151
|
Singh K, Bhatia R, Kumar B, Singh G, Monga V. Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents. Curr Neuropharmacol 2022; 20:1329-1358. [PMID: 34727859 PMCID: PMC9881079 DOI: 10.2174/1570159x19666211102154311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy.
Collapse
Affiliation(s)
- Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda-151401, Punjab, India
| |
Collapse
|
152
|
Zhang X, Yu W, Nie Y, Zhang Y, Gu X, Wei W, Zhang Z, Liang T. Copper-iodine Co-catalyzed C−H Aminoalkenylation of Indoles via Temperature-controlled Selectivity Switch: Facile Synthesis of 2-Azolyl-3-alkenylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00627h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-iodine co-catalyzed 2,3-difunctionalization of indoles with azoles and phenols via temperature-controlled selectivity switch has been developed for the green synthesis of 2-azolyl-3-alkenylindoles. The strategy involves the simultaneous establishment...
Collapse
|
153
|
Wang M, Zhang J, Wang H, Ma B, Dai HX. Construction of Aza-spiro[4,5]indole Scaffolds via Rhodium-Catalyzed Regioselective C(4)—H Activation of Indole ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
154
|
Chen X, Liu H, Gao H, Li P, Miao T, Li H. Electrochemical Regioselective Cross-Dehydrogenative Coupling of Indoles with Xanthenes. J Org Chem 2021; 87:1056-1064. [PMID: 34964353 DOI: 10.1021/acs.joc.1c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electrochemical cross-dehydrogenative coupling of indoles with xanthenes has been established at room temperature. This coupling reaction could proceed in the absence of any catalyst or external oxidant, and generate the indole derivatives in moderate yields. Mechanistic experiments support that a radical pathway maybe involved in this reaction system.
Collapse
Affiliation(s)
- Xinyu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongqiang Liu
- China Synchem Technology Co., Ltd., Bengbu, Anhui 233000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
155
|
Sun J, Yu Z, Liu T. Theoretical Investigation on the Rhodium-Catalyzed Annulation of 2-Phenyl-1H-indole with Ethyl 2-Diazo-3-oxo-3-phenylpropanoate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421130239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
156
|
Reddy GG, Reddy CVR, Reddy BS. Water Mediated One-Pot, Stepwise Green Synthesis, Anti-Inflammatory and Analgesic Activities of (3-Amino-1-Phenyl-1H-Benzo[f]Chromen-2-yl) (1H-Indol-3-yl) Methanone Catalysed by L-Proline. Med Chem 2021; 18:810-819. [PMID: 34951578 DOI: 10.2174/1573406418666211224125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
AIM The reactions were carried out by one pot three-component synthesis, 3-cyanoacetylindole (1) on reaction with aromatic aldehydes (2) and β-naphthol (3) in an aqueous medium in presence of L-proline as a catalyst under reflux for 30 min, resulted (3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanone (4). The method has many advantages like short reaction times, good yields and simple workup procedure besides being green in nature. Pharmacological evaluation of title compounds was done for anti-inflammatory and analgesic activities. Anti-inflammatory activity was carried carrageenan-induced paw edema model in which indomethacin was used as standard and analgesic activity was evaluated by eddy's hot plate method using diclofenac as standard drug. BACKGROUND Benzopyrans or chromenes are an important class of heterocyclic compounds due to their broad spectrum of biological activity and a wide range of applications in medicinal chemistry. The chromene moiety is found in various natural products with interesting biological properties. Chromenes constitute the basic backbone of various types of polyphenols and are widely found in alkaloids, tocopherols, flavonoids and anthocyanins. Indoles are omnipresent in various bioactive compounds like alkaloids, agrochemicals and pharmaceuticals. OBJECTIVE To synthesize one-pot stepwise Green synthesis, anti-inflammatory and analgesic activities of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl)methanones Methods: The acute anti-inflammatory effect was evaluated by carrageenan-induced mice paw edema (Ma Rachchh et al., 2011). Edema was induced by injecting carrageenan (1% w/v, 0.1 ml) in the right hind paw of mice. The test compounds 1-12, indomethacin (10 mg/kg) and the vehicle were administered orally one hour before injection of carrageenan. Paw volume was measured with digital plethysmometer at 0, 30, 60, 90, 120 min after injection. Percentage increase =A-B/ A *100 Results: Carrageenan Induced paw edema model was used for Anti-inflammatory activity in which animals treated with standard (indomethacin) and test compounds showed a significant decrease in the paw edema. Analgesic activity was estimated by using Eddy's hot plate method; animals were treated with standard (diclofenac) and test compounds showed a significant increase in the reaction time. CONCLUSION A green, One-pot, step-wise and three-component synthesis of 3-amino-1-phenyl-1H-benzo[f]chromen-2-yl) (1H-indol-3-yl) methanone was achieved by using water as a solvent, L-proline as catalyst under reflux conditions. The reactions were carried out in eco-friendly conditions with shorter reaction times, easier workup and high yields. Anti-inflammatory activity was evaluated by carrageenan-induced paw edema model where significant anti-inflammatory activity is shown by all the test compounds (4a-l) when compared to standard drug. Analgesic activity was studied by Eddy's Hot plate method and Test compounds 4e, 4f, 4h, 4i, 4j, 4k, 4l showed significant activities when compared to the reference drug.
