151
|
Hamzei-Sichani F, Kamasawa N, Janssen WGM, Yasumura T, Davidson KGV, Hof PR, Wearne SL, Stewart MG, Young SR, Whittington MA, Rash JE, Traub RD. Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc Natl Acad Sci U S A 2007; 104:12548-53. [PMID: 17640909 PMCID: PMC1924795 DOI: 10.1073/pnas.0705281104] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gap junctions have been postulated to exist between the axons of excitatory cortical neurons based on electrophysiological, modeling, and dye-coupling data. Here, we provide ultrastructural evidence for axoaxonic gap junctions in dentate granule cells. Using combined confocal laser scanning microscopy, thin-section transmission electron microscopy, and grid-mapped freeze-fracture replica immunogold labeling, 10 close appositions revealing axoaxonic gap junctions ( approximately 30-70 nm in diameter) were found between pairs of mossy fiber axons ( approximately 100-200 nm in diameter) in the stratum lucidum of the CA3b field of the rat ventral hippocampus, and one axonal gap junction ( approximately 100 connexons) was found on a mossy fiber axon in the CA3c field of the rat dorsal hippocampus. Immunogold labeling with two sizes of gold beads revealed that connexin36 was present in that axonal gap junction. These ultrastructural data support computer modeling and in vitro electrophysiological data suggesting that axoaxonic gap junctions play an important role in the generation of very fast (>70 Hz) network oscillations and in the hypersynchronous electrical activity of epilepsy.
Collapse
Affiliation(s)
- Farid Hamzei-Sichani
- Program in Neural and Behavioral Science, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R. Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 2007; 146:9-16. [PMID: 17379420 DOI: 10.1016/j.neuroscience.2007.01.061] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 10/23/2022]
Abstract
Pannexins (Panx) constitute a new family of gap junction type proteins. Functional expression in paired Xenopus oocytes indicated that pannexins are capable of forming communicating junctions but also proved to be active in forming of unopposed hemichannels. In the vertebrate brain pannexins have been found in neurons. However, the subcellular cerebral localization of pannexin proteins which could gain first clues on their putative function is essentially unknown. Here we demonstrate by light and electron microscopical immunohistochemistry that Panx1 reveals postsynaptic localization in rodent hippocampal and cortical principal neurons accumulating at postsynaptic densities. The postsynaptic localization was corroborated by co-localization of Panx1 with postsynaptic density protein 95 (PSD-95), a prominent postsynaptic scaffolding protein, in hippocampal neurons expressing tagged versions of these proteins. The asymmetric synaptic distribution of Panx1 suggests that it may function in neurons as non-junctional channels (pannexons) at postsynaptic sites and comprises a novel component of the postsynaptic protein complex.
Collapse
Affiliation(s)
- G Zoidl
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitystreet 150, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Lai CPK, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC. Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 2007; 67:1545-54. [PMID: 17308093 DOI: 10.1158/0008-5472.can-06-1396] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mammalian gap junction proteins, connexins, have long been implicated in tumor suppression. Recently, a novel family of proteins named pannexins has been identified as the mammalian counterpart of the invertebrate gap junction proteins, innexins. To date, pannexin 1 (Panx1) and pannexin 2 (Panx2) mRNAs are reported to be expressed in the brain. Most neoplastic cells, including rat C6 gliomas, exhibit reduced connexin expression, aberrant gap junctional intercellular communication (GJIC), and an increased proliferation rate. When gap junctions are up-regulated by transfecting C6 cells with connexin43, GJIC is restored and the proliferation is reduced. In this study, we examined the tumor-suppressive effects of Panx1 expression in C6 cells. Reverse transcription-PCR analysis revealed that C6 cells do not express any of the pannexin transcripts, whereas its nontumorigenic counterpart, rat primary astrocytes, exhibited mRNAs for all three pannexins. On generation of stable C6 transfectants with tagged Panx1 [myc or enhanced green fluorescent protein (EGFP)], a localization of Panx1 expression to the Golgi apparatus and plasma membrane was observed. In addition, Panx1 transfectants exhibited a flattened morphology, which differs greatly from the spindle-shaped control cells (EGFP only). Moreover, Panx1 expression increased gap junctional coupling as shown by the passage of sulforhodamine 101. Finally, we showed that stable expression of Panx1 in C6 cells significantly reduced cell proliferation in monolayers, cell motility, anchorage-independent growth, and in vivo tumor growth in athymic nude mice. Altogether, we conclude that the loss of pannexin expression may participate in the development of C6 gliomas, whereas restoration of Panx1 plays a tumor-suppressive role.
