151
|
Klaubauf S, Narang HM, Post H, Zhou M, Brunner K, Mach-Aigner AR, Mach RL, Heck AJR, Altelaar AFM, de Vries RP. Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi. Fungal Genet Biol 2014; 72:73-81. [PMID: 25064064 DOI: 10.1016/j.fgb.2014.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/13/2022]
Abstract
The transcriptional activator XlnR (Xlr1/Xyr1) is a major regulator in fungal xylan and cellulose degradation as well as in the utilization of d-xylose via the pentose catabolic pathway. XlnR homologs are commonly found in filamentous ascomycetes and often assumed to have the same function in different fungi. However, a comparison of the saprobe Aspergillus niger and the plant pathogen Magnaporthe oryzae showed different phenotypes for deletion strains of XlnR. In this study wild type and xlnR/xlr1/xyr1 mutants of five fungi were compared: Fusarium graminearum, M. oryzae, Trichoderma reesei, A. niger and Aspergillus nidulans. Growth profiling on relevant substrates and a detailed analysis of the secretome as well as extracellular enzyme activities demonstrated a common role of this regulator in activating genes encoding the main xylanolytic enzymes. However, large differences were found in the set of genes that is controlled by XlnR in the different species, resulting in the production of different extracellular enzyme spectra by these fungi. This comparison emphasizes the functional diversity of a fine-tuned (hemi-)cellulolytic regulatory system in filamentous fungi, which might be related to the adaptation of fungi to their specific biotopes. Data are available via ProteomeXchange with identifier PXD001190.
Collapse
Affiliation(s)
- Sylvia Klaubauf
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Hari Mander Narang
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Kurt Brunner
- Institute of Chemical Engineering, Department for Biotechnology and Microbiology, Vienna University of Technology, Gumpendorferstr. 1a, 1060 Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical Engineering, Department for Biotechnology and Microbiology, Vienna University of Technology, Gumpendorferstr. 1a, 1060 Vienna, Austria
| | - Robert L Mach
- Institute of Chemical Engineering, Department for Biotechnology and Microbiology, Vienna University of Technology, Gumpendorferstr. 1a, 1060 Vienna, Austria
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
152
|
Valkonen M, Penttilä M, Benčina M. Intracellular pH responses in the industrially important fungus Trichoderma reesei. Fungal Genet Biol 2014; 70:86-93. [PMID: 25046860 DOI: 10.1016/j.fgb.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Preserving an optimal intracellular pH is critical for cell fitness and productivity. The pH homeostasis of the industrially important filamentous fungus Trichoderma reesei (Hypocrea jecorina) is largely unexplored. We analyzed the impact of growth conditions on regulation of intracellular pH of the strain Rut-C30 and the strain M106 derived from the Rut-C30 that accumulates L-galactonic acid-from provided galacturonic acid-as a consequence of L-galactonate dehydratase deletion. For live-cell measurements of intracellular pH, we used the genetically encoded ratiometric pH-sensitive fluorescent protein RaVC. Glucose and lactose, used as carbon sources, had specific effects on intracellular pH of T. reesei. The growth in lactose-containing medium extensively acidified cytosol, while intracellular pH of hyphae cultured in a medium with glucose remained at a higher level. The strain M106 maintained higher intracellular pH in the presence of D-galacturonic acid than its parental strain Rut-C30. Acidic external pH caused significant acidification of cytosol. Altogether, the pH homeostasis of T. reesei Rut-C30 strain is sensitive to extracellular pH and the degree of acidification depends on carbon source.
Collapse
Affiliation(s)
- Mari Valkonen
- VTT Technical Research Centre of Finland, Espoo, Finland.
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Mojca Benčina
- Laboratory of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000 Ljubljana, Slovenia.
| |
Collapse
|
153
|
Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Appl Microbiol Biotechnol 2014; 98:4829-37. [DOI: 10.1007/s00253-014-5707-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
|
154
|
Feng J, Zhang H, Strelkov SE, Hwang SF. The LmSNF1 gene is required for pathogenicity in the canola blackleg pathogen Leptosphaeria maculans. PLoS One 2014; 9:e92503. [PMID: 24638039 PMCID: PMC3956939 DOI: 10.1371/journal.pone.0092503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Leptosphaeria maculans is a fungal pathogen causing blackleg in canola. Its virulence has been attributed, among other factors, to the activity of hydrolytic cell wall degrading enzymes (CWDEs). Studies on the pathogenicity function of CWDEs in plant pathogenic fungi have been difficult due to gene redundancy. In microorganisms many CWDE genes are repressed by glucose and derepressed by the function of the sucrose non-fermenting protein kinase 1 gene (SNF1). To address the molecular function of SNF1 in L. maculans, the ortholog of SNF1 (LmSNF1) was cloned and functionally characterized using a gene knockout strategy. Growth of the LmSNF1 knockout strains was severely disrupted, as was sporulation, spore germination and the ability to attach on the plant surface. When inoculated on canola cotyledons, the LmSNF1 knockout strains could not cause any symptoms, indicating the loss of pathogenicity. The expression of 11 selected CWDE genes and a pathogenicity gene (LopB) was significantly down-regulated in the LmSNF1 knockout strains. In conclusion, knockout of LmSNF1 prevents L. maculans from properly derepressing the production of CWDEs, compromises the utilization of certain carbon sources, and impairs fungal pathogenicity on canola.
Collapse
Affiliation(s)
- Jie Feng
- Crop Diversification Centre North, Alberta Agriculture and Rural Development, Edmonton, Alberta, Canada
| | - Hui Zhang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sheau-Fang Hwang
- Crop Diversification Centre North, Alberta Agriculture and Rural Development, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
155
|
Strakowska J, Błaszczyk L, Chełkowski J. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 2014; 54 Suppl 1:S2-13. [PMID: 24532413 DOI: 10.1002/jobm.201300821] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/25/2013] [Indexed: 11/09/2022]
Abstract
The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma.
Collapse
Affiliation(s)
- Judyta Strakowska
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
156
|
Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:14. [PMID: 24472375 PMCID: PMC3922861 DOI: 10.1186/1754-6834-7-14] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/14/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei. RESULTS We have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes. CONCLUSIONS Transcriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mari J Valkonen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Ann Westerholm-Parvinen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Nina Aro
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Mikko Arvas
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
| |
Collapse
|
157
|
Zhao Z, Liu H, Wang C, Xu JR. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 2014; 15:6. [PMID: 24422981 PMCID: PMC3893384 DOI: 10.1186/1471-2164-15-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022] Open
Abstract
UNLABELLED The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. BACKGROUND Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. RESULTS In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. CONCLUSIONS Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.