Collapse
Affiliation(s)
- G Ganga Reddy
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, India
| | | | - B Srinivasa Reddy
- Department of Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, India
| |
Collapse
|
157
|
Hawash M, Kahraman DC, Ergun SG, Cetin-Atalay R, Baytas SN. Synthesis of novel indole-isoxazole hybrids and evaluation of their cytotoxic activities on hepatocellular carcinoma cell lines. BMC Chem 2021; 15:66. [PMID: 34930409 PMCID: PMC8691034 DOI: 10.1186/s13065-021-00793-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Liver cancer is predicted to be the sixth most diagnosed cancer globally and fourth leading cause of cancer deaths. In this study, a series of indole-3-isoxazole-5-carboxamide derivatives were designed, synthesized, and evaluated for their anticancer activities. The chemical structures of these of final compounds and intermediates were characterized by using IR, HRMS, 1H-NMR and 13C-NMR spectroscopy and element analysis. RESULTS The cytotoxic activity was performed against Huh7, MCF7 and HCT116 cancer cell lines using sulforhodamine B assay. Some compounds showed potent anticancer activities and three of them were chosen for further evaluation on liver cancer cell lines based on SRB assay and real-time cell growth tracking analysis. Compounds were shown to cause arrest in the G0/G1 phase in Huh7 cells and caused a significant decrease in CDK4 levels. A good correlation was obtained between the theoretical predictions of bioavailability using Molinspiration calculation, Lipinski's rule of five, and experimental verification. These investigations reveal that indole-isoxazole hybrid system have the potential for the development of novel anticancer agents. CONCLUSIONS This study has provided data that will form the basis of further studies that aim to optimize both the design and synthesis of novel compounds that have higher anticancer activities.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sezen Guntekin Ergun
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
- Department of Medical Biology, Hacettepe University, 06100, Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Sultan Nacak Baytas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
| |
Collapse
|
158
|
Corrieri M, De Crescentini L, Mantellini F, Mari G, Santeusanio S, Favi G. Synthesis of Azacarbolines via PhIO 2-Promoted Intramolecular Oxidative Cyclization of α-Indolylhydrazones. J Org Chem 2021; 86:17918-17929. [PMID: 34871002 PMCID: PMC8689645 DOI: 10.1021/acs.joc.1c02217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An unprecedented
synthesis of polysubstituted indole-fused pyridazines
(azacarbolines) from α-indolylhydrazones under oxidative conditions
using a combination of iodylbenzene (PhIO2) and trifluoroacetic
acid (TFA) has been developed. This transformation is conducted without
the need for transition metals, harsh conditions, or an inert atmosphere.
Collapse
Affiliation(s)
- Matteo Corrieri
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
159
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
160
|
Zhang X, Zhang Y, Gu X, Zhang Z, Wei W, Liang T. Synthesis of 3-halogenated 2,3'-biindoles by a copper-mediated 2,3-difunctionalization of indoles. Org Biomol Chem 2021; 19:10403-10407. [PMID: 34842891 DOI: 10.1039/d1ob02024b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-mediated 2,3-difunctionalization of indoles to afford 3-halogenated 2,3'-biindoles is described herein. The protocol uses readily available feedstocks and a naturally abundant copper catalyst system, which allows the regioselective formation of C-C and C-X (X = Cl & Br) bonds in one single operation. Here the copper metal salt serves not only as a catalyst but also as a reactant to provide the source of halogen. This operationally simple procedure avoids the utilization of environmentally unfriendly reagents and displays good functional group compatibility. Noteworthily, the introduction of halogen into molecules would offer great potential for further chemical transformations.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Yingying Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoting Gu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Wanxing Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
161
|
Meshram MA, Bhise UO, Makhal PN, Kaki VR. Synthetically-tailored and nature-derived dual COX-2/5-LOX inhibitors: Structural aspects and SAR. Eur J Med Chem 2021; 225:113804. [PMID: 34479036 DOI: 10.1016/j.ejmech.2021.113804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Inflammation is a most complex pathological process that gives birth to different diseases. Different inflammatory mediators are released during an inflammation responsible for acute pain and chronic inflammatory diseases like cancer, asthma, rheumatoid arthritis, osteoarthritis, neurodegenerative diseases, metabolic and cardiovascular disorders. The arachidonic acid pathway, which results in the production of inflammatory mediators, provides several targets for anti-inflammatory intervention. The most popularly used medications for inflammation are non-steroidal anti-inflammatory agents (NSAIDs) but it has some limitations, in particular traditional NSAIDs which inhibit the COX pathway non-selectively, producing gastrointestinal side effects, and other adverse effects like stroke and renal failure. On the other hand, selective COX-2 inhibitors commonly known as 'coxibs' produce cardiovascular side effects. Frequent inhibition of either cyclooxygenase or lipoxygenase enzyme switches the metabolism of arachidonic acid from one to another which could lead to serious consequences. Therefore, a need to develop novel, effective and safe anti-inflammatory agents which can inhibit the release of both prostaglandins and leukotrienes from the respective cyclooxygenase and lipoxygenase pathways has emerged. This resulted in the discovery of new anti-inflammatory agents derived from natural and synthetic sources as dual COX-2/5-LOX inhibitors. To further contribute towards the discovery in this field, we have attempted to summarize structural features and pharmacological activities of heterocyclic scaffolds and natural products explored as dual COX-2/5-LOX inhibitors. We have emphasized the designing of the dual inhibitors inspired by the previously reported COX-2 and 5-LOX inhibitors. This outline could render us to identify the best pharmacophores catering to dual COX-2/5-LOX inhibitory activity while improving their efficiency as anti-inflammatory agents.
Collapse
Affiliation(s)
- Minakshi A Meshram
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Utkarsha O Bhise
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India.
| |
Collapse
|
162
|
Qin Q, Liu XL, Ma AJ, Zhang XZ, Peng JB. Unprecedented Multicomponent Reaction of Indoles, CS 2 and Nitroarenes: Stereoselective Synthesis of (Z)-3-((Arylamino)methylene)indoline-2-thiones. Chem Asian J 2021; 16:3890-3894. [PMID: 34605195 DOI: 10.1002/asia.202101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Indexed: 12/11/2022]
Abstract
An efficient method for the stereoselective synthesis of (Z)-3-((arylamino)methylene)indoline-2-thiones have been developed via a novel multicomponent reaction of indoles, CS2 and nitroarenes. A range of functionalized indoline-2-thiones were prepared in moderate to good yields from easily available starting materials. The indoline-2-thione products can be easily derivatized to give biologically active thieno[2,3-b]indole and thiopyrano[2,3-b]indole skeletons in high yields.
Collapse
Affiliation(s)
- Qi Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Xin-Lian Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| |
Collapse
|
163
|
Tang H, Roy P, Di Q, Ma X, Xiao Y, Wu Z, Quan J, Zhao J, Xiao W, Chen W. Synthesis compound XCR-7a ameliorates LPS-induced inflammatory response by inhibiting the phosphorylation of c-Fos. Biomed Pharmacother 2021; 145:112468. [PMID: 34847479 DOI: 10.1016/j.biopha.2021.112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a biological process closely related to different kinds of diseases, such as cancer and metabolic diseases. Therefore, effective control of the occurrence and development of inflammation is of great significance for disease prevention and control. Recently, 2-substituted indoles have gradually become a research hotspot because of their stability and pharmacological activity. Here we synthesized a series of compound containing 2-substituted indoles and investigated XCR-7a's role in inflammatory response. Our data show that XCR-7a can inhibit the production of inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and inflammatory mediator cyclooxygenase-2 (COX-2) induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. Also, XCR-7a has a protective effect on LPS-induced inflammatory response in mice. Mechanically, we found that XCR-7a could inhibit the phosphorylation of c-Fos induced by LPS, which suggested that the protective effect of XCR-7a on inflammation was related to its negative regulation to phosphorylation of c-Fos. Briefly, our results demonstrated that XCR-7a could be expected to be a potential drug for controlling inflammation.
