151
|
Missiroli S, Morganti C, Giorgi C, Pinton P. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum. Methods Mol Biol 2016; 1388:187-212. [PMID: 27033078 DOI: 10.1007/978-1-4939-3299-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.
Collapse
Affiliation(s)
- Sonia Missiroli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Via Fossato di Mortara 70 c/o CUBO, 44121, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Via Fossato di Mortara 70 c/o CUBO, 44121, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Via Fossato di Mortara 70 c/o CUBO, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA center, University of Ferrara, Via Fossato di Mortara 70 c/o CUBO, 44121, Ferrara, Italy.
| |
Collapse
|
152
|
Meng Q, Chen Y, Zhang M, Chen Y, Yuan J, Murray SC. Molecular characterization and phylogenetic analysis of ZmMCUs in maize. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
153
|
Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 2015; 418 Pt 3:273-97. [PMID: 25659536 PMCID: PMC4523495 DOI: 10.1016/j.mce.2015.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short (22 nucleotides), single-stranded, non-coding RNAs that form complimentary base-pairs with the 3' untranslated region of target mRNAs within the RNA-induced silencing complex (RISC) and block translation and/or stimulate mRNA transcript degradation. The non-coding miRBase (release 21, June 2014) reports that human genome contains ∼ 2588 mature miRNAs which regulate ∼ 60% of human protein-coding mRNAs. Dysregulation of miRNA expression has been implicated in estrogen-related diseases including breast cancer and endometrial cancer. The mechanism for estrogen regulation of miRNA expression and the role of estrogen-regulated miRNAs in normal homeostasis, reproduction, lactation, and in cancer is an area of great research and clinical interest. Estrogens regulate miRNA transcription through estrogen receptors α and β in a tissue-specific and cell-dependent manner. This review focuses primarily on the regulation of miRNA expression by ligand-activated ERs and their bona fide gene targets and includes miRNA regulation by tamoxifen and endocrine disrupting chemicals (EDCs) in breast cancer and cell lines.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
154
|
Ji J, Qin Y, Ren J, Lu C, Wang R, Dai X, Zhou R, Huang Z, Xu M, Chen M, Wu W, Song L, Shen H, Hu Z, Miao D, Xia Y, Wang X. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN. Sci Rep 2015; 5:16262. [PMID: 26548909 PMCID: PMC4637860 DOI: 10.1038/srep16262] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria-related microRNAs (miRNAs) have recently emerged as key regulators of cell metabolism and can modulate mitochondrial fusion and division. In order to investigate the roles of mitochondria-related miRNAs played in obesity, we conducted comprehensive molecular analysis in vitro and in vivo. Based on high-fat-diet (HFD) induced obese mice, we found that hepatic mitochondrial function was markedly altered. Subsequently, we evaluated the expression levels of selected mitochondria-related miRNAs and found that miR-141-3p was up-regulated strikingly in HFD mice. To further verify the role of miR-141-3p in obesity, we carried out gain-and-loss-of-function study in human HepG2 cells. We found that miR-141-3p could modulate ATP production and induce oxidative stress. Through luciferase report gene assay, we identified that phosphatase and tensin homolog (PTEN) was a target of miR-141-3p. Inhibiting PTEN could alter the mitochondrial function, too. Our study suggested that mitochondria-related miR-141-3p induced mitochondrial dysfunction by inhibiting PTEN.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Jing Ren
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rong Wang
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Miaofei Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
155
|
Morciano G, Giorgi C, Balestra D, Marchi S, Perrone D, Pinotti M, Pinton P. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell 2015; 27:20-34. [PMID: 26538029 PMCID: PMC4694758 DOI: 10.1091/mbc.e15-01-0028] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/29/2015] [Indexed: 01/04/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca(2+)) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)-dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, FE 44121 Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, FE 44121 Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, FE 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies
| |
Collapse
|
156
|
Wagner S, Behera S, De Bortoli S, Logan DC, Fuchs P, Carraretto L, Teardo E, Cendron L, Nietzel T, Füßl M, Doccula FG, Navazio L, Fricker MD, Van Aken O, Finkemeier I, Meyer AJ, Szabò I, Costa A, Schwarzländer M. The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis. THE PLANT CELL 2015; 27:3190-212. [PMID: 26530087 PMCID: PMC4682298 DOI: 10.1105/tpc.15.00509] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/25/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca(2+) signaling may play a central role in this process. Free Ca(2+) dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca(2+) dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca(2+) uniporter machinery in mammals. MICU binds Ca(2+) and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca(2+) sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca(2+) in the matrix. Furthermore, Ca(2+) elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca(2+) signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca(2+) uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca(2+) uptake by moderating influx, thereby shaping Ca(2+) signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca(2+) signaling in plants.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | | | - Sara De Bortoli
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - David C Logan
- Université d'Angers, INRA, Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences, F-49045 Angers, France
| | - Philippe Fuchs
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Luca Carraretto
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Thomas Nietzel
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Magdalena Füßl
- Plant Proteomics Group, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | - Lorella Navazio
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia
| | - Iris Finkemeier
- Plant Proteomics Group, Max-Planck-Institute for Plant Breeding Research, 50829 Cologne, Germany Institute for Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Andreas J Meyer
- Department Chemical Signalling, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy Institute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
157
|
Moreno-Sánchez R, Saavedra E, Gallardo-Pérez JC, Rumjanek FD, Rodríguez-Enríquez S. Understanding the cancer cell phenotype beyond the limitations of current omics analyses. FEBS J 2015; 283:54-73. [DOI: 10.1111/febs.13535] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| | - Emma Saavedra
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| | | | | | - Sara Rodríguez-Enríquez
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Tlalpan Mexico
| |
Collapse
|
158
|
Abstract
The mitochondrial calcium uniporter is an evolutionarily conserved calcium channel, and its biophysical properties and relevance to cell death, bioenergetics and signalling have been investigated for decades. However, the genes encoding this channel have only recently been discovered, opening up a new 'molecular era' in the study of its biology. We now know that the uniporter is not a single protein but rather a macromolecular complex consisting of pore-forming and regulatory subunits. We review recent studies that harnessed the power of molecular biology and genetics to characterize the mechanism of action of the uniporter, its evolution and its contribution to physiology and human disease.
