features. The activity of the biocatalysts versus p-nitrophenyl butyrate and triacetin and their thermal stability were studied. The different immobilization conditions produced biocatalysts with very different features. Considering the extreme cases, using 1 mg/g preparations, PFL stability changed more than fourfolds, while their activities versus pNPB or triacetin varied a 50-60%. Curiously, PFL specific activity versus triacetin was higher using highly enzyme loaded biocatalysts than using lowly loaded biocatalysts (even by a twofold factor). Moreover, stability of the highly loaded preparations was higher than that of the lowly loaded preparations, in many instances even when using 5°C higher temperatures (e.g., immobilized in the presence of calcium, the highly loaded biocatalysts maintained after 24 h at 75°c a 85% of the initial activity, while the lowly loaded preparation maintained only 27% at 70°C). Using the highly loaded preparations, activity of the different biocatalysts versus pNPB varied almost 1.7-folds and versus triacetin 1.9-folds. In this instance, the changes in stability caused by the immobilization conditions were much more significant, some preparations were almost fully inactivated under conditions where the most stable one maintained more than 80% of the initial activity. Results suggested that immobilization conditions greatly affected the properties of the immobilized PFL, partially by individual molecule different conformation (observed using lowly loaded preparations) but much more relevantly using highly loaded preparations, very likely by altering some enzyme-enzyme intermolecular interactions. There is not an optimal biocatalyst considering all parameters. That way, preparation of biocatalysts using this support may be a powerful tool to tune enzyme features, if carefully controlled.
Collapse
Affiliation(s)
- Sara Arana-Peña
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
| | - Nathalia S. Rios
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
- Departamento de Engenharia Química, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Diego Carballares
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
| | - Carmen Mendez-Sanchez
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
| | - Yuliya Lokha
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica – CSIC, Campus Universidad Autónoma de Madrid – CSIC Cantoblanco, Madrid, Spain
| |
Collapse
|
164
|
Bhattacharjee D, Goswami D. Surfactant assisted production of ricinoleic acid using cross-linked and entrapped porcine pancreas lipase. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1730187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Debapriya Bhattacharjee
- Department of Chemical Engineering, University College of Science and Technology, University of Calcutta, Kolkata, India
| | - Debajyoti Goswami
- Department of Chemical Engineering, University College of Science and Technology, University of Calcutta, Kolkata, India
| |
Collapse
|
165
|
Duan R, Li Y, He Y, Yuan Y, Li H. Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode. Analyst 2020; 145:7595-7602. [DOI: 10.1039/d0an01187h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We demonstrate a quantitative and sensitive strategy for monitoring the lipase concentration using a liquid crystal microfiber biosensor based on the whispering-gallery mode.
Collapse
Affiliation(s)
- Rui Duan
- College of Physics and Optoelectronic Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Lab of In-fiber Integrated Optics
| | - Yanzeng Li
- James Franck Institute
- University of Chicago
- Chicago
- USA
| | - Yichen He
- College of Physics and Optoelectronic Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Yonggui Yuan
- College of Physics and Optoelectronic Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Lab of In-fiber Integrated Optics
| | - Hanyang Li
- College of Physics and Optoelectronic Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Lab of In-fiber Integrated Optics
| |
Collapse
|
166
|
Lipase-catalyzed modification of structural properties and sensory profile of recombined skim milk: From a non-volatile perspective. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
167
|
Dong L, Lv M, Gao X, Zhang L, Rogers M, Cao Y, Lan Y. In vitrogastrointestinal digestibility of phytosterol oleogels: influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food Funct 2020; 11:9503-9513. [DOI: 10.1039/d0fo01642j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the influence of a self-assembled microstructure on lipid digestibility of phytosterol (γ-oryzanol and β-sitosterol) oleogels, including the oil emulsification process and further lipolysis.
