151
|
Three-Dimensional Culture System of Cancer Cells Combined with Biomaterials for Drug Screening. Cancers (Basel) 2020; 12:cancers12102754. [PMID: 32987868 PMCID: PMC7601447 DOI: 10.3390/cancers12102754] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary For the research and development of drug discovery, it is of prime importance to construct the three-dimensional (3D) tissue models in vitro. To this end, the enhancement design of cell function and activity by making use of biomaterials is essential. In this review, 3D culture systems of cancer cells combined with several biomaterials for anticancer drug screening are introduced. Abstract Anticancer drug screening is one of the most important research and development processes to develop new drugs for cancer treatment. However, there is a problem resulting in gaps between the in vitro drug screening and preclinical or clinical study. This is mainly because the condition of cancer cell culture is quite different from that in vivo. As a trial to mimic the in vivo cancer environment, there has been some research on a three-dimensional (3D) culture system by making use of biomaterials. The 3D culture technologies enable us to give cancer cells an in vitro environment close to the in vivo condition. Cancer cells modified to replicate the in vivo cancer environment will promote the biological research or drug discovery of cancers. This review introduces the in vitro research of 3D cell culture systems with biomaterials in addition to a brief summary of the cancer environment.
Collapse
|
152
|
Krafft MP. Alleviating tumor hypoxia with perfluorocarbon-based oxygen carriers. Curr Opin Pharmacol 2020; 53:117-125. [PMID: 32979727 DOI: 10.1016/j.coph.2020.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022]
Abstract
Hypoxia is a major impediment to many foremost cancer treatments that require O2 for generation of tumoricidal reactive oxygen species. Liquid perfluorocarbons (PFCs) are inert gas solvents that help alleviate this oxygen deficit situation. PFC nanoemulsions have demonstrated oxygen delivery to tissues. The lifetime of 1O2 in PFCs is considerably expanded. PFC nanodroplets extravasate and accumulate in tumors. Alternatively, PFCs stabilize injectable O2 microbubbles. On-demand local O2 delivery is facilitated by ultrasound. Liquid PFC nanodroplets that convert into microbubbles upon activation provide another shuttle for O2-delivery. PFC nanocarriers can also be enriched with fluorescent dyes, radiopaque materials, photo(sono)sensitizers, loaded with chemotherapeutics, and fitted with targeting devices, or stimuli-responsive functions for image-guided theranostics. We review recent literature on PFC-based O2 carriers to enhance the efficacy of radiotherapy, photo(sono)dynamic therapy and chemotherapy. Of particular relevance to this series of reviews, PFC-based carriers may provide novel strategies to promote T-cell trafficking into tumors to improve immune responses.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
153
|
Harmouch E, Seitlinger J, Chaddad H, Ubeaud-Sequier G, Barths J, Saidu S, Désaubry L, Grandemange S, Massfelder T, Fuhrmann G, Fioretti F, Dontenwill M, Benkirane-Jessel N, Idoux-Gillet Y. Flavagline synthetic derivative induces senescence in glioblastoma cancer cells without being toxic to healthy astrocytes. Sci Rep 2020; 10:13750. [PMID: 32792639 PMCID: PMC7426813 DOI: 10.1038/s41598-020-70820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments.
Collapse
Affiliation(s)
- Ezeddine Harmouch
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Hassan Chaddad
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Geneviève Ubeaud-Sequier
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Jochen Barths
- Core Facility for Flow Cytometry, Cell Sorting and EliSpot, UMR 1110, INSERM, Strasbourg, France
| | - Sani Saidu
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Laurent Désaubry
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, Strasbourg, France
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Stéphanie Grandemange
- CNRS, UMR 7039 CRAN, Université de Lorraine, Campus Sciences, 30 bvd des Aiguillettes, 54505, Vandoeuvre les Nancy Cedex, France
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Guy Fuhrmann
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Monique Dontenwill
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
154
|
Strapcova S, Takacova M, Csaderova L, Martinelli P, Lukacikova L, Gal V, Kopacek J, Svastova E. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel) 2020; 12:E2005. [PMID: 32707920 PMCID: PMC7464147 DOI: 10.3390/cancers12082005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is a common phenomenon that occurs in most solid tumors. Regardless of tumor origin, the evolution of a hypoxia-adapted phenotype is critical for invasive cancer development. Pancreatic ductal adenocarcinoma is also characterized by hypoxia, desmoplasia, and the presence of necrosis, predicting poor outcome. Carbonic anhydrase IX (CAIX) is one of the most strict hypoxia regulated genes which plays a key role in the adaptation of cancer cells to hypoxia and acidosis. Here, we summarize clinical data showing that CAIX expression is associated with tumor necrosis, vascularization, expression of Frizzled-1, mucins, or proteins involved in glycolysis, and inevitably, poor prognosis of pancreatic cancer patients. We also describe the transcriptional regulation of CAIX in relation to signaling pathways activated in pancreatic cancers. A large part deals with the preclinical evidence supporting the relevance of CAIX in processes leading to the aggressive behavior of pancreatic tumors. Furthermore, we focus on CAIX occurrence in pre-cancerous lesions, and for the first time, we describe CAIX expression within intraductal papillary mucinous neoplasia. Our review concludes with a detailed account of clinical trials implicating that treatment consisting of conventionally used therapies combined with CAIX targeting could result in an improved anti-cancer response in pancreatic cancer patients.
Collapse
Affiliation(s)
- Sabina Strapcova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Martina Takacova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Lucia Csaderova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Paola Martinelli
- Institute of Cancer Research, Clinic of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Cancer Cell Signaling, Boehringer-Ingelheim RCV Vienna, A-1121 Vienna, Austria
| | - Lubomira Lukacikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Viliam Gal
- Alpha Medical Pathology, Ruzinovska 6, 82606 Bratislava, Slovakia;
| | - Juraj Kopacek
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| | - Eliska Svastova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia; (S.S.); (M.T.); (L.C.); (L.L.); (J.K.)
| |
Collapse
|
155
|
Azimi T, Loizidou M, Dwek MV. Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin. Sci Rep 2020; 10:12020. [PMID: 32694700 PMCID: PMC7374750 DOI: 10.1038/s41598-020-68999-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
3D laboratory models of cancer are designed to recapitulate the biochemical and biophysical characteristics of the tumour microenvironment and aim to enable studies of cancer, and new therapeutic modalities, in a physiologically-relevant manner. We have developed an in vitro 3D model comprising a central high-density mass of breast cancer cells surrounded by collagen type-1 and we incorporated fluid flow and pressure. We noted significant changes in cancer cell behaviour using this system. MDA-MB231 and SKBR3 breast cancer cells grown in 3D downregulated the proliferative marker Ki67 (P < 0.05) and exhibited decreased response to the chemotherapeutic agent doxorubicin (DOX) (P < 0.01). Mesenchymal markers snail and MMP14 were upregulated in cancer cells maintained in 3D (P < 0.001), cadherin-11 was downregulated (P < 0.001) and HER2 increased (P < 0.05). Cells maintained in 3D under fluid flow exhibited a further reduction in response to DOX (P < 0.05); HER2 and Ki67 levels were also attenuated. Fluid flow and pressure was associated with reduced cell viability and decreased expression levels of vimentin. In summary, aggressive cancer cell behaviour and reduced drug responsiveness was observed when breast cancer cells were maintained in 3D under fluid flow and pressure. These observations are relevant for future developments of 3D in vitro cancer models and organ-on-a-chip initiatives.
Collapse
Affiliation(s)
- Tayebeh Azimi
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK.
| |
Collapse
|
156
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
157
|
Ex vivo culture of head and neck cancer explants in cell sheet for testing chemotherapeutic sensitivity. J Cancer Res Clin Oncol 2020; 146:2497-2507. [PMID: 32620987 DOI: 10.1007/s00432-020-03306-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/27/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Tumor explant culture systems can mimic the in vivo tumor microenvironment, proposing as a substitute for preclinical studies for prediction of individual treatment response. Therefore, our study evaluated the potential usefulness of ex vivo tumor explants culture assembled into the cell sheets by anticancer drug screening in patients with head and neck squamous cell carcinoma (HNSCC). METHODS Our model included tumor explants incorporated into cell sheet composing of epithelium and subepithelial stroma using tumor and mucosal samples obtained from the HNSCC patients who underwent surgery. Cell growth, viability, and hypoxia were measured by cell counting kit-8, live/dead assay, propidium iodide, and LOX-1 staining, and were compared among the different treatment groups with vehicle, cisplatin or docetaxel. RESULTS Tumor explants stably survived in the cell sheet over 10 days after explantation, whereas most of the explants in non-matrix culture became nonviable within 5-8 days with the significant daily decrease of viability. The live tissue areas of tumor explants in the cell sheet maintained over 30 days without significant changes although hypoxic cell areas gradually increased up to 5 days. Tissue viability and live cancer tissue areas significantly decreased after the treatment of cisplatin or docetaxel in the dose and time-dependent manners. CONCLUSION Our cell sheet-based tumor explants model might be applied to the reliable ex vivo screening for anticancer chemotherapeutics for HNSCC.