Collapse
Affiliation(s)
- Haimei Tang
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Prasanta Roy
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qianqian Di
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Ma
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Xiao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zherui Wu
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiazheng Quan
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiajing Zhao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Weilin Chen
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
164
|
Peirow R, Adib M, Mahdavi M. A synthesis of pyrazino[1,2-a]indoles via one-pot cascade Ugi condensation and N-annulation under mild conditions. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
165
|
Douroudgari H, Vahedpour M. A computer-aided method for controlling chemical resistance of drugs using RRKM theory in the liquid phase. Sci Rep 2021; 11:22971. [PMID: 34836999 PMCID: PMC8626518 DOI: 10.1038/s41598-021-01751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/02/2021] [Indexed: 12/03/2022] Open
Abstract
The chemical resistance of drugs against any change in their composition and studying the rate of multiwell-multichannel reactions in the liquid phase, respectively, are the important challenges of pharmacology and chemistry. In this article, we investigate two challenges together through studying drug stability against its unimolecular reactions in the liquid phase. Accordingly, multiwell-multichannel reactions based on 1,4-H shifts are designed for simplified drugs such as 3-hydroxyl-1H-pyrrol-2(5H)-one, 3-hydroxyfuran-2(5H)-one, and 3-hydroxythiophen-2(5H)-one. After that, the reverse and forward rate constants are calculated by using the Rice Ramsperger Kassel Marcus theory (RRKM) and Eckart tunneling correction over the 298-360 K temperature range. Eventually, using the obtained rate constants, we can judge drug resistance versus structural changes. To attain the goals, the potential energy surfaces of all reactions are computed by the complete basis set-quadratic Becke3 composite method, CBS-QB3, and the high-performance meta hybrid density functional method, M06-2X, along with the universal Solvation Model based on solute electron Density, SMD, due to providing more precise and efficient results for the barrier heights and thermodynamic studies. To find the main reaction pathway of the intramolecular 1,4-H shifts in the target molecules, all possible reaction pathways are considered mechanistically in the liquid phase. Also, the direct dynamics calculations that carry out by RRKM theory on the modeled pathways are used to distinguish the main reaction pathway. As the main finding of this research, the results of quantum chemical calculations accompanied by the RRKM/Eckart rate constants are used to predict the stability of drugs. This study proposes a new way to examine drug stability by the computer-aided reaction design of target drugs. Our results show that 3-hydroxyfuran-2(5H)-one based drugs are the most stable and 3-hydroxythiophen-2(5H)-one based drugs are more stable than 3-hydroxy-1H-pyrrol-2 (5H)-one based drugs in water solution.
Collapse
Affiliation(s)
- Hamed Douroudgari
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Morteza Vahedpour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| |
Collapse
|
166
|
Zhang J, Shi SQ, Hao WJ, Dong GY, Tu SJ, Jiang B. Tunable Electrocatalytic Annulations of o-Arylalkynylanilines: Green and Switchable Syntheses of Skeletally Diverse Indoles. J Org Chem 2021; 86:15886-15896. [PMID: 33534572 DOI: 10.1021/acs.joc.0c02898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tunable electrocatalytic annulation reactions of o-arylalkynylanilines have been established, leading to green and divergent syntheses of skeletally diverse indoles by adjusting the electrolytes and the solvents. The presence of ammonium halides as the electrolytes enabled the halogenation of o-arylalkynylanilines to give C3-halogenated indoles whereas naphtho[1',2':4,5]furo[3,2-b]indoles could be obtained by changing the electrolyte from ammonium halides to KI. Interestingly, by combining acetone as the solvent and both NH4I and NH4Cl as the electrolytes, the reaction worked through an intramolecular annulation and [5 + 1] cyclization cascade to form naphtho[1',2':5,6][1,3]oxazino[3,4-a]indoles.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shao-Qing Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Guo-Yun Dong
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
167
|
Fu X, Qi Q, Xu S, Negishi EI. Chemo- and Stereoselective Dearomative Coupling of Indoles and Bielectrophilic β-Imino Boronic Esters via Imine-Induced 1,2-Boronate Migration. Org Lett 2021; 23:8984-8988. [PMID: 34734736 DOI: 10.1021/acs.orglett.1c03510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new imine-induced 1,2-boronate migration has been developed for achieving chemo- and stereoselective dearomative coupling of C3-substituted indoles and bi-electrophilic β-imino boronic esters, providing rapid access to complex chiral indoline boronic esters with four stereocenters including an all-carbon quaternary stereocenter and a tertiary α-aminoboronic ester. In contrast, coupling of indoles without C3 substitution and β-imino boronic esters provided tetrahydro-1H-pyrido[4,3-b]indoles via imine-induced 1,2-boronate migration followed by deborylative rearomatization.