Collapse
Affiliation(s)
- Zhongtao Zhao
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
158
|
|
159
|
Khattak WA, Ul-Islam M, Ullah MW, Khan S, Park JK. Endogenous Hydrolyzing Enzymes: Isolation, Characterization, and Applications in Biological Processes. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_55-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
160
|
Rokhas MK, Mikkonen S, Beyer J, Jacksén J, Emmer Å. CE analysis of single wood cells performing hydrolysis and preconcentration in open microchannels. Electrophoresis 2013; 35:450-7. [DOI: 10.1002/elps.201300408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Khihon Rokhas
- Analytical Chemistry; Division of Applied Physical Chemistry; Department of Chemistry; School of Chemical Science and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| | - Saara Mikkonen
- Analytical Chemistry; Division of Applied Physical Chemistry; Department of Chemistry; School of Chemical Science and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| | - Juliane Beyer
- B CUBE - Center for Molecular Bioengineering; Technische Universität Dresden; Dresden Germany
| | - Johan Jacksén
- Analytical Chemistry; Division of Applied Physical Chemistry; Department of Chemistry; School of Chemical Science and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| | - Åsa Emmer
- Analytical Chemistry; Division of Applied Physical Chemistry; Department of Chemistry; School of Chemical Science and Engineering; KTH Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
161
|
Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 2013; 91:275-99. [PMID: 24224966 DOI: 10.1111/mmi.12459] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
Abstract
Filamentous fungi are powerful producers of hydrolytic enzymes for the deconstruction of plant cell wall polysaccharides. However, the central question of how these sugars are perceived in the context of the complex cell wall matrix remains largely elusive. To address this question in a systematic fashion we performed an extensive comparative systems analysis of how the model filamentous fungus Neurospora crassa responds to the three main cell wall polysaccharides: pectin, hemicellulose and cellulose. We found the pectic response to be largely independent of the cellulolytic one with some overlap to hemicellulose, and in its extent surprisingly high, suggesting advantages for the fungus beyond being a mere carbon source. Our approach furthermore allowed us to identify carbon source-specific adaptations, such as the induction of the unfolded protein response on cellulose, and a commonly induced set of 29 genes likely involved in carbon scouting. Moreover, by hierarchical clustering we generated a coexpression matrix useful for the discovery of new components involved in polysaccharide utilization. This is exemplified by the identification of lat-1, which we demonstrate to encode for the physiologically relevant arabinose transporter in Neurospora. The analyses presented here are an important step towards understanding fungal degradation processes of complex biomass.
Collapse
Affiliation(s)
- J Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California, USA
| | | | | | | | | | | |
Collapse
|
162
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
163
|
Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H. Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:172. [PMID: 24286470 PMCID: PMC4177139 DOI: 10.1186/1754-6834-6-172] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/22/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND The lignocellulosic enzymes of Trichoderma species have received particular attention with regard to biomass conversion to biofuels, but the production cost of these enzymes remains a significant hurdle for their commercial application. In this study, we quantitatively compared the lignocellulolytic enzyme profile of a newly isolated Trichoderma asperellum S4F8 strain with that of Trichoderma reesei Rut C30, cultured on sugarcane bagasse (SCB) using solid-state fermentation (SSF). RESULTS Comparison of the lignocellulolytic enzyme profiles of S4F8 and Rut C30 showed that S4F8 had significantly higher hemicellulase and β-glucosidase enzyme activities. Liquid chromatography tandem mass spectrometry analysis of the two fungal secretomes enabled the detection of 815 proteins in total, with 418 and 397 proteins being specific for S4F8 and Rut C30, respectively, and 174 proteins being common to both strains. In-depth analysis of the associated biological functions and the representation of glycoside hydrolase family members within the two secretomes indicated that the S4F8 secretome contained a higher diversity of main and side chain hemicellulases and β-glucosidases, and an increased abundance of some of these proteins compared with the Rut C30 secretome. CONCLUSIONS In SCB SSF, T. asperellum S4F8 produced a more complex lignocellulolytic cocktail, with enhanced hemicellulose and cellobiose hydrolysis potential, compared with T. reesei Rut C30. This bodes well for the development of a more cost-effective and efficient lignocellulolytic enzyme cocktail from T. asperellum for lignocellulosic feedstock hydrolysis.
Collapse
Affiliation(s)
- Isa Jacoba Marx
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Niël van Wyk
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Salome Smit
- MS Unit, Proteomics Laboratory, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, PO Box 19063, Tygerberg 7505, South Africa
| | - Daniel Jacobson
- Institute for Wine Biotechnology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, 7602, Matieland, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| | - Heinrich Volschenk
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa
| |
Collapse
|
164
|
Raffaello T, Chen H, Kohler A, Asiegbu FO. Transcriptomic profiles ofHeterobasidion annosumunder abiotic stresses and during saprotrophic growth in bark, sapwood and heartwood. Environ Microbiol 2013; 16:1654-67. [DOI: 10.1111/1462-2920.12321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Tommaso Raffaello
- University of Helsinki; Department of Forest Sciences; Latokartanonkaari 7 00014 Helsinki Finland
- Viikki Doctoral Programme in Molecular Biosciences (VGSB); Viikinkaari 9 00014 Helsinki Finland
| | - Hongxin Chen
- University of Helsinki; Department of Forest Sciences; Latokartanonkaari 7 00014 Helsinki Finland
- Helsinki Graduate Program in Biotechnology and Molecular Biology (GPBM); Viikinkaari 9 00014 Helsinki Finland
| | - Annegret Kohler
- UMR 1136 INRA/Université de Lorraine; Interactions Arbres/Micro-organismes, INRA; Institut National de la Recherche Agronomique Centre INRA de Nancy 54280 Champenoux France
| | - Fred O. Asiegbu
- University of Helsinki; Department of Forest Sciences; Latokartanonkaari 7 00014 Helsinki Finland
- Viikki Doctoral Programme in Molecular Biosciences (VGSB); Viikinkaari 9 00014 Helsinki Finland
- Helsinki Graduate Program in Biotechnology and Molecular Biology (GPBM); Viikinkaari 9 00014 Helsinki Finland
| |
Collapse
|
165
|
Production and secretion of a multifunctional ß-glucosidase by Humicola grisea var. thermoidea: effects of L-sorbose. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0748-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
166
|
Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A. The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. THE NEW PHYTOLOGIST 2013; 200:875-887. [PMID: 23902518 PMCID: PMC4282482 DOI: 10.1111/nph.12425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/25/2013] [Indexed: 05/20/2023]
Abstract
Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Francois Rineau
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
167
|
Argôlo Santos Carvalho H, de Andrade Silva EM, Carvalho Santos S, Micheli F. Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications. Fungal Genet Biol 2013; 60:110-21. [DOI: 10.1016/j.fgb.2013.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/30/2022]