Collapse
|
158
|
Peng C, Huang Y, Zheng J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J Control Release 2020; 322:64-80. [PMID: 32194171 PMCID: PMC8696951 DOI: 10.1016/j.jconrel.2020.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 01/10/2023]
Abstract
Physiological barriers encountered in the clinical translation of cancer nanomedicines inspire the community to more deeply understand nano-bio interactions in not only tumor microenvironment but also entire body and develop new nanocarriers to tackle these barriers. Renal clearable nanocarriers are one kind of these newly emerged drug delivery systems (DDSs), which enable drugs to rapidly penetrate into the tumor cores with no need of long blood retention and escape macrophage uptake in the meantime they can also enhance body elimination of non-targeted anticancer drugs. As a result, they can improve therapeutic efficacies and reduce side effects of anticancer drugs. Not limited to anticancer drugs, diagnostic agents can also be achieved with these renal clearable DDSs, which might also be applied to improve the precision in the gene editing and immunotherapy in the future.
Collapse
Affiliation(s)
- Chuanqi Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
159
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
160
|
Deepa, Mittal A, Taxak S, Tandon V, Pati U. Oxygen-releasing manganese clay hybrid complex triggers p53-mediated cancer cell death in hypoxia. Biochem Pharmacol 2020; 178:114054. [PMID: 32450254 DOI: 10.1016/j.bcp.2020.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia in tumor microenvironment is responsible for resistance to conventional modes of cancer therapeutics. A manganese-clay hybrid compound MHC was shown to generate molecular oxygen in aqueous solution. In this study we have shown that MHC, in hypoxia, causes cancer cell death, through release of molecular oxygen and via p53-dependent apoptosis. MHC treatment of cells results in depletion of mitochondrial membrane potential and inhibition of ROS production, in a cell-specific manner. In hypoxia, the oxygen from MHC releases cells from S-phase arrest thus causing p53-dependent apoptosis. The induction of apoptosis by MHC is higher in p53 Wt/Wt cells when it is compared with p53 Mt/Mt cells. The released oxygen from MHC triggers apoptosis via p53 activation through its enhanced homo-oligomerization, post-translational modifications and nuclear localization. Thus MHC as a cellular oxygen-releasing compound has high potential as a drug for hypoxic tumor regression.
Collapse
Affiliation(s)
- Deepa
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anil Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shashank Taxak
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Uttam Pati
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
161
|
Kroll A, Cho HE, Kang MH. Antineoplastic Agents Targeting Sphingolipid Pathways. Front Oncol 2020; 10:833. [PMID: 32528896 PMCID: PMC7256948 DOI: 10.3389/fonc.2020.00833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging studies in the enigmatic area of bioactive lipids have made many exciting new discoveries in recent years. Once thought to play a strictly structural role in cellular function, it has since been determined that sphingolipids and their metabolites perform a vast variety of cellular functions beyond what was previously believed. Of utmost importance is their role in cellular signaling, for it is now well understood that select sphingolipids serve as bioactive molecules that play critical roles in both cancer cell death and survival, as well as other cellular responses such as chronic inflammation, protection from intestinal pathogens, and intrinsic protection from intestinal contents, each of which are associated with oncogenesis. Importantly, it has been demonstrated time and time again that many different tumors display dysregulation of sphingolipid metabolism, and the exact profile of said dysregulation has been proven to be useful in determining not only the presence of a tumor, but also the susceptibility to various chemotherapeutic drugs, as well as the metastasizing characteristics of the malignancies. Since these discoveries surfaced it has become apparent that the understanding of sphingolipid metabolism and profile will likely become of great importance in the clinic for both chemotherapy and diagnostics of cancer. The goal of this paper is to provide a comprehensive review of the current state of chemotherapeutic agents that target sphingolipid metabolism that are undergoing clinical trials. Additionally, we will formulate questions involving the use of sphingolipid metabolism as chemotherapeutic targets in need of further research.
Collapse
Affiliation(s)
- Alexander Kroll
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
162
|
Woźniak M, Makuch S, Winograd K, Wiśniewski J, Ziółkowski P, Agrawal S. 6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement Med Ther 2020; 20:141. [PMID: 32393373 PMCID: PMC7216385 DOI: 10.1186/s12906-020-02913-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The development and growth of colorectal cancer based on constitutive activation of numerous signaling pathways that stimulate proliferation and metastasis. Plant-derived agents excel by targeting multiple aspects of tumor progression. Previous investigations have shown that ginger derivatives- shogaols possess anti-cancer and anti-inflammatory effects. In the present study, we have examined the anti-cancer effects of 6-shogaol alongside with the most widely used chemotherapeutic agents/regimens in the tumor-like microenvironment conditions. METHODS Cytotoxicity on two colon cancer cell lines (SW480 and SW620) was measured by MTT test. Apoptosisassay, immunocytochemical and Western blotting analysis for autophagy and apoptosis detection were performed. RESULTS Here, we report that 6-shogaol by itself or in combination with chemotherapeutic agents/regimens exerted a cytotoxic effect on CRC cells. Cell death might be linked with the activation of autophagy and apoptosis-related pathways. In the tumor-like microenvironment, which is characterized by hypoxia and glucose starvation, 6-shogaol with chemotherapeutics is significantly more potent than conventional chemotherapy alone. CONCLUSIONS Collectively, our data suggest that the addition of 6-shogaol to established chemotherapeutic regimens could potentially be a remarkable therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland.
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Kinga Winograd
- Department of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
163
|
Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020; 15:955-967. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Solid tumors are highly influenced by a complex tumor microenvironment (TME) that cannot be modeled with conventional two-dimensional (2D) cell culture. In addition, monolayer culture conditions tend to induce undesirable molecular and phenotypic cellular changes. The discrepancy between in vitro and in vivo is an important factor accounting for the high failure rate in drug development. Three-dimensional (3D) multicellular tumor spheroids (MTS) more closely resemble the in vivo situation in avascularized tumors. AREAS COVERED This review describes the use of MTS for anti-cancer drug discovery, with an emphasis on high-throughput screening (HTS) compatible assays. In particular, we focus on how these assays can be used for target discovery in the context of the TME. EXPERT OPINION Arrayed MTS in microtiter plates are HTS compatible but remain more expensive and time consuming than their 2D culture counterpart. It is therefore imperative to use assays with multiplexed readouts, in order to maximize the information that can be gained with the screen. In this context, high-content screening allowing to uncover microenvironmental dependencies is the true added value of MTS-based screening compared to 2D culture-based screening. Hit translation in animal models will, however, be key to allow a broader use of MTS-based screening in industry.
Collapse
Affiliation(s)
- Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland.,Department of Biology, Debiopharm , Lausanne, Switzerland
| | - Werner J Kovacs
- Institute of Molecular Health Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
164
|
Puri S, Juvale K. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur J Med Chem 2020; 199:112393. [PMID: 32388280 DOI: 10.1016/j.ejmech.2020.112393] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Development of multidrug resistance (MDR) is one of the major causes leading to failure of cancer chemotherapy and radiotherapy. Monocarboxylate transporters (MCTs) MCT1 and MCT4, which are overexpressed in solid tumours, play a very important role in cancer cell survival and proliferation. These lactate transporters work complimentarily to drive lactate shuttle in tumour cells, which results in maintenance of H+ ion (pH) balance necessary for their survival. Inhibition of these transmembrane proteins has been demonstrated as a novel strategy to treat drug resistant solid cancers. Presently, only a few small molecule MCT1 inhibitors such as AZD3965 and AR-C155858 are known with clinical potential. Even lesser mention of MCT4 inhibitors, which include molecules having scaffolds such as pyrazole and indazole, is available in the literature. Current overview presents the status of recent developments undertaken in identification of efficacious MCT1 and/or MCT4 inhibitors as a potential anticancer therapy overcoming MDR. Further, detailed structure-activity relationships for different classes of compounds has been proposed to streamline the understandings learnt from ongoing research work. Through this review, we aim to highlight the importance of these excellent targets and facilitate future development of selective, potent and safe MCT1 and/or MCT4 inhibitors as promising chemotherapy for drug resistant cancer.