Collapse
Affiliation(s)
- Xiaoping Fu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingqing Qi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shiqing Xu
- Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ei-Ichi Negishi
- Herbert C. Brown Laboratories of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
168
|
Abd-Elaziz AM, Aly HM, Saleh NM, Fouad SA, Ismail AA, Fouda A. Synthesis and characterization of the novel pyrimidine’s derivatives, as a promising tool for antimicrobial agent and in-vitro cytotoxicity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02448-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
169
|
Wang J, Zhu S, Liu Y, Zhu X, Shi K, Li X, Zhu S. Microwave-assisted multicomponent reaction: An efficient synthesis of indolyl substituted and spiroxindole pyrido[2,3-d]pyrimidine derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jing Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuang Zhu
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Yanni Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaotong Zhu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kexin Shi
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Xiang Li
- School of Life Science, Xuzhou Medical university, Xuzhou, Jiangsu, China
| | - Songlei Zhu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
170
|
Chan YC, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021; 60:24573-24581. [PMID: 34487418 PMCID: PMC8556314 DOI: 10.1002/anie.202109694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Herein we report an organocatalytic enantioselective functionalization of heterocyclic carboxaldehydes via the Pictet-Spengler reaction. Through careful pairing of novel squaramide and Brønsted acid catalysts, our method tolerates a breadth of heterocycles, enabling preparation of a series of heterocycle conjugated β-(tetrahydro)carbolines in good yield and enantioselectivity. Careful selection of carboxylic acid co-catalyst is essential for toleration of a variety of regioisomeric heterocycles. Utility is demonstrated via the three-step stereoselective preparation of pyridine-containing analogues of potent selective estrogen receptor downregulator and U.S. FDA approved drug Tadalafil.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Marcus H Sak
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
171
|
Chan Y, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet‐Spengler Reaction with Varied Nitrogen‐Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuk‐Cheung Chan
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Marcus H. Sak
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Scott A. Frank
- Synthetic Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Scott J. Miller
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
172
|
Yoo HS, Yang YS, Kim SL, Son SH, Jang YH, Shin JW, Kim NJ. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions. Chem Asian J 2021; 16:3469-3475. [PMID: 34494376 DOI: 10.1002/asia.202100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Aromatic N-heterocycle-fused scaffolds such as indoles and quinolines are important core structures found in various bioactive natural products and synthetic compounds. Recently, various dehydrogenation methods with the help of alkoxides, known to significantly promote dihydro- or tetrahydro-heterocycles to be oxidized, were developed for the heterocycle synthesis. However, these approaches are sometimes unsuitable due to resulting undesired side reactions such as reductive dehalogenation. Herein, expedient syntheses of 1H-indoles, quinolines, and 6-membered N-heterocycle-fused scaffolds from their hydrogenated forms through palladium(II)-catalyzed aerobic dehydrogenation under alkoxide-free conditions are reported. A total of 48 compounds were successfully synthesized with a wide range of functional groups including halogens (up to 99% yield). These methodologies provide facile routes for various privileged structures possessing aromatic N-heterocycles without the help of alkoxides, in highly efficient manners.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yo-Sep Yang
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
173
|
Synthesis under microwaves irradiation, structure elucidation, docking study for inhibiting COVID-19 and DFT calculations of novel azoles incorporated indole moiety. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
174
|
Elsherbeny MH, Kim J, Gouda NA, Gotina L, Cho J, Pae AN, Lee K, Park KD, Elkamhawy A, Roh EJ. Highly Potent, Selective, and Competitive Indole-Based MAO-B Inhibitors Protect PC12 Cells against 6-Hydroxydopamine- and Rotenone-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:1641. [PMID: 34679775 PMCID: PMC8533206 DOI: 10.3390/antiox10101641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is responsible for dopamine metabolism and plays a key role in oxidative stress by changing the redox state of neuronal and glial cells. To date, no disease-modifying therapy for Parkinson's disease (PD) has been identified. However, MAO-B inhibitors have emerged as a viable therapeutic strategy for PD patients. Herein, a novel series of indole-based small molecules was synthesized as new MAO-B inhibitors with the potential to counteract the induced oxidative stress in PC12 cells. At a single dose concentration of 10 µM, 10 compounds out of 30 were able to inhibit MAO-B with more than 50%. Among them, compounds 7b, 8a, 8b, and 8e showed 84.1, 99.3, 99.4, and 89.6% inhibition over MAO-B and IC50 values of 0.33, 0.02, 0.03, and 0.45 µM, respectively. When compared to the modest selectivity index of rasagiline (II, a well-known MAO-B inhibitor, SI > 50), compounds 7b, 8a, 8b and 8e showed remarkable selectivity indices (SI > 305, 3649, 3278, and 220, respectively). A further kinetic study displayed a competitive mode of action for 8a and 8b over MAO-B with Ki values of 10.34 and 6.63 nM. Molecular docking studies of the enzyme-inhibitor binding complexes in MAO-B revealed that free NH and substituted indole derivatives share a common favorable binding mode: H-bonding with a crucial water "anchor" and Tyr326. Whereas in MAO-A the compounds failed to form favorable interactions, which explained their high selectivity. In addition, compounds 7b, 8a, 8b, and 8e exhibited safe neurotoxicity profiles in PC12 cells and partially reversed 6-hydroxydopamine- and rotenone-induced cell death. Accordingly, we report compounds 7b, 8a, 8b, and 8e as novel promising leads that could be further exploited for their multi-targeted role in the development of a new oxidative stress-related PD therapy.
Collapse
Affiliation(s)
- Mohamed H. Elsherbeny
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| | - Jushin Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Noha A. Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Lizaveta Gotina
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ae Nim Pae
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
| | - Ki Duk Park
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (K.L.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea; (L.G.); (A.N.P.); (K.D.P.)
| |
Collapse
|
175
|
Jana R, Begam HM, Dinda E. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery. Chem Commun (Camb) 2021; 57:10842-10866. [PMID: 34596175 DOI: 10.1039/d1cc04083a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to the market competitiveness and urgent societal need, an optimum speed of drug discovery is an important criterion for successful implementation. Despite the rapid ascent of artificial intelligence and computational and bioanalytical techniques to accelerate drug discovery in big pharma, organic synthesis of privileged scaffolds predicted in silico for in vitro and in vivo studies is still considered as the rate-limiting step. C-H activation is the latest technology added into an organic chemist's toolbox for the rapid construction and late-stage modification of functional molecules to achieve the desired chemical and physical properties. Particularly, elimination of prefunctionalization steps, exceptional functional group tolerance, complexity-to-diversity oriented synthesis, and late-stage functionalization of privileged medicinal scaffolds expand the chemical space. It has immense potential for the rapid synthesis of a library of molecules, structural modification to achieve the required pharmacological properties such as absorption, distribution, metabolism, excretion, toxicology (ADMET) and attachment of chemical reporters for proteome profiling, metabolite synthesis, etc. for preclinical studies. Although heterocycle synthesis, late-stage drug modification, 18F labelling, methylation, etc. via C-H functionalization have been reviewed from the synthetic standpoint, a general overview of these protocols from medicinal and drug discovery aspects has not been reviewed. In this feature article, we will discuss the recent trends of C-H activation methodologies such as synthesis of medicinal scaffolds through C-H activation/annulation cascade; C-H arylation for sp2-sp2 and sp2-sp3 cross-coupling; C-H borylation/silylation to introduce a functional linchpin for further manipulation; C-H amination for N-heterocycles and hydrogen bond acceptors; C-H fluorination/fluoroalkylation to tune polarity and lipophilicity; C-H methylation: methyl magic in drug discovery; peptide modification and macrocyclization for therapeutics and biologics; fluorescent labelling and radiolabelling for bioimaging; bioconjugation for chemical biology studies; drug-metabolite synthesis for biodistribution and excretion studies; late-stage diversification of drug-molecules to increase efficacy and safety; cutting-edge DNA encoded library synthesis and improved synthesis of drug molecules via C-H activation in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India.
| | - Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| |
Collapse
|
176
|
Chen Q, Wu C, Zhu J, Li E, Xu Z. Therapeutic potential of indole derivatives as anti-HIV agents: A mini-review. Curr Top Med Chem 2021; 22:993-1008. [PMID: 34636313 DOI: 10.2174/1568026621666211012111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), is one of the leading causes of human deaths. The advent of different anti-HIV drugs over different disease progress has made AIDS/HIV from a deadly infection to chronic and manageable disease. However, the development of multidrug-resistant viruses, together with the severe side effects of anti-HIV agents, compromised their efficacy and limited the treatment options. Indoles, the most common frameworks in the bioactive molecules, represent attractive scaffolds for the design and development of novel drugs. Indole derivatives are potential inhibitors of HIV enzymes such as reverse transcriptase, integrase and protease, and some indole-based agents like Delavirdine have already been applied in clinics or under clinical evaluations for the treatment of AIDS/HIV, revealing that indole moiety is a useful template for the development of anti-HIV agents. This review focuses on the recent advancement of indole derivatives including indole alkaloids, hybrids, and dimers with anti-HIV potential, covering articles published between 2010 and 2020. The chemical structures, structure-activity relationship and mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Qingtai Chen
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta. Canada
| | - Jinjin Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Zhi Xu
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| |
Collapse
|
177
|
Sharma SV, Pubill-Ulldemolins C, Marelli E, Goss RJM. An expedient, mild and aqueous method for Suzuki-Miyaura diversification of (hetero)aryl halides or (poly)chlorinated pharmaceuticals. Org Chem Front 2021; 8:5722-5727. [PMID: 34745636 PMCID: PMC8506956 DOI: 10.1039/d1qo00919b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022]
Abstract
The development of mild, aqueous conditions for the cross-coupling of highly functionalized (hetero)aryl chlorides or bromides is attractive, enabling their functionalization and diversification. Herein, we report a general method for Suzuki–Miyaura cross-coupling at 37 °C in aqueous media in the presence of air. We demonstrate application of this general methodology for derivatisation of (poly)chlorinated, medicinally active compounds and halogenated amino acids. The approach holds the potential to be a useful tool for late-stage functionalization or analogue generation. Simple, aqueous and direct cross-coupling of diverse and complex (hetero)aromatic halides and active pharmaceutical agents.![]()
Collapse
Affiliation(s)
- Sunil V Sharma
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| | | | - Enrico Marelli
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| | - Rebecca J M Goss
- School of Chemistry and BSRC, University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
178
|
Son SH, Shin JW, Won HJ, Yoo HS, Cho YY, Kim SL, Jang YH, Park BY, Kim NJ. Synthesis of meta-(Indol-3-yl)phenols from Indoles and Cyclohexenone via Palladium(II)-Catalyzed Oxidative Heck Reaction and Dehydrogenative Aromatization in a One-Step Sequence. Org Lett 2021; 23:7467-7471. [PMID: 34523938 DOI: 10.1021/acs.orglett.1c02679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Facile construction of a meta-(indol-3-yl)phenol framework with a wide substrate scope (a total of 25 compounds) via a palladium(II)-catalyzed oxidative Heck reaction and dehydrogenative aromatization in a one-step sequence is reported. This methodology affords a novel route for the privileged structures that are challenging to access via a direct link between indole and phenol, in a highly efficient and atom-economical manner.
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyuck-Jae Won
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Boyoung Y Park
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
179
|
Lin B, Lu W, Chen ZY, Zhang Y, Duan YZ, Lu X, Yan M, Zhang XJ. Enhancing the Potential of Miniature-Scale DNA-Compatible Radical Reactions via an Electron Donor-Acceptor Complex and a Reversible Adsorption to Solid Support Strategy. Org Lett 2021; 23:7381-7385. [PMID: 34546064 DOI: 10.1021/acs.orglett.1c02562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA-encoded library (DEL) technology is a powerful tool in the discovery of bioactive probe molecules and drug leads. Mostly, the success in DEL technology stems from the molecular diversity of the chemical libraries. However, the construction of DELs has been restricted by the idiosyncratic needs and the required low concentration (∼1 mM or less) of the library intermediate. Here, we report visible-light-promoted on-DNA radical coupling reactions via an electron donor-acceptor (EDA) complex and a reversible adsorption to solid support (RASS) strategy. This protocol provides a unique solution to the challenges of increasing the reactivity of highly diluted DNA substrates and reducing the residues of heavy metals from photocatalysts. A series of on-DNA indole sulfone and selenide derivatives were obtained with good to quantitative conversions. It is anticipated that these mild-condition on-DNA radical reactions will significantly improve the chemical diversity of DELs and find widespread utility to DEL construction.
Collapse
Affiliation(s)
- Bizhen Lin
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, P. R. China
| | - Zhen-Yu Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yin-Zhe Duan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, P. R. China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
180
|
Rkein B, Manneveau M, Noël-Duchesneau L, Pasturaud K, Durandetti M, Legros J, Lakhdar S, Chataigner I. How electrophilic are 3-nitroindoles? Mechanistic investigations and application to a reagentless (4+2) cycloaddition. Chem Commun (Camb) 2021; 57:10071-10074. [PMID: 34515263 DOI: 10.1039/d1cc04074j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The electrophilicity of 4 different 3-nitroindole derivatives has been evaluated by Mayr's linear free energy relationship (log k(20 °C) = sN(E + N)) and reveals unexpected values for aromatic compounds, in the nitrostyrene range. 3-Nitroindoles are sufficiently electrophilic to interact with a common diene namely the Danishefsky's diene at room temperature, in the absence of any activator, to furnish smoothly the dearomatized (4+2) cycloadducts in good yields.