Collapse
Affiliation(s)
- Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Luping Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Michael Rogers
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| |
Collapse
|
168
|
Shin M, Seo J, Baek Y, Lee T, Jang M, Park C. Novel and Efficient Synthesis of Phenethyl Formate via Enzymatic Esterification of Formic Acid. Biomolecules 2020; 10:biom10010070. [PMID: 31906270 PMCID: PMC7022603 DOI: 10.3390/biom10010070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022] Open
Abstract
Current methods for the production of esters, including chemical synthesis and extraction from natural sources, are hindered by low yields and environmental pollution. The enzymatic synthesis of these compounds could help overcome these problems. In this study, phenethyl formate, a commercially valuable formate ester, was synthesized using commercial immobilized lipases. The effects of specific enzymes, enzyme concentration, formic acid:phenethyl alcohol molar ratio, temperature, and solvent were studied in order to optimize the synthesis conditions, which were identified as 15 g/L of Novozym 435 enzyme, a 1:5 formic acid:phenethyl alcohol molar ratio, a 40 °C reaction temperature, and 1,2-dichloroethane as the solvent. Under these conditions, phenethyl formate was obtained in a conversion yield of 95.92%. In addition, when 1,2-dichloroethane was replaced with toluene as the solvent, the enzyme could be recycled for at least 20 reactions with a steady conversion yield above 92%, testifying to the economic aspects of the process. The enzymatic synthesis of phenethyl formate using the proposed method is more environmentally friendly than methods currently employed in academic and laboratory settings. Moreover, the method has the potential to enhance the value-added properties of formic acid owing to its downstream use in the production of commercially essential esters.
Collapse
Affiliation(s)
- Minguk Shin
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Jeongbae Seo
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Yesol Baek
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea;
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (M.S.); (J.S.); (Y.B.); (T.L.)
- Correspondence:
| |
Collapse
|
169
|
Zhou Q, Su Z, Jiao L, Wang Y, Yang K, Li W, Yan Y. High-Level Production of a Thermostable Mutant of Yarrowia lipolytica Lipase 2 in Pichia pastoris. Int J Mol Sci 2019; 21:ijms21010279. [PMID: 31906187 PMCID: PMC6982173 DOI: 10.3390/ijms21010279] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022] Open
Abstract
As a promising biocatalyst, Yarrowia lipolytica lipase 2 (YlLip2) is limited in its industrial applications due to its low thermostability. In this study, a thermostable YlLip2 mutant was overexpressed in Pichia pastoris and its half-life time was over 30 min at 80 °C. To obtain a higher protein secretion level, the gene dosage of the mutated lip2 gene was optimized and the lipase activity was improved by about 89%. Then, the YlLip2 activity of the obtained strain further increased from 482 to 1465 U/mL via optimizing the shaking flask culture conditions. Subsequently, Hac1p and Vitreoscilla hemoglobin (VHb) were coexpressed with the YlLip2 mutant to reduce the endoplasmic reticulum stress and enhance the oxygen uptake efficiency in the recombinant strains, respectively. Furthermore, high-density fermentations were performed in a 3 L bioreactor and the production of the YlLip2 mutant reached 9080 U/mL. The results demonstrated that the expression level of the thermostable YlLip2 mutant was predominantly enhanced via the combination of these strategies in P. pastoris, which forms a consolidated basis for its large-scale production and future industrial applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunjun Yan
- Correspondence: ; Tel.: +86-27-8779-2213
| |
Collapse
|
170
|
Decarpigny C, Bleta R, Ponchel A, Monflier E. Confinement of Candida Antarctica Lipase B in a Multifunctional Cyclodextrin-Derived Silicified Hydrogel and Its Application as Enzymatic Nanoreactor. ACS APPLIED BIO MATERIALS 2019; 2:5568-5581. [PMID: 35021552 DOI: 10.1021/acsabm.9b00646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular hydrogels with a three-dimensional cross-linked macromolecular network have attracted growing scientific interest in recent years because of their ability to incorporate high loadings of bioactive molecules such as drugs, proteins, antibodies, peptides, and genes. Herein, we report a versatile approach for the confinement of Candida antarctica lipase B (CALB) within a silica-strengthened cyclodextrin-derived supramolecular hydrogel and demonstrate its potential application in the selective oxidation of 2,5-diformylfuran (DFF) to 2,5-furandicarboxylic acid (FDCA) under mild conditions. The enzymatic nanoreactor was deeply characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy, N2-adsorption, dynamic light scattering, UV-visible spectroscopy, transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy, while the reaction products were established on the basis of 1H nuclear magnetic resonance spectroscopy combined with high-performance liquid chromatography. Our results revealed that while CALB immobilized in conventional sol-gel silica yielded exclusively 5-formylfuran-2-carboxylic acid (FFCA), confinement of the enzyme in the silicified hydrogel imparted a 5-fold increase in DFF conversion and afforded 67% FDCA yield in 7 h and almost quantitative yields in less than 24 h. The hierarchically interconnected pore structure of the host matrix was found to provide a readily accessible diffusion path for reactants and products, while its flexible hydrophilic-hydrophobic interface was extremely beneficial for the interfacial activation of the immobilized lipase.