Collapse
Affiliation(s)
- Sachin Puri
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
165
|
Peres de Oliveira A, Kazuo Issayama L, Betim Pavan IC, Riback Silva F, Diniz Melo-Hanchuk T, Moreira Simabuco F, Kobarg J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020; 25:molecules25081778. [PMID: 32294979 PMCID: PMC7221840 DOI: 10.3390/molecules25081778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
In previous years, several kinases, such as phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), and extracellular-signal-regulated kinase (ERK), have been linked to important human diseases, although some kinase families remain neglected in terms of research, hiding their relevance to therapeutic approaches. Here, a review regarding the NEK family is presented, shedding light on important information related to NEKs and human diseases. NEKs are a large group of homologous kinases with related functions and structures that participate in several cellular processes such as the cell cycle, cell division, cilia formation, and the DNA damage response. The review of the literature points to the pivotal participation of NEKs in important human diseases, like different types of cancer, diabetes, ciliopathies and central nervous system related and inflammatory-related diseases. The different known regulatory molecular mechanisms specific to each NEK are also presented, relating to their involvement in different diseases. In addition, important information about NEKs remains to be elucidated and is highlighted in this review, showing the need for other studies and research regarding this kinase family. Therefore, the NEK family represents an important group of kinases with potential applications in the therapy of human diseases.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
| | - Luidy Kazuo Issayama
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Isadora Carolina Betim Pavan
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Fernando Riback Silva
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Talita Diniz Melo-Hanchuk
- Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862, Brazil; (A.P.d.O.); (L.K.I.); (I.C.B.P.); (F.R.S.); (T.D.M.-H.)
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
| | - Fernando Moreira Simabuco
- Laboratório Multidisciplinar em Alimentos e Saúde, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, São Paulo 13484-350, Brazil;
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo 13083-871, Brazil
- Correspondence: ; Tel.: +55-19-3521-8143
| |
Collapse
|
166
|
Lamberti MJ, Morales Vasconsuelo AB, Ferrara MG, Rumie Vittar NB. Recapitulation of Hypoxic Tumor-stroma Microenvironment to Study Photodynamic Therapy Implications. Photochem Photobiol 2020; 96:897-905. [PMID: 32012283 DOI: 10.1111/php.13220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Tumor microenvironment (TME) is a dynamic ecosystem where fibroblasts are recruited in order to provide a niche to support growth and, in some extent, to promote therapeutic resistance. However, the role of fibroblasts in stimulating or impairing photodynamic therapy (PDT) outcome has not yet been fully addressed. PDT is based on interactions between light, oxygen and photosensitizer, leading to phototoxic reactions that culminate in cell death. In this study, we demonstrated the consequences of a hypoxic stromal phenotype on tumor mass for exploring PDT response. We mimicked TME complexity implementing colon cancer cells and fibroblasts 3D cultures called spheroids. Using hypoxia reporting lines, we verified that homotypic spheroids exhibited a size-dependent transcriptional HIF-1 activity. When cocultured, fibroblasts were localized in the hypoxic core. In homotypic stromal spheroids, the distribution of the endogenous photosensitizer PpIX was homogeneous while decreased in hypoxic areas of tumor 3D cultures. When monocultured, fibroblasts were more efficient to produce PpIX from its prodrug Me-ALA. Interestingly, the cross talk between cancer cells and fibroblasts attenuated PpIX accumulation and conferred tumor PDT resistance when compared to homotypic 3D cultures. Overall, our data suggest that stroma and tumor act in an integrated, reciprocal fashion which could ultimately influence on therapeutic response.
Collapse
Affiliation(s)
- María Julia Lamberti
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Ana Belén Morales Vasconsuelo
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María Gracia Ferrara
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
167
|
Jin Y, Wang H, Zhu Y, Feng H, Wang G, Wang S. miR-199a-5p is involved in doxorubicin resistance of non-small cell lung cancer (NSCLC) cells. Eur J Pharmacol 2020; 878:173105. [PMID: 32278855 DOI: 10.1016/j.ejphar.2020.173105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the prevalent and deadly cancers worldwide. Chemotherapy resistance is one of the most challenging problems for NSCLC and other cancer treatment. Recent study suggested that miRNAs are involved in therapeutic functions of chemotherapy during cancer treatment. Our present study established doxorubicin (Dox) resistant NSCLC A549 and H460 cells (named A549Dox/R and H460 Dox/R). We found that miR-199a-5p was significantly down regulated in Dox resistant cells. Over expression of miR-199a-5p can increase the Dox sensitivity of resistant cells. Among various targets of miR-199a-5p, chemoresistance can increase the expression of ABCC1 and HIF-1α. Gain and loss of function studies confirmed that both ABCC1 and HIF-1α were involved in the chemoresistance of NSCLC cells. Collectively, our data showed that miR-199a-5p regulated expression of ABCC1 and HIF-1α were involved in Dox resistance of NSCLC.
Collapse
Affiliation(s)
- Yonglong Jin
- Department of Radiotherapy, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Huiyun Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Yingqian Zhu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Hui Feng
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Guanqun Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Shasha Wang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
168
|
Zaher AM, Lin J, Arai M. Cytotoxic Activity of Abietane-Type Diterpenes Isolated From Taxodium distichum Against Cancer Cells Adapted to Nutrient-Starved Conditions. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20915298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mechanisms of cancer cell adaptation to tumor microenvironmental conditions, such as hypoxia and nutrient starvation, are currently receiving much attention as possible therapeutic targets. In an attempt to identify selectively cytotoxic substances against cancer cells adapted to nutrient starvation, 4 abietane-type diterpenes, sugiol (1), 6-α-hydroxysugiol (2), cryptojaponol (3), and 6-hydroxy-5,6-dehydrosugiol (4), were isolated from the bark of Taxodium distichum L. Rich var. distichum (bald cypress). Compounds 1, 2, and 4 showed potent cytotoxic activity against PANC-1 cells adapted to nutrient-starved conditions with half-maximal effective concentration (EC50) values of 6.4-9.2 µM, whereas the EC50 values of these compounds against PANC-1 cells under general culture conditions were more than 100 µM. Alternatively, compound 3, which we report for the first time in the genus Taxodium, showed moderate cytotoxicity against PANC-1 cells under nutrient-starved conditions with an EC50 of 37.9 µM. The selective index (S.I.), which compared the activity under nutrient-starved conditions with that under general culture conditions, was low (7.9). Further investigation revealed that the selective cytotoxic activity of compound 2 might be affecting the mitochondria.
Collapse
Affiliation(s)
- Ahmed M. Zaher
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Egypt
| | - Jianyu Lin
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Masayoshi Arai
- Laboratory of Natural Products for Drug Discovery, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| |
Collapse
|
169
|
Design strategy of optical probes for tumor hypoxia imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1786-1797. [PMID: 32146696 DOI: 10.1007/s11427-019-1569-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Clinical manifestations of tumors indicate that malignant phenotypes developing in the hypoxic microenvironment lead to resistance to cancer treatment, rendering chemotherapy, radiotherapy, and photodynamic therapy less sensitive and effective in patients with tumor. Visualizing the oxygen level in the tumor environment has garnered much attention due to its implications in precision tumor therapy. Following the rapid development of biomaterials in nanotechnology, various nanomaterials have been designed to visualize the oxygen levels in tumors. Here, we review recent research on detecting oxygen levels in solid tumors for tumor hypoxia imaging. To monitor the hypoxic level of tumors, two main strategies were investigated: directly detecting oxygen levels in tumors and monitoring the hypoxia-assisted reduced microenvironment. We believe that hypoxia as a tumor-specific microenvironment can be a breakthrough in the clinical treatment of tumors.
Collapse
|
170
|
Yang J, Zhang C. Regulation of cancer‐immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1612. [PMID: 32114718 DOI: 10.1002/wnan.1612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Jingxing Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| | - Chunfu Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated 6th Hospital, School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
171
|
Payen VL, Zampieri LX, Porporato PE, Sonveaux P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 2020; 38:189-203. [PMID: 30820778 DOI: 10.1007/s10555-019-09789-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.,Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
172
|
Zhang Z, Wang R, Huang X, Luo R, Xue J, Gao J, Liu W, Liu F, Feng F, Qu W. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5680-5694. [PMID: 31944660 DOI: 10.1021/acsami.9b23325] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT), a clinically approved cancer treatment, has faced many drawbacks that restricted its applications. For example, the hypoxia-induced elevated hypoxia-inducible factor-1α (HIF-1α) may desensitize tumors to PDT, and the high concentration of glutathione (GSH) in cancer cells can also neutralize the generated reactive oxygen species (ROS) during PDT, resulting in insufficient therapy. Moreover, extra probes for imaging-guided visualization therapy are always needed to track drug release or distribution, while it may decrease the drug loading of the drug delivery system (DDS). In the present study, we have designed and prepared a novel multifunctional combined therapy nanoparticle (ZnPc@Cur-S-OA NPs), in which curcumin (Cur) was not only used as a chemotherapy drug to achieve a combination therapy with PDT via downregulating HIF-1α and depleting GSH in B16F10 cells but also designed as a small-molecule ROS-triggered release prodrug to deliver the photosensitizer (PS). The red fluorescence of PS in the nanoparticles (NPs) can be used to track the NPs distribution, while the green fluorescence of Cur showed an "OFF-ON" activation, which enables additional imaging and real-time self-monitoring capabilities. These results proved that the prepared combined therapy NPs were more effective to inhibit the growth of B16F10 mouse melanoma tumor than was monotherapy without eliciting systemic toxicity either in vitro or in vivo, which indicated the combined therapy NPs as an effective way to improve the PDT efficacy via downregulation of HIF-1α and depletion of GSH. Thus, the strategy of using a multifunctional natural product as the stimuli-responsive carrier as well as the synergist with PDT for enhancing antitumor efficacy via multiple pathways may open an alternative avenue to fabricate new self-delivery combination therapy nanodrugs. Besides, the fluorescence emitted from the drug can be used for real-time self-monitoring of drug release and distribution, which has great potential in clinic to adjust the administration dose and irradiation time for different tumor types and stages for individual therapy.