Collapse
|
159
|
Mahdi SHA, Cheng H, Li J, Feng R. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells. Arch Biochem Biophys 2015; 583:18-26. [PMID: 26247838 DOI: 10.1016/j.abb.2015.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
The contribution of Ca(2+) in TGF-β-induced EMT is poorly understood. We aimed to confirm the effect of TGF-β on the gene expression of intracellular calcium-handling proteins and to investigate the potential underlying mechanisms in TGF-β-induced EMT. T47D and MCF-7 cells were cultured in vitro and treated with TGF-β. The mRNA expression of EMT marker genes and intracellular calcium-handling proteins were quantified by qRT-PCR. qRT-PCR and Western blot analysis results verified the changes of EMT marker gene expression. Furthermore, we found that TGF-β induced cell morphological changes significantly with an increase of cell surface area and cell length. These results indicated that TGF-β induced EMT. The mRNA expression levels of SPCA1, SPCA2 and MCU were not influenced by TGF-β treatment, while NCX1 expression was decreased in T47D cells. In addition, the mRNA levels of SERCAs and IP3Rs were significantly changed due to TGF-β-induced EMT. The TGF-β-treated T47D cells exhibited markedly greater response to ATP than the control cells, and the descent velocity of cytosolic calcium concentration was faster in TGF-β-treated cells than in control cells. This is the first report to demonstrate that TGF-β-induced EMT in human breast cancer cells is associated with alterations in endoplasmic reticulum calcium homeostasis.
Collapse
Affiliation(s)
- Shah H A Mahdi
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Huanyi Cheng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jinfeng Li
- Breast Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Renqing Feng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
160
|
Rimessi A, Patergnani S, Bonora M, Wieckowski MR, Pinton P. Mitochondrial Ca(2+) Remodeling is a Prime Factor in Oncogenic Behavior. Front Oncol 2015; 5:143. [PMID: 26161362 PMCID: PMC4479728 DOI: 10.3389/fonc.2015.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism, and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude, and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum, and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal “cancer hallmarks” and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Simone Patergnani
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology , Warsaw , Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
161
|
Wu T, Chen W, Kong D, Li X, Lu H, Liu S, Wang J, Du L, Kong Q, Huang X, Lu Z. miR-25 targets the modulator of apoptosis 1 gene in lung cancer. Carcinogenesis 2015; 36:925-35. [DOI: 10.1093/carcin/bgv068] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/12/2015] [Indexed: 01/25/2023] Open
|
162
|
Giorgi C, Missiroli S, Patergnani S, Duszynski J, Wieckowski MR, Pinton P. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid Redox Signal 2015; 22:995-1019. [PMID: 25557408 DOI: 10.1089/ars.2014.6223] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE In all cells, the endoplasmic reticulum (ER) and mitochondria are physically connected to form junctions termed mitochondria-associated membranes (MAMs). This subcellular compartment is under intense investigation because it represents a "hot spot" for the intracellular signaling of important pathways, including the synthesis of cholesterol and phospholipids, calcium homeostasis, and reactive oxygen species (ROS) generation and activity. RECENT ADVANCES The advanced methods currently used to study this fascinating intracellular microdomain in detail have enabled the identification of the molecular composition of MAMs and their involvement within different physiopathological contexts. CRITICAL ISSUES Here, we review the knowledge regarding (i) MAMs composition in terms of protein composition, (ii) the relationship between MAMs and ROS, (iii) the involvement of MAMs in cell death programs with particular emphasis within the tumor context, (iv) the emerging role of MAMs during inflammation, and (v) the key role of MAMs alterations in selected neurological disorders. FUTURE DIRECTIONS Whether alterations in MAMs represent a response to the disease pathogenesis or directly contribute to the disease has not yet been unequivocally established. In any case, the signaling at the MAMs represents a promising pharmacological target for several important human diseases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- 1 Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
163
|
De Stefani D, Patron M, Rizzuto R. Structure and function of the mitochondrial calcium uniporter complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2006-11. [PMID: 25896525 DOI: 10.1016/j.bbamcr.2015.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/27/2023]
Abstract
The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²⁺ uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²⁺ uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²⁺ concentration, with low activity at resting [Ca²⁺] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²⁺ signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
| | - Maria Patron
- Department of Biomedical Sciences, University of Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
164
|
Pulli I, Blom T, Löf C, Magnusson M, Rimessi A, Pinton P, Törnquist K. A novel chimeric aequorin fused with caveolin-1 reveals a sphingosine kinase 1-regulated Ca²⁺ microdomain in the caveolar compartment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2173-82. [PMID: 25892494 DOI: 10.1016/j.bbamcr.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
Abstract
