151
|
Expression dynamics of Mage family genes during self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Oncotarget 2019; 10:3248-3266. [PMID: 31143371 PMCID: PMC6524934 DOI: 10.18632/oncotarget.26933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
The biological roles of cancer-testis antigens of the Melanoma antigen (Mage) family in mammalian development, stem cell differentiation and carcinogenesis are largely unknown. In order to understand the involvement of the Mage family genes in maintenance of normal and cancer stem cells, the expression patterns of Mage-a, Mage-b, Mage-d, Mage-e, Mage-h and Mage-l gene subfamilies were analyzed during the self-renewal and differentiation of mouse pluripotent stem and teratocarcinoma cells. Clustering analysis based on the gene expression profiles of undifferentiated and differentiating cell populations revealed strong correlations between Mage expression patterns and differentiation and malignant states. Gene co-expression analysis disclosed the potential contributions of Mage family members in self-renewal and differentiation of pluripotent stem and teratocarcinoma cells. Two gene clusters including Mage-a4 and Mage-a8, Mageb1, Mage-d1, Mage-d2, Mage-e1, Mage-l2 were identified as functional antagonists with opposing roles in the regulation of proliferation and differentiation of mouse pluripotent stem and teratocarcinoma cells. The identified aberrant expression patterns of Mage-a2, Mage-a6, Mage-b4, Mageb-16 and Mage-h1 in teratocarcinoma cells can be considered as specific teratocarcinoma biomarkers promoted the malignant phenotype. Our study first provides a model for the involvement of Mage family members in regulatory networks during the self-renewal and early differentiation of normal and cancerous stem cells for further research of the predicted functional modules and the development of new cancer treatment strategies.
Collapse
|
152
|
Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, Ravichandran R, Tillman H, Kim M, Connelly JP, Pruett-Miller SM, Bookout AL, Binshtock E, Kamiński MM, Potts PR. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. SCIENCE ADVANCES 2019; 5:eaav4832. [PMID: 31149633 PMCID: PMC6541465 DOI: 10.1126/sciadv.aav4832] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/17/2019] [Indexed: 05/17/2023]
Abstract
Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.org) but are often aberrantly activated in cancer. Depletion of Mage-a genes disrupts spermatogonial stem cell maintenance and impairs repopulation efficiency in vivo. Exposure of Mage-a knockout mice to genotoxic stress or long-term starvation that mimics famine in nature causes defects in spermatogenesis, decreased testis weights, diminished sperm production, and reduced fertility. Last, human MAGE-As are activated in many cancers where they promote fuel switching and growth of cells. These results suggest that mammalian-specific MAGE genes have evolved to protect the male germline against environmental stress, ensure reproductive success under non-optimal conditions, and are hijacked by cancer cells.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marhiah C. Montoya
- Clinical & Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Departments of Pediatrics, Microbiology and Immunology, Carver College of Medicine, University of Iowa, IA, USA
| | - Melissa J. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tessa Lord
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jonathon Klein
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ramya Ravichandran
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Tillman
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - MinSoo Kim
- Departments of Internal Medicine and Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Angie L. Bookout
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emily Binshtock
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kamiński
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Ryan Potts
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Corresponding author.
| |
Collapse
|
153
|
Stevens RV, Esposito D, Rittinger K. Characterisation of class VI TRIM RING domains: linking RING activity to C-terminal domain identity. Life Sci Alliance 2019; 2:2/3/e201900295. [PMID: 31028095 PMCID: PMC6487577 DOI: 10.26508/lsa.201900295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
TRIM E3 ubiquitin ligases regulate multiple cellular processes, and their dysfunction is linked to disease. They are characterised by a conserved N-terminal tripartite motif comprising a RING, B-box domains, and a coiled-coil region, with C-terminal domains often mediating substrate recruitment. TRIM proteins are grouped into 11 classes based on C-terminal domain identity. Class VI TRIMs, TRIM24, TRIM33, and TRIM28, have been described as transcriptional regulators, a function linked to their C-terminal plant homeodomain and bromodomain, and independent of their ubiquitination activity. It is unclear whether E3 ligase activity is regulated in family members where the C-terminal domains function independently. Here, we provide a detailed biochemical characterisation of the RING domains of class VI TRIMs and describe the solution structure of the TRIM28 RING. Our study reveals a lack of activity of the isolated RING domains, which may be linked to the absence of self-association. We propose that class VI TRIMs exist in an inactive state and require additional regulatory events to stimulate E3 ligase activity, ensuring that associated chromatin-remodelling factors are not injudiciously degraded.