|
168
|
Li J, Liu G, Chen M, Li Z, Qin Y, Qu Y. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum. Appl Microbiol Biotechnol 2013; 97:10479-88. [PMID: 24132667 DOI: 10.1007/s00253-013-5301-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/18/2022]
Abstract
Cellodextrin transporters (cellodextrin permeases) have been identified in fungi in recent years. However, the functions of these transporters in cellulose utilization and cellulase expression have not been well studied. In this study, three cellodextrin transporters, namely, CdtC, CdtD, and CdtG, in the cellulolytic fungus Penicillium oxalicum (formally was classified as P. decumbens) were identified, and their functions were analyzed. The deletion of a single cellodextrin transporter gene slightly decreased cellobiose consumption, but no observable effect on cellulase expression was observed, which was attributed to the overlapping activity of isozymes. Further simultaneous deletion of cdtC and cdtD resulted in significantly decreased cellobiose consumption and poor growth on cellulose. The extracellular activity and transcription level of cellulases in the mutant without cdtC and cdtD were significantly lower than those in the wild-type strain when grown on cellulose. This result provides direct evidence of the crucial function of cellodextrin transporters in the induction of cellulase expression by insoluble cellulose.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
169
|
Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, Shen Y, Shen Q. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:149. [PMID: 24131596 PMCID: PMC3853031 DOI: 10.1186/1754-6834-6-149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/01/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Aspergillus fumigatus Z5 has a strong ability to decompose lignocellulose biomass, and its extracellular protein secretion has been reported in earlier studies employing traditional techniques. However, a comprehensive analysis of its secretion in the presence of different carbon sources is still lacking. The goal of this work was to identify, quantify and compare the secretome of A. fumigatus Z5 in the presence of different carbon sources to understand in more details the mechanisms of lignocellulose decomposition by Aspergillus fumigatus Z5. RESULTS Cellulolytic A. fumigatus Z5 was grown in the presence of glucose (Gl), Avicel (Av) and rice straw (RS), and the activities of several lignocellulosic enzymes were determined with chromatometry method. The maximum activities of endoglucanase, exoglucanase, β-glucosidase, laminarinase, lichenase, xylanase and pectin lyase were 12.52, 0.59, 2.30, 2.37, 1.68, 15.02 and 11.40 U·ml-1, respectively. A total of 152, 125 and 61 different proteins were identified in the presence of RS, Av and Gl, respectively, and the proteins were functionally divided into glycoside hydrolases, lipases, peptidases, peroxidases, esterases, protein translocating transporters and hypothetical proteins. A total of 49 proteins were iTRAQ-quantified in all the treatments, and the quantification results indicated that most of the cellulases, hemicellulases and glycoside hydrolases were highly upregulated when rice straw and Avicel were used as carbon sources (compared with glucose). CONCLUSIONS The proteins secreted from A. fumigatus Z5 in the present of different carbon source conditions were identified by LC-MS/MS and quantified by iTRAQ-based quantitative proteomics. The results indicated that A. fumigatus Z5 could produce considerable cellulose-, hemicellulose-, pectin- and lignin-degrading enzymes that are valuable for the lignocellulosic bioenergy industry.
Collapse
Affiliation(s)
- Dongyang Liu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Zhao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Wang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Youzhi Miao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
170
|
Mandujano-González V, Arana-Cuenca A, Anducho-Reyes MÁ, Téllez-Jurado A, González-Becerra AE, Mercado-Flores Y. Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum. Protein Expr Purif 2013; 92:214-22. [PMID: 24128693 DOI: 10.1016/j.pep.2013.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
Abstract
In this work, the extracellular protease Eap1 from Sporisorium reilianum was characterized in solid and liquid cultures using different culture media. The results showed that Eap1 was produced in all media and under all culture conditions, with the most activity in solid culture at an acidic pH of 3-5. Following purification, the 41 kDa protease demonstrated aspartyl protease activity. The enzyme was stable at a wide range of temperatures and pH values, but 45°C and pH 3 were optimal. The K(m) and V(max( values obtained were 0.69 mg/mL and 0.66 μmol/min, respectively, with albumin as the substrate. Eap1 degraded hemoglobin as well as proteins obtained from corn germ, roots, stems and slides at pH 3 and also had milk-clotting activity. Sequencing analysis showed that this protein has 100% similarity to the peptide sequence theoretically obtained from the sr11394 gene, which encodes an aspartyl protease secreted by S. reilianum.
Collapse
Affiliation(s)
- Virginia Mandujano-González
- Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún, Km 20, Rancho Luna, Ex-Hacienda de Sta. Bárbara, Municipio de Zempoala, Hidalgo, Mexico
| | | | | | | | | | | |
Collapse
|
171
|
Zanirun Z, Bahrin EK, Lai-Yee P, Hassan MA, Abd-Aziz S. Effect of Physical and Chemical Properties of Oil Palm Empty Fruit Bunch, Decanter Cake and Sago Pith Residue on Cellulases Production by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Appl Biochem Biotechnol 2013; 172:423-35. [DOI: 10.1007/s12010-013-0530-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
|
172
|
Li Y, Peng X, Chen H. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J Biosci Bioeng 2013; 116:493-8. [DOI: 10.1016/j.jbiosc.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/05/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
|
173
|
Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R, Troein C, Tunlid A. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. THE ISME JOURNAL 2013; 7:2010-22. [PMID: 23788332 PMCID: PMC3965319 DOI: 10.1038/ismej.2013.91] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022]
Abstract
The majority of nitrogen in forest soils is found in organic matter-protein complexes. Ectomycorrhizal fungi (EMF) are thought to have a key role in decomposing and mobilizing nitrogen from such complexes. However, little is known about the mechanisms governing these processes, how they are regulated by the carbon in the host plant and the availability of more easily available forms of nitrogen sources. Here we used spectroscopic analyses and transcriptome profiling to examine how the presence or absence of glucose and/or ammonium regulates decomposition of litter material and nitrogen mobilization by the ectomycorrhizal fungus Paxillus involutus. We found that the assimilation of nitrogen and the decomposition of the litter material are triggered by the addition of glucose. Glucose addition also resulted in upregulation of the expression of genes encoding enzymes involved in oxidative degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism. In contrast, the addition of ammonium to organic matter had relatively minor effects on the expression of transcripts and the decomposition of litter material, occurring only when glucose was present. On the basis of spectroscopic analyses, three major types of chemical modifications of the litter material were observed, each correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggest that the expression of the decomposition and nitrogen assimilation processes of EMF can be tightly regulated by the host carbon supply and that the availability of inorganic nitrogen as such has limited effects on saprotrophic activities.