Caveolae are plasma membrane invaginations enriched in sterols and sphingolipids. Sphingosine kinase 1 (SK1) is an oncogenic protein that converts sphingosine to sphingosine 1-phosphate (S1P), which is a messenger molecule involved in calcium signaling. Caveolae contain calcium responsive proteins, but the effects of SK1 or S1P on caveolar calcium signaling have not been investigated. We generated a Caveolin-1-Aequorin fusion protein (Cav1-Aeq) that can be employed for monitoring the local calcium concentration at the caveolae ([Ca²⁺]cav). In HeLa cells, Cav1-Aeq reported different [Ca²⁺] as compared to the plasma membrane [Ca²⁺] in general (reported by SNAP25-Aeq) or as compared to the cytosolic [Ca²⁺] (reported by cyt-Aeq). The Ca²⁺ signals detected by Cav1-Aeq were significantly attenuated when the caveolar structures were disrupted by methyl-β-cyclodextrin, suggesting that the caveolae are specific targets for Ca²⁺ signaling. HeLa cells overexpressing SK1 showed increased [Ca²⁺]cav during histamine-induced Ca²⁺ mobilization in the absence of extracellular Ca²⁺ as well as during receptor-operated Ca²⁺ entry (ROCE). The SK1-induced increase in [Ca²⁺]cav during ROCE was reverted by S1P receptor antagonists. In accordance, pharmacologic inhibition of SK1 reduced the [Ca²⁺]cav during ROCE. S1P treatment stimulated the [Ca²⁺]cav upon ROCE. The Ca²⁺ responses at the plasma membrane in general were not affected by SK1 expression. In summary, our results show that SK1/S1P-signaling regulates Ca²⁺ signals at the caveolae. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Ilari Pulli
- Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tomas Blom
- University Of Helsinki, 00014 Helsinki, Finland
| | - Christoffer Löf
- University Of Turku, Department of Physiology, Institute of Biomedicine, Kiinamyllynkatu 10, 20520 Turku, Finland
| | | | - Alessandro Rimessi
- University of Ferrara, Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Paolo Pinton
- University of Ferrara, Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Kid Törnquist
- Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; Minerva Foundation Institute For Medical Research, Biomedicum Helsinki, 00270 Helsinki, Finland.
| |
Collapse
|
165
|
Wang L, Yang X, Shen Y. Molecular mechanism of mitochondrial calcium uptake. Cell Mol Life Sci 2015; 72:1489-98. [PMID: 25548802 PMCID: PMC11113575 DOI: 10.1007/s00018-014-1810-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Mitochondrial calcium uptake plays a critical role in various cellular functions. After half a century of extensive studies, the molecular components and important regulators of the mitochondrial calcium uptake complex have been identified. However, the mechanism by which these protein molecules interact with one another and coordinate to regulate calcium passage through mitochondrial membranes remains elusive. Here, we summarize recent progress in the structural and functional characterization of these important protein molecules, which are involved in mitochondrial calcium uptake. In particular, we focus on the current understanding of the molecular mechanism underlying calcium through two mitochondrial membranes. Additionally, we provide a new perspective for future directions in investigation and molecular intervention.
Collapse
Affiliation(s)
- Lele Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
| |
Collapse
|
166
|
Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, Li J, Xu L, Chen YH. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci 2015; 16:5420-33. [PMID: 25764156 PMCID: PMC4394484 DOI: 10.3390/ijms16035420] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 01/04/2015] [Accepted: 02/27/2015] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs, whose expression levels vary in different cell types and tissues. Emerging evidence indicates that tissue-specific and -enriched miRNAs are closely associated with cellular development and stress responses in their tissues. MiR-25 has been documented to be abundant in cardiomyocytes, but its function in the heart remains unknown. Here, we report that miR-25 can protect cardiomyocytes against oxidative damage by down-regulating mitochondrial calcium uniporter (MCU). MiR-25 was markedly elevated in response to oxidative stimulation in cardiomyocytes. Further overexpression of miR-25 protected cardiomyocytes against oxidative damage by inactivating the mitochondrial apoptosis pathway. MCU was identified as a potential target of miR-25 by bioinformatical analysis. MCU mRNA level was reversely correlated with miR-25 under the exposure of H2O2, and MCU protein level was largely decreased by miR-25 overexpression. The luciferase reporter assay confirmed that miR-25 bound directly to the 3' untranslated region (UTR) of MCU mRNA. MiR-25 significantly decreased H2O2-induced elevation of mitochondrial Ca2+ concentration, which is likely to be the result of decreased activity of MCU. We conclude that miR-25 targets MCU to protect cardiomyocytes against oxidative damages. This finding provides novel insights into the involvement of miRNAs in oxidative stress in cardiomyocytes.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Bi-Jun Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Xiu-E Ma
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shi-Yi Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Jing Feng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yuan Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Chang-Ming Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Dan-Dan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Jun Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Liang Xu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Institute of Medical Genetics, Tongji University, Shanghai 200092, China.
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
167
|
p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies. Oncoscience 2015; 2:233-8. [PMID: 25897426 PMCID: PMC4394128 DOI: 10.18632/oncoscience.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
Ca(2+) transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca(2+) levels by enhancing sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity, ultimately promoting mitochondrial Ca(2+) overload. The boosting of "toxic" Ca(2+) signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca(2+) transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca(2+) uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca(2+) measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca(2+) signaling in dictating cell-death outcomes and by the success of anti-cancer treatments.
