151
|
Archer E, Süel GM. Synthetic biological networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:096602. [PMID: 24006369 DOI: 10.1088/0034-4885/76/9/096602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics.
Collapse
Affiliation(s)
- Eric Archer
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
152
|
Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS. Microalgae-based carbohydrates for biofuel production. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.03.006] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
153
|
Syed K, Nelson DR, Riley R, Yadav JS. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Mycologia 2013; 105:1445-55. [PMID: 23928414 DOI: 10.3852/13-002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest CYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 CYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| | | | | | | |
Collapse
|
154
|
Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR. The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 2013; 97:8317-27. [PMID: 23912117 PMCID: PMC3757260 DOI: 10.1007/s00253-013-5113-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Carboxylic acids are an attractive biorenewable chemical. However, like many other fermentatively produced compounds, they are inhibitory to the biocatalyst. An understanding of the mechanism of toxicity can aid in mitigating this problem. Here, we show that hexanoic and octanoic acids are completely inhibitory to Escherichia coli MG1655 in minimal medium at a concentration of 40 mM, while decanoic acid was inhibitory at 20 mM. This growth inhibition is pH-dependent and is accompanied by a significant change in the fluorescence polarization (fluidity) and integrity. This inhibition and sensitivity to membrane fluidization, but not to damage of membrane integrity, can be at least partially mitigated during short-term adaptation to octanoic acid. This short-term adaptation was accompanied by a change in membrane lipid composition and a decrease in cell surface hydrophobicity. Specifically, the saturated/unsaturated lipid ratio decreased and the average lipid length increased. A fatty acid-producing strain exhibited an increase in membrane leakage as the product titer increased, but no change in membrane fluidity. These results highlight the importance of the cell membrane as a target for future metabolic engineering efforts for enabling resistance and tolerance of desirable biorenewable compounds, such as carboxylic acids. Knowledge of these effects can help in the engineering of robust biocatalysts for biorenewable chemicals production.
Collapse
Affiliation(s)
- Liam A. Royce
- Department of Chemical and Biological Engineering, Iowa State University, 3051 Sweeney Hall, Ames, IA 50011 USA
| | - Ping Liu
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011 USA
| | - Matthew J. Stebbins
- Department of Chemical and Biological Engineering, Iowa State University, 3051 Sweeney Hall, Ames, IA 50011 USA
| | - Benjamin C. Hanson
- Department of Chemical and Biological Engineering, Iowa State University, 3051 Sweeney Hall, Ames, IA 50011 USA
| | - Laura R. Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, 3051 Sweeney Hall, Ames, IA 50011 USA
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
155
|
Idan O, Hess H. Engineering enzymatic cascades on nanoscale scaffolds. Curr Opin Biotechnol 2013; 24:606-11. [DOI: 10.1016/j.copbio.2013.01.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/28/2022]
|
156
|
Liu D, Hoynes-O'Connor A, Zhang F. Bridging the gap between systems biology and synthetic biology. Front Microbiol 2013; 4:211. [PMID: 23898328 PMCID: PMC3722476 DOI: 10.3389/fmicb.2013.00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Systems biology is an inter-disciplinary science that studies the complex interactions and the collective behavior of a cell or an organism. Synthetic biology, as a technological subject, combines biological science and engineering, allowing the design and manipulation of a system for certain applications. Both systems and synthetic biology have played important roles in the recent development of microbial platforms for energy, materials, and environmental applications. More importantly, systems biology provides the knowledge necessary for the development of synthetic biology tools, which in turn facilitates the manipulation and understanding of complex biological systems. Thus, the combination of systems and synthetic biology has huge potential for studying and engineering microbes, especially to perform advanced tasks, such as producing biofuels. Although there have been very few studies in integrating systems and synthetic biology, existing examples have demonstrated great power in extending microbiological capabilities. This review focuses on recent efforts in microbiological genomics, transcriptomics, proteomics, and metabolomics, aiming to fill the gap between systems and synthetic biology.