Collapse
Affiliation(s)
- Rebecca V Stevens
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
154
|
Sharma A, Albahrani M, Zhang W, Kufel CN, James SR, Odunsi K, Klinkebiel D, Karpf AR. Epigenetic activation of POTE genes in ovarian cancer. Epigenetics 2019; 14:185-197. [PMID: 30764732 DOI: 10.1080/15592294.2019.1581590] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The POTE gene family consists of 14 homologous genes localized to autosomal pericentromeres, and a sub-set of POTEs are cancer-testis antigen (CTA) genes. POTEs are over-expressed in epithelial ovarian cancer (EOC), including the high-grade serous subtype (HGSC), and expression of individual POTEs correlates with chemoresistance and reduced survival in HGSC. The mechanisms driving POTE overexpression in EOC and other cancers is unknown. Here, we investigated the role of epigenetics in regulating POTE expression, with a focus on DNA hypomethylation. Consistent with their pericentromeric localization, Pan-POTE expression in EOC correlated with expression of the pericentromeric repeat NBL2, which was not the case for non-pericentromeric CTAs. POTE genomic regions contain LINE-1 (L1) sequences, and Pan-POTE expression correlated with both global and POTE-specific L1 hypomethylation in EOC. Analysis of individual POTEs using RNA-seq and DNA methylome data from fallopian tube epithelia (FTE) and HGSC revealed that POTEs C, E, and F have increased expression in HGSC in conjunction with DNA hypomethylation at 5' promoter or enhancer regions. Moreover, POTEs C/E/F showed additional increased expression in recurrent HGSC in conjunction with 5' hypomethylation, using patient-matched samples. Experiments using decitabine treatment and DNMT knockout cell lines verified a functional contribution of DNA methylation to POTE repression, and epigenetic drug combinations targeting histone deacetylases (HDACs) and histone methyltransferases (HMTs) in combination with decitabine further increased POTE expression. In summary, several alterations of the cancer epigenome, including pericentromeric activation, global and locus-specific L1 hypomethylation, and locus-specific 5' CpG hypomethylation, converge to promote POTE expression in ovarian cancer.