Collapse
|
168
|
Shanmughapriya S, Rajan S, Hoffman NE, Zhang X, Guo S, Kolesar JE, Hines KJ, Ragheb J, Jog NR, Caricchio R, Baba Y, Zhou Y, Kaufman BA, Cheung JY, Kurosaki T, Gill DL, Madesh M. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci Signal 2015; 8:ra23. [PMID: 25737585 DOI: 10.1126/scisignal.2005673] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.
Collapse
Affiliation(s)
- Santhanam Shanmughapriya
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sudarsan Rajan
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nicholas E Hoffman
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xueqian Zhang
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shuchi Guo
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jill E Kolesar
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kevin J Hines
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan Ragheb
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Neelakshi R Jog
- Department of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Roberto Caricchio
- Department of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, World Premiere International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yandong Zhou
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Brett A Kaufman
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joseph Y Cheung
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premiere International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA.
| | - Muniswamy Madesh
- Department of Biochemistry, Temple University, Philadelphia, PA 19140, USA. Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
169
|
Mammucari C, Gherardi G, Zamparo I, Raffaello A, Boncompagni S, Chemello F, Cagnin S, Braga A, Zanin S, Pallafacchina G, Zentilin L, Sandri M, De Stefani D, Protasi F, Lanfranchi G, Rizzuto R. The mitochondrial calcium uniporter controls skeletal muscle trophism in vivo. Cell Rep 2015; 10:1269-79. [PMID: 25732818 DOI: 10.1016/j.celrep.2015.01.056] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy contributes to the poor prognosis of many pathophysiological conditions, but pharmacological therapies are still limited. Muscle activity leads to major swings in mitochondrial [Ca(2+)], which control aerobic metabolism, cell death, and survival pathways. We investigated in vivo the effects of mitochondrial Ca(2+) homeostasis in skeletal muscle function and trophism by overexpressing or silencing the mitochondrial calcium uniporter (MCU). The results demonstrate that in both developing and adult muscles, MCU-dependent mitochondrial Ca(2+) uptake has a marked trophic effect that does not depend on aerobic control but impinges on two major hypertrophic pathways of skeletal muscle, PGC-1α4 and IGF1-Akt/PKB. In addition, MCU overexpression protects from denervation-induced atrophy. These data reveal a novel Ca(2+)-dependent organelle-to-nucleus signaling route that links mitochondrial function to the control of muscle mass and may represent a possible pharmacological target in conditions of muscle loss.
Collapse
Affiliation(s)
- Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy.
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Ilaria Zamparo
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Simona Boncompagni
- Ce.S.I. (Center for Research on Ageing) and D.N.I.C.S. (Department of Neuroscience, Imaging and Clinical Sciences), University "G. D'Annunzio" of Chieti, Chieti 66100, Italy
| | - Francesco Chemello
- Department of Biology and CRIBI Biotechnology Center, University of Padua, Padua 35131, Italy
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padua, Padua 35131, Italy
| | - Alessandra Braga
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Sofia Zanin
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy; Neuroscience Institute, National Research Council, Padua 35131, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 34159, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy; Neuroscience Institute, National Research Council, Padua 35131, Italy; Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padua 35129, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Naples 80131, Italy
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Feliciano Protasi
- Ce.S.I. (Center for Research on Ageing) and D.N.I.C.S. (Department of Neuroscience, Imaging and Clinical Sciences), University "G. D'Annunzio" of Chieti, Chieti 66100, Italy
| | - Gerolamo Lanfranchi
- Department of Biology and CRIBI Biotechnology Center, University of Padua, Padua 35131, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy; Neuroscience Institute, National Research Council, Padua 35131, Italy.
| |
Collapse
|
170
|
Ottolini D, Calì T, Brini M. Methods to measure intracellular Ca(2+) fluxes with organelle-targeted aequorin-based probes. Methods Enzymol 2015; 543:21-45. [PMID: 24924126 DOI: 10.1016/b978-0-12-801329-8.00002-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The photoprotein aequorin generates blue light upon binding of Ca(2+) ions. Together with its very low Ca(2+)-buffering capacity and the possibility to add specific targeting sequences, this property has rendered aequorin particularly suitable to monitor Ca(2+) concentrations in specific subcellular compartments. Recently, a new generation of genetically encoded Ca(2+) probes has been developed by fusing Ca(2+)-responsive elements with the green fluorescent protein (GFP). Aequorin has also been employed to this aim, resulting in an aequorin-GFP chimera with the Ca(2+) sensitivity of aequorin and the fluorescent properties of GFP. This setup has actually solved the major limitation of aequorin, for example, its poor ability to emit light, which rendered it inappropriate for the monitoring of Ca(2+) waves at the single-cell level by imaging. In spite of the numerous genetically encoded Ca(2+) indicators that are currently available, aequorin-based probes remain the method of election when an accurate quantification of Ca(2+) levels is required. Here, we describe currently available aequorin variants and their use for monitoring Ca(2+) waves in specific subcellular compartments. Among various applications, this method is relevant for the study of the alterations of Ca(2+) homeostasis that accompany oncogenesis, tumor progression, and response to therapy.