Collapse
Affiliation(s)
- Zhongtao Zhang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiaoxian Huang
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
| | - Renjie Luo
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , China
| | - Jingwei Xue
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Taian City institute of Digestive Disease , Taian City Central Hospital , Taian 271000 , China
| | - Jing Gao
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Department of Stomatology , Taian City Central Hospital , Taian 271000 , China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing 210009 , China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education , China Pharmaceutical University , Nanjing 210009 , China
| | - Fulei Liu
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , Taian City Central Hospital , Taian 271000 , China
- Pharmaceutical Department , Taian City Central Hospital , Taian 271000 , China
| | - Feng Feng
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
- Jiangsu Food and Pharmaceutical Science College , Huaian 223003 , China
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , China Pharmaceutical University , Nanjing 210009 , China
| | - Wei Qu
- Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing 210009 , China
- The Joint Laboratory of China Pharmaceutical University and Taian City Central Hospital , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
173
|
Tang R, Kimishima A, Setiawan A, Arai M. Secalonic acid D as a selective cytotoxic substance on the cancer cells adapted to nutrient starvation. J Nat Med 2020; 74:495-500. [DOI: 10.1007/s11418-020-01390-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 11/24/2022]
|
174
|
Tian Y, Liu Z, Tan H, Hou J, Wen X, Yang F, Cheng W. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine 2020; 15:401-418. [PMID: 32021187 PMCID: PMC6982438 DOI: 10.2147/ijn.s201208] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
Ultrasound-mediated targeted delivery (UMTD), a novel delivery modality of therapeutic materials based on ultrasound, shows great potential in biomedical applications. By coupling ultrasound contrast agents with therapeutic materials, UMTD combines the advantages of ultrasound imaging and carrier, which benefit deep tissue penetration and high concentration aggregation. In this paper we introduced recent advances in ultrasound contrast agents and applications in tumor therapy. Ultrasound contrast agents were categorized by their functions, mainly including thermosensitive, pH-sensitive and photosensitive ultrasound contrast agents. The various applications of UMTD in tumor treatment were summarized as follows: drug therapy, transfection of anti-oncogene, RNA interference, vaccine immunotherapy, monoclonal antibody immunotherapy, adoptive cellular immunotherapy, cytokine immunotherapy, and so on. In the end, we elaborated on the current challenges and provided perspectives of UMTD for clinical applications.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Jiahui Hou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Xin Wen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Fan Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin150080, People’s Republic of China
| |
Collapse
|
175
|
De P, Bhattacharyya D, Roy K. Exploration of nitroimidazoles as radiosensitizers: application of multilayered feature selection approach in QSAR modeling. Struct Chem 2020. [DOI: 10.1007/s11224-019-01481-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
176
|
Jiang L, Xia Y, Zhong T, Zhang H, Jin Q, Li F, Shi S. HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy. Transl Cancer Res 2020; 9:75-84. [PMID: 35117160 PMCID: PMC8797276 DOI: 10.21037/tcr.2019.11.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022]
Abstract
Background Hypoxia-induced autophagy is a crucial factor that induces chemotherapy resistance in tumor cells. As a key regulator facilitating the adaptation of solid tumors to hypoxia, the role of hypoxia-inducible factors (HIFs) in regulating hypoxia-induced chemotherapy resistance and autophagy has been extensively studied. However, the majority of studies have mainly focused on HIF-1. Direct evidence concerning the role of HIF2A in cisplatin resistance is sparse, and its underlying mechanism is not yet known. Methods Animal models were constructed by subcutaneously injecting cervical cancer cells stably overexpressing HIF2A (LV-HIF2A) with or without intraperitoneal injection of cisplatin. Tumor size and weight were evaluated to determine tumor growth. Apoptosis was detected by TUNEL assay and protein expression by western blotting. Results Nude mice injected with cells overexpressing HIF2A showed larger and heavier tumors than those in mice injected with negative control lentivirus (LV-NC)-infected cells, with or without cisplatin. Fewer apoptotic cells were noted in tumor tissues from the LV-HIF2A group than from the LV-NC group, with or without cisplatin. Additionally, expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL2), and autophagy-related proteins, beclin 1 and autophagy related 5 (ATG5), were found to be higher in the LV-HIF2A group than in the LV-NC group, regardless of cisplatin treatment. Moreover, expression of the pro-apoptotic protein, BCL2-associated X (BAX), was lower in tumor tissues from the LV-HIF2A group than from the LV-NC group. Effect of HIF2A overexpression on cisplatin sensitivity was found to be alleviated in vivo by the autophagy inhibitor, 3-methyladenine (3-MA). Conclusions HIF2A overexpression promoted tumor growth and autophagy but suppressed apoptosis in vivo, with or without cisplatin. The HIF2A overexpression-affected cisplatin sensitivity was alleviated by 3-MA. Therefore, we suggest that HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy.
Collapse
Affiliation(s)
- Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Huijuan Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qing Jin
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Feng Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shaohua Shi
- Department of Information Technology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
177
|
Dynamic supraparticles for the treatment of age-related diseases. Sci Bull (Beijing) 2019; 64:1850-1874. [PMID: 36659581 DOI: 10.1016/j.scib.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023]
Abstract
Age-related diseases (ARDs) are arising as a major threat to public health in our fast-aging society. Current development of nanomedicine has sparked much optimism toward ARDs management by improving drug delivery and controlled drug release. However, effective treatments for ARDs, such as cancer and Alzheimer's diseases (AD), are still lacking, due to the complicated pathological features of ARDs including multifactorial pathogenesis, intricate disease microenvironment, and dynamic symptom manifestation. Recently, dynamic supraparticles (DS), which are reversibly self-assembled functional nanoparticles, have provided a novel strategy for combating ARDs. Besides the intrinsic advantages of nanomedicine including multifunctional and multitarget, DS are capable of dynamic structural reconfiguration upon certain stimulation, creating another layer of maneuverability that allows programmed response to the spatiotemporal alterations of ARDs during progression and treatment. In this review, we will overview the challenges faced by ARDs management, and discuss the unique opportunities brought by DS. Then, we will summarize the designed synthesis of DS for ARDs treatment. Finally, we will dissect the therapeutic targets in ARDs that can be exploited by DS, and present the encouraging advances in this field. Hopefully, this review will bridge our knowledge of the design principle of DS and ARDs management, which may inspire the future development of potent theranostic agents to improve the healthcare.
Collapse
|
178
|
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2019; 319:135-156. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a salient feature observed in most solid malignancies that holds a pivotal role in angiogenesis, metastasis and resistance to conventional cancer therapeutic approaches, and thus enables cancer progression. However, the typical characteristics of hypoxic cells such as low oxygen levels and highly bio-reductive environment can offer stimuli-responsive drug release to aid in tumor-specific chemo, radio, photodyanamic and sonodynamic therapies. This approach based on targeting the poorly oxygenated tumor habitats offers the prospective to overcome the difficulties that arises due to heterogenic nature of tumor and could be possibly used in the design of diagnostic as well as therapeutic nanocarriers for targeting various types of solid cancers. Consequently, hypoxia triggered nanoparticle based drug delivery systems is a rapidly progressing research area in developing effective strategies to combat drug-resistance in solid tumors. The present review presents the recent advances in the development of hypoxia-responsive nanovehicles for drug delivery to heterogeneous tumors. The initial sections of the article provides insights into the development of hypoxia in growing cancer and its role in disease progression. The current limitations and the future prospective of hypoxia-stimulated nanomachines for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
179
|
A close relationship between HIF-1α expression and bone metastases in advanced NSCLC, a retrospective analysis. Oncotarget 2019; 10:7071-7079. [PMID: 31903166 PMCID: PMC6925030 DOI: 10.18632/oncotarget.27378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Hypoxia-inducible factor (HIF-1) is a transcription factor produced in hypoxia condition, it is closely associated with tumor angiogenesis and metastasis. Aim: To investigate the expression of HIF-1α in relation with the presence or absence of bone metastasis. Methods A retrospective analysis was carried out on samples deriving from bronchial biopsy and CT-guided trans-thoracic needle biopsy. Detection of HIF-1 expression was performed on tissue sample by a monoclonal murine antibody, comparing patients with or without bone metastases (BM+). Findings: In the total population the main histotype was adenocarcinoma (71.5%), COPD the prevalent comorbidity (73.6%), the mean pack-year was 36.4. Ninety-five histology samples were considered for analysis and comparison. Subdividing the population according to the presence or not of bone metastases, significant differences were found in pack-years (p = 0.02), time to progression (TTP) (p = 0.001) and COPD comorbidity (p = 0.04). The survival comparison between the two subgroups obtained by Kaplan-Meier method showed a longer TTP in patients with visceral metastases with a HR of 1.3 though the comparison by this method was not significant (p = 0.1). A higher intensity and percentage of expression of HIF-1α was recorded in the group with bone metastases (p = 0.02). The main variable affecting HIF expression in a multivariate analysis was the presence of bone metastases (p = 0.01). Interpretation: Patients affected by NSCLC IV stage with bone metastasis have lower survival. There is a very close link between bone metastasis and HIF-1α expression level. The latter could be considered a predictive factor of bone spread and poor prognosis.