Collapse
Affiliation(s)
- Ashok Sharma
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Mustafa Albahrani
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Wa Zhang
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA
| | - Christina N Kufel
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Smitha R James
- c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - Kunle Odunsi
- d Department of Immunology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,e Department of Gynecologic Oncology , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA.,f Center for Immunotherapy , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| | - David Klinkebiel
- b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,g Department of Biochemistry and Molecular Biology , University of Nebraska Medical Center , Omaha , NE , USA
| | - Adam R Karpf
- a Eppley Institute , University of Nebraska Medical Center , Omaha , NE , USA.,b Fred & Pamela Buffett Cancer Center , University of Nebraska Medical Center , Omaha , NE , USA.,c Department of Pharmacology and Therapeutics , Roswell Park Comprehensive Cancer Center , Buffalo , NY , USA
| |
Collapse
|
155
|
Kakimoto T, Matsumine A, Kageyama S, Asanuma K, Matsubara T, Nakamura T, Iino T, Ikeda H, Shiku H, Sudo A. Immunohistochemical expression and clinicopathological assessment of the cancer testis antigens NY-ESO-1 and MAGE-A4 in high-grade soft-tissue sarcoma. Oncol Lett 2019; 17:3937-3943. [PMID: 30881511 DOI: 10.3892/ol.2019.10044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to explore the expression of the cancer testis antigens New York-esophageal squamous cell carcinoma (NY-ESO)-1 and melanoma-associated antigen (MAGE)-A4 in high-grade soft-tissue sarcoma and to evaluate their association with the standard clinical-pathological features of surgically treated high-grade sarcoma patients. The study included 82 patients, and NY-ESO-1 and MAGE-A4 antigen expression was analyzed immunohistochemically. The results revealed NY-ESO-1- and MAGE-A4-positive staining in 58.8 and 52.9% of synovial sarcomas, and 55.6 and 0% of myxoid liposarcomas, respectively. In patients with synovial sarcoma, NY-ESO-1 and MAGE-A4 were expressed in 7 patients, only NY-ESO-1 was expressed in 3 patients, and only MAGE-A4 was expressed in 2 patients. Univariate analysis indicated that a significantly higher MAGE-A4 expression was observed in younger patients (P<0.001) and those with synovial sarcoma (P<0.001). Multivariate analysis indicated that significantly higher NY-ESO-1 expression was observed in patients with synovial sarcoma (P<0.01) and myxoid liposarcoma (P<0.01), and significantly higher MAGE-A4 expression was observed in patients with synovial sarcoma (P<0.01). In high-grade sarcomas, the 2- and 5-year overall survival rates based on Kaplan-Meier estimates were 100 and 81.3% in the NY-ESO-1-positive group, and 69.7 and 53.0% in the NY-ESO-1-negative group, respectively (P=0.049). It was also demonstrated that either NY-ESO-1 or MAGE-A4 was positive in 70.6% of synovial sarcomas. These results indicate that NY-ESO-1 and MAGE-A4 may be useful for the diagnosis of synovial sarcoma. The independent expression of NY-ESO-1 and MAGE-A4, which may help expand the pool of candidates for molecular-targeted immunotherapy, will be beneficial for synovial sarcoma patients.
Collapse
Affiliation(s)
- Takuya Kakimoto
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiko Matsumine
- Department of Orthopedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinichi Kageyama
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takao Matsubara
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Takahiro Iino
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| |
Collapse
|
156
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
157
|
Fanipakdel A, Seilanian Toussi M, Rezazadeh F, Mohamadian Roshan N, Javadinia SA. Overexpression of cancer‐testis antigen melanoma‐associated antigen A1 in lung cancer: A novel biomarker for prognosis, and a possible target for immunotherapy. J Cell Physiol 2018; 234:12080-12086. [DOI: 10.1002/jcp.27884] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Faezeh Rezazadeh
- Science and Research Branch of Islamic Azad University Tehran Iran
| | - Nema Mohamadian Roshan
- Department of Pathology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Alireza Javadinia
- Student Research Committee, Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
158
|