Collapse
Affiliation(s)
- F Rineau
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - F Shah
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| | - M M Smits
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - P Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Johansson
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| | - R Carleer
- Applied and Analytical Chemistry, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | - C Troein
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - A Tunlid
- Department of Biology, Microbial Ecology Group, Ecology Building, Lund, Sweden
| |
Collapse
|
174
|
Tisch D, Schmoll M. Targets of light signalling in Trichoderma reesei. BMC Genomics 2013; 14:657. [PMID: 24070552 PMCID: PMC3831817 DOI: 10.1186/1471-2164-14-657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022] Open
Abstract
Background The tropical ascomycete Trichoderma reesei (Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. Results Our transcriptome analysis of strains lacking the photoreceptors BLR1 and BLR2 as well as ENV1 revealed a considerable increase in the number of genes showing significantly different transcript levels in light and darkness compared to wild-type. We show that members of all glycoside hydrolase families can be subject to light dependent regulation, hence confirming nutrient utilization including plant cell wall degradation as a major output pathway of light signalling. In contrast to N. crassa, photoreceptor mediated regulation of carbon metabolism in T. reesei occurs primarily by BLR1 and BLR2 via their positive effect on induction of env1 transcription, rather than by a presumed negative effect of ENV1 on the function of the BLR complex. Nevertheless, genes consistently regulated by photoreceptors in N. crassa and T. reesei are significantly enriched in carbon metabolic functions. Hence, different regulatory mechanisms are operative in these two fungi, while the light dependent regulation of plant cell wall degradation appears to be conserved. Analysis of growth on different carbon sources revealed that the oxidoreductive D-galactose and pentose catabolism is influenced by light and ENV1. Transcriptional regulation of the target enzymes in these pathways is enhanced by light and influenced by ENV1, BLR1 and/or BLR2. Additionally we detected an ENV1-regulated genomic cluster of 9 genes including the D-mannitol dehydrogenase gene lxr1, with two genes of this cluster showing consistent regulation in N. crassa. Conclusions We show that one major output pathway of light signalling in Trichoderma reesei is regulation of glycoside hydrolase genes and the degradation of hemicellulose building blocks. Targets of ENV1 and BLR1/BLR2 are for the most part distinct and indicate individual functions for ENV1 and the BLR complex besides their postulated regulatory interrelationship.
Collapse
Affiliation(s)
- Doris Tisch
- Department Health and Environment - Bioresources, AIT Austrian Institute of Technology, Konrad-Lorenz Strasse 24, Tulln 3430, Austria.
| | | |
Collapse
|
175
|
Wang F, Liang Y, Wang M, Yang H, Liu K, Zhao Q, Fang X. Functional diversity of the p24γ homologue Erp reveals physiological differences between two filamentous fungi. Fungal Genet Biol 2013; 61:15-22. [PMID: 24035805 DOI: 10.1016/j.fgb.2013.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 11/27/2022]
Abstract
The protein hyper-secreting filamentous fungi impact their surrounding environments by secreting cellulases and digesting plant cell wall via microbe-plant interspecies interaction. This process is of paramount importance in biofuel production from the renewable lignocellulosic biomass, because cellulase production is the key factor in cost determination. Despite the importance of protein secretion, p24 protein, a key factor in eukaryotic protein maturation and secretion, was never investigated in filamentous fungi. The erp genes encoding p24γ homologues were identified in Trichoderma reesei and Penicillium decumbens. The roles of Erp and their participated cellular pathways were investigated via disruption of erp, revealing significant differences: sporulation was hampered in T. reesei Δerp but not in P. decumbens Δerp; in both species Erp maintains membrane integrity; Erp is likely involved in hyphae polarity maintenance in T. reesei. Protein- and transcription-level investigations of Erp participation in cellulase production revealed distinct regulatory mechanisms. In T. reesei, cellulase encoding genes were repressed under secretion stress. In contrast, activation of the same genes under the same stress was identified in P. decumbens. These observations revealed a novel cellulase gene regulation mechanism, clearly suggested the different physiological roles of Erp, and further demonstrated the different physiology of T. reesei and P. decumbens, despite above 75% sequence identity between the proteins and the close evolutionary relationship between the two species.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
176
|
Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Wang T, Zhou Z, Qu Y. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 2013; 3:1569. [PMID: 23535838 PMCID: PMC3610096 DOI: 10.1038/srep01569] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 12/12/2022] Open
Abstract
Long-term strain improvements through repeated mutagenesis and screening have generated a hyper-producer of cellulases and hemicellulases from Penicillium decumbens 114 which was isolated 30 years ago. Here, the genome of the hyper-producer P. decumbens JU-A10-T was sequenced and compared with that of the wild-type strain 114-2. Further, the transcriptomes and secretomes were compared between the strains. Selective hyper-production of cellulases and hemicellulases but not all the secreted proteins was observed in the mutant, making it a more specific producer of lignocellulolytic enzymes. Functional analysis identified that changes in several transcriptional regulatory elements played crucial roles in the cellulase hyper-producing characteristics of the mutant. Additionally, the mutant showed enhanced supply of amino acids and decreased synthesis of secondary metabolites compared with the wild-type. The results clearly point out that we can target gene regulators and promoters with minimal alterations of the genetic content but maximal effects in genetic engineering.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:127. [PMID: 24016404 PMCID: PMC3847502 DOI: 10.1186/1754-6834-6-127] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Renewable lignocellulosic biomass is an advantageous resource for the production of second generation biofuels and other biorefinery products. In Middle Europe, wheat straw is one of the most abundant low-cost sources of lignocellulosic biomass. For its efficient use, an efficient mix of cellulases and hemicellulases is required. In this paper, we investigated how cellulase production by T. reesei on wheat straw compares to that on lactose, the only soluble and also cheap inducing carbon source for enzyme production. RESULTS We have examined and compared the transcriptome of T. reesei growing on wheat straw and lactose as carbon sources under otherwise similar conditions. Gene expression on wheat straw exceeded that on lactose, and 1619 genes were found to be only induced on wheat straw but not on lactose. They comprised 30% of the CAZome, but were also enriched in genes associated with phospholipid metabolism, DNA synthesis and repair, iron homeostatis and autophagy. Two thirds of the CAZome was expressed both on wheat straw as well as on lactose, but 60% of it at least >2-fold higher on the former. Major wheat straw specific genes comprised xylanases, chitinases and mannosidases. Interestingly, the latter two CAZyme families were significantly higher expressed in a strain in which xyr1 encoding the major regulator of cellulase and hemicellulase biosynthesis is non-functional. CONCLUSIONS Our data reveal several major differences in the transcriptome between wheat straw and lactose which may be related to the higher enzyme formation on the former and their further investigation could lead to the development of methods for increasing enzyme production on lactose.