Collapse
Affiliation(s)
- Denis Ottolini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
171
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
172
|
Li Z, Sun Y, Chen X, Squires J, Nowroozizadeh B, Liang C, Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol Cancer Res 2014; 13:584-91. [PMID: 25512615 DOI: 10.1158/1541-7786.mcr-14-0277-t] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Prostatic small cell neuroendocrine carcinoma (SCNC) is a rare but aggressive form of prostate cancer that is negative for androgen receptor (AR) and not responsive to hormonal therapy. The molecular etiology of this prostate cancer variant is not well understood; however, mutation of the p53 (TP53) tumor suppressor in prostate neuroendocrine cells inactivates the IL8-CXCR2-p53 pathway that normally inhibits cellular proliferation, leading to the development of SCNC. SCNC also overexpresses Aurora kinase A (AURKA) which is considered to be a viable therapeutic target. Therefore, the relationship of these two molecular events was studied, and we show that p53 mutation leads to increased expression of miR-25 and downregulation of the E3 ubiquitin ligase FBXW7, resulting in elevated levels of Aurora kinase A. This study demonstrates an intracellular pathway by which p53 mutation leads to Aurora kinase A expression, which is critically important for the rapid proliferation and aggressive behavior of prostatic SCNC. IMPLICATIONS The pathogenesis of prostatic SCNC involves a p53 and Aurora Kinase A signaling mechanism, both potentially targetable pathways.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Yin Sun
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California.
| | - Xufeng Chen
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Jill Squires
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Behdokht Nowroozizadeh
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiaoti Huang
- Department of Pathology and Urology, Jonsson Comprehensive Cancer Center and Broad Center of Regenerative Medicine and Stem Cell Research, UCLA David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
173
|
miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ 2014; 22:1058-68. [PMID: 25501599 DOI: 10.1038/cdd.2014.200] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 10/07/2014] [Accepted: 10/20/2014] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Emerging evidences suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction (MI) and heart failure. However, the molecular components regulating mitochondrial network in the heart remain largely unidentified. Here we report that miR-361 and prohibitin 1 (PHB1) constitute an axis that regulates mitochondrial fission and apoptosis. The results show that PHB1 attenuates mitochondrial fission and apoptosis in response to hydrogen peroxide treatment in cardiomyocytes. Cardiac-specific PHB1 transgenic mice show reduced mitochondrial fission and myocardial infarction sizes after myocardial infarction surgery. MiR-361 is responsible for the dysfunction of PHB1 and suppresses the translation of PHB1. Knockdown of miR-361 reduces mitochondrial fission and apoptosis in vivo and in vitro. MiR-361 cardiac-specific transgenic mice represent elevated mitochondrial fission and myocardial infarction sizes upon myocardial ischemia injury. This study identifies a novel signaling pathway composed of miR-361 and PHB1 that regulates mitochondrial fission program and apoptosis. This discovery will shed new light on the therapy of myocardial infarction and heart failure.
Collapse
|
174
|
Bonora M, Pinton P. The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 2014; 4:302. [PMID: 25478322 PMCID: PMC4235083 DOI: 10.3389/fonc.2014.00302] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022] Open
Abstract
Since its discovery in the 1970s, the mitochondrial permeability transition (MPT) has been proposed to be a strategic regulator of cell death. Intense research efforts have focused on elucidating the molecular components of the MPT because this knowledge may help to better understand and treat various pathologies ranging from neurodegenerative and cardiac diseases to cancer. In the case of cancer, several studies have revealed alterations in the activity of the mitochondrial permeability transition pore (mPTP) and have determined its regulatory mechanism; these studies have also suggested that suppression of the activity of the mPTP, rather than its inactivation, commonly occurs in solid neoplasms. This review focuses on the most recent advances in understanding mPTP regulation in cancer and highlights the ability of the mPTP to impede the mechanisms of cell death.
Collapse
Affiliation(s)
- Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara , Ferrara , Italy
| |
Collapse
|
175
|
Murgia M, Rizzuto R. Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 2014; 58:11-7. [PMID: 26048007 DOI: 10.1016/j.ceca.2014.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
Abstract
The long awaited molecular identification of the mitochondrial calcium uniporter (MCU) in 2011 has opened an exciting phase in the study of mitochondrial calcium homeostasis. On the one hand, MCU proved to be the core of a complex signaling system, composed of a channel moiety (MCU itself and the related MCUb protein) and a family of essential regulators (the MICUs, MCUR, EMRE). On the other hand, the availability of molecular information and tools opened the possibility of directly altering mitochondrial calcium homeostasis in cell cultures or intact organisms, thus obtaining new insight into its role in physiological and pathological events. We will review here these exciting advancements, summarizing the current knowledge of the molecular composition of the MCU complex and of its role in shaping mitochondrial and cytosolic [Ca(2+)] signals.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
176
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2547-75. [PMID: 25448878 DOI: 10.1016/j.bbamem.2014.10.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Danya Ben-Hail
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lee Admoni
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
177
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|
178
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
179
|
Slagsvold KH, Johnsen AB, Rognmo O, Høydal MA, Wisløff U, Wahba A. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation. Physiol Genomics 2014; 46:505-11. [PMID: 24824214 DOI: 10.1152/physiolgenomics.00042.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia with a potential to cause serious complications. Mitochondria play central roles in cardiomyocyte function and have been implicated in AF pathophysiology. MicroRNA (miR) are suggested to influence both mitochondrial function and the development of AF. Yet mitochondrial function and miR expression remain largely unexplored in human atrial tissue. This study aims to investigate mitochondrial function and miR expression in the right (RA) and left atria (LA) of patients with AF and sinus rhythm (SR). Myocardial tissue from the RA and LA appendages was investigated in 37 patients with AF (n = 21) or SR (n = 16) undergoing coronary artery bypass surgery and/or heart valve surgery. Mitochondrial respiration was measured in situ after tissue permeabilization by saponin. MiR expression was assessed by miR array and real-time quantitative reverse-transcription polymerase chain reaction. Maximal mitochondrial respiratory rate was increased in both RA and LA tissue of patients with AF vs. SR. Biatrial downregulation of miR-208a and upregulation of miR-106b, -144, and -451 were observed in AF vs. SR. In addition, miR-15b was upregulated in AF within RA only, and miR-106a, -18a, -18b, -19a, -19b, -23a, -25, -30a, -363, -486-5p, -590-5p, and -93 were upregulated in AF within LA only. These findings suggest that mitochondrial function and miR are involved in AF pathophysiology and should be areas of focus in the exploration for potential novel therapeutic targets.