Collapse
Affiliation(s)
- Cédric Decarpigny
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Rudina Bleta
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Anne Ponchel
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-62300 Lens, France
| |
Collapse
|
171
|
Cong Y, Zhang W, Liu C, Huang F. Composition and Oil-Water Interfacial Tension Studies in Different Vegetable Oils. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09617-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
172
|
Ashkar A, Laufer S, Rosen-Kligvasser J, Lesmes U, Davidovich-Pinhas M. Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105218] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
173
|
Indoxyl Acetate as a Substrate for Analysis of Lipase Activity. Int J Anal Chem 2019; 2019:8538340. [PMID: 31885593 PMCID: PMC6914949 DOI: 10.1155/2019/8538340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
Lipases play a crucial role in metabolism of microbes, fungi, plants, and animals, and in analytical chemistry, they are often used in detection of fats and triglycerides. Determination of lipase activity is also important in toxicology, when lipase activity can be both increased and decreased by organophosphates and other pesticides and in medicine for diagnosis of heart diseases. The standard method for lipase activity determination is based on cleaving ester bonds in lipase buffer containing Tween. Our aim was to find a method with faster and more sensitive response. It is known that acetylcholinesterase belongs to the same group of hydrolases enzymes as lipases and it cleaves indoxyl acetate, so we assume indoxyl acetate could report a similar reaction with lipase. Our method is based on indoxyl acetate as a substrate for lipase, where indoxyl acetate is cleaved by lipase to indoxyl and acetate moiety and blue indigo is created. The method was optimized for different times and amount of enzyme and compared with the standard Tween assay. The calibration curve measured in reaction time 20 minutes with 10 μl of lipase exhibited the best analytical parameters, and it showed Michaelis-Menten response with the Michaelis-Menten constant equal to 8.72 mmol/l. The indoxyl acetate-based method showed faster and more sensitive response than the standard method for lipase activity determination, so it has great potential in biosensor construction and it could be used in industry, medicine, toxicology, and common practice where the activity of lipases is need to be measured.
Collapse
|
174
|
Steingoetter A, Arnold M, Scheuble N, Fedele S, Bertsch P, Liu D, Parker HL, Langhans W, Fischer P. A Rat Model of Human Lipid Emulsion Digestion. Front Nutr 2019; 6:170. [PMID: 31781572 PMCID: PMC6861183 DOI: 10.3389/fnut.2019.00170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
A better understanding of how dietary lipids are processed by the human body is necessary to allow for the control of satiation and energy intake by tailored lipid systems. To examine whether rats are a valid model of human dietary lipid processing and therefore useful for further mechanistic studies in this context, we tested in rats three lipid emulsions of different stability, which alter satiety responses in humans. Different sets of 15 adult male Sprague Dawley rats, equipped with gastric catheters alone or combined with hepatic portal vein (HPV) and vena cava (VC) catheters were maintained on a medium-fat diet and adapted to an 8 h deprivation/16 h feeding schedule. Experiments were performed in a randomized cross-over study design. After gastric infusion of the lipid emulsions, we assessed gastric emptying by the paracetamol absorption test and recorded in separate experiments food intake and plasma levels of gastrointestinal hormones and metabolites in the HPV. For an acid stable emulsion, slower gastric emptying and an enhanced release of satiating gastrointestinal (GI) hormones were observed and were associated with lower short-term energy intake in rats and less hunger in humans, respectively. The magnitude of hormonal responses was related to the acid stability and redispersibility of the emulsions and thus seems to depend on the availability of lipids for digestion. Plasma metabolite levels were unaffected by the emulsion induced changes in lipolysis. The results support that structured lipid systems are digested similarly in rats and humans. Thus unstable emulsions undergo the same intragastric destabilization in both species, i.e., increased droplet size and creaming. This work establishes the rat as a viable animal model for in vivo studies on the control of satiation and energy intake by tailored lipid systems.