Collapse
Affiliation(s)
- Batoul Rkein
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Maxime Manneveau
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | | | - Karine Pasturaud
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Muriel Durandetti
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Julien Legros
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France.
| | - Sami Lakhdar
- Normandie Univ., ENSICAEN, Unicaen, CNRS, LCMT, 14000 Caen, France.,Université Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), 118 Route de Narbonne, 31062, Toulouse Cedex 09, France.
| | - Isabelle Chataigner
- Normandie Univ., UNIROUEN, CNRS, INSA Rouen, COBRA, 76000 Rouen, France. .,Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT UMR7616, 75005 Paris, France
| |
Collapse
|
181
|
Singh R, Bhatia H, Prakash P, Debroye E, Dey S, Dehaen W. Tandem Nenitzescu Reaction/Nucleophilic Aromatic Substitution to Form Novel Pyrido Fused Indole Frameworks. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rashmi Singh
- Department of Chemistry Indian Institute of Technology (Indian School of Mines), Dhanbad Dhanbad 826004 India
- Molecular Design and Synthesis Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Harshita Bhatia
- Molecular Imaging and Photonics Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Prabhat Prakash
- Materials Engineering Indian Institute of Technology Gandhinagar Palaj, Gandhinagar 382355 Gujarat India
| | - Elke Debroye
- Molecular Imaging and Photonics Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Swapan Dey
- Department of Chemistry Indian Institute of Technology (Indian School of Mines), Dhanbad Dhanbad 826004 India
| | - Wim Dehaen
- Molecular Design and Synthesis Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
182
|
Banjare SK, Nanda T, Pati BV, Adhikari GKD, Dutta J, Ravikumar PC. Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| | - Ponneri C. Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
183
|
Devkota S, Kim S, Yoo SY, Mohandoss S, Baik MH, Lee YR. Ruthenium(ii)-catalyzed regioselective direct C4- and C5-diamidation of indoles and mechanistic studies. Chem Sci 2021; 12:11427-11437. [PMID: 34567497 PMCID: PMC8409494 DOI: 10.1039/d1sc02138a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
A ruthenium(ii)-catalyzed regioselective direct diamidation of 3-carbonylindoles at the C4- and C5-positions using various dioxazolones is described. This novel protocol allows for the effective installation of two amide groups on the benzene ring in indole. A remarkably broad substrate scope, excellent functional group tolerance, and mild reaction conditions are notable features of this protocol. Further explorations reveal that benzo[b]thiophene-3-carboxaldehyde is a viable substrate and affords its corresponding diamidation products. The diamido indoles are further converted into various functionalized products and used as sensors for metal ion detection. Density functional theory studies are also conducted to propose a reaction mechanism and provide a detailed understanding of the regioselectivity observed in the reaction. Ruthenium(ii)-catalyzed regioselective C4-/C5-diamidation of 3-carbonylindoles is described and a DFT study is conducted to understand the observed regioselectivity and the mechanism.![]()
Collapse
Affiliation(s)
- Shreedhar Devkota
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
184
|
Muzalevskiy VM, Sizova ZA, Nenajdenko VG. An Efficient Synthesis of 2-CF 3-3-Benzylindoles. Molecules 2021; 26:molecules26165084. [PMID: 34443672 PMCID: PMC8401147 DOI: 10.3390/molecules26165084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The reaction of α-CF3-β-(2-nitroaryl) enamines with benzaldehydes afforded effectively α,β-diaryl-CF3-enones having nitro group. Subsequent reduction of nitro group by NH4HCO2-Pd/C system initiated intramolecular cyclization to give 2-CF3-3-benzylindoles. Target products can be prepared in up to quantitative yields. Broad synthetic scope of the reaction was shown. Probable mechanism of indole formation is proposed.
Collapse
|
185
|
Das J, Das SK. Trifluoroethanol-promoted ring-opening cyclization of 4-(2-oxiranylmethoxy)indoles: access to 4,5-fused indoles. Org Biomol Chem 2021; 19:6761-6765. [PMID: 34286792 DOI: 10.1039/d1ob01030a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report that the trifluoroethanol-mediated ring-opening cyclization of readily accessible 4-(2-oxiranylmethoxy)indoles takes place in a diastereoselective and 6-endo fashion to generate pyrano[2,3-e]indol-3-ols in high yields. This regioselective cyclization at the indole C-5 position requires the presence of a π-activating aryl substituent on the reacting epoxide carbon atom, but remains uninfluenced by the electronic nature of the indole-N-substituent. Interestingly, blocking the C-5 position of the indole unit directs the reaction to generate oxepino[4,3,2-cd]indol-3-ols via 7-endo epoxide-arene cyclization.
Collapse
Affiliation(s)
- Jonali Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India-784028.