Collapse
Affiliation(s)
- Robert Bischof
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Lukas Fourtis
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, University of Technology of Vienna, Getreidemarkt 9, Vienna A-1060, Austria
| | - Christian Gamauf
- Biotech & Renewables Center, Clariant GmbH, München 81477, Germany
| | - Bernhard Seiboth
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| | - Christian P Kubicek
- Austrian Centre of Industrial Biotechnology (ACIB) GmBH c/o Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
- Institute of Chemical Engineering, University of Technology of Vienna, Gumpendorferstraβe 1a, Vienna A-1060, Austria
| |
Collapse
|
178
|
Glass NL, Schmoll M, Cate JH, Coradetti S. Plant Cell Wall Deconstruction by Ascomycete Fungi. Annu Rev Microbiol 2013; 67:477-98. [DOI: 10.1146/annurev-micro-092611-150044] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Monika Schmoll
- Austrian Institute of Technology GmbH (AIT), Health and Environment, Bioresources, 3430 Tulln, Austria
| | - Jamie H.D. Cate
- Molecular and Cellular Biology Department, and
- Chemistry Department, University of California, Berkeley, California 94720;
| | | |
Collapse
|
179
|
Cnossen-Fassoni A, Bazzolli DMS, Brommonschenkel SH, Fernandes de Araújo E, de Queiroz MV. The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum. J Microbiol 2013; 51:461-70. [PMID: 23990297 DOI: 10.1007/s12275-013-3078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/10/2013] [Indexed: 11/30/2022]
Abstract
Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean, and the genes that encode its cell-wall-degrading enzymes are crucial for the development of the disease. Pectinases are the most important group of cell wall-degrading enzymes produced by phytopathogenic fungi. The pecC1l gene, which encodes a pectate lyase in C. lindemuthianum, was isolated and characterized. Possible cis-regulatory elements and transcription factor binding sites that may be involved in the regulation of genetic expression were detected in the promoter region of the gene. pecCl1 is represented by a single copy in the genome of C. lindemuthianum, though in silico analyses of the genomes of Colletotrichum graminicola and Colletotrichum higginsianum suggest that the genome of C. lindemuthianum includes other genes that encode pectate lyases. Phylogenetic analysis detected two groups that clustered based on different members of the pectate lyase family. Analysis of the differential expression of pecCl1 during different stages of infection showed a significant increase in pecCl1 expression five days after infection, at the onset of the necrotrophic phase. The split-maker technique proved to be an efficient method for inactivation of the pecCl1 gene, which allowed functional study of a mutant with a site-specific integration. Though gene inactivation did not result in complete loss of pectate lyase activity, the symptoms of anthracnose were reduced. Analysis of pectate lyases might not only contribute to the understanding of anthracnose in the common bean but might also lead to the discovery of an additional target for controlling anthracnose.
Collapse
Affiliation(s)
- Andréia Cnossen-Fassoni
- Laboratory of Microorganism Molecular Genetics, Department of Microbiology/Institute of Microbiology Applied to Agriculture and Livestock Raising (BIOAGRO), Federal University of Viçosa, Viçosa-MG, Brazil
| | | | | | | | | |
Collapse
|
180
|
G protein-cAMP signaling pathway mediated by PGA3 plays different roles in regulating the expressions of amylases and cellulases in Penicillium decumbens. Fungal Genet Biol 2013; 58-59:62-70. [PMID: 23942188 DOI: 10.1016/j.fgb.2013.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Heterotrimeric G proteins (G proteins) have been extensively investigated for their regulatory functions in morphogenesis and development in filamentous fungi. In addition, G proteins were also shown to be involved in the regulation of cellulase expression in some fungi. Here, we report the different regulatory effects of PGA3, a group III G protein α subunit, on the expressions of amylases and cellulases in Penicillium decumbens. Deletion of pga3 resulted in impaired amylase production and significantly decreased transcription of the major amylase gene amy15A. Supplementation of exogenous cAMP or its analog dibutyryl-cAMP restored amylase production in Δpga3 strain, suggesting an essential role of PGA3 in amylase synthesis via controlling cAMP level. On the other hand, the transcription of major cellulase gene cel7A-2 increased, nevertheless cellulase activity in the medium was not affected, in Δpga3. The above regulatory effects of PGA3 are carbon source-independent, and are achieved, at least, by cAMP-mediated regulation of the expression level of transcription factor AmyR. The functions of PGA3 revealed by gene deletion were partially supported by the analysis of the mutant carrying dominantly-activated PGA3. The results provided new insights into the understanding of the physiological functions of G protein-cAMP pathway in filamentous fungi.
Collapse
|
181
|
Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttilä M, Saddler J. Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. BIORESOURCE TECHNOLOGY 2013; 142:498-503. [PMID: 23759433 DOI: 10.1016/j.biortech.2013.05.053] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 05/22/2023]
Abstract
A key limitation in the overall hydrolysis process is the restricted access that the hydrolytic enzymes have due to the macro-and-micro structure of cellulose and its association with hemicellulose and lignin. Previous work has shown that several non-hydrolytic proteins can disrupt cellulose structure and boost the activity of hydrolytic enzymes when purer forms of cellulose are used. In the work reported here, Swollenin primarily disrupted the hemicellulosic fraction of pretreated corn stover, resulting in the solubilisation of monomeric and oligomeric sugars. Although Swollenin showed little synergism when combined with the cellulase monocomponents exoglucanase (CEL7A) and endoglucanase (CEL5A), it showed pronounced synergism with xylanase monocomponents Xylanase GH10 and Xylanase GH11, resulting in the release of significantly more xylose (>300%). It appears that Swollenin plays a role in amorphogenesis and that its primary action is enhancing access to the hemicellulose fraction that limits or masks accessibility to the cellulose component of lignocellulosic substrates.