Collapse
Affiliation(s)
- Di Liu
- Department of Energy, Environmental and Chemical Engineering, Washington University St. Louis, MO, USA
| | | | | |
Collapse
|
157
|
Fan L, Liu J, Nie K, Liu L, Wang F, Tan T, Deng L. Synthesis of medium chain length fatty acid ethyl esters in engineered Escherichia coli using endogenously produced medium chain fatty acids. Enzyme Microb Technol 2013; 53:128-33. [DOI: 10.1016/j.enzmictec.2013.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 01/15/2023]
|
158
|
Lu Y, Wang J, Deng Z, Wu H, Deng Q, Tan H, Cao L. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces. Lett Appl Microbiol 2013; 57:200-5. [PMID: 23692633 DOI: 10.1111/lam.12096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/26/2022]
Abstract
An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.
Collapse
Affiliation(s)
- Y Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
159
|
|
160
|
Hasunuma T, Okazaki F, Okai N, Hara KY, Ishii J, Kondo A. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. BIORESOURCE TECHNOLOGY 2013. [PMID: 23195654 DOI: 10.1016/j.biortech.2012.10.047] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The biorefinery manufacturing process for producing chemicals and liquid fuels from biomass is a promising approach for securing energy and resources. To establish cost-effective fermentation of lignocellulosic biomass, the consolidation of sacccharification and fermentation processes is a desirable strategy, but requires the development of microorganisms capable of cellulose/hemicellulose hydrolysis and target chemical production. Such an endeavor requires a large number of prerequisites to be realized, including engineering microbial strains with high cellulolytic activity, high product yield, productivities, and titers, ability to use many carbon sources, and resistance to toxic compounds released during the pretreatment of lignocellulosic biomass. Researchers have focused on either engineering naturally cellulolytic microorganisms to improve product-related properties or modifying non-cellulolytic organisms with high product yields to become cellulolytic. This article reviews recent advances in the development of microorganisms for the production of renewable chemicals and advanced biofuels, as well as ethanol, from lignocellulosic materials through consolidated bioprocessing.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
161
|
Lee SJ, Lee SJ, Lee DW. Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 2013; 4:92. [PMID: 23626588 PMCID: PMC3630320 DOI: 10.3389/fmicb.2013.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/03/2013] [Indexed: 12/26/2022] Open
Abstract
The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.
Collapse
Affiliation(s)
- Sang Jun Lee
- Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea
| | | | | |
Collapse
|
162
|
Microfabricated devices in microbial bioenergy sciences. Trends Biotechnol 2013; 31:225-32. [DOI: 10.1016/j.tibtech.2012.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/01/2012] [Accepted: 12/11/2012] [Indexed: 01/18/2023]
|
163
|
Lennen RM, Pfleger BF. Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 2013; 24:1044-53. [PMID: 23541503 DOI: 10.1016/j.copbio.2013.02.028] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/21/2022]
Abstract
Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance.