| | | |
Collapse
|
186
|
Wang YJ, Wang TT, Liang CC, Li ZH, Zhao LM. Synthesis of Indolo[2,1- a]benzazepinones through Rhodium-Catalyzed Cascade Reactions of 2-Arylindoles with Allyl Alcohols. Org Lett 2021; 23:6272-6277. [PMID: 34328334 DOI: 10.1021/acs.orglett.1c02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of indolo[2,1-a]benzazepinones through rhodium-catalyzed cascade reactions of 2-arylindoles with allyl alcohols has been developed. This work expands the scope of products that are available through C-H activation/intramolecular annulation reactions of 2-arylindoles in organic synthesis.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Cai-Cai Liang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zi-Hao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
187
|
Gao B, Yang B, Feng X, Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat Prod Rep 2021; 39:139-162. [PMID: 34374396 DOI: 10.1039/d1np00017a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: 2015 to 2020Nitrogen heterocyclic natural products (NHNPs) are primary or secondary metabolites containing nitrogen heterocyclic (N-heterocyclic) skeletons. Due to the existence of the N-heterocyclic structure, NHNPs exhibit various bioactivities such as anticancer and antibacterial, which makes them widely used in medicines, pesticides, and food additives. However, the low content of these NHNPs in native organisms severely restricts their commercial application. Although a variety of NHNPs have been produced through extraction or chemical synthesis strategies, these methods suffer from several problems. The development of biotechnology provides new options for the production of NHNPs. This review introduces the recent progress of two strategies for the biosynthesis of NHNPs: enzymatic biosynthesis and microbial cell factory. In the enzymatic biosynthesis part, the recent progress in the mining of enzymes that synthesize N-heterocyclic skeletons (e.g., pyrrole, piperidine, diketopiperazine, and isoquinoline), the engineering of tailoring enzymes, and enzyme cascades constructed to synthesize NHNPs are discussed. In the microbial cell factory part, with tropane alkaloids (TAs) and tetrahydroisoquinoline (THIQ) alkaloids as the representative compounds, the strategies of unraveling unknown natural biosynthesis pathways of NHNPs in plants are summarized, and various metabolic engineering strategies to enhance their production in microbes are introduced. Ultimately, future perspectives for accelerating the biosynthesis of NHNPs are discussed.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China. and SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China and Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
188
|
Muzalevskiy VM, Sizova ZA, Nenajdenko VG. Modular Construction of Functionalized 2-CF 3-Indoles. Org Lett 2021; 23:5973-5977. [PMID: 34251819 DOI: 10.1021/acs.orglett.1c02061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The reaction of α-CF3-β-(2-nitroaryl)enamines with benzaldehydes led to nitro-substituted α,β-diaryl-CF3-enones in high yield. Subsequent reduction of the nitro-group to the amino moiety by the Pd/C-NH4HCO2 system resulted in intramolecular cyclization to form a 5-membered hemiaminal which is stabilized by the presence of a CF3-group. The reaction of this hemiaminal with various nucleophiles afforded functionalized 2-CF3-indoles isolated in up to quantitative yields. High efficiency and broad synthetic scope of all steps of the sequence were demonstrated. A possible mechanism of the reaction is discussed.
Collapse
Affiliation(s)
| | - Zoia A Sizova
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| | | |
Collapse
|
189
|
Green synthesis of some 3-(α,α-diarylmethyl)indoles by bio-nanocomposite from embedding L-histidinium trichloroacetate ionic liquid on functionalized magnetite (L-His +CCl 3CO 2-@PEG@SiO 2-nano Fe 3O 4). Mol Divers 2021; 26:1425-1439. [PMID: 34297277 DOI: 10.1007/s11030-021-10268-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023]
Abstract
In this research, a new multilayered magnetized bio-nanocomposite has been prepared. At first, the amino acid-based ionic liquid was obtained from L-histidine and trichloroacetic acid (L-His+CCl3CO2-), embedded on the polyethylene glycol-functionalized silicated-nanomagnetite, to prepare the final nanostructure (L-His+CCl3CO2-@PEG@SiO2-nano Fe3O4). The bio-nanocomposite was characterized by several techniques such as FT-IR, FESEM, TGA/DTG, EDAX, TEM, VSM, and XRD. The catalytic activity of the core-shell nanostructure was examined in one-pot three-component reaction between aryl aldehydes, indoles, and β-naphthol/phenols to get some new 3-(α,α-diarylmethyl)indoles under solvent-free conditions at 75 °C. Eco-friendly protocol in the absence of hazardous solvents, no observation of by-products such as bis(indolyl)methanes (BIMs), in addition to recovery and reusability of the nanostructure within 3 runs without activity loss are some highlighted notable features of the work. The reused bio-nanocomposite was also characterized through FESEM technique.
Collapse
|
190
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
191
|
Wati FA, Santoso M, Moussa Z, Fatmawati S, Fadlan A, Judeh ZMA. Chemistry of trisindolines: natural occurrence, synthesis and bioactivity. RSC Adv 2021; 11:25381-25421. [PMID: 35478918 PMCID: PMC9037102 DOI: 10.1039/d1ra03091d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/11/2021] [Indexed: 01/18/2023] Open
Abstract
Heterocyclic nitrogen compounds are privileged structures with many applications in the pharmaceutical and nutraceutical industries since they possess wide bioactivities. Trisindolines are heterocyclic nitrogen compounds consisting of an isatin core bearing two indole moieties. Trisindolines have been synthesized by reacting isatins with indoles using various routes and the yield greatly depends on the catalyst used, reaction conditions, and the substituents on both the isatin and indole moieties. Amongst the synthetic routes, acid-catalyzed condensation reaction between isatins and indoles are the most useful due to high yield, wide scope and short reaction times. Trisindolines are biologically active compounds and show anticancer, antimicrobial, antitubercular, antifungal, anticonvulsant, spermicidal, and antioxidant activities, among others. Trisindolines have not previously been reviewed. Therefore, this review aims to provide a comprehensive account of trisindolines including their natural occurrence, routes of synthesis, and biological activities. It aims to inspire the discovery of lead trisindoline drug candidates for further development. This in-depth review of trisindolines covers their natural occurrence in addition to several routes of synthesis and catalysts used. The biological activities of trisindolines have been discussed with a special emphasis on the structure–activity relationship.![]()
Collapse
Affiliation(s)
- First Ambar Wati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Mardi Santoso
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P. O. Box 15551 Al Ain United Arab Emirates
| | - Sri Fatmawati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Arif Fadlan
- Department of Chemistry, Institut Teknologi Sepuluh Nopember Kampus ITS, Sukolilo Surabaya 60111 Indonesia
| | - Zaher M A Judeh
- School of Chemical and Biomedical Engineering, Nanyang Technological University 62 Nanyang Drive, N1.2-B1-14 Singapore 637459 Singapore
| |
Collapse
|
192
|
Debrauwer V, Leito I, Lõkov M, Tshepelevitsh S, Parmentier M, Blanchard N, Bizet V. Synthesis and Physicochemical Properties of 2-SF 5-(Aza)Indoles, a New Family of SF 5 Heterocycles. ACS ORGANIC & INORGANIC AU 2021; 1:43-50. [PMID: 36855754 PMCID: PMC9954346 DOI: 10.1021/acsorginorgau.1c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural diversity in heterocyclic chemistry is key to unlocking new properties and modes of action. In this regard, heterocycles embedding emerging fluorinated substituents hold great promise. Herein is described a strategy to access 2-SF5-(aza)indoles for the first time. The sequence relies on the radical addition of SF5Cl to the alkynyl π-system of 2-ethynyl anilines followed by a cyclization reaction. A telescoped sequence is proposed, making this strategy very appealing and reproducible on a gram scale. Downstream functionalizations are also demonstrated, allowing an easy diversification of N- and C3-positions. Ames test, pK a, log P, and differential scanning calorimetry measurements of several fluorinated 2-Rf-indoles are also disclosed. These studies highlight the strategic advantages that a C2-pentafluorosulfanylated motif impart to a privileged scaffold such as an indole.