Collapse
Affiliation(s)
- Keith Gourlay
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | | | | | | | | | | | | |
Collapse
|
182
|
Xing S, Li G, Sun X, Ma S, Chen G, Wang L, Gao P. Dynamic changes in xylanases and β-1,4-endoglucanases secreted by Aspergillus niger An-76 in response to hydrolysates of lignocellulose polysaccharide. Appl Biochem Biotechnol 2013; 171:832-46. [PMID: 23900618 DOI: 10.1007/s12010-013-0402-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Abstract
Aspergillus niger is an effective secretor of glycoside hydrolases that facilitate the saprophytic lifestyle of the fungus by degrading plant cell wall polysaccharides. In the present study, a series of dynamic zymography assays were applied to quantify the secreted glycoside hydrolases of A. niger cultured in media containing different carbon sources. Differences in the diversity and concentrations of polysaccharide hydrolysates dynamically regulated the secretion of glycoside hydrolases. The secretion of β-1,4-endoglucanase isozymes was observed to lag at least 24 h behind, rather than coincide with, the secretion of xylanase isozymes. Low concentrations of xylose could induce many endoxylanases (such as Xyn1/XynA, Xyn2, and Xyn3/XynB). High concentrations of xylose could sustain the induction of Xyn2 and Xyn3/XynB but repress Xyn1/XynA (GH10 endoxylanase), which has a broad substrate specificity, and also triggers the low-level secretion of Egl3/EglA, which also has a broad substrate specificity. Mixed polysaccharide hydrolysates sustained the induction of Egl1, whereas the other β-1,4-endoglucanases were sustainably induced by the specific polysaccharide hydrolysates released during the hydrolysis process (such as Egl2 and Egl4). These results indicate that the secretion of glycoside hydrolases may be specifically regulated by the production of polysaccharide hydrolysates released during the process of biomass degradation.
Collapse
Affiliation(s)
- Sheng Xing
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shandanan Rd, Jinan, 250100, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
183
|
Malapi-Wight M, Smith J, Campbell J, Bluhm BH, Shim WB. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides. PLoS One 2013; 8:e67656. [PMID: 23844049 PMCID: PMC3700993 DOI: 10.1371/journal.pone.0067656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022] Open
Abstract
The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.
Collapse
Affiliation(s)
- Martha Malapi-Wight
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Jonathon Smith
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Jacquelyn Campbell
- Bioenvironmental Sciences Program, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Burton H. Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
- Bioenvironmental Sciences Program, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
184
|
Karmakar M, Ray RR. Inducing effect of salicin for extracellular endoglucanase synthesis in Rhizopus oryzae PR7 MTCC 9642. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813040078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
185
|
Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K. Secretome Analysis of the Pine Wood Nematode Bursaphelenchus xylophilus Reveals the Tangled Roots of Parasitism and Its Potential for Molecular Mimicry. PLoS One 2013; 8:e67377. [PMID: 23805310 PMCID: PMC3689755 DOI: 10.1371/journal.pone.0067377] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/16/2013] [Indexed: 01/12/2023] Open
Abstract
Since it was first introduced into Asia from North America in the early 20(th) century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine's proteins. These proteins could have been acquired by host-parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | | | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Yuko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
186
|
Coradetti ST, Xiong Y, Glass NL. Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2013; 2:595-609. [PMID: 23766336 PMCID: PMC3948607 DOI: 10.1002/mbo3.94] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022] Open
Abstract
Cellulose is recalcitrant to deconstruction to glucose for use in fermentation strategies for biofuels and chemicals derived from lignocellulose. In Neurospora crassa, the transcriptional regulator, CLR-2, is required for cellulolytic gene expression and cellulose deconstruction. To assess conservation and divergence of cellulase gene regulation between fungi from different ecological niches, we compared clr-2 function with its ortholog (clrB) in the distantly related species, Aspergillus nidulans. Transcriptional profiles induced by exposure to crystalline cellulose were similar in both species. Approximately 50% of the cellulose-responsive genes showed strict dependence on functional clr-2/clrB, with a subset of 28 genes encoding plant biomass degrading enzymes that were conserved between N. crassa and A. nidulans. Importantly, misexpression of clr-2 under noninducing conditions was sufficient to drive cellulase gene expression, secretion, and activity in N. crassa, to a level comparable to wild type exposed to Avicel. However, misexpression of clrB in A. nidulans was not sufficient to drive cellulase gene expression under noninducing conditions, although an increase in cellulase activity was observed under crystalline cellulose conditions. Manipulation of clr-2 orthologs among filamentous fungi may enable regulated cellulosic enzyme production in a wide array of culture conditions and host strains, potentially reducing costs associated with enzyme production for plant cell wall deconstruction. However, this functionality may require additional engineering in some species.