Collapse
|
180
|
Chen J, Chen J, Huang J, Li Z, Gong Y, Zou B, Liu X, Ding L, Li P, Zhu Z, Zhang B, Guo H, Cai C, Li J. HIF-2α upregulation mediated by hypoxia promotes NAFLD-HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 2019; 11:10839-10860. [PMID: 31796646 PMCID: PMC6932893 DOI: 10.18632/aging.102488] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a relevant risk factor for developing hepatocellular carcinoma (HCC). Steatohepatitic HCC (SH-HCC), characterized by HCC with steatosis, is influenced by lipid metabolism disorders. A hypoxic microenvironment is common in HCC and affects lipid metabolism. However, whether hypoxia-induced HIF-2α upregulation exacerbates lipid accumulation to contribute to SH-HCC progression remains unclear. In this study, we demonstrated that HIF-2α was elevated in tissues from NAFLD-HCC patients and was associated with survival. Under hypoxic conditions, upregulated HIF-2α was accompanied by lipid accumulation and PI3K-AKT-mTOR pathway activation. HIF-2α knockdown (KD) in steatotic HCC ameliorated triglyceride accumulation and steatosis. HIF-2α-KD steatotic HCC showed minimal lipid synthesis in a hypoxic environment, which contributes to a reduction in malignant behaviours. However, treatment with MHY1485 restored these behaviours. STAM mice, a mouse model that develops NAFLD-HCC, exhibit more rapid tumour progression upon exposure to hypoxia. STAM mice treated with INK-128 presented abrogated mTOR expression and tumour progression under hypoxic conditions with lower triglycerides and steatosis. In conclusion, in a hypoxic microenvironment, HIF-2α upregulation promotes steatotic HCC progression by activating lipid synthesis via the PI3K-AKT-mTOR pathway. Therefore, HIF-2α can be a biomarker and target in developing specific therapeutic measures for NAFLD-HCC patients.
Collapse
Affiliation(s)
- Jianxu Chen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiandi Chen
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxin Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhanyu Li
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yihang Gong
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lei Ding
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhiquan Zhu
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Baimeng Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hui Guo
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
181
|
A lncRNA coordinates with Ezh2 to inhibit HIF-1α transcription and suppress cancer cell adaption to hypoxia. Oncogene 2019; 39:1860-1874. [PMID: 31784651 DOI: 10.1038/s41388-019-1123-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Hypoxia is a salient feature of the tumor microenvironment. HIF-1α is a master regulator of hypoxic adaption. The polycomb repressor complex 2 (PRC2) molecule Ezh2 is known to play roles in essential cellular processes of cell fate decisions. However, how PRC2-mediated epigenetic dynamic changes take part in hypoxic adaption is not completely understood. Recently, we identified a long non-coding RNA (lncRNA) named HITT (HIF-1α inhibitor at translation levels) that plays roles in modulating hypoxia-mediated angiogenesis and tumor growth in vivo. In this study, we reveal an important activity of HITT in evading hypoxia-induced apoptosis by coordinating with PRC2 activity to regulate HIF-1α transcription. Genetic or chemical inhibition of PRC2 significantly elevates HIF-1α mRNA levels. The occupancy of Ezh2 and its substrate H3K27me3 on the HIF-1α promoter is detected under normoxia, and is reduced by hypoxia. Restoring hypoxia-inhibited HITT expression rescues the association between Ezh2/H3K27me3 and the HIF-1α promoter, which also simultaneously abrogates hypoxia-induced HIF-1α mRNA transcription. Further mechanistic studies revealed that HITT inhibits HIF-1α transcription by guiding Ezh2 through the formation of an RNA-DNA triplex with the HIF-1α promoter. Importantly, HITT/Ezh2-regulated HIF-1α transcription leads to alerted HIF-1α protein output and elicits a significant effect to evade hypoxia-induced apoptosis. Importantly, a close association between HIF-1α mRNA and HITT was further verified in human colon cancer tissues in vivo. Collectively, these findings suggest a model for the epigenetic regulation of hypoxia-induced HIF-1α transcription modulated by lncRNA HITT, which provides important insights into how tumor cells sense and adapt to hypoxic stress.
Collapse
|
182
|
Grist SM, Nasseri SS, Laplatine L, Schmok JC, Yao D, Hua J, Chrostowski L, Cheung KC. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia. Sci Rep 2019; 9:17782. [PMID: 31780697 PMCID: PMC6883080 DOI: 10.1038/s41598-019-54001-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
We demonstrate the application of a microfluidic platform combining spatiotemporal oxygen control and long-term microscopy monitoring to observe tumour spheroid response to hypoxia. The platform is capable of recreating physiologically-relevant low and cycling oxygen levels not attainable in traditional cell culture environments, while image-based monitoring visualizes cell response to these physiologically-relevant conditions. Monitoring spheroid cultures during hypoxic exposure allows us to observe, for the first time, that spheroids swell and shrink in response to time-varying oxygen profiles switching between 0% and 10% O2; this swelling-shrinkage behaviour appears to be driven by swelling of individual cells within the spheroids. We also apply the system to monitoring tumour models during anticancer treatment under varying oxygen conditions. We observe higher uptake of the anticancer agent doxorubicin under a cycling hypoxia profile than under either chronic hypoxia or in vitro normoxia, and the two-photon microscopy monitoring facilitated by our system also allows us to observe heterogeneity in doxorubicin uptake within spheroids at the single-cell level. Combining optical sectioning microscopy with precise spatiotemporal oxygen control and 3D culture opens the door for a wide range of future studies on microenvironmental mechanisms driving cancer progression and resistance to anticancer therapy. These types of studies could facilitate future improvements in cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Samantha M Grist
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada.
| | - S Soroush Nasseri
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Loïc Laplatine
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Jonathan C Schmok
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Dickson Yao
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Jessica Hua
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Lukas Chrostowski
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada
| | - Karen C Cheung
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
183
|
Wappler J, Arts M, Röth A, Heeren RMA, Peter Neumann U, Olde Damink SW, Soons Z, Cramer T. Glutamine deprivation counteracts hypoxia-induced chemoresistance. Neoplasia 2019; 22:22-32. [PMID: 31765939 PMCID: PMC6883317 DOI: 10.1016/j.neo.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
The microenvironment of solid tumors is a key determinant of therapy efficacy. The co-occurrence of oxygen and nutrient deprivation is a common phenomenon of the tumor microenvironment and associated with treatment resistance. Cholangiocarcinoma (CCA) is characterized by a very poor prognosis and pronounced chemoresistance. A better understanding of the underlying molecular mechanisms is urgently needed to improve therapy strategies against CCA. We sought to investigate the importance of the conditionally essential amino acid glutamine, a centrally important nutrient for a variety of solid tumors, for CCA. Glutamine levels were strongly decreased in CCA samples and the growth of established human CCA cell lines was highly dependent on glutamine. Using gradual reduction of external glutamine, we generated derivatives of CCA cell lines which were able to grow without external glutamine (termed glutamine-depleted (GD)). To analyze the effects of coincident oxygen and glutamine deprivation, GD cells were treated with cisplatin or gemcitabine under normoxia and hypoxia. Strikingly, the well-established phenomenon of hypoxia-induced chemoresistance was completely reversed in GD cells. In order to better understand the underlying mechanisms, we focused on the oncogene c-Myc. The combination of cisplatin and hypoxia led to sustained c-Myc protein expression in wildtype cells. In contrast, c-Myc expression was reduced in response to the combinatorial treatment in GD cells, suggesting a functional importance of c-Myc in the process of hypoxia-induced chemoresistance. In summary, these findings indicate that the mechanisms driving adaption to tumor microenvironmental changes and their relevance for the response to therapy are more complex than expected.