Collapse
Affiliation(s)
- Katrine Hordnes Slagsvold
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| | - Anne Berit Johnsen
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and
| | - Oivind Rognmo
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and
| | - Morten Andre Høydal
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and
| | - Alexander Wahba
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and technology, Trondheim, Norway; and Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
180
|
He J, Shi W, Guo Y, Chai Z. ERp57 modulates mitochondrial calcium uptake through the MCU. FEBS Lett 2014; 588:2087-94. [PMID: 24815697 DOI: 10.1016/j.febslet.2014.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
ERp57 participates in the regulation of calcium homeostasis. Although ERp57 modulates calcium flux across the plasma membrane and the endoplasmic reticulum membrane, its functions on mitochondria are largely unknown. Here, we found that ERp57 can regulate the expression of the mitochondrial calcium uniporter (MCU) and modulate mitochondrial calcium uptake. In ERp57-silenced HeLa cells, MCU was downregulated, and the mitochondrial calcium uptake was inhibited, consistent with the effect of MCU knockdown. When MCU was re-expressed in the ERp57 knockdown cells, mitochondrial calcium uptake was restored. Thus, ERp57 is a potent regulator of mitochondrial calcium homeostasis.
Collapse
Affiliation(s)
- Jingquan He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Weikang Shi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Guo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Chai
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
181
|
Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival. PLoS One 2014; 9:e96866. [PMID: 24802861 PMCID: PMC4011874 DOI: 10.1371/journal.pone.0096866] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/12/2014] [Indexed: 02/02/2023] Open
Abstract
Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and suggest that not all carcinomas will be sensitive to therapies targeting mitochondrial Ca2+ uptake mechanisms.
Collapse
|
182
|
De Stefani D, Rizzuto R. Molecular control of mitochondrial calcium uptake. Biochem Biophys Res Commun 2014; 449:373-6. [PMID: 24792182 DOI: 10.1016/j.bbrc.2014.04.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The recently identified Mitochondrial Calcium Uniporter (MCU) is the protein of the inner mitochondrial membrane responsible for Ca(2+) uptake into the matrix, which plays a role in the control of cellular signaling, aerobic metabolism and apoptosis. At least two properties of mitochondrial calcium signaling are well defined: (i) mitochondrial Ca(2+) uptake varies greatly among different cells and tissues, and (ii) channel opening is strongly affected by extramitochondrial Ca(2+) concentration, with low activity at resting and high capacity after cellular stimulation. It is now becoming clear that these features of the mitochondrial Ca(2+) uptake machinery are not embedded in the MCU protein itself, but are rather due to the contribution of several MCU interactors. The list of the components of the MCU complex is indeed rapidly growing, thus revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial calcium signaling.
Collapse
Affiliation(s)
- Diego De Stefani
- Department of Biomedical Sciences, University of Padova and CNR Neuroscience Institute, Padova, Italy.
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova and CNR Neuroscience Institute, Padova, Italy.
| |
Collapse
|
183
|
Marchi S, Giorgi C, Oparka M, Duszynski J, Wieckowski MR, Pinton P. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes. Mol Cell Oncol 2014; 1:e956469. [PMID: 27308328 PMCID: PMC4905193 DOI: 10.4161/23723548.2014.956469] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/22/2022]
Abstract
The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Morphology; Surgery and Experimental Medicine; Section of Pathology; Oncology and Experimental Biology and LTTA Center; University of Ferrara; Ferrara, Italy
| | - Carlotta Giorgi
- Department of Morphology; Surgery and Experimental Medicine; Section of Pathology; Oncology and Experimental Biology and LTTA Center; University of Ferrara; Ferrara, Italy
| | - Monika Oparka
- Department of Biochemistry; Nencki Institute of Experimental Biology; Warsaw, Poland
| | - Jerzy Duszynski
- Department of Biochemistry; Nencki Institute of Experimental Biology; Warsaw, Poland
| | - Mariusz R Wieckowski
- Department of Biochemistry; Nencki Institute of Experimental Biology; Warsaw, Poland
| | - Paolo Pinton
- Department of Morphology; Surgery and Experimental Medicine; Section of Pathology; Oncology and Experimental Biology and LTTA Center; University of Ferrara; Ferrara, Italy
| |
Collapse
|
184
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
185
|