Collapse
Affiliation(s)
- Samuel T Coradetti
- Plant and Microbial Biology Department, The University of California, Berkeley, CA, 94720-3102
| | | | | |
Collapse
|
187
|
Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 2013; 29:2239-47. [DOI: 10.1007/s11274-013-1389-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
188
|
Chen M, Qin Y, Cao Q, Liu G, Li J, Li Z, Zhao J, Qu Y. Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. BIORESOURCE TECHNOLOGY 2013; 137:33-40. [PMID: 23584406 DOI: 10.1016/j.biortech.2013.03.099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/10/2013] [Accepted: 03/12/2013] [Indexed: 05/05/2023]
Abstract
In this study, the functions of β-glucosidases in regulation of the lignocellulolytic enzymes production in Penicillium decumbens 114-2 were investigated. The major extracellular β-glucosidase gene bgl1 and the major intracellular β-glucosidase gene bgl2 were deleted in P. decumbens 114-2 respectively. In Δbgl2, the production of extracellular lignocellulolytic enzymes (including endoglucanases, cellobiohydrolases and xylanases) on insoluble cellulose was significantly promoted, while in Δbgl1 there was no any difference compared with that of 114-2. The enhancement of the production of lignocellulolytic enzymes in Δbgl2 was likely attributed to the accumulation of intracellular cellobiose. Induction experiment in Δbgl1Δbgl2 showed that cellobiose was an inducer of lignocellulolytic enzymes expression in P. decumbens 114-2, and the induction was unrelated to the formation, if any, of gentiobiose or sophorose from cellobiose.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, PR China
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Amore A, Giacobbe S, Faraco V. Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 2013; 14:230-49. [PMID: 24294104 PMCID: PMC3731814 DOI: 10.2174/1389202911314040002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/22/2022] Open
Abstract
Research on regulation of cellulases and hemicellulases gene expression may be very useful for increasing the production of these enzymes in their native producers. Mechanisms of gene regulation of cellulase and hemicellulase expression in filamentous fungi have been studied, mainly in Aspergillus and Trichoderma. The production of these extracellular enzymes is an energy-consuming process, so the enzymes are produced only under conditions in which the fungus needs to use plant polymers as an energy and carbon source. Moreover, production of many of these enzymes is coordinately regulated, and induced in the presence of the substrate polymers. In addition to induction by mono- and oligo-saccharides, genes encoding hydrolytic enzymes involved in plant cell wall deconstruction in filamentous fungi can be repressed during growth in the presence of easily metabolizable carbon sources, such as glucose. Carbon catabolite repression is an important mechanism to repress the production of plant cell wall degrading enzymes during growth on preferred carbon sources. This manuscript reviews the recent advancements in elucidation of molecular mechanisms responsible for regulation of expression of cellulase and hemicellulase genes in fungi.
Collapse
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Simona Giacobbe
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, via Cintia, 4 80126 Naples, Italy
- School of Biotechnological Sciences, University of Naples “Federico II” Italy
| |
Collapse
|
190
|
RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme Microb Technol 2013; 53:104-9. [PMID: 23769310 DOI: 10.1016/j.enzmictec.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
The cellulase and xylanase genes of filamentous Trichoderma fungi exist under carbon catabolite repression mediated by the regulator carbon catabolite repressor (CREI). Our objective was to find the role of CREI in a cellulase-hyperproducing mutant of Trichoderma koningii, and address whether enzyme production can be further improved by silencing the cre1 gene. cre1 partially silenced strains were constructed to improve enzyme production in T. koningii YC01, a cellulase-hyperproducing mutant. Silencing of cre1 resulted in derepression of cellulase gene expression in glucose-based cultivation. The cre1 interference strain C313 produced 2.1-, 1.4-, 0.8-, and 0.8-fold higher amounts of filter paper activity, β-1,4-exoglucanase activity (ρ-nitrophenyl-β-D-cellobioside as substrate), β-1,4-endoglucanase activity (sodium carboxymethyl cellulose as substrate), and xylanase activity, respectively, than the control strain, suggesting that silencing of cre1 resulted in enhanced enzyme production capability. In addition, downregulation of cre1 resulted in elevated expression of another regulator of xylanase and cellulase expression, xyr1, indicating that CREI also acted as a repressor of xyr1 transcription in T. koningii under inducing conditions. These results show that RNAi is a feasible method for analyzing the regulatory mechanisms of gene expression and improving xylanase and cellulase productivity in T. koningii.
Collapse
|
191
|
Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 2013; 14:274. [PMID: 23617724 PMCID: PMC3652786 DOI: 10.1186/1471-2164-14-274] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/17/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. RESULTS In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also revealed a complex history of lineage-specific expansions and attritions for the PL1 family. CONCLUSIONS Our study provides insights into the variety and expansion of fungal CAZyme classes and revealed the relationship of CAZyme size and diversity with their nutritional strategy and host specificity.
Collapse
Affiliation(s)
- Zhongtao Zhao
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- NWAFU-PU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
192
|
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 2013; 3:1214. [PMID: 23169055 DOI: 10.1038/ncomms2210] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.
Collapse
Affiliation(s)
- Olga Blifernez-Klassen
- Department of Biology, Algae Biotechnology and Bioenergy-Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
193
|
Liu G, Qin Y, Li Z, Qu Y. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol Adv 2013; 31:962-75. [PMID: 23507038 DOI: 10.1016/j.biotechadv.2013.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/09/2013] [Accepted: 03/10/2013] [Indexed: 11/19/2022]
Abstract
The current high cost of lignocellulolytic enzymes is a major bottleneck in the economic bioconversion of lignocellulosic biomass to fuels and chemicals. Fungal lignocellulolytic enzyme systems are secreted at high levels, making them the most promising starting points for further development of highly efficient lignocellulolytic enzyme systems. In this paper, recent advances in improvement of fungal lignocellulolytic enzyme systems are reviewed, with an emphasis on the achievements made using genomic approaches. A general strategy for lignocellulolytic enzyme system development is proposed, including the improvement of the hydrolysis efficiencies and productivities of current enzyme systems. The applications of genomic, transcriptomic and proteomic analysis methods in examining the composition of native enzyme systems, discovery of novel enzymes and synergistic proteins from natural sources, and understanding of regulatory mechanisms for lignocellulolytic enzyme biosynthesis are summarized. By combining systems biology and synthetic biology tools, engineered fungal strains are expected to produce high levels of optimized lignocellulolytic enzyme systems.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | | | | | | |
Collapse
|
194
|
Delabona PDS, Farinas CS, Lima DJDS, Pradella JGDC. Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. BIORESOURCE TECHNOLOGY 2013; 132:401-5. [PMID: 23265822 DOI: 10.1016/j.biortech.2012.11.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
This work investigates the glycosyl hydrolase (GH) profile of a new Trichoderma harzianum strain cultivated under controlled bioreactor submerged fermentation. The influence of different medium components (delignified steam-exploded sugarcane bagasse, sucrose, and soybean flour) on GH biosynthesis was assessed using experimental mixture design (EMD). Additionally, the effect of increased component concentrations in culture media selected from the EMD was studied. It was found that that a mixed culture medium could significantly maximize GH biosynthesis rate, especially for xylanase enzymes which achieved a 2-fold increment. Overall, it was demonstrated that T. harzianumP49P11 enzymes have a great potential to be used in the deconstruction of biomass.