Collapse
Affiliation(s)
- Jessica Wappler
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Martijn Arts
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anjali Röth
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands
| | - Steven W Olde Damink
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Zita Soons
- Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany; Department of Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany; ESCAM - European Surgery Center Aachen Maastricht, Maastricht, the Netherlands; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
184
|
Herbal nutraceuticals: safe and potent therapeutics to battle tumor hypoxia. J Cancer Res Clin Oncol 2019; 146:1-18. [DOI: 10.1007/s00432-019-03068-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
185
|
Afsar CU, Uysal P. HIF-1α Levels in patients receiving chemoradiotherapy for locally advanced non-small cell lung carcinoma. ACTA ACUST UNITED AC 2019; 65:1295-1299. [PMID: 31721962 DOI: 10.1590/1806-9282.65.10.1295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022]
Abstract
AIM To examine the relationship between treatment response and hypoxia-inducible factor-1 alpha (HIF-1α) levels in patients with locally advanced non-small cell lung cancer (NSCLC) who received chemoradiotherapy (CRT). METHODS Eighty patients with NSCLC were included in the study and treated at Acibadem Mehmet Ali Aydınlar University Medical Faculty. HIF-1 α levels were measured before and after CRT by the enzyme-linked immunosorbent assay (ELISA) method. RESULTS Patients' stages were as follows; stage IIIA (65%) and stage IIIB (35%). Squamous histology was 45%, adenocarcinoma was 44%, and others were 11%. Chemotherapy and radiotherapy were given concurrently to 80 patients. Forty-five (56%) patients received cisplatin-based chemotherapy, and 35 (44%) received carboplatin-based chemotherapy. Serum HIF-1α levels (42.90 ± 10.55 pg/mL) after CRT were significantly lower than the pretreatment levels (63.10 ± 10.22 pg/mL, p<0.001) in patients with locally advanced NSCLC. CONCLUSION The results of this study revealed that serum HIF-1α levels decreased after CRT. Decrease of HIF-1α levels after the initiation of CRT may be useful for predicting the efficacy of CRT.
Collapse
Affiliation(s)
- Cigdem Usul Afsar
- . Acıbadem Mehmet Ali Aydınlar University Medical Faculty, Bakirkoy Acıbadem Hospital, Department of Internal Medicine and Medical Oncology, Istanbul, Turkey
| | - Pelin Uysal
- . Acıbadem Mehmet Ali Aydınlar University Medical Faculty, Atakent Acıbadem Hospital, Department of Pulmonary Medicine, Istanbul, Turkey
| |
Collapse
|
186
|
Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2019; 228:119578. [PMID: 31678843 DOI: 10.1016/j.biomaterials.2019.119578] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia, resulting from the imbalance between oxygen supply and consumption is a critical component of the tumor microenvironment. It has a paramount impact on cancer growth, metastasis and has long been known as a major obstacle for cancer therapy. However, none of the clinically approved anticancer therapeutics currently available for human use directly tackles this problem. Previous clinical trials of targeting tumor hypoxia with bioreductive prodrugs have failed to demonstrate satisfactory results. Therefore, new ideas are needed to overcome the hypoxia barrier. The method of modulating hypoxia to improve the therapeutic activity is of great interest but remains a considerable challenge. One of the emerging concepts is to supply or generate oxygen at the tumor site to increase the partial oxygen pressure and thereby reverse the hypoxia and its effects. In this review, we present an overview of the recent progress in the development of novel nanomaterials for the alleviation of hypoxic microenvironment. Two main strategies for hypoxia augmentation, i) direct delivery of O2 into the tumor, and ii) in situ O2 generations in the tumor microenvironment through different methods such as catalytic decomposition of endogenous hydrogen peroxide (H2O2) and light-triggered water splitting are discussed in detail. At present, these emerging nanomaterials are in their early phase and expected to grow rapidly in the coming years. Despite the promising start, there are several challenges needed to overcome for successful clinical translation.
Collapse
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
187
|
Mi L, Zhou Y, Wu D, Tao Q, Wang X, Zhu H, Gao X, Wang J, Ling R, Deng J, Mao C, Chen D. ACSS2/AMPK/PCNA pathway‑driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress. Mol Med Rep 2019; 20:5286-5296. [PMID: 31638228 DOI: 10.3892/mmr.2019.10735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Although platinum‑based chemotherapy is the first‑line choice for locally advanced or metastatic esophageal squamous cell carcinoma (ESCC) patients, accelerated recurrence and chemoresistance remain inevitable. New evidence suggests that metabolism reprogramming under stress involves independent processes that are executed with a variety of proteins. This study investigated the functions of nutrient stress (NS)‑mediated acetyl‑CoA synthetase short‑chain family member 2 (ACSS2) in cell proliferation and cisplatin‑resistance and examined its combined effects with proliferating cell nuclear antigen (PCNA), a key regulator of DNA replication and repair. Here, it was demonstrated that under NS, when the AMP‑activated protein kinase (AMPK) pathway was activated, ESCC cells maintained proliferation and chemoresistance was distinctly upregulated as determined by CCK‑8 assay. As determined using immunoblotting and RT‑qPCR, compared with normal esophageal epithelial cells (Het‑1A), ESCC cells were less sensitive to NS and showed increased intracellular levels of ACSS2. Moreover, it was shown that ACSS2 inhibition by siRNA not only greatly interfered with proliferation under NS but also participated in DNA repair after cisplatin treatment via PCNA suppression, and the acceleration of cell death was dependent on the activation of the AMPK pathway as revealed by the Annexin V/PI and TUNEL assay results. Our study identified crosstalk between nutrient supply and chemoresistance that could be exploited therapeutically to target AMPK signaling, and the results suggest ACSS2 as a potential biomarker for identifying higher‑risk patients.
Collapse
Affiliation(s)
- Lei Mi
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dan Wu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Tao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xuefeng Wang
- Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jing Deng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
188
|
Seo AN, Jung Y, Jang H, Lee E, Bae HI, Son T, Kwon O, Chung HY, Yu W, Lee YM. Clinical significance and prognostic role of hypoxia-induced microRNA 382 in gastric adenocarcinoma. PLoS One 2019; 14:e0223608. [PMID: 31596872 PMCID: PMC6785122 DOI: 10.1371/journal.pone.0223608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
Hypoxia and angiogenesis are critical components in the progression of solid cancer, including gastric cancers (GCs). miR-382 has been identified as a hypoxia-induced miR (hypoxamiR), but the clinical significance in GCs has not been identified yet. To explore the clinical and prognostic importance of miR-382 in GCs, the surgical specimens of 398 patients with GCs in KNU hospital in Korea, the total of 183 patients was randomly selected using simple sampling methods and big data with 446 GCs and 45 normal tissues from the data portal (https://portal.gdc.cancer.gov/) were analysed. Expression of miR-382 as well as miR-210, as a positive control hypoxamiR by qRT-PCR in histologically malignant region of GCs showed significantly positive correlation (R = 0.516, p<0.001). High miR-210 and miR-382 expression was significantly correlated with unfavorable prognosis including advanced GCs (AGC), higher T category, N category, pathologic TNM stage, lymphovascular invasion, venous invasion, and perinueral invasion, respectively (all p<0.05). In univariate analysis, high miR-210 expression was significantly associated with worse overall survival (OS) (p = 0.036) but not high miR-382. In paired 60 gastric normal and cancer tissues, miR-382 expression in cancer tissues was significantly higher than normal counterpart (p = 0.003), but not miR-210 expression. However, by increasing the patient number from the big data analysis, miR-210 as well as miR-382 expression in tumor tissues was significantly higher than the normal tissues. Our results suggest that miR-382, as novel hypoxamiR, can be a prognostic marker for advanced GCs and might be correlated with metastatic potential. miR-382 might play important roles in the aggressiveness, progression and prognosis of GCs. In addition, miR-382 give a predictive marker for progression of GCs compared to the normal or preneoplastic lesion.