Duperret EK, Liu S, Paik M, Trautz A, Stoltz R, Liu X, Ze K, Perales-Puchalt A, Reed C, Yan J, Xu X, Weiner DB. A Designer Cross-reactive DNA Immunotherapeutic Vaccine that Targets Multiple MAGE-A Family Members Simultaneously for Cancer Therapy. Clin Cancer Res 2018; 24:6015-6027. [PMID: 30262507 PMCID: PMC6319943 DOI: 10.1158/1078-0432.ccr-18-1013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/13/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE Cancer/testis antigens have emerged as attractive targets for cancer immunotherapy. Clinical studies have targeted MAGE-A3, a prototype antigen that is a member of the MAGE-A family of antigens, in melanoma and lung carcinoma. However, these studies have not yet had a significant impact due to poor CD8+ T-cell immunogenicity, platform toxicity, or perhaps limited target antigen availability. In this study, we develop an improved MAGE-A immunogen with cross-reactivity to multiple family members. EXPERIMENTAL DESIGN In this study, we analyzed MAGE-A expression in The Cancer Genome Atlas and observed that many patients express multiple MAGE-A isoforms, not limited to MAGE-A3, simultaneously in diverse tumors. On the basis of this, we designed an optimized consensus MAGE-A DNA vaccine capable of cross-reacting with many MAGE-A isoforms, and tested immunogenicity and antitumor activity of this vaccine in a relevant autochthonous melanoma model. RESULTS Immunization of this MAGE-A vaccine by electroporation in C57Bl/6 mice generated robust IFNγ and TNFα CD8+ T-cell responses as well as cytotoxic CD107a/IFNγ/T-bet triple-positive responses against multiple isoforms. Furthermore, this MAGE-A DNA immunogen generated a cross-reactive immune response in 14 of 15 genetically diverse, outbred mice. We tested the antitumor activity of this MAGE-A DNA vaccine in Tyr::CreER;BRAFCa/+;Ptenlox/lox transgenic mice that develop melanoma upon tamoxifen induction. The MAGE-A DNA therapeutic vaccine significantly slowed tumor growth and doubled median mouse survival. CONCLUSIONS These results support the clinical use of consensus MAGE-A immunogens with the capacity to target multiple MAGE-A family members to prevent tumor immune escape.
Collapse
Affiliation(s)
| | - Shujing Liu
- The University of Pennsylvania Department of Pathology and Laboratory Medicine, Philadelphia PA
| | - Megan Paik
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA
| | - Aspen Trautz
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA
| | - Regina Stoltz
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA
| | - Xiaoming Liu
- The University of Pennsylvania Department of Pathology and Laboratory Medicine, Philadelphia PA
| | - Kan Ze
- The University of Pennsylvania Department of Pathology and Laboratory Medicine, Philadelphia PA
| | | | | | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA
| | - Xiaowei Xu
- The University of Pennsylvania Department of Pathology and Laboratory Medicine, Philadelphia PA
| | - David B. Weiner
- The Wistar Institute, Vaccine & Immunotherapy Center, Philadelphia PA,Corresponding author: David B. Weiner, Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104,
| |
Collapse
|
159
|
Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun 2018; 9:5007. [PMID: 30479348 PMCID: PMC6258673 DOI: 10.1038/s41467-018-07475-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
TRIM24 is an effector substrate of the E3 ubiquitin ligase adaptor SPOP and becomes stabilized in prostate cancer (PCa) with SPOP mutations. However, how TRIM24 protein is regulated in the vast majority of SPOP-wildtype PCa is unknown. Here we report TRIM28 as a critical upstream regulator of TRIM24. TRIM28 protein interacts with TRIM24 to prevent its ubiquitination and degradation by SPOP. Further, TRIM28 facilitates TRIM24 occupancy on the chromatin and, like TRIM24, augments AR signaling. TRIM28 promotes PCa cell proliferation in vitro and xenograft tumor growth in vivo. Importantly, TRIM28 is upregulated in aggressive PCa and associated with elevated levels of TRIM24 and worse clinical outcome. TRIM24 and AR coactivated gene signature of SPOP-mutant PCa is similarly activated in human PCa with high TRIM28 expression. Taken together, this study provides a novel mechanism to broad TRIM24 protein stabilization and establishes TRIM28 as a promising therapeutic target. TRIM24 is stabilized in SPOP-mutated prostate cancers, but the regulation of TRIM24 in wild-type prostate cancers is unknown. Here, the authors show that TRIM28 interacts with TRIM24 to prevent SPOP-mediated ubiquitination of TRIM24 and enhances TRIM24 and AR signaling to induce prostate cancer tumorigenesis.