Collapse
Affiliation(s)
- Andreas Steingoetter
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Myrtha Arnold
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Nathalie Scheuble
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Pascal Bertsch
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Dian Liu
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Helen L Parker
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,School of Medicine, Pharmacy and Health, Durham University, Durham, United Kingdom.,Institute of Health and Society, Newcastle University, Durham, United Kingdom
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology, Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
175
|
Villo L, Risti R, Reimund M, Kukk K, Samel N, Lookene A. Calorimetric approach for comparison of Angiopoietin-like protein 4 with other pancreatic lipase inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158553. [PMID: 31676442 DOI: 10.1016/j.bbalip.2019.158553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic lipase (PNLIP) is a digestive enzyme that is a potential drug target for the treatment of obesity. A better understanding of its regulation mechanisms would facilitate the development of new therapeutics. Recent studies indicate that intestinal lipolysis by PNLIP is reduced by Angiopoietin-like protein 4 (ANGPTL4), whose N-terminal domain (nANGPTL4) is a known inactivator of lipoprotein lipase (LPL) in blood circulation and adipocytes. To elucidate the mechanism of PNLIP inhibition by ANGPTL4, we developed a novel approach, using isothermal titration calorimetry (ITC). The obtained results were compared with those of well-described inhibitors of PNLIP - ε-polylysine (EPL), (-)-epigallocatechin-3-gallate (EGCG) and tetrahydrolipstatin. We demonstrate that ITC allows to investigate PNLIP inhibition mechanisms in complex substrate emulsions and that the ITC-based assay is highly sensitive - the lowest concentration for quantification of PNLIP is 1.5 pM. Combining ITC with surface plasmon resonance and fluorescence measurements, we present evidence that ANGPTL4 is a lipid-binding protein that influences PNLIP activity through interactions with components of substrate emulsions (bile salts, phospholipids and triglycerides), and this promotes the aggregation of triglyceride emulsions similarly to the PNLIP inhibitors EPL and EGCG. In the absence of substrate emulsion, unlike in the case of LPL, ANGPTL4 did not induce the inactivation of PNLIP. Our data also prove that due to various interactions with components of substrate systems, the effect of a PNLIP inhibitor depends on whether its effect is measured in a complex substrate emulsion or in a simple substrate system.
Collapse
Affiliation(s)
- Ly Villo
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Robert Risti
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Mart Reimund
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Kaia Kukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Nigulas Samel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Aivar Lookene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia.
| |
Collapse
|
176
|
Zhao L, Du M, Mao X. Change in interfacial properties of milk fat globules by homogenization and thermal processing plays a key role in their in vitro gastrointestinal digestion. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
177
|
Lima RT, Alves AM, de Paula AV, de Castro HF, Andrade GS. Mycelium-bound lipase from Penicillium citrinum as biocatalyst for the hydrolysis of vegetable oils. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
178
|
Zaitsev SY, Savina AA, Garnashevich LS, Tsarkova MS, Zaitsev IS. Effect of Some Charged Polymers on the Activity of Pancreatic Porcine Lipase. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00677-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
179
|
The effect of pH on the stabilization and digestive characteristics of soybean lipophilic protein oil-in-water emulsions with hypromellose. Food Chem 2019; 309:125579. [PMID: 31683149 DOI: 10.1016/j.foodchem.2019.125579] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022]
Abstract
The development of functional foods requires a detailed understanding of the behavior of lipophilic protein (LP) in the presence of emulsion stabilizers at different pH conditions. In this study, we examined the interaction between hydroxypropyl methylcellulose (hypromellose, HPMC) and soybean lipophilic protein. To that end, we examined the stabilities of LP-HPMC emulsions at pH 3, 5, and 7, as well as the oil-release behavior of LP-HPMC emulsions during digestion. Fluorescence data showed that HPMC binds to LP with quenching at a single binding site that did not change with pH. Atomic-force microscopy, emulsification, and oxidation-stability analyses showed that HPMC improves the pH stability of the LP-HPMC emulsions, while simulated in-vitro digestion experiments showed that added HPMC delayed the release of lipids to varying degrees. The results of this study will aid in the development of emulsion-based functional foods, pharmaceutical carriers with controlled-release or sustained-release functional ingredients.