Collapse
Affiliation(s)
- An Na Seo
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Yukdong Jung
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Hyeonha Jang
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Eunhye Lee
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Han-Ik Bae
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ohkyung Kwon
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Ho Young Chung
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Wansik Yu
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - You Mie Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
189
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
190
|
Yen TY, Stephen ZR, Lin G, Mu Q, Jeon M, Untoro S, Welsh P, Zhang M. Catalase-Functionalized Iron Oxide Nanoparticles Reverse Hypoxia-Induced Chemotherapeutic Resistance. Adv Healthc Mater 2019; 8:e1900826. [PMID: 31557421 PMCID: PMC6919328 DOI: 10.1002/adhm.201900826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Indexed: 11/10/2022]
Abstract
Intratumoral hypoxia is a major contributor to multiple drug resistance (MDR) in cancer, and can lead to poor prognosis of patients receiving chemotherapy. Development of an MDR-inhibitor that mitigates the hypoxic environment is crucial for cancer management and treatment. Reported is a biocompatible and biodegradable catalase-conjugated iron oxide nanoparticle (Cat-IONP) capable of converting reactive oxygen species to molecular oxygen to supply an oxygen source for the hypoxic tumor microenvironment. Cat-IONP demonstrates initial enzymatic activity comparable to free catalase while providing a nearly threefold increase in long-term enzymatic activity. It is demonstrated that Cat-IONP significantly reduces the in vitro expression of hypoxia-inducible factors at the transcription level in a breast cancer cell line. Co-treatment of Cat-IONP and paclitaxel (PTX) significantly increases the drug sensitivity of hypoxic-cultured cells, demonstrating greater than twofold and fivefold reduction in cell viability in comparison to cells treated only with 80 and 120 × 10-6 m PTX, respectively. These findings demonstrate the ability of Cat-IONP to act as an MDR-inhibitor at different biological levels, suggesting a promising strategy to combat cancer-MDR and to optimize cancer management and treatment outcomes.
Collapse
Affiliation(s)
- Tin-Yo Yen
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Zachary R. Stephen
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Guanyou Lin
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Qingxin Mu
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Mike Jeon
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Stela Untoro
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Parker Welsh
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
| | - Miqin Zhang
- Department of Material Sciences and Engineering, University of Washington, Seattle, Washington, 98195
- Department of Neurological Surgery, University of Washington, Seattle Washington 98195
| |
Collapse
|
191
|
Muz B, Bandara N, Mpoy C, Sun J, Alhallak K, Azab F, Rogers BE, Azab AK. CXCR4-targeted PET imaging using 64Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biol Ther 2019; 21:52-60. [PMID: 31571524 DOI: 10.1080/15384047.2019.1665405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: Waldenström Macroglobulinemia (WM) is a rare B-cell malignancy characterized by secretion of immunoglobulin M and cancer infiltration in the bone marrow. Chemokine receptor such as CXCR4 and hypoxic condition in the bone marrow play crucial roles in cancer cell trafficking, homing, adhesion, proliferation, survival, and drug resistance. Herein, we aimed to use CXCR4 as a potential biomarker to detect hypoxic-metastatic WM cells in the bone marrow and in the circulation by using CXCR4-detecting radiopharmaceutical.Methods: We radiolabeled a CXCR4-inhibitor (AMD3100) with 64Cu and tested its binding to WM cells with different levels of CXCR4 expression using gamma counter in vitro. The accumulation of this radiopharmaceutical tracer was tested in vivo in subcutaneous and intratibial models using PET/CT scan. In addition, PBMCs spiked with different amounts of WM cells ex vivo were detected using gamma counting.Results: In vitro, 64Cu-AMD3100 binding to WM cell lines demonstrated a direct correlation with the level of CXCR4 expression, which was increased in cells cultured in hypoxia with elevated levels of CXCR4, and decreased in cells with CXCR4 and HIF-1α knockout. Moreover, 64Cu-AMD3100 detected localized and circulating CXCR4high WM cells with high metastatic potential.Conclusions: In conclusion, we developed a molecularly targeted system, 64Cu-AMD3100, which binds to CXCR4 and specifically detects WM cells with hypoxic phenotype and metastatic potential in the subcutaneous and intratibial models. These preliminary findings using CXCR4-detecting PET radiopharmaceutical tracer indicate a potential technology to predict high-risk patients for the progression to WM due to metastatic potential.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nilantha Bandara
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kinan Alhallak
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
192
|
Han S, Huang T, Hou F, Yao L, Wang X, Wu X. The prognostic value of hypoxia-inducible factor-1α in advanced cancer survivors: a meta-analysis with trial sequential analysis. Ther Adv Med Oncol 2019; 11:1758835919875851. [PMID: 31579115 PMCID: PMC6759726 DOI: 10.1177/1758835919875851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Expression of hypoxia-inducible factors (HIFs) has been observed, but their prognostic role in advanced cancers remains uncertain. We conducted a meta-analysis to establish the prognostic effect of HIFs and to better guide treatment planning for advanced cancers. Methods: Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Trial sequential analysis (TSA) was also performed. The clinical outcomes included overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), relapse/recurrence-free survival (RFS), and metastasis-free survival (MFS) in patients with advanced tumors according to multivariate analysis. Results: A total of 31 studies including 3453 cases who received chemotherapy, radiotherapy, or chemoradiotherapy were identified. Pooled analyses revealed that HIF-1α expression was correlated with worse OS (HR = 1.61, p < 0.001), DFS (HR = 1.61, p < 0.001), PFS (HR = 1.49, p = 0.01), CSS (HR = 1.65, p = 0.056), RFS (HR = 2.10, p = 0.015), or MFS (HR = 2.36, p = 0.002) in advanced cancers. HIF-1α expression was linked to shorter OS in the digestive tract, epithelial ovarian, breast, non-small cell lung, and clear cell renal cell carcinomas. Subgroup analysis by study region showed that HIF-1α expression was correlated with poor OS in Europeans and Asians, while an analysis by histologic subtypes found that HIF-1α expression was not associated with OS in squamous cell carcinoma. No relationship was found between HIF-2α expression and OS, DFS, PFS, or CSS. Conclusions: Targeting HIF-1α may be a useful therapeutic approach to improve survival for advanced cancer patients. Based on TSA, more randomized controlled trials are strongly suggested.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, 200071, People's Republic of China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, People's Republic of China
| |
Collapse
|
193
|
DiGiacomo JW, Gilkes DM. Tumor Hypoxia As an Enhancer of Inflammation-Mediated Metastasis: Emerging Therapeutic Strategies. Target Oncol 2019; 13:157-173. [PMID: 29423593 DOI: 10.1007/s11523-018-0555-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Recent research has implicated tumor inflammation as a promoter of metastasis. Myeloid, lymphoid, and mesenchymal cells in the tumor microenvironment promote inflammatory signaling amongst each other and together with cancer cells to modulate sustained inflammation, which may enhance cancer invasiveness. Tumor hypoxia, a state of reduced available oxygen present in the majority of solid tumors, acts as a prognostic factor for a worse outcome and is known to have a role in tumor inflammation through the regulation of inflammatory mediator signals in both cancer and neighboring cells in the microenvironment. Multiple methods to target tumor hypoxia have been developed and tested in clinical trials, and still more are emerging as the impacts of hypoxia become better understood. These strategies include mechanistic inhibition of the hypoxia inducible factor signaling pathway and hypoxia activated pro-drugs, leading to both anti-tumor and anti-inflammatory effects. This prompts a need for further research on the prevention of hypoxia-mediated inflammation in cancer. Hypoxia-targeting strategies seem to have the most potential for therapeutic benefit when combined with traditional chemotherapy agents. This paper will serve to summarize the role of the inflammatory response in metastasis, to discuss how hypoxia can enable or enhance inflammatory signaling, and to review established and emerging strategies to target the hypoxia-inflammation-metastasis axis.
Collapse
Affiliation(s)
- Josh W DiGiacomo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Daniele M Gilkes
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
194
|
Ateba SB, Mvondo MA, Djiogue S, Zingué S, Krenn L, Njamen D. A Pharmacological Overview of Alpinumisoflavone, a Natural Prenylated Isoflavonoid. Front Pharmacol 2019; 10:952. [PMID: 31551770 PMCID: PMC6746831 DOI: 10.3389/fphar.2019.00952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Over the last decade, several studies demonstrated that prenylation of flavonoids enhances various biological activities as compared to the respective nonprenylated compounds. In line with this, the natural prenylated isoflavonoid alpinumisoflavone (AIF) has been explored for a number of biological and pharmacological effects (therapeutic potential). In this review, we summarize the current information on health-promoting properties of AIF. Reported data evidenced that AIF has a multitherapeutic potential with antiosteoporotic, antioxidant and anti-inflammatory, antimicrobial, anticancer, estrogenic and antiestrogenic, antidiabetic, and neuroprotective properties. However, research on these aspects of AIF is not sufficient and needs to be reevaluated using more appropriate methods and methodology. Further series of studies are needed to confirm these pharmacological effects, and this review should lay the basis for the design of respective investigations. Overall, despite the drawbacks of studies recorded, AIF exhibits a potential as drug candidate.