Collapse
Affiliation(s)
- Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory - CTBE, Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, Caixa Postal 6192, CEP 13083-970 Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
195
|
Simon A, Dalmais B, Morgant G, Viaud M. Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 2013; 52:9-19. [PMID: 23396263 DOI: 10.1016/j.fgb.2013.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
Abstract
Botrytis cinerea, the grey mould fungus, secretes non-host-specific phytotoxins that kill the cells of many plant species. Phytotoxic assays performed about ten years ago, have highlighted the role in the infection mechanism of one of these secondary metabolites, the sesquiterpene botrydial. We recently showed that BcBOT1 to BcBOT5 genes, which are required for botrydial biosynthesis, are organised into a physical cluster. However, this cluster includes no gene encoding a transcription factor (TF) that might specifically coregulate the expression of BcBOT genes. To identify which TF(s) are implicated in the regulation of this cluster and thereby to decipher DNA-protein interactions in the phytopathogenic fungus B. cinerea, we developed a strategy based on the yeast one-hybrid (Y1H) method. In this study, a Y1H library was generated with the TFs predicted from complete genome sequencing. The screening of this library revealed an interaction between a promoter of the botrydial biosynthesis gene cluster and a new Cys2His2 zinc finger TF, that we called BcYOH1. Inactivation of the BcYOH1 gene and expression analyses demonstrated the involvement of this TF in regulating expression of the botrydial biosynthesis gene cluster. Furthermore, whole-transcriptome analysis suggested that BcYOH1 might act as a global transcriptional regulator of phytotoxin and other secondary metabolism gene clusters, and of genes involved in carbohydrate metabolism, transport, virulence and detoxification mechanisms.
Collapse
Affiliation(s)
- Adeline Simon
- UR1290 BIOGER-CPP, INRA, Avenue Lucien Brétignières, 78850 Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
196
|
Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao GP, Zhou Z, Qu Y. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 2013; 8:e55185. [PMID: 23383313 PMCID: PMC3562324 DOI: 10.1371/journal.pone.0055185] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023] Open
Abstract
Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Wei
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Gen Zou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
| | - Liang Ma
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Chengshu Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong, China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong, China
| |
Collapse
|
197
|
Falkoski DL, Guimarães VM, de Almeida MN, Alfenas AC, Colodette JL, de Rezende ST. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. BIORESOURCE TECHNOLOGY 2013; 130:296-305. [PMID: 23313674 DOI: 10.1016/j.biortech.2012.11.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/10/2012] [Accepted: 11/30/2012] [Indexed: 05/24/2023]
Abstract
The plant pathogenic fungus Chrysoporthe cubensis was cultivated under solid state employing different substrates and the highest endoglucanase (33.84Ug(-1)), FPase (2.52Ug(-1)), β-glucosidase (21.55Ug(-1)) and xylanase (362.38Ug(-1)) activities were obtained using wheat bran as carbon source. Cellulases and xylanase produced by C. cubensis showed maximal hydrolysis rate at pH 4.0 and in a temperature range of 50-60°C. All enzymatic activities were highly stable at 40 and 50°C through 48h of pre-incubation. Saccharification of alkaline pretreated sugarcane bagasse by crude enzyme extract from C. cubensis resulted in release of 320.8mg/g and 288.7mg/g of glucose and xylose, respectively. On another hand, a similar assay employing commercial cellulase preparation resulted in release of 250.6mg/g and 62.1mg/g of glucose and xylose, respectively. Cellulolytic extract from C. cubensis showed a great potential to be used in biomass saccharification processes.
Collapse
Affiliation(s)
- Daniel Luciano Falkoski
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | | | | | | | | | | |
Collapse
|
198
|
Znameroski EA, Glass NL. Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:6. [PMID: 23339486 PMCID: PMC3598899 DOI: 10.1186/1754-6834-6-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/18/2013] [Indexed: 05/07/2023]
Abstract
Filamentous fungi are the main source of enzymes used to degrade lignocellulose to fermentable sugars for the production of biofuels. While the most commonly used organism for the production of cellulases in an industrial setting is Trichoderma reesei (Hypocrea jecorina), recent work in the model filamentous fungus Neurospora crassa has shown that the variety of molecular, genetic and biochemical techniques developed for this organism can expedite analyses of the complexities involved in the utilization of lignocellulose as a source of carbon. These include elucidating regulatory networks associated with plant cell wall deconstruction, the identification of signaling molecules necessary for induction of the expression of genes encoding lignocellulolytic enzymes and the characterization of new cellulolytic enzymatic activities. In particular, the availability of a full genome deletion strain set for N. crassa has expedited high throughput screening for mutants that display a cellulolytic phenotype. This review summarizes the key findings of several recent studies using N. crassa to further understanding the mechanisms of plant cell wall deconstruction by filamentous fungi.
Collapse
Affiliation(s)
- Elizabeth A Znameroski
- Department of Molecular and Cell Biology, University of California, 94720, Berkeley, CA, USA
- Current address: Novozymes, 1445 Drew Avenue, 95618, Davis, CA, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, 94720, Berkeley, CA, USA
| |
Collapse
|
199
|
PdSNF1, a sucrose non-fermenting protein kinase gene, is required for Penicillium digitatum conidiation and virulence. Appl Microbiol Biotechnol 2013; 97:5433-45. [DOI: 10.1007/s00253-012-4593-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022]
|
200
|
Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (BETHESDA, MD.) 2013; 3:41-63. [PMID: 23316438 PMCID: PMC3538342 DOI: 10.1534/g3.112.004044] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 12/31/2022]
Abstract
Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
Collapse
Affiliation(s)
- Viola A. Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Braham Dhillon
- Department of Forest Sciences, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Larry J. Wilhelm
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Carbone/Ferguson Laboratories, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon 97006
| | - Stephen B. Goodwin
- USDA–Agricultural Research Service, Purdue University, West Lafayette, Indiana 47907
| | | | - Melania Figueroa
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- USDA-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, Oregon 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - James K. Hane
- Commonwealth Scientific and Industrial Research Organization−Plant Industry, Centre for Environment and Life Sciences, Floreat, Western Australia 6014, Australia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | - Wade H. Holman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Chinnappa D. Kodira
- The Broad Institute, Cambridge, Massachusetts 02142
- Roche 454, Branford, Connecticut 06405
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California 94598
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6845, Australia
| | - Barbara Robbertse
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Centre National de la Recherche Scientifique, 13288 Marseille cedex 9, France
| | | | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14850
| | | | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts 02142
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, UW Biotechnology Center, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | | | | | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts 02142
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynda M. Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|