Collapse
Affiliation(s)
- Rebecca M Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Room 3629, Madison, WI 53706, United States; U.S. Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | | |
Collapse
|
164
|
Yamada R, Hasunuma T, Kondo A. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Biotechnol Adv 2013; 31:754-63. [PMID: 23473971 DOI: 10.1016/j.biotechadv.2013.02.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 11/17/2022]
Abstract
With the exhaustion of fossil fuels and with the environmental issues they pose, utilization of abundant lignocellulosic biomass as a feedstock for biofuels and bio-based chemicals has recently become an attractive option. Lignocellulosic biomass is primarily composed of cellulose, hemicellulose, and lignin and has a very rigid and complex structure. It is accordingly much more expensive to process than starchy grains because of the need for extensive pretreatment and relatively large amounts of cellulases for efficient hydrolysis. Efficient and cost-effective methods for the production of biofuels and chemicals from lignocellulose are required. A consolidated bioprocess (CBP), which integrates all biological steps consisting of enzyme production, saccharification, and fermentation, is considered a promising strategy for reducing production costs. Establishing an efficient CBP using lignocellulosic biomass requires both lignocellulose degradation into glucose and efficient production of biofuels or chemicals from glucose. With this aim, many researchers are attempting to endow selected microorganisms with lignocellulose-assimilating ability. In this review, we focus on studies aimed at conferring lignocellulose-assimilating ability not only to yeast strains but also to bacterial strains by recombinant technology. Recent developments in improvement of enzyme productivity by microorganisms and in improvement of the specific activity of cellulase are emphasized.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | | | | |
Collapse
|
165
|
Matsuda F, Shirai T, Ishii J, Kondo A. Regulation of central carbon metabolism in Saccharomyces cerevisiae by metabolic inhibitors. J Biosci Bioeng 2013; 116:59-64. [PMID: 23453202 DOI: 10.1016/j.jbiosc.2013.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/30/2022]
Abstract
Metabolic inhibitors were applied for chemical regulation of central carbon metabolism in Saccharomyces cerevisiae. S. cerevisiae was treated with 10 metabolic inhibitors with various modes of action, and their activities were evaluated using a growth inhibition assay. Among the 6 active inhibitors, the effects of pyrazole (alcohol dehydrogenase inhibitor) and TTA (2-thenoyltrifluoloacetone, succinate dehydrogenase inhibitor) were analyzed in detail. The flask-scale batch-fermentation test showed that ethanol yield was reduced to 0.10 ± 0.01 g g⁻¹ and glycerol yield increased to 0.26 ± 0.01 g g⁻¹ on treatment with pyrazole at 5.0 g L⁻¹, indicating that multiple isozymes of alcohol dehydrogenase were simultaneously inhibited. The multi-targeted metabolic profiling analysis revealed that, although the TTA and pyrazole treatments affected the profiles of all central carbon metabolites in distinct manners, the level of fructose-1,6-bisphosphate commonly increased in the TTA- and pyrazole-treated S. cerevisiae by an unknown mechanism. These results demonstrate that chemical regulation of the central carbon metabolism could be used as an alternative tool to control microbial cell factories for bioproduction, or as a chemical probe to investigate the metabolic systems of useful microorganisms.
Collapse
Affiliation(s)
- Fumio Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | | | | | | |
Collapse
|
166
|
Liu Z, Gao Y, Chen J, Imanaka T, Bao J, Hua Q. Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. BIORESOURCE TECHNOLOGY 2013; 130:144-51. [PMID: 23306122 DOI: 10.1016/j.biortech.2012.12.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 05/11/2023]
Abstract
Microbial fermentation for producing biodiesel from lignocellulosic hydrolysates is receiving increasing attention and attempts have been made to screen an oleaginous Trichosporon sp. with high lipid content and a strong tolerance to lignocellulose hydrolysates. In order to better understand mechanisms related to its lipid accumulation, metabolic flux analysis was performed under 5gL(-1) ammonium sulfate (high nitrogen) and/or 0.4gL(-1) ammonium sulfate (low nitrogen) conditions. Cell growth phase and lipid accumulation phase were shown for cells grown under low nitrogen condition. Results of flux distribution demonstrated that NADPH provided by cytosolic malic enzyme and the acetyl-CoA from cytoplasmic citrate by the ATP: citrate lyase were the two primary sources for excess lipid accumulation. Flux data also supported the fact that the citrate pyruvate cycle plays an essential role in the lipid accumulation. The flux information obtained could also motivate new design strategies for oleaginous yeasts for enhanced biodiesel production.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | |
Collapse
|
167
|
Heiskanen A, Coman V, Kostesha N, Sabourin D, Haslett N, Baronian K, Gorton L, Dufva M, Emnéus J. Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem 2013; 405:3847-58. [DOI: 10.1007/s00216-013-6709-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/10/2012] [Accepted: 01/09/2013] [Indexed: 01/13/2023]
|
168
|
Mattozzi MD, Ziesack M, Voges MJ, Silver PA, Way JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab Eng 2013; 16:130-9. [PMID: 23376595 DOI: 10.1016/j.ymben.2013.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 01/11/2023]
Abstract
The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD(-) double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(-)(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.