Collapse
Affiliation(s)
- Vincent Debrauwer
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Märt Lõkov
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | | | - Michael Parmentier
- Chemical
and Analytical Development, Novartis Pharma
AG, CH-4056 Basel, Switzerland
| | - Nicolas Blanchard
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France,
| | - Vincent Bizet
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France,
| |
Collapse
|
193
|
Sivanandan ST, Namboothiri INN. Metal-Free and Regioselective Synthesis of Functionalized α-Carbolines via [3 + 3] Annulation of Morita-Baylis-Hillman Acetates of Nitroalkenes with Iminoindolines. J Org Chem 2021; 86:8465-8471. [PMID: 34048259 DOI: 10.1021/acs.joc.1c00422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A facile, metal-free method for the synthesis of substituted α-carbolines from secondary Morita-Baylis-Hillman (MBH) acetates of nitroalkenes is presented. The cascade reaction of MBH acetates with tosyliminoindolines occurs regioselectively to form various α-carbolines with a wide substrate scope. The reaction involves mild conditions, and the products are formed in high yields within a short reaction time. The amenability of the reaction to scale up and synthetic applications of the products have been demonstrated.
Collapse
Affiliation(s)
- Sudheesh T Sivanandan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
194
|
He G, List B, Christmann M. Unified Synthesis of Polycyclic Alkaloids by Complementary Carbonyl Activation**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoli He
- Freie Universität Berlin Institute of Chemistry and Biochemistry Takustrasse 3 14195 Berlin Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mathias Christmann
- Freie Universität Berlin Institute of Chemistry and Biochemistry Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
195
|
He G, List B, Christmann M. Unified Synthesis of Polycyclic Alkaloids by Complementary Carbonyl Activation*. Angew Chem Int Ed Engl 2021; 60:13591-13596. [PMID: 33769684 PMCID: PMC8252720 DOI: 10.1002/anie.202102518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/23/2023]
Abstract
A complementary dual carbonyl activation strategy for the synthesis of polycyclic alkaloids has been developed. Successful applications include the synthesis of tetracyclic alkaloids harmalanine and harmalacinine, pentacyclic indoloquinolizidine alkaloid nortetoyobyrine, and octacyclic β-carboline alkaloid peganumine A. The latter synthesis features a protecting-group-free assembly and an asymmetric disulfonimide-catalyzed cyclization. Furthermore, formal syntheses of hirsutine, deplancheine, 10-desbromoarborescidine A, and oxindole alkaloids rhynchophylline and isorhynchophylline have been achieved. Finally, a concise synthesis of berberine alkaloid ilicifoline B was completed.
Collapse
Affiliation(s)
- Guoli He
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Mathias Christmann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
196
|
Design, synthesis and broad spectrum antibreast cancer activity of diarylindoles via induction of apoptosis in aggressive breast cancer cells. Bioorg Med Chem 2021; 42:116252. [PMID: 34153643 DOI: 10.1016/j.bmc.2021.116252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the second leading cause of cancer deaths in women with significant morbidity and mortality. Present study describes design, synthesis and detailed pharmacology of indole derivatives exhibiting remarkable broad spectrum antiproliferative activity against breast cancer cells. Detailed mechanistic evaluations confirmed induction of G0/G1 arrest, apoptosis induction, loss of mitochondrial integrity, enhanced ROS generation, autophagy, estrogen receptor β-transactivation and increased tubulin polymerization. In in-vivo efficacy studies in rodent model, these indole derivatives induced significant regression in mice mammary tumour on 21 days daily oral dose. Moreover, compounds 19 and 23 were safe in Swiss albino mice in safety studies. These diarylindoles may further be optimized for better efficacy.
Collapse
|
197
|
Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts 2021. [DOI: 10.3390/catal11060706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Supported catalysts are important tools for developing green-economy-based processes. Palladium nanoparticles (NPs) that are immobilized on two fibers developed as metal scavengers (i.e., Smopex®-234 and Smopex®-111, 1% w/w) have been prepared and tested in copper-free cyclocarbonylative Sonogashira reactions. Their catalytic activity has been compared with that of a homogeneous catalyst (i.e., PdCl2(PPh3)2). Pd/Smopex®-234 showed high activity and selectivity in the synthesis of functionalized heterocycles, such as phthalans and isochromans, even when working with a very low amount of palladium (0.2–0.5 mol%). The extension of Pd/Smopex®-234 promoted cyclocarbonylative reactions to propargyl and homopropargyl amides afforded the corresponding isoindoline and dihydrobenzazepine derivatives. A preliminary test on Pd NPs leaching into the solution (1.7 × 10−3 mg) seems to indicate that, at the end of the reaction, almost all of the active metal is present on the fiber surface.
Collapse
|
198
|
Qi Z, Li L, Liang YK, Ma AJ, Zhang XZ, Peng JB. Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Org Lett 2021; 23:4769-4773. [PMID: 34060850 DOI: 10.1021/acs.orglett.1c01494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced carbonylation of indoles with phenols for the synthesis of indole-3-carboxylates has been developed. The reaction proceeded via a radical carbonylation process in which elementary I2 was used as an effective photosensitive initiator and, thus, avoided the use of transition metal catalysts. A series of different aryl indole-3-carboxylates were prepared in moderate to good yields. The broad applicability of this methodology was further highlighted by the late-stage functionalization of several phenol-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zhuang Qi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ying-Kang Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
199
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2‐Metalate Rearrangement of Indole‐Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
200
|
Simlandy AK, Brown MK. Allenylidene Induced 1,2-Metalate Rearrangement of Indole-Boronates: Diastereoselective Access to Highly Substituted Indolines. Angew Chem Int Ed Engl 2021; 60:12366-12370. [PMID: 33734546 DOI: 10.1002/anie.202103108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/14/2022]
Abstract
A process to achieve 1,2-metalate rearrangements of indole boronate as a way to access substituted indolines in high diastereoselectivities is presented. The reaction involves the generation of a Cu-allenylidene, which is sufficiently electrophilic to induce the 1,2-metalate rearrangement. The scope of the reaction is evaluated as well as further transformations of the product.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|