Collapse
|
180
|
Engel J, Cordellier A, Huang L, Kara S. Enzymatic Ring‐Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem 2019. [DOI: 10.1002/cctc.201900976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Alex Cordellier
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Lei Huang
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing GroupAarhus University Gustav Wieds Vej 10 C 8000 Aarhus Denmark
| |
Collapse
|
181
|
Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM. Hypolipidemic effects of Rosmarinus officinalis L. J Cell Physiol 2019; 234:14680-14688. [PMID: 30693502 DOI: 10.1002/jcp.28221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/11/2019] [Indexed: 01/24/2023]
Abstract
Dyslipidemia is one of the major risk factors for cardiovascular diseases (CVDs). Current strategies are not effective in the management of dyslipidemia. Thus, there is a necessity to find new preventative and therapeutic approaches. In recent years, herbal medicine has drawn great attention regarding the prevention and management of dyslipidemia. Rosmarinus officinalis, commonly known as rosemary, is an evergreen shrub containing several polyphenols. The plant grows in the Mediterranean and South American regions. Rosemary and its main components have antioxidant, anti-inflammatory, and lipid-lowering properties. The present review has focused on in vivo and in vitro studies on the hypolipidemic effects of rosemary and its main constituents as well as their functional mechanisms. Studies have described lipid-scavenging activities of rosemary through its flavonoid contents. Modulating inflammation and oxidative stress have been described as possible mechanisms by which rosemary ameliorates dyslipidemia. However, the exact mechanisms are not fully understood yet. Conducting experimental and clinical trial studies are recommended to confirm the safety and efficacy of rosemary in the prevention and management of dyslipidemia and other cardio-metabolic diseases.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | |
Collapse
|
182
|
Utama QD, Sitanggang AB, Adawiyah DR, Hariyadi P. Lipase-Catalyzed Interesterification for the Synthesis of Medium-Long-Medium (MLM) Structured Lipids - A Review. Food Technol Biotechnol 2019; 57:305-318. [PMID: 31866744 PMCID: PMC6902296 DOI: 10.17113/ftb.57.03.19.6025] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 08/07/2019] [Indexed: 02/01/2023] Open
Abstract
Medium-long-medium (MLM) structured lipids typically contain medium-chain fatty acids (C6-C12) at sn-1,3 and long-chain fatty acids (C14-C24) at sn-2 positions. They have reduced calories and are suitable for the control of obesity, lipid malabsorption and other metabolic disorders. This review focuses on the synthesis of MLM lipids by the enzymatic interesterification. It gives detailed description of biocatalysts, substrates, reactors and synthesis methods, and discusses the use of MLM lipids in food products. The information provided in this review can be considered as the current state-of-the art for developing a future strategy for the synthesis of MLM structured lipids.
Collapse
Affiliation(s)
- Qabul Dinanta Utama
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Azis Boing Sitanggang
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Dede Robiatul Adawiyah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| | - Purwiyatno Hariyadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Darmaga, 16680 Bogor, Indonesia
| |
Collapse
|
183
|
Li X, Jiao W, Zhang W, Xu Y, Cao J, Jiang W. Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9543-9550. [PMID: 31379164 DOI: 10.1021/acs.jafc.9b03985] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to reveal the mechanisms underlying the interaction between condensed tannins (CTs) and bile salts. The interaction mechanism was analyzed by transmission electron microscopy, exposure to various physicochemical conditions, electrophoresis, fluorescence spectroscopy, isothermal titration calorimetry, and molecular modeling. A new complex was formed from CTs and bile salts. The complex showed a negative enthalpy change and a positive entropy change, demonstrating that the main thermodynamic driving force was both entropy and enthalpy and indicating that binding occurred through hydrogen bonds and hydrophobic interactions. The analysis of the effects of CTs on the stability and digestion properties of bile salt emulsions indicated that CTs were able to inhibit lipid digestion to an extent. Our findings may provide evidence that foods rich in CTs offer health benefits by aggregating with bile salts and reducing the absorption of fat.