Collapse
Affiliation(s)
- Matthew d Mattozzi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
169
|
Abstract
This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.
Collapse
|
170
|
Akhtar MK, Turner NJ, Jones PR. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 2013; 110:87-92. [PMID: 23248280 PMCID: PMC3538209 DOI: 10.1073/pnas.1216516110] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities.
Collapse
Affiliation(s)
- M. Kalim Akhtar
- Department of Biochemistry and Food Chemistry, University of Turku, Tykistökatu 6A 6krs, 20520 Turku, Finland; and
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Patrik R. Jones
- Department of Biochemistry and Food Chemistry, University of Turku, Tykistökatu 6A 6krs, 20520 Turku, Finland; and
| |
Collapse
|
171
|
Towards Engineered Light–Energy Conversion in Nonphotosynthetic Microorganisms. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
172
|
Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F. Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 2013; 163:204-16. [DOI: 10.1016/j.jbiotec.2012.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022]
|
173
|
Basak S, Jiang R. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP). PLoS One 2012; 7:e51179. [PMID: 23251448 PMCID: PMC3522674 DOI: 10.1371/journal.pone.0051179] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022] Open
Abstract
Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP), which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3) were identified with improved tolerance via H(2)O(2) enrichment selection. The best mutant OM3 could grow in 12 mM H(2)O(2) with the growth rate of 0.6 h(-1), whereas the growth of wild type was completely inhibited at this H(2)O(2) concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS), which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2)O(2) treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold), but also RpoS- and OxyR-regulated genes (up to 7.7-fold). qRT-PCR data and enzyme activity assay suggested that catalase (katE) could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.
Collapse
Affiliation(s)
- Souvik Basak
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
174
|
Yuzawa S, Chiba N, Katz L, Keasling JD. Construction of a Part of a 3-Hydroxypropionate Cycle for Heterologous Polyketide Biosynthesis in Escherichia coli. Biochemistry 2012. [DOI: 10.1021/bi301414q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Satoshi Yuzawa
- QB3 Institute, University of California, Berkeley, California 94270,
United
States
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Naoki Chiba
- QB3 Institute, University of California, Berkeley, California 94270,
United
States
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Leonard Katz
- QB3 Institute, University of California, Berkeley, California 94270,
United
States
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville,
California
94608, United States
| | - Jay D. Keasling
- QB3 Institute, University of California, Berkeley, California 94270,
United
States
- Department of Chemical
and Biomolecular Engineering, University of California, Berkeley, California 94270, United States
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville,
California
94608, United States
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
175
|
Ha SJ, Galazka JM, Joong Oh E, Kordić V, Kim H, Jin YS, Cate JHD. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng 2012. [PMID: 23178501 DOI: 10.1016/j.ymben.2012.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular β-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (ΔG°=+3.6kJmol(-1)). A thermodynamic "push" from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae.
Collapse
Affiliation(s)
- Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Kung Y, Runguphan W, Keasling JD. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012; 1:498-513. [PMID: 23656227 DOI: 10.1021/sb300074k] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.