Collapse
Affiliation(s)
- Charles P K Lai
- Departments of Cellular and Physiological Sciences and Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
154
|
Chanson M, Kotsias BA, Peracchia C, O’Grady SM. Interactions of connexins with other membrane channels and transporters. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:233-44. [PMID: 17475311 PMCID: PMC2692730 DOI: 10.1016/j.pbiomolbio.2007.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca(2+) waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gap-junction-forming proteins, and Kvbeta3, a regulatory beta-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis.
Collapse
Affiliation(s)
- Marc Chanson
- Dept. of Pediatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Basilio A. Kotsias
- Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Argentina
| | - Camillo Peracchia
- Dept. of Pharmacology and Physiology, University of Rochester, School of Medicine, Rochester, NY, USA
| | | |
Collapse
|
155
|
Pyramid power: principal cells of the hippocampus unite! ACTA ACUST UNITED AC 2007; 35:5-11. [PMID: 17940909 DOI: 10.1007/s11068-006-9004-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Revised: 12/03/2006] [Accepted: 12/08/2006] [Indexed: 10/23/2022]
Abstract
Electrical transmission in the mammalian brain is now well established. A new study by Thomson and colleagues elegantly demonstrates coupling between CA1 hippocampal pyramidal cells, which is far more common than previously supposed. Although the history of coupling is extensive, doubt, predjudice, and technical issues long kept it from wide acceptance. Here "spikelets" or "fast prepotentials" are found when two cells are coupled and in this situation result from electrical transmission of impulses from one coupled cell to the other. Interesting questions remain as to whether connexin or pannexin gap junctions serve as the molecular substrate of transmission, and the role of electrical transmission in hippocampal physiology is uncertain. Increased coupling could well contribute to the known tendency of the hippocampus to exhibit seizure activity.
Collapse
|
156
|
Electrical coupling between pyramidal cells in adult cortical regions. ACTA ACUST UNITED AC 2007; 35:13-27. [DOI: 10.1007/s11068-006-9005-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 11/26/2022]
|
157
|
Litvin O, Tiunova A, Connell-Alberts Y, Panchin Y, Baranova A. What is hidden in the pannexin treasure trove: the sneak peek and the guesswork. J Cell Mol Med 2007; 10:613-34. [PMID: 16989724 PMCID: PMC3933146 DOI: 10.1111/j.1582-4934.2006.tb00424.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Connexins had been considered to be the only class of the vertebrate proteins capable of gap junction formation; however, new candidates for this function with no homology to connexins, termed pannexins were discovered. So far three pannexins were described in rodent and human genomes: Panx1, Panx2 and Panx3. Expressions of pannexins can be detected in numerous brain structures, and now found both in neuronal and glial cells. Hypothetical roles of pannexins in the nervous system include participating in sensory processing, hippocampal plasticity, synchronization between hippocampus and cortex, and propagation of the calcium waves supported by glial cells, which help maintain and modulate neuronal metabolism. Pannexin also may participate in pathological reactions of the neural cells, including their damage after ischemia and subsequent cell death. Recent study revealed non-gap junction function of Panx1 hemichannels in erythrocytes, where they serve as the conduits for the ATP release in response to the osmotic stress. High-throughput studies produced some evidences of the pannexin involvement in the process of tumorigenesis. According to brain cancer gene expression database REMBRANDT, PANX2 expression levels can predict post diagnosis survival for patients with glial tumors. Further investigations are needed to verify or reject hypotheses listed.
Collapse
Affiliation(s)
- Oxana Litvin
- Stowers Institute for Medical ResearchKansas City, MO, USA
| | - Anya Tiunova
- P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical SciencesMoscow, Russia
| | - Yvette Connell-Alberts
- Molecular and Microbiology Department, George Mason UniversityFairfax, VA, USA
- NCI/MCGP, FrederickMD, USA
| | - Yuri Panchin
- Institute for Information Transmission Problems, RAS, Moscow, Russia and A. N. Belozersky Institute, Moscow State UniversityMoscow, Russia
| | - Ancha Baranova
- Molecular and Microbiology Department, George Mason UniversityFairfax, VA, USA
- Russian Center of Medical Genetics, Russian Academy of Medical SciencesMoscow, Russia
- * Correspondence to: Dr. A.BARANOVA Molecular Biology and Microbiology, David King Hall, MSN 3E1, George Mason University, Fairfax, VA, 22030, USA. Tel.: 703-993-42-93 E-mail:
| |
Collapse
|
158
|
Huang Y, Grinspan JB, Abrams CK, Scherer SS. Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 2007; 55:46-56. [PMID: 17009242 DOI: 10.1002/glia.20435] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pannexins are a newly described family of proteins that may form gap junctions. We made antisera against mouse pannexin1 (Panx1). HeLa cells expressing Panx1 have cell surface labeling, but not gap junction plaques, and do not transfer small fluorescent dyes or neurobiotin in a scrape-loading assay. Neuro2a cells expressing Panx1 are not electrophysiologically coupled. Intracellular Panx1-immunoreactivity, but not gap junction plaques, is seen in cultured oligodendrocytes, astrocytes, and hippocampal neurons. Thus, at least in these mammalian cells lines, Panx1 does not form morphological or functional gap junctions, and it remains to be demonstrated that Panx1 forms gap junction-forming protein in the CNS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6077, USA.