Collapse
Affiliation(s)
- Xiangxin Li
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wenxiao Jiao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Yan Xu
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering , China Agricultural University , 17 Qinghuadonglu Road , Beijing 100083 , P. R. China
| |
Collapse
|
184
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
185
|
Pabois O, Lorenz CD, Harvey RD, Grillo I, Grundy MML, Wilde PJ, Gerelli Y, Dreiss CA. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion. J Colloid Interface Sci 2019; 556:266-277. [PMID: 31450021 DOI: 10.1016/j.jcis.2019.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
HYPOTHESES Understanding the mechanisms underlying lipolysis is crucial to address the ongoing obesity crisis and associated cardiometabolic disorders. Bile salts (BS), biosurfactants present in the small intestine, play key roles in lipid digestion and absorption. It is hypothesised that their contrasting functionalities - adsorption at oil/water interfaces and shuttling of lipolysis products away from these interfaces - are linked to their structural diversity. We investigate the interfacial films formed by two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), differing by the presence or absence of a hydroxyl group on their steroid skeleton. EXPERIMENTS Their adsorption behaviour at the air/water interface and interaction with a phospholipid monolayer - used to mimic a fat droplet interface - were assessed by surface pressure measurements and ellipsometry, while interfacial morphologies were characterised in the lateral and perpendicular directions by Brewster angle microscopy, X-ray and neutron reflectometry, and molecular dynamics simulations. FINDINGS Our results provide a comprehensive molecular-level understanding of the mechanisms governing BS interfacial behaviour. NaTC shows a higher affinity for the air/water and lipid/water interfaces, and may therefore favour enzyme adsorption, whereas NaTDC exhibits a higher propensity for desorption from these interfaces, and may thus more effectively displace hydrolysis products from the interface, through dynamic exchange.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble 38000, France; Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom.
| | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany.
| | | | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, United Kingdom.
| | | | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
186
|
Hommes A, de Wit T, Euverink GJW, Yue J. Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
187
|
Mao J, Hu Z, Hu J, Zhu X, Xiong H. A Density Functional Theory (DFT) Study of the Acyl Migration Occurring during Lipase-Catalyzed Transesterifications. Int J Mol Sci 2019; 20:3438. [PMID: 31336932 PMCID: PMC6678322 DOI: 10.3390/ijms20143438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
Acyl migration (AM) is the main side reaction in the large-scale, regio-specific lipase catalyzed production of structural triglycerides (STs). A detailed understanding of the mechanism of AM was obtained during the process of lipase-catalyzed schemes (LCSs), which play a vital role in improving the quality and total yield of STs. However, currently, the mechanism of AM remains controversial. Herein, the two mechanisms (non-catalyzed (NCM) and lipase-catalyzed (LCM)) of AM have been analyzed in detail by the density functional theory (DFT) at the molecular level. Based on the computational results, we concluded that the energy barrier of the rate-limiting step in the LCM was 18.8 kcal/mol, which is more in agreement with the available experimental value (17.8 kcal/mol), indicating that LCM could significantly accelerate the rate of AM, because it has an energy barrier ~2 times lower than that of the NCM. Interestingly, we also found that the catalytic triad (Asp-His-Ser) of the lipase and water could effectively drop the reaction barrier, which served as the general acid or base, or shuttle of the proton.
Collapse
Affiliation(s)
- Jinyuan Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Zhenying Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
| | - Jiangning Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuemei Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
188
|
Continuous two-phase biocatalysis using water-in-oil Pickering emulsions in a membrane reactor: Evaluation of different nanoparticles. Catal Today 2019. [DOI: 10.1016/j.cattod.2017.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
189
|
Carpen A, Bonomi F, Iametti S, Marengo M. Effects of starch addition on the activity and specificity of food-grade lipases. Biotechnol Appl Biochem 2019; 66:607-616. [PMID: 31056790 DOI: 10.1002/bab.1761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Abstract
Lipases are surface-active enzymes, acting on their substrates at the polar/nonpolar interface in emulsions. This study was aimed to test whether their activity, specificity, and the rates of formation/degradation of the various hydrolysis intermediates (i.e., mono- and diglycerides of interest as surface-active agents) could be modulated by adhesion of the triglyceride substrates as a thin layer on the surface of solids. These hypotheses were tested by using an array of food-grade lipases used in bakery, testing various types of starch as the "solid" phase. Starch-dependent increase in the hydrolysis rate was tested by pH-stat techniques on pure triglycerides and on food-grade oils in diluted emulsions. Starch-related improvements in the rate of fatty acids release were most evident at temperatures above 40 °C, and when using maize starch instead of wheat starch. Starch-dependent changes in the nature of the hydrolysis products were tested by chromatographic profiling of ethyl ether extracts from aqueous slurries containing up to 33% fat and 33% starch. Accumulation of mono- and diglycerides as hydrolysis intermediates was found to be modulated by the type of oil being used, by the reaction conditions, as well as by the enzyme nature and amount.