Collapse
Affiliation(s)
- Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bing Song
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bin Zheng
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
160
|
Wang Q, Tang J, Jiang S, Huang Z, Song A, Hou S, Gao X, Ruan HB. Inhibition of PPARγ, adipogenesis and insulin sensitivity by MAGED1. J Endocrinol 2018; 239:167-180. [PMID: 30121577 DOI: 10.1530/joe-18-0349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis and a target of the thiazolidinedione (TZD) class of antidiabetic drugs; therefore, identifying novel regulators of PPARγ action in adipocytes is essential for the future development of therapeutics for diabetes. MAGE family member D1 (MAGED1), by acting as an adaptor for ubiquitin-dependent degradation pathways and a co-factor for transcription, plays an important role in neural development, cell differentiation and circadian rhythm. Here, we showed that MAGED1 expression was downregulated during adipogenesis and loss of MAGED1 promoted preadipocyte proliferation and differentiation in vitro. MAGED1 bound to PPARγ and suppressed the stability and transcriptional activity of PPARγ. Compared to WT littermates, MAGED1-deficient mice showed increased levels of PPARγ protein and its target genes, more CD29+CD34+Sca-1+ adipocyte precursors and hyperplasia of white adipose tissues (WATs). Moreover, MAGED1-deficient mice developed late-onset obesity as a result of decreased energy expenditure and physical activity. However, these mice were metabolically healthy as shown by improved glucose clearance and insulin sensitivity, normal levels of serum lipids and enhanced secretion of adipokines such as leptin and adiponectin. Taken together, our data identify MAGED1 as a novel negative regulator of PPARγ activity, adipogenesis and insulin sensitivity in mice. MAGED1 might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, China
| | - Jing Tang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zan Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
161
|
PJA1 Coordinates with the SMC5/6 Complex To Restrict DNA Viruses and Episomal Genes in an Interferon-Independent Manner. J Virol 2018; 92:JVI.00825-18. [PMID: 30185588 PMCID: PMC6206484 DOI: 10.1128/jvi.00825-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases. Viral and episomal DNAs, as signs of infections and dangers, induce a series of immune responses in the host, and cells must sense foreign DNAs to eliminate the invaders. The cell nucleus is not “immune privileged” and exerts intrinsic mechanisms to control nuclear-replicating DNA viruses. Thus, it is important to understand the action of viral DNA sensing in the cell nucleus. Here, we reveal a mechanism of restriction of DNA viruses and episomal plasmids mediated by PJA1, a RING-H2 E3 ubiquitin ligase. PJA1 restricts the DNA viruses hepatitis B virus (HBV) and herpes simplex virus 1 (HSV-1) but not the RNA viruses enterovirus 71 (EV71) and vesicular stomatitis virus (VSV). Similarly, PJA1 inhibits episomal plasmids but not chromosome-integrated reporters or endogenous genes. In addition, PJA1 has no effect on endogenous type I and II interferons (IFNs) and interferon-stimulated genes (ISGs), suggesting that PJA1 silences DNA viruses independent of the IFN pathways. Interestingly, PJA1 interacts with the SMC5/6 complex (a complex essential for chromosome maintenance and HBV restriction) to facilitate the binding of the complex to viral and episomal DNAs in the cell nucleus. Moreover, treatment with inhibitors of DNA topoisomerases (Tops) and knockdown of Tops release PJA1-mediated silencing of viral and extrachromosomal DNAs. Taken together, results of this work demonstrate that PJA1 interacts with SMC5/6 and facilitates the complex to bind and eliminate viral and episomal DNAs through DNA Tops and thus reveal a distinct mechanism underlying restriction of DNA viruses and foreign genes in the cell nucleus. IMPORTANCE DNA viruses, including hepatitis B virus and herpes simplex virus, induce a series of immune responses in the host and lead to human public health concerns worldwide. In addition to cytokines in the cytoplasm, restriction of viral DNA in the nucleus is an important approach of host immunity. However, the mechanism of foreign DNA recognition and restriction in the cell nucleus is largely unknown. This work demonstrates that an important cellular factor (PJA1) suppresses DNA viruses and transfected plasmids independent of type I and II interferon (IFN) pathways. Instead, PJA1 interacts with the chromosome maintenance complex (SMC5/6), facilitates the complex to recognize and bind viral and episomal DNAs, and recruits DNA topoisomerases to restrict the foreign molecules. These results reveal a distinct mechanism underlying the silencing of viral and episomal invaders in the cell nuclei and suggest that PJA1 acts as a potential agent to prevent infectious and inflammatory diseases.