| | | | | | | |
Collapse
|
159
|
Abstract
Pannexin1 and pannexin2 are members of the pannexin gene family which are widely expressed in the central nervous system. Here we present an overview of pannexin expression and distribution in the mouse cerebellum. Pannexin1 and pannexin2 are expressed in the Purkinje cells and in some cells of the granule cell layer. Pannexin2 is also expressed in the stellate cells of the molecular layer. A differential expression of pannexin1 and pannexin2 mRNA is observed during cerebellar development. These findings constitute the first indication of the involvement of pannexin molecules in the developing cerebellum. Although the functional relevance of these molecules remains currently unknown, the abundance of pannexins in the Purkinje cells suggests that they may contribute to the generation of cerebellar rhythms.
Collapse
Affiliation(s)
- Arundhati Ray
- Department of Neuroanatomy and Molecular Brain Research, Faculty of Medicine, Ruhr University, Bochum, Germany
| | | | | | | |
Collapse
|
160
|
Abstract
"Hemichannels" are defined as the halves of gap junction channels (also termed connexons) that are contributed by one cell; "hemichannels" are considered to be functional if they are open in nonjunctional membranes in the absence of pairing with partners from adjacent cells. Several recent reviews have summarized the blossoming literature regarding functional "hemichannels", in some cases encyclopedically. However, most of these previous reviews have been written with the assumption that all data reporting "hemichannel" involvement really have studied phenomena in which connexons actually form the permeability or conductance pathway. In this review, we have taken a slightly different approach. We review the concept of "hemichannels", summarize properties that might be expected of half gap junctions and evaluate the extent to which the properties of presumptive "hemichannels" match expectations. Then we consider functions attributed to hemichannels, provide an overview of other channel types that might fulfill similar roles and provide sets of criteria that might be applied to verify involvement of connexin hemichannels in cell and tissue function. One firm conclusion is reached. The study of hemichannels is technically challenging and fraught with opportunities for misinterpretation, so that future studies must apply rigorous standards for detection of hemichannel expression and function. At the same time there are reasons to expect surprises, including the possibility that some time honored techniques for studying gap junctions may prove unsuitable for detecting hemichannels. We advise hemichannel researchers to proceed with caution and an open mind.
Collapse
Affiliation(s)
- David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Zu-Cheng Ye
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Bruce R Ransom
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
161
|
Barbe MT, Monyer H, Bruzzone R. Cell-cell communication beyond connexins: the pannexin channels. Physiology (Bethesda) 2006; 21:103-14. [PMID: 16565476 DOI: 10.1152/physiol.00048.2005] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direct cell-to-cell communication through specialized intercellular channels is a characteristic feature of virtually all multi-cellular organisms. The remarkable functional conservation of cell-to-cell coupling throughout the animal kingdom, however, is not matched at the molecular level of the structural protein components. Thus protostomes (including nematodes and flies) and deuterostomes (including all vertebrates) utilize two unrelated families of gap-junction genes, innexins and connexins, respectively. The recent discovery that pannexins, a novel group of proteins expressed by several organisms, are able to form intercellular channels has started a quest to understand their evolutionary relationship and functional contribution to cell communication in vivo. There are three pannexin genes in mammals, two of which are co-expressed in the developing and adult brain. Of note, pannexin1 can also form Ca2+-activated hemichannels that open at physiological extracellular Ca2+ concentrations and exhibit distinct pharmacological properties.