Collapse
Affiliation(s)
- Yan Kung
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weerawat Runguphan
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Chemical and Biomolecular Engineering and Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
177
|
|
178
|
Syed K, Yadav JS. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit Rev Microbiol 2012; 38:339-63. [PMID: 22624627 PMCID: PMC3567848 DOI: 10.3109/1040841x.2012.682050] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system, mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosproium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
179
|
Molnár I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD. Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics 2012; 13:576. [PMID: 23110428 PMCID: PMC3533583 DOI: 10.1186/1471-2164-13-576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/19/2012] [Indexed: 12/16/2022] Open
Abstract
Background Microalgae hold promise for yielding a biofuel feedstock that is sustainable, carbon-neutral, distributed, and only minimally disruptive for the production of food and feed by traditional agriculture. Amongst oleaginous eukaryotic algae, the B race of Botryococcus braunii is unique in that it produces large amounts of liquid hydrocarbons of terpenoid origin. These are comparable to fossil crude oil, and are sequestered outside the cells in a communal extracellular polymeric matrix material. Biosynthetic engineering of terpenoid bio-crude production requires identification of genes and reconstruction of metabolic pathways responsible for production of both hydrocarbons and other metabolites of the alga that compete for photosynthetic carbon and energy. Results A de novo assembly of 1,334,609 next-generation pyrosequencing reads form the Showa strain of the B race of B. braunii yielded a transcriptomic database of 46,422 contigs with an average length of 756 bp. Contigs were annotated with pathway, ontology, and protein domain identifiers. Manual curation allowed the reconstruction of pathways that produce terpenoid liquid hydrocarbons from primary metabolites, and pathways that divert photosynthetic carbon into tetraterpenoid carotenoids, diterpenoids, and the prenyl chains of meroterpenoid quinones and chlorophyll. Inventories of machine-assembled contigs are also presented for reconstructed pathways for the biosynthesis of competing storage compounds including triacylglycerol and starch. Regeneration of S-adenosylmethionine, and the extracellular localization of the hydrocarbon oils by active transport and possibly autophagy are also investigated. Conclusions The construction of an annotated transcriptomic database, publicly available in a web-based data depository and annotation tool, provides a foundation for metabolic pathway and network reconstruction, and facilitates further omics studies in the absence of a genome sequence for the Showa strain of B. braunii, race B. Further, the transcriptome database empowers future biosynthetic engineering approaches for strain improvement and the transfer of desirable traits to heterologous hosts.
Collapse
Affiliation(s)
- István Molnár
- Natural Products Center, School of Natural Resources and the Environment, The University of Arizona, Tucson, 85739, USA.
| | | | | | | | | | | | | |
Collapse
|
180
|
Qiao J, Wang J, Chen L, Tian X, Huang S, Ren X, Zhang W. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803. J Proteome Res 2012; 11:5286-300. [PMID: 23062023 DOI: 10.1021/pr300504w] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.
Collapse
Affiliation(s)
- Jianjun Qiao
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
| | | | | | | | | | | | | |
Collapse
|
181
|
Leprince A, van Passel MWJ, dos Santos VAPM. Streamlining genomes: toward the generation of simplified and stabilized microbial systems. Curr Opin Biotechnol 2012; 23:651-8. [DOI: 10.1016/j.copbio.2012.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 02/07/2023]
|
182
|
Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 2012; 14:653-60. [PMID: 23026122 DOI: 10.1016/j.ymben.2012.08.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 01/17/2023]
Abstract
Fatty acids are important precursors to biofuels. The Escherichia coli FadR is a transcription factor that regulates several processes in fatty acid biosynthesis, degradation, and membrane transport. By tuning the expression of FadR in an engineered E. coli host, we were able to increase fatty acid titer by 7.5-fold over our previously engineered fatty acid-producing strain, reaching 5.2±0.5g/L and 73% of the theoretical yield. The mechanism by which FadR enhanced fatty acid yield was studied by whole-genome transcriptional analysis (microarray) and targeted proteomics. Overexpression of FadR led to transcriptional changes for many genes, including genes involved in fatty acid pathways. The biggest transcriptional changes in fatty acid pathway genes included fabB, fabF, and accA. Overexpression of any of these genes alone did not result in a high yield comparable to fadR expression, indicating that FadR enhanced fatty acid production globally by tuning the expression levels of many genes to optimal levels.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM. Evidence for Only Oxygenative Cleavage of Aldehydes to Alk(a/e)nes and Formate by Cyanobacterial Aldehyde Decarbonylases. Biochemistry 2012; 51:7908-16. [DOI: 10.1021/bi300912n] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ning Li
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| | - Wei-chen Chang