Collapse
Affiliation(s)
- Aristodemo Carpen
- Section of Chemical and Biomolecular Sciences, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Mauro Marengo
- Section of Chemical and Biomolecular Sciences, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
190
|
Reuse of Lipase from Pseudomonas fluorescens via Its Step-by-Step Coimmobilization on Glyoxyl-Octyl Agarose Beads with Least Stable Lipases. Catalysts 2019. [DOI: 10.3390/catal9050487] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coimmobilization of lipases may be interesting in many uses, but this means that the stability of the least stable enzyme determines the stability of the full combilipase. Here, we propose a strategy that permits the reuse the most stable enzyme. Lecitase Ultra (LU) (a phospholipase) and the lipases from Rhizomucor miehei (RML) and from Pseudomonas fluorescens (PFL) were immobilized on octyl agarose, and their stabilities were studied under a broad range of conditions. Immobilized PFL was found to be the most stable enzyme under all condition ranges studied. Furthermore, in many cases it maintained full activity, while the other enzymes lost more than 50% of their initial activity. To coimmobilize these enzymes without discarding fully active PFL when LU or RML had been inactivated, PFL was covalently immobilized on glyoxyl-agarose beads. After biocatalysts reduction, the other enzyme was coimmobilized just by interfacial activation. After checking that glyoxyl-octyl-PFL was stable in 4% Triton X-100, the biocatalysts of PFL coimmobilized with LU or RML were submitted to inactivation under different conditions. Then, the inactivated least stable coimmobilized enzyme was desorbed (using 4% detergent) and a new enzyme reloading (using in some instances RML and in some others employing LU) was performed. The initial activity of immobilized PFL was maintained intact for several of these cycles. This shows the great potential of this lipase coimmobilization strategy.
Collapse
|
191
|
Kruger J, Stuetz W, Frank J. Iron, Catechin, and Ferulic Acid Inhibit Cellular Uptake of β-Carotene by Reducing Micellization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5792-5800. [PMID: 31056903 DOI: 10.1021/acs.jafc.9b01417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Green leafy vegetables have low β-carotene bioavailability, which we hypothesized to be, at least in part, due to high contents of fiber, minerals, and phenolics. We investigated the effects of pectin (40-120 μg/mL), iron (50-150 μg/mL), ferulic acid (30-90 μg/mL), and catechin (50-150 μg/mL), in a model system, on β-carotene micellization (in vitro digestion) and intestinal absorption (Caco-2 cell model). Iron, pectin, ferulic acid, and catechin on average reduced ( p < 0.05) β-carotene micellization (1.49 ± 0.05 μmol/L) by 66.9, 59.3, 43.2, and 51.7%, respectively. Iron reduced micellization by precipitating bile salts from solution and ferulic acid and catechin by inhibition of pancreatic lipase. β-Carotene uptake by Caco-2 cells (2.63 ± 0.22%) was reduced ( p < 0.05) by 37.4, 70.1, 77.0, and 75.1%, respectively, when it was digested with pectin, iron, ferulic acid, or catechin. However, when individual test compounds were added to already micellized β-carotene, they did not inhibit β-carotene uptake. The large reductions in β-carotene micellization observed in vitro warrant further investigation in humans using model green leafy vegetable systems to elucidate their relevance under real-life conditions.