Xu JY, Yang LL, Ma C, Huang YL, Zhu GX, Chen QL. MiR-25-3p attenuates the proliferation of tongue squamous cell carcinoma cell line Tca8113. ASIAN PAC J TROP MED 2014; 6:743-7. [PMID: 23827155 DOI: 10.1016/s1995-7645(13)60130-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/15/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To investigate the effects of miR-25-3p on the occurrence, development and proliferation of tongue squamous cell carcinoma cells. METHODS To establish tongue squamous cell carcinoma cell line Tca8113 that stably and highly express miR-25-3p using recombinant retroviral vector-mediated gene transfer method. The proliferation of transfected Tca8113 was detected by thiazolyl blue tetrazolium bromide (MTT) and cell colony formation assays. cyclinD1, p21(cip1) and p27(kip1) mRNA expressions in the transfected Tca-8113 were detected by quantitative PCR. cyclinD1, p21, p27(kip1), AKT, p-AKT, FOXO1 and p-FOXO1 expressions in the transfected Tca8113 were detected by western blot analysis. In addition, miR-25-3p expression in the tongue squamous cell carcinoma cell line and tissue specimen was also detected by quantitative PCR. RESULTS Quantitative PCR showed that miR-25-3p expression in the tongue squamous cell carcinoma cell lines and tissue specimen was significantly lower than that in the adjacent tissue. MTT and cell colony formation assays showed that after miR-25-3p overexpression, the proliferation of transfected Tca8113 was obviously attenuated. Western blot analysis and quantitative PCR showed that after miR-25-3p overexpression, p21(cip1) and p27(kip1) expressions were upregulated, while cyclinD1, AKT, FOXO1 expressions were downregulated, and AKT and FOXO1 phosphorylation was inactivated in the transfected Tca8113 cells. CONCLUSIONS MiR-25-3p inhibited the proliferation of tongue squamous cell carcinoma cells and regulated cell cycle-related protein expression, playing an important role in the occurrence and development of squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Jia-Ying Xu
- Department of Stomatology, Zhoupu Hospital of Shanghai Pudong New District, Shanghai 201318, China
| | | | | | | | | | | |
Collapse
|
186
|
Wolf A, Wennemuth G. Ca2+ clearance mechanisms in cancer cell lines and stromal cells of the prostate. Prostate 2014; 74:29-40. [PMID: 24037789 DOI: 10.1002/pros.22724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/08/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Three prostatic cell lines, PC3, LNCaP, and DU 145, are used as established models to study cell signaling in prostate cancer. Recently, stromal cell lines of the prostate, such as P21, were also introduced. Here we investigate a basic and important mechanism of living cells: Ca(2+) homeostasis in PC3, DU 145, and P21. METHODS We examined Ca(2+) clearance mechanisms by monitoring the kinetics of recovery from histamine stimulation under conditions which inhibit prospect mechanisms for storing or extrusion of Ca(2+) from the cytosol by photometry. RESULTS Despite the fact that in all three cell lines the Ca(2+) ATPase of the plasma membrane and the SERCA are most important for Ca(2+) homeostasis, inhibition of PMCA in epithelial cells has a greater effect than in stromal cells. Furthermore, the proportion of PMCA and SERCA differs in PC3 and DU145 cells. PMCA is most effective at reaching resting [Ca(2+) ]i in the final recovery stage. In contrast to DU 145 and P21 cells, PC3 are the only cells substantially affected by the inhibition of the mitochondrial uniporter. In all cell lines the role of the sodium calcium exchanger is marginal. CONCLUSION These results demonstrate that not only cancer and stromal cell lines show significant differences in the modes and extent of their use of Ca(2+) clearance mechanisms, but also the cancer cell lines themselves.
Collapse
Affiliation(s)
- Anne Wolf
- Department of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | | |
Collapse
|
187
|
Marchi S, Pinton P. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 2013; 592:829-39. [PMID: 24366263 DOI: 10.1113/jphysiol.2013.268235] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it has long been known that mitochondria take up Ca2+, the molecular identities of the channels and transporters involved in this process were revealed only recently. Here, we discuss the recent work that has led to the characterization of the mitochondrial calcium uniporter complex, which includes the channel-forming subunit MCU (mitochondrial calcium uniporter) and its regulators MICU1, MICU2, MCUb, EMRE, MCUR1 and miR-25. We review not only the biochemical identities and structures of the proteins required for mitochondrial Ca2+ uptake but also their implications in different physiopathological contexts.
Collapse
Affiliation(s)
- Saverio Marchi
- Signal Transduction Lab, c/o CUBO, via Fossato di Mortara 70, I-44121 Ferrara, Italy.
| | | |
Collapse
|
188
|
McInnes J. Mitochondrial-associated metabolic disorders: foundations, pathologies and recent progress. Nutr Metab (Lond) 2013; 10:63. [PMID: 24499129 PMCID: PMC3853754 DOI: 10.1186/1743-7075-10-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/06/2023] Open
Abstract
Research in the last decade has revolutionized the way in which we view mitochondria. Mitochondria are no longer viewed solely as cellular powerhouses; rather, mitochondria are now understood to be vibrant, mobile structures, constantly undergoing fusion and fission, and engaging in intimate interactions with other cellular compartments and structures. Findings have implicated mitochondria in a wide variety of cellular processes and molecular interactions, such as calcium buffering, lipid flux, and intracellular signaling. As such, it does not come as a surprise that an increasing number of human pathologies have been associated with functional defects in mitochondria. The difficulty in understanding and treating human pathologies caused by mitochondrial dysfunction arises from the complex relationships between mitochondria and other cellular processes, as well as the genetic background of such diseases. This review attempts to provide a summary of the background knowledge and recent developments in mitochondrial processes relating to mitochondrial-associated metabolic diseases arising from defects or deficiencies in mitochondrial function, as well as insights into current and future avenues for investigation.