Collapse
Affiliation(s)
- Michael T Barbe
- Department of Clinical Neurobiology and Interdisciplinary Center for Neuroscience, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
162
|
Zappalà A, Cicero D, Serapide MF, Paz C, Catania MV, Falchi M, Parenti R, Pantò MR, La Delia F, Cicirata F. Expression of pannexin1 in the CNS of adult mouse: cellular localization and effect of 4-aminopyridine-induced seizures. Neuroscience 2006; 141:167-78. [PMID: 16690210 DOI: 10.1016/j.neuroscience.2006.03.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/23/2006] [Accepted: 03/25/2006] [Indexed: 11/28/2022]
Abstract
The expression pattern of pannexin1, a gene coding for a protein that forms gap junction channels, was studied as both mRNA and protein in the CNS of adult mouse. Pannexin1 was widely expressed in the CNS by neuronal cell types but not glial cells, except for Bergmann glial cells of the cerebellar cortex. Cells positive to Ca-binding proteins, principally parvalbumin, but also calbindin and calretinin, as well as glutamate decarboxylase 67 kDa isoform, were pannexin1-positive. Pannexin1 labeling was found in cells which are known to exhibit spontaneous and synchronous discharge, such as neurons of the inferior olivary complex and the reticular thalamic nucleus, and also in neurons whose electrical activity is not coupled with neighboring cells, such as motoneurons of the spinal cord. The analysis of cellular localization showed puncta that surrounded cell bodies (e.g. the pyramidal cells of hippocampus) or restricted areas inside the cell bodies (e.g. the spinal motoneurons). In Bergmann glial cells the staining was present as fine grains that covered a large part of the cellular surface. Pannexin1 stained cells that previous studies have reported as expressing connexin36, another protein forming gap junction channels. Thus, it was possible that these two proteins could be integrated in the same functions. Since connexin36 expression levels change after seizures, we examined the expression of both pannexin1 and connexin36 in cerebral cortex, hippocampus, cerebellum and brain stem at different time intervals (2, 4 and 8 h) after i.p. injection of 4-aminopyridine, which resulted in systemic seizures. The only modification of the expression levels observed in this study concerned the progressive decrement of the connexin36 in the hippocampus, while pannexin1 expression was unchanged. This finding suggested that pannexin1 and connexin36 are involved in different functional roles or that they are expressed in different cell types and that only those expressing the Cx36 are induced to apoptosis by epileptic seizures.
Collapse
Affiliation(s)
- A Zappalà
- Department of Physiological Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Bruzzone R, Dermietzel R. Structure and function of gap junctions in the developing brain. Cell Tissue Res 2006; 326:239-48. [PMID: 16896946 DOI: 10.1007/s00441-006-0287-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 12/01/2022]
Abstract
Gap-junction-dependent neuronal communication is widespread in the developing brain, and the prevalence of gap-junctional coupling is well correlated with specific developmental events. We summarize here our current knowledge of the contribution of gap junctions to brain development and propose that they carry out this role by taking advantage of the full complement of their functional properties. Thus, hemichannel activation may represent a key step in the initiation of Ca(2+) waves that coordinate cell cycle events during early prenatal neurogenesis, whereas both hemichannels and/or gap junctions may control the division and migration of cohorts of precursor cells during late prenatal neurogenesis. Finally, the recent discovery that pannexins, a novel group of proteins prominently expressed in the brain, are able to form both hemichannels and gap-junction channels suggests that we need to seek more than just connexins with respect to these junctions.
Collapse
Affiliation(s)
- Roberto Bruzzone
- Department of Neuroscience, Institut Pasteur, 75015 Paris, France
| | | |
Collapse
|
164
|
Dvoriantchikova G, Ivanov D, Panchin Y, Shestopalov VI. Expression of pannexin family of proteins in the retina. FEBS Lett 2006; 580:2178-82. [PMID: 16616526 DOI: 10.1016/j.febslet.2006.03.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/05/2006] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Expression of the Panx1 and Panx2 members of the pannexin family of gap junction proteins was studied in the retina by in situ hybridization and qRT-PCR. Both pannexins showed robust expression across the retina with predominant accumulation in the retinal ganglion cells (RGCs). In concordance, immunohistochemical analysis showed accumulation of the Panx1 protein in RGCs, amacrine, horizontal cells and their processes. Two Panx1 isoforms were detected: a ubiquitously expressed 58 kDa protein, and a 43 kDa isoform that specifically accumulated in the retina and brain. Our results indicated that Panx1 and Panx2 are abundantly expressed in the retina, and may therefore contribute to the electrical and metabolic coupling, or to signaling between retinal neurons via the secondary messengers.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine,Miami, FL 33136, USA
| | | | | | | |
Collapse
|