Collapse
Affiliation(s)
- Johanita Kruger
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
- Department of Food Science and Institute for Food, Nutrition and Well-being , University of Pretoria , Private Bag X20 , Hatfield 0028 , South Africa
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| | - Jan Frank
- Institute of Nutritional Sciences , University of Hohenheim , Garbenstraße 28 , 70599 Stuttgart , Germany
| |
Collapse
|
192
|
Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Res Int 2019; 119:951-959. [DOI: 10.1016/j.foodres.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
|
193
|
Barbosa MS, Freire CCC, Souza RL, Cabrera‐Padilla RY, Pereira MM, Freire MG, Lima ÁS, Soares CMF. Effects of phosphonium‐based ionic liquids on the lipase activity evaluated by experimental results and molecular docking. Biotechnol Prog 2019; 35:e2816. [DOI: 10.1002/btpr.2816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Ranyere L. Souza
- Universidade Tiradentes Aracaju Sergipe Brazil
- Instituto de Tecnologia e Pesquisa Aracaju Sergipe Brazil
| | - Rebeca Y. Cabrera‐Padilla
- Universidade Tiradentes Aracaju Sergipe Brazil
- Instituto de Tecnologia e Pesquisa Aracaju Sergipe Brazil
| | - Matheus M. Pereira
- Universidade Tiradentes Aracaju Sergipe Brazil
- Instituto de Tecnologia e Pesquisa Aracaju Sergipe Brazil
| | - Mara G. Freire
- Departamento de QuímicaUniversidade de Aveiro, CICECO – Instituto de Materiais de Aveiro Aveiro Portugal
| | - Álvaro S. Lima
- Universidade Tiradentes Aracaju Sergipe Brazil
- Instituto de Tecnologia e Pesquisa Aracaju Sergipe Brazil
| | - Cleide M. F. Soares
- Universidade Tiradentes Aracaju Sergipe Brazil
- Instituto de Tecnologia e Pesquisa Aracaju Sergipe Brazil
| |
Collapse
|
194
|
Bogdanova LR, Rogov AM, Zueva OS, Zuev YF. Lipase enzymatic microreactor in polysaccharide hydrogel: structure and properties. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2399-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
195
|
Salvia-Trujillo L, Verkempinck S, Rijal SK, Van Loey A, Grauwet T, Hendrickx M. Lipid nanoparticles with fats or oils containing β-carotene: Storage stability and in vitro digestibility kinetics. Food Chem 2019; 278:396-405. [DOI: 10.1016/j.foodchem.2018.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/28/2023]
|
196
|
Tian M, Han J, Ye A, Liu W, Xu X, Yao Y, Li K, Kong Y, Wei F, Zhou W. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2677-2684. [PMID: 30338536 DOI: 10.1002/jsfa.9435] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Limited information is concerned on the structure changes of liposomal delivery system under infant conditions. Positively charged lactoferrin (LF)-loaded liposomes, with the entrapment efficiency (EE) of 52.3 ± 6.3%, were prepared from soybean-derived phospholipids using a thin-layer dispersion method. The structure changes and digestibility of LF-loaded liposomes under infant conditions, including simulated gastric fluid (SGF) and simulated small intestinal fluid (SIF), were characterized in terms of the average particle size, zeta potential, turbidity, fourier transform infrared, transmission electron microscopy, lipolysis and protein hydrolysis. RESULTS This study showed that the functional groups, favorable membrane structure and the EE of liposomes were slightly changed as a function of time when the liposome digested under SGF conditions. However, the intact bilayer structures were damaged and the EE of LF-loaded liposomes decreased to 28.5% after digestion in infant SIF. CONCLUSION These results suggested that liposomal membrane could prevent the gastric degradation and the structure of liposomes was not completely destroyed with a low concentration of pancreatin and bile salts under infant conditions. Present study provided information on the insight into the characteristics of liposomes during infant gastrointestinal digestion, which was useful for the development of microcapsule systems in infant diet. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengmeng Tian
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aiqian Ye
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Weilin Liu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiankang Xu
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixin Yao
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kexuan Li
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Youyu Kong
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fuqiang Wei
- Department of Food Quality and Safety, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wei Zhou
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
197
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
198
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
199
|
Supramolecular structures in lipid digestion and implications for functional food delivery. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
200
|
Macromolecular crowding and membrane binding proteins: The case of phospholipase A1. Chem Phys Lipids 2019; 218:91-102. [DOI: 10.1016/j.chemphyslip.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022]
|