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| | - Douglas M. Warui
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| | - Squire J. Booker
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| | - Carsten Krebs
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| | - J. Martin Bollinger
- Departments of †Biochemistry and Molecular Biology
and ‡Chemistry, The Pennsylvania State University, University Park, Pennsylvania
16802, United States
| |
Collapse
|
184
|
Khunjar WO, Sahin A, West AC, Chandran K, Banta S. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One 2012; 7:e44846. [PMID: 23028643 PMCID: PMC3446996 DOI: 10.1371/journal.pone.0044846] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/08/2012] [Indexed: 01/23/2023] Open
Abstract
The storage of renewable electrical energy within chemical bonds of biofuels and other chemicals is a route to decreasing petroleum usage. A critical challenge is the efficient transfer of electrons into a biological host that can covert this energy into high energy organic compounds. In this paper, we describe an approach whereby biomass is grown using energy obtained from a soluble mediator that is regenerated electrochemically. The net result is a separate-stage reverse microbial fuel cell (rMFC) that fixes CO₂ into biomass using electrical energy. We selected ammonia as a low cost, abundant, safe, and soluble redox mediator that facilitated energy transfer to biomass. Nitrosomonas europaea, a chemolithoautotroph, was used as the biocatalyst due to its inherent capability to utilize ammonia as its sole energy source for growth. An electrochemical reactor was designed for the regeneration of ammonia from nitrite, and current efficiencies of 100% were achieved. Calculations indicated that overall bioproduction efficiency could approach 2.7±0.2% under optimal electrolysis conditions. The application of chemolithoautotrophy for industrial bioproduction has been largely unexplored, and results suggest that this and related rMFC platforms may enable biofuel and related biochemical production.
Collapse
Affiliation(s)
- Wendell O. Khunjar
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, New York, New York, United States of America
| | - Asli Sahin
- Department of Chemical Engineering, Columbia University, New York, New York, New York, United States of America
| | - Alan C. West
- Department of Chemical Engineering, Columbia University, New York, New York, New York, United States of America
- * E-mail: (ACW); (KC); (SB)
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Department of Chemical Engineering, Columbia University, New York, New York, New York, United States of America
- * E-mail: (ACW); (KC); (SB)
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York, New York, United States of America
- * E-mail: (ACW); (KC); (SB)
| |
Collapse
|
185
|
Liu J, Chen L, Wang J, Qiao J, Zhang W. Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:68. [PMID: 22958739 PMCID: PMC3479031 DOI: 10.1186/1754-6834-5-68] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/30/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Recent studies have demonstrated that photosynthetic cyanobacteria could be an excellent cell factory to produce renewable biofuels and chemicals due to their capability to utilize solar energy and CO2 as the sole energy and carbon sources. Biosynthesis of carbon-neutral biofuel alkanes with good chemical and physical properties has been proposed. However, to make the process economically feasible, one major hurdle to improve the low cell tolerance to alkanes needed to be overcome. RESULTS Towards the goal to develop robust and high-alkane-tolerant hosts, in this study, the responses of model cyanobacterial Synechocystis PCC 6803 to hexane, a representative of alkane, were investigated using a quantitative proteomics approach with iTRAQ - LC-MS/MS technologies. In total, 1,492 unique proteins were identified, representing about 42% of all predicted protein in the Synechocystis genome. Among all proteins identified, a total of 164 and 77 proteins were found up- and down-regulated, respectively. Functional annotation and KEGG pathway enrichment analyses showed that common stress responses were induced by hexane in Synechocystis. Notably, a large number of transporters and membrane-bound proteins, proteins against oxidative stress and proteins related to sulfur relay system and photosynthesis were induced, suggesting that they are possibly the major protection mechanisms against hexane toxicity. CONCLUSION The study provided the first comprehensive view of the complicated molecular mechanism employed by cyanobacterial model species, Synechocystis to defend against hexane stress. The study also provided a list of potential targets to engineer Synechocystis against hexane stress.
Collapse
Affiliation(s)
- Jie Liu
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China
| | - Lei Chen
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China
| | - Jiangxin Wang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China
| | - Jianjun Qiao
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China
| | - Weiwen Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China
| |
Collapse
|
186
|
Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012; 69:2671-90. [PMID: 22388689 PMCID: PMC11115109 DOI: 10.1007/s00018-012-0945-1] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
Abstract
Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.