Collapse
Affiliation(s)
- Joseph McInnes
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 1, Research II, Room 120, Bremen D-28759, Germany.
| |
Collapse
|
189
|
Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 2013; 8:2105-18. [DOI: 10.1038/nprot.2013.127] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
190
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
191
|
Davis FM, Parsonage MT, Cabot PJ, Parat MO, Thompson EW, Roberts-Thomson SJ, Monteith GR. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line. Cancer Cell Int 2013; 13:76. [PMID: 23890218 PMCID: PMC3733826 DOI: 10.1186/1475-2867-13-76] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Collapse
Affiliation(s)
- Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
192
|
Marchi S, Pinton P. Mitochondrial calcium uniporter, MiRNA and cancer: Live and let die. Commun Integr Biol 2013; 6:e23818. [PMID: 23713134 PMCID: PMC3656015 DOI: 10.4161/cib.23818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/07/2023] Open
Abstract
Mitochondria receive calcium (Ca2+) signals from endoplasmic reticulum (ER) and decode them into pro-apoptotic inputs, which lead to cell death. Therefore, mitochondrial Ca2+ overload is considered a fundamental trigger of the apoptotic process, and several oncogenes and tumor suppressors modify the activity of protein involved in Ca2+ homeostasis to control apoptosis. The identification of the channel responsible for mitochondrial Ca2+ entry, the Mitochondrial Ca2+Uniporter (MCU), together with its regulatory components, MICU1 and MCUR1, provides new molecular tools to investigate this process. Recent data have also shown that miR-25 decreases mitochondrial Ca2+ uptake through selective MCU downregulation, conferring resistance to apoptotic challenges. MCU appears to be downregulated in human colon cancer samples, and accordingly, miR-25 is aberrantly expressed, indicating the importance of mitochondrial Ca2+ regulation in cancer cell survival.
Collapse
Affiliation(s)
- Saverio Marchi
- Department of Morphology; Surgery and Experimental Medicine; Section of General Pathology; Interdisciplinary Center for the Study of Inflammation (ICSI); Laboratory for Technologies of Advanced Therapies (LTTA); University of Ferrara; Ferrara, Italy
| | | |
Collapse
|
193
|
Curry MC, Peters AA, Kenny PA, Roberts-Thomson SJ, Monteith GR. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 2013; 434:695-700. [DOI: 10.1016/j.bbrc.2013.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023]
|
194
|
Chen YF, Chen YT, Chiu WT, Shen MR. Remodeling of calcium signaling in tumor progression. J Biomed Sci 2013; 20:23. [PMID: 23594099 PMCID: PMC3639169 DOI: 10.1186/1423-0127-20-23] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ is one of the crucial signalings that modulate various cellular functions. The dysregulation of Ca2+ homeostasis has been suggested as an important event in driving the expression of the malignant phenotypes, such as proliferation, migration, invasion, and metastasis. Cell migration is an early prerequisite for tumor metastasis that has a significant impact on patient prognosis. During cell migration, the exquisite spatial and temporal organization of intracellular Ca2+ provides a rapid and robust way for the selective activation of signaling components that play a central role in cytoskeletal reorganization, traction force generation, and focal adhesion dynamics. A number of known molecular components involved in Ca2+ influx pathways, including stromal interaction molecule (STIM)/Orai-mediated store-operated Ca2+ entry (SOCE) and the Ca2+-permeable transient receptor potential (TRP) channels, have been implicated in cancer cell migration and tumor metastasis. The clinical significance of these molecules, such as STIM proteins and the TRPM7 channel, in tumor progression and their diagnostic and prognostic potentials have also been demonstrated in specific cancer types. In this review, we summarize the recent advances in understanding the important roles and regulatory mechanisms of these Ca2+ influx pathways on malignant behaviors of tumor cells. The clinical implications in facilitating current diagnostic and therapeutic procedures are also discussed.
Collapse
Affiliation(s)
- Yih-Fung Chen
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
195
|
Waldeck-Weiermair M, Deak AT, Groschner LN, Alam MR, Jean-Quartier C, Malli R, Graier WF. Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 2013; 288:15367-79. [PMID: 23592775 PMCID: PMC3663555 DOI: 10.1074/jbc.m113.462259] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transfer of Ca2+ across the inner mitochondrial membrane is an important physiological process linked to the regulation of metabolism, signal transduction, and cell death. While the definite molecular composition of mitochondrial Ca2+ uptake sites remains unknown, several proteins of the inner mitochondrial membrane, that are likely to accomplish mitochondrial Ca2+ fluxes, have been described: the novel uncoupling proteins 2 and 3, the leucine zipper-EF-hand containing transmembrane protein 1 and the mitochondrial calcium uniporter. It is unclear whether these proteins contribute to one unique mitochondrial Ca2+ uptake pathway or establish distinct routes for mitochondrial Ca2+ sequestration. In this study, we show that a modulation of Ca2+ release from the endoplasmic reticulum by inhibition of the sarco/endoplasmatic reticulum ATPase modifies cytosolic Ca2+ signals and consequently switches mitochondrial Ca2+ uptake from an uncoupling protein 3- and mitochondrial calcium uniporter-dependent, but leucine zipper-EF-hand containing transmembrane protein 1-independent to a leucine zipper-EF-hand containing transmembrane protein 1- and mitochondrial calcium uniporter-mediated, but uncoupling protein 3-independent pathway. Thus, the activity of sarco/endoplasmatic reticulum ATPase is significant for the mode of mitochondrial Ca2+ sequestration and determines which mitochondrial proteins might actually accomplish the transfer of Ca2+ across the inner mitochondrial membrane. Moreover, our findings herein support the existence of distinct mitochondrial Ca2+ uptake routes that might be essential to ensure an efficient ion transfer into mitochondria despite heterogeneous cytosolic Ca2+ rises.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|