Collapse
|
162
|
Tumor suppressive miR-6775-3p inhibits ESCC progression through forming a positive feedback loop with p53 via MAGE-A family proteins. Cell Death Dis 2018; 9:1057. [PMID: 30333480 PMCID: PMC6193014 DOI: 10.1038/s41419-018-1119-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Accumulating evidences indicate that microRNAs (miRNAs) play vital roles in multiple diseases, including cancer. In the present study, we showed that miR-6775-3p plays a tumor suppressive role in esophageal squamous cell carcinoma (ESCC). High expression miR-6775-3p is associated with good clinical outcomes of ESCC patients. Over-expression of miR-6775-3p inhibited tumor growth and liver metastasis of ESCC xenograft tumors. Enforced expression of miR-6775-3p inhibited ESCC cell proliferation, migration, and invasion. KEGG pathway analysis revealed that miR-6775-3p was associated with the genes on “pathway in cancer”. Mechanically, miR-6775-3p inhibited the expression of tumor antigens MAGE-A family through direct binding the 3′UTR region of MAGE-A mRNAs, and attenuated MAGE-A-inhibited transcriptional activity of tumor suppressor p53. In addition, miR-6775-3p also directly inhibits its host gene SLC7A5 which has been reported to play oncogenic roles in cancer progression. Interestingly, miR-6775-3p and its host gene SLC7A5 were directly transcriptionally induced by p53. Thus, for the first time, our study proposed a novel positive feedback regulation between miR-6775-3p and p53 via MAGE-A family, which plays crucial role in ESCC progression.
Collapse
|
163
|
Song X, Guo C, Zheng Y, Wang Y, Jin Z, Yin Y. Post-transcriptional regulation of cancer/testis antigen MAGEC2 expression by TRIM28 in tumor cells. BMC Cancer 2018; 18:971. [PMID: 30309319 PMCID: PMC6182782 DOI: 10.1186/s12885-018-4844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer/testis antigen MAGEC2 (also known as HCA587) is highly expressed in a wide variety of tumors and plays an active role in promoting growth and metastasis of tumor cells. However, little is known for the regulation of MAGEC2 expression in cancer cells. METHODS Western blotting and quantitative RT-PCR were performed to analyze MAGEC2 expression. Co-immunoprecipitation assay was applied for detecting the endogenous interaction of MAGEC2 and TRIM28 in tumor cells. Overexpression and knockdown assays were used to examine the effects of TRIM28 on the expression of MAGEC2 protein. Immunohistochemistry (IHC) staining was performed in hepatocellular carcinoma patients to evaluate the association between the expression of MAGEC2 and TRIM28. Proteasome inhibitors MG132 or PS-341 and lysosome inhibitor Chloroquine (CQ) were used to inhibit proteasomal or lysosomal-mediated protein degradation respectively. RESULTS We demonstrate that MAGEC2 interacts with TRIM28 in melanoma cells and MAGEC2 expression in tumor cells depends on the expression of TRIM28. The expression level of MAGEC2 protein was significantly reduced when TRIM28 was depleted in tumor cells, and no changes were observed in MAGEC2 mRNA level. Furthermore, expression levels of MAGEC2 and TRIM28 are positively correlated in MAGEC2-positive human hepatocellular carcinoma tissues (p = 0.0011). Mechanistic studies indicate that the regulatory role of TRIM28 on MAGEC2 protein expression in tumor cells depends on proteasome-mediated pathway. CONCLUSIONS Our findings show that TRIM28 is necessary for MAGEC2 expression in cancer cells, and TRIM28 may serve as a new potential target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Chengli Guo
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China
| | - Zhongtian Jin
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing, 100191, China.