Collapse
Affiliation(s)
- Kuk-Ki Hong
- Novo Nordisk Centre for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Research Institute of Biotechnology, CJ CheilJedang, Seoul, 157-724 Korea
| | - Jens Nielsen
- Novo Nordisk Centre for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
187
|
Hagel JM, Krizevski R, Marsolais F, Lewinsohn E, Facchini PJ. Biosynthesis of amphetamine analogs in plants. TRENDS IN PLANT SCIENCE 2012; 17:404-412. [PMID: 22502775 DOI: 10.1016/j.tplants.2012.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Amphetamine analogs are produced by plants in the genus Ephedra and by Catha edulis, and include the widely used decongestants and appetite suppressants pseudoephedrine and ephedrine. A combination of yeast (Candida utilis or Saccharomyces cerevisiae) fermentation and subsequent chemical modification is used for the commercial production of these compounds. The availability of certain plant biosynthetic genes would facilitate the engineering of yeast strains capable of de novo pseudoephedrine and ephedrine biosynthesis. Chemical synthesis has yielded amphetamine analogs with myriad functional group substitutions and diverse pharmacological properties. The isolation of enzymes with the serendipitous capacity to accept novel substrates could allow the production of substituted amphetamines in synthetic biosystems. Here, we review the biology, biochemistry and biotechnological potential of amphetamine analogs in plants.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | | | | | | |
Collapse
|
188
|
Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Fact 2012; 11:90. [PMID: 22731523 PMCID: PMC3439341 DOI: 10.1186/1475-2859-11-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/03/2012] [Indexed: 11/17/2022] Open
Abstract
Background Increasing global demand and reliance on petroleum-derived chemicals will necessitate alternative sources for chemical feedstocks. Currently, 99% of chemical feedstocks are derived from petroleum and natural gas. Renewable methods for producing important chemical feedstocks largely remain unaddressed. Synthetic biology enables the renewable production of various chemicals from microorganisms by constructing unique metabolic pathways. Here, we engineer Escherichia coli for the production of isobutyraldehyde, which can be readily converted to various hydrocarbons currently derived from petroleum such as isobutyric acid, acetal, oxime and imine using existing chemical catalysis. Isobutyraldehyde can be readily stripped from cultures during production, which reduces toxic effects of isobutyraldehyde. Results We adopted the isobutanol pathway previously constructed in E. coli, neglecting the last step in the pathway where isobutyraldehyde is converted to isobutanol. However, this strain still overwhelmingly produced isobutanol (1.5 g/L/OD600 (isobutanol) vs 0.14 g/L/OD600 (isobutyraldehyde)). Next, we deleted yqhD which encodes a broad-substrate range aldehyde reductase known to be active toward isobutyraldehyde. This strain produced isobutanol and isobutyraldehyde at a near 1:1 ratio, indicating further native isobutyraldehyde reductase (IBR) activity in E. coli. To further eliminate isobutanol formation, we set out to identify and remove the remaining IBRs from the E. coli genome. We identified 7 annotated genes coding for IBRs that could be active toward isobutyraldehyde: adhP, eutG, yiaY, yjgB, betA, fucO, eutE. Individual deletions of the genes yielded only marginal improvements. Therefore, we sequentially deleted all seven of the genes and assessed production. The combined deletions greatly increased isobutyraldehyde production (1.5 g/L/OD600) and decreased isobutanol production (0.4 g/L/OD600). By assessing production by overexpression of each candidate IBR, we reveal that AdhP, EutG, YjgB, and FucO are active toward isobutyraldehyde. Finally, we assessed long-term isobutyraldehyde production of our best strain containing a total of 15 gene deletions using a gas stripping system with in situ product removal, resulting in a final titer of 35 g/L after 5 days. Conclusions In this work, we optimized E. coli for the production of the important chemical feedstock isobutyraldehyde by the removal of IBRs. Long-term production yielded industrially relevant titers of isobutyraldehyde with in situ product removal. The mutational load imparted on E. coli in this work demonstrates the versatility of metabolic engineering for strain improvements.