Collapse
Affiliation(s)
- Sylvin Benjamin Ateba
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marie Alfrede Mvondo
- Research Unit of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Sefirin Djiogue
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Stéphane Zingué
- Department of Life and Earth Sciences, Higher Teachers’ Training College, University of Maroua, Maroua, Cameroon
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Dieudonné Njamen
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
195
|
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT, Shun CT, Chen CC. Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene 2019; 39:414-427. [PMID: 31477841 DOI: 10.1038/s41388-019-0999-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Drug resistance is a major problem limiting the efficacy of chemotherapy in cancer treatment, and the hypoxia-induced stabilization of HIF-1α plays a role in this process. HIF-1α overexpression has been observed in a variety of human cancers, including colorectal cancer (CRC). Therefore, targeting HIF-1α is a promising strategy for overcoming chemoresistance to enhance the efficacy of chemotherapies in CRC. Here, we show that DNMT inhibitors can induce HIF-1α degradation to overcome oxaliplatin resistance and enhance anti-CRC therapy. We found that a low-toxicity DNMT inhibitor, zebularine, could downregulate HIF-1α expression and overcome hypoxia-induced oxaliplatin resistance in HCT116 cells and showed efficacy in HCT116 xenograft models and AOM/DSS-induced CRC mouse models. Zebularine could induce the degradation of HIF-1α protein through hydroxylation. LC-MS analysis showed a decrease in succinate in various CRC cells under hypoxia and in colon tissues of AOM/DSS-induced CRC mice. The decrease was reversed by zebularine. Tumor angiogenesis was also reduced by zebularine. Furthermore, zebularine potentiated the anticancer effect of oxaliplatin in AOM/DSS-induced CRC models. This finding provides a new strategy in which an increase in HIF-1α hydroxylation could overcome oxaliplatin resistance to enhance anti-CRC therapy.
Collapse
Affiliation(s)
- Tzu-Tang Wei
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Shao-Pu Tang
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Cong-Kai Luo
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Chiou-Tsun Tsai
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Chia-Tung Shun
- Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, 106, Taipei, Taiwan
| | - Ching-Chow Chen
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan.
| |
Collapse
|
196
|
Tapeinos C, Tomatis F, Battaglini M, Larrañaga A, Marino A, Telleria IA, Angelakeris M, Debellis D, Drago F, Brero F, Arosio P, Lascialfari A, Petretto A, Sinibaldi E, Ciofani G. Cell Membrane-Coated Magnetic Nanocubes with a Homotypic Targeting Ability Increase Intracellular Temperature due to ROS Scavenging and Act as a Versatile Theranostic System for Glioblastoma Multiforme. Adv Healthc Mater 2019; 8:e1900612. [PMID: 31389193 PMCID: PMC6754263 DOI: 10.1002/adhm.201900612] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022]
Abstract
In this study, hybrid nanocubes composed of magnetite (Fe3 O4 ) and manganese dioxide (MnO2 ), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H2 O2 ) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL-1 of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.
Collapse
Affiliation(s)
- Christos Tapeinos
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025
Pontedera, Italy
| | - Francesca Tomatis
- Department of Mechanical and Aerospace Engineering, Politecnico di
Torino, 10129 Torino, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025
Pontedera, Italy
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56025
Pontedera, Italy
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science
& POLYMAT, University of the Basque Country, 48013 Bilbao, Spain
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025
Pontedera, Italy
| | - Iker Aguirrezabal Telleria
- Department of Chemical and Environmental Engineering, Engineering
School of the University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Makis Angelakeris
- Department of Physics, Aristotle University of Thessaloniki, 54124
Thessaloniki, Greece
| | - Doriana Debellis
- Electron microscopy facility, Istituto Italiano di Tecnologia, 16163
Genova, Italy
| | - Filippo Drago
- Nanochemistry Department, Istituto Italiano di Tecnologia, Genova,
16163 Italy
| | - Francesca Brero
- Department of Physics and INSTM, Università degli Studi di
Pavia, 27100 Pavia, Italy
| | - Paolo Arosio
- Department of Physics and INSTM, Università degli Studi di
Milano, 20133 Milano, Italy
| | | | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics Laboratory,
IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, 56025
Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025
Pontedera, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di
Torino, 10129 Torino, Italy
| |
Collapse
|
197
|
What sustains the multidrug resistance phenotype beyond ABC efflux transporters? Looking beyond the tip of the iceberg. Drug Resist Updat 2019; 46:100643. [PMID: 31493711 DOI: 10.1016/j.drup.2019.100643] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Identification of multidrug (MDR) efflux transporters that belong to the ATP-Binding Cassette (ABC) superfamily, represented an important breakthrough for understanding cancer multidrug resistance (MDR) and its possible overcoming. However, recent data indicate that drug resistant cells have a complex intracellular physiology that involves constant changes in energetic and oxidative-reductive metabolic pathways, as well as in the molecular circuitries connecting mitochondria, endoplasmic reticulum (ER) and lysosomes. The aim of this review is to discuss the key molecular mechanisms of cellular reprogramming that induce and maintain MDR, beyond the presence of MDR efflux transporters. We specifically highlight how cancer cells characterized by high metabolic plasticity - i.e. cells able to shift the energy metabolism between glycolysis and oxidative phosphorylation, to survive both the normoxic and hypoxic conditions, to modify the cytosolic and mitochondrial oxidative-reductive metabolism, are more prone to adapt to exogenous stressors such as anti-cancer drugs and acquire a MDR phenotype. Similarly, we discuss how changes in mitochondria dynamics and mitophagy rates, changes in proteome stability ensuring non-oncogenic proteostatic mechanisms, changes in ubiquitin/proteasome- and autophagy/lysosome-related pathways, promote the cellular survival under stress conditions, along with the acquisition or maintenance of MDR. After dissecting the complex intracellular crosstalk that takes place during the development of MDR, we suggest that mapping the specific adaptation pathways underlying cell survival in response to stress and targeting these pathways with potent pharmacologic agents may be a new approach to enhance therapeutic efficacy against MDR tumors.
Collapse
|
198
|
Tang R, Kimishima A, Ishida R, Setiawan A, Arai M. Selective cytotoxicity of epidithiodiketopiperazine DC1149B, produced by marine-derived Trichoderma lixii on the cancer cells adapted to glucose starvation. J Nat Med 2019; 74:153-158. [PMID: 31435860 PMCID: PMC7946679 DOI: 10.1007/s11418-019-01357-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/10/2019] [Indexed: 01/27/2023]
Abstract
The core of solid tumors is characterized by hypoxia and a nutrient-starved microenvironment and has gained much attention as targets of anti-cancer drugs. In the course of search for selective growth inhibitors against the cancer cells adapted to nutrient starvation, epidithiodiketopiperazine DC1149B (1) together with structurally related compounds, trichodermamide A (2) and aspergillazine A (3), were isolated from culture extract of marine-derived Trichoderma lixii. Compounds 1 exhibited potent selective cytotoxic activity against human pancreatic carcinoma PANC-1 cells cultured under glucose-starved conditions with IC50 values of 0.02 µM. The selective index of the compound 1 was found to be 35,500-fold higher for cells cultured under glucose-starved conditions than those under the general culture conditions. The mechanistic analysis indicated that compound 1 inhibited the response of the ER stress signaling. In addition, these effects of compound 1 could be mediated by inhibiting complex II in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Rui Tang
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kimishima
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung, 35145, Indonesia
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
199
|
Bidkar AP, Sanpui P, Ghosh SS. Red Blood Cell-Membrane-Coated Poly(Lactic-co-glycolic Acid) Nanoparticles for Enhanced Chemo- and Hypoxia-Activated Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4077-4086. [DOI: 10.1021/acsabm.9b00584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anil Parsram Bidkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani, Dubai Campus, Dubai International Academic City,
P.O. Box No. 345055, Dubai, UAE
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 39, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| |
Collapse
|
200
|
Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment. Cell Biosci 2019; 9:62. [PMID: 31402975 PMCID: PMC6683569 DOI: 10.1186/s13578-019-0325-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Colon-cancer-cell-derived exosomes (CDEs) are emerging mediators of tumorigenesis and serve as messengers of intercellular communication; however, whether the CDEs affect the proliferation of colon cancer cells themselves remains unknown. In the current study, the CDEs isolated from human colon cancer cell line SW480 and HCT116 showed a size range of 60-150 nm, typical bilayer-encapsulated vesicles, and expressed the exosomal markers CD81 and CD63. Incubation of SW480 cells with CDEs labelled with PKH67 fluorescent markers revealed that SW480 cells were able to absorb CDEs, which were mostly distributed around the nucleus. Hypoxic conditions promoted colon cancer cells to release a greater number of CDEs than normoxic conditions. MTT cell proliferation assay demonstrated CDEs promoted the proliferation of colon cancer cells in a time- and dose-dependent manner. Mechanistically, CDEs promoted colon cancer cell growth mainly through shortening mitosis duration. Meanwhile, the levels of phosphorylated STAT3 in colon cancer cells was up-regulated with the treatment of CDEs derived from hypoxic tumor cells. Our data suggests that colon cancer cells are able to promote self-growth through the secretion of exosomes, especially under hypoxic conditions, which shortens mitosis duration and activates STAT3.
Collapse
|