Collapse
|
189
|
Abstract
Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.
Collapse
Affiliation(s)
- Allen A Cheng
- Synthetic Biology Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
190
|
Curran KA, Alper HS. Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 2012; 14:289-97. [PMID: 22595280 DOI: 10.1016/j.ymben.2012.04.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/15/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering.
Collapse
Affiliation(s)
- Kathleen A Curran
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station, C0400, Austin, TX 78712, USA
| | | |
Collapse
|
191
|
|
192
|
Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012; 30:354-9. [DOI: 10.1038/nbt.2149] [Citation(s) in RCA: 634] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/07/2012] [Indexed: 12/21/2022]
|
193
|
Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:7. [PMID: 22364438 PMCID: PMC3309958 DOI: 10.1186/1754-6834-5-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/24/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. RESULTS Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. CONCLUSIONS Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.
Collapse
Affiliation(s)
- Shuobo Shi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Juan Octavio Valle-Rodríguez
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Sakda Khoomrung
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| |
Collapse
|
194
|
Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2012. [PMID: 22364438 DOI: 10.1186/preaccept-1932279820621895] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. RESULTS Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. CONCLUSIONS Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.
Collapse
Affiliation(s)
- Shuobo Shi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
195
|
Abstract
The bioindustrial production of fuels, chemicals, and therapeutics typically relies upon carbohydrate inputs derived from agricultural plants, resulting in the entanglement of food and chemical commodity markets. We demonstrate the efficient production of sucrose from a cyanobacterial species, Synechococcus elongatus, heterologously expressing a symporter of protons and sucrose (cscB). cscB-expressing cyanobacteria export sucrose irreversibly to concentrations of >10 mM without culture toxicity. Moreover, sucrose-exporting cyanobacteria exhibit increased biomass production rates relative to wild-type strains, accompanied by enhanced photosystem II activity, carbon fixation, and chlorophyll content. The genetic modification of sucrose biosynthesis pathways to minimize competing glucose- or sucrose-consuming reactions can further improve sucrose production, allowing the export of sucrose at rates of up to 36.1 mg liter(-1) h illumination(-1). This rate of production exceeds that of previous reports of targeted, photobiological production from microbes. Engineered S. elongatus produces sucrose in sufficient quantities (up to ∼80% of total biomass) such that it may be a viable alternative to sugar synthesis from terrestrial plants, including sugarcane.
Collapse
|
196
|
Oud B, van Maris AJA, Daran JM, Pronk JT. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 2012; 12:183-96. [PMID: 22152095 PMCID: PMC3615171 DOI: 10.1111/j.1567-1364.2011.00776.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022] Open
Abstract
Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages.
Collapse
Affiliation(s)
- Bart Oud
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | |
Collapse
|
197
|
Bornscheuer U. Can synthetic biology and metabolic engineering contribute to the microbial production of lipids and oleochemicals? EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
198
|
Jang YS, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2011; 30:989-1000. [PMID: 21889585 DOI: 10.1016/j.biotechadv.2011.08.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 08/06/2011] [Accepted: 08/17/2011] [Indexed: 12/30/2022]
Abstract
The increasing oil price and environmental concerns caused by the use of fossil fuel have renewed our interest in utilizing biomass as a sustainable resource for the production of biofuel. It is however essential to develop high performance microbes that are capable of producing biofuels with very high efficiency in order to compete with the fossil fuel. Recently, the strategies for developing microbial strains by systems metabolic engineering, which can be considered as metabolic engineering integrated with systems biology and synthetic biology, have been developed. Systems metabolic engineering allows successful development of microbes that are capable of producing several different biofuels including bioethanol, biobutanol, alkane, and biodiesel, and even hydrogen. In this review, the approaches employed to develop efficient biofuel producers by metabolic engineering and systems metabolic engineering approaches are reviewed with relevant example cases. It is expected that systems metabolic engineering will be employed as an essential strategy for the development of microbial strains for industrial applications.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|