| |
Collapse
|
164
|
Hwang G, Verver DE, Handel MA, Hamer G, Jordan PW. Depletion of SMC5/6 sensitizes male germ cells to DNA damage. Mol Biol Cell 2018; 29:3003-3016. [PMID: 30281394 PMCID: PMC6333175 DOI: 10.1091/mbc.e18-07-0459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The structural maintenance of chromosomes complex SMC5/6 is thought to be essential for DNA repair and chromosome segregation during mitosis and meiosis. To determine the requirements of the SMC5/6 complex during mouse spermatogenesis we combined a conditional knockout allele for Smc5, with four germ cell–specific Cre-recombinase transgenes, Ddx4-Cre, Stra8-Cre, Spo11-Cre, and Hspa2-Cre, to mutate Smc5 in spermatogonia, in spermatocytes before meiotic entry, during early meiotic stages, and during midmeiotic stages, respectively. Conditional mutation of Smc5 resulted in destabilization of the SMC5/6 complex. Despite this, we observed only mild defects in spermatogenesis. Mutation of Smc5 mediated by Ddx4-Cre and Stra8-Cre resulted in partial loss of preleptotene spermatocytes; however, spermatogenesis progresses and mice are fertile. Mutation of Smc5 via Spo11-Cre or Hspa2-Cre did not result in detectable defects of spermatogenesis. Upon exposure to gamma irradiation or etoposide treatment, each conditional Smc5 mutant demonstrated an increase in the number of enlarged round spermatids with multiple acrosomes and supernumerary chromosome content. We propose that the SMC5/6 complex is not acutely required for premeiotic DNA replication and meiotic progression during mouse spermatogenesis; however, when germ cells are challenged by exogenous DNA damage, the SMC5/6 complex ensures genome integrity, and thus, fertility.
Collapse
Affiliation(s)
- G Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - D E Verver
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - M A Handel
- The Jackson Laboratory, Bar Harbor, ME 04609
| | - G Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - P W Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
165
|
miR-1273g silences MAGEA3/6 to inhibit human colorectal cancer cell growth via activation of AMPK signaling. Cancer Lett 2018; 435:1-9. [DOI: 10.1016/j.canlet.2018.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
|
166
|
Gibbs ZA, Whitehurst AW. Emerging Contributions of Cancer/Testis Antigens to Neoplastic Behaviors. Trends Cancer 2018; 4:701-712. [PMID: 30292353 DOI: 10.1016/j.trecan.2018.08.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Tumors of nearly every origin activate the expression of genes normally restricted to gametogenic cells. These genes encode proteins termed cancer/testis (CT) antigens, since expression outside of their naturally immune-privileged site can evoke an immune response. Despite extensive efforts to exploit CT antigens as immunotherapeutic targets, investigation of whether these proteins participate in tumorigenic processes has lagged. Here, we discuss emerging evidence that demonstrates that CT antigens can confer a selective advantage to tumor cells by promoting oncogenic processes or permitting evasion of tumor-suppressive mechanisms. These advances indicate the inherent flexibility of tumor cell regulatory networks to engage aberrantly expressed proteins to promote neoplastic behaviors, which could ultimately present novel therapeutic entry points.
Collapse
Affiliation(s)
- Zane A Gibbs
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Angelique W Whitehurst
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
167
|
Shires K, Van Wyk T. The role of Cancer/Testis Antigens in Multiple Myeloma pathogenesis and their application in disease monitoring and therapy. Crit Rev Oncol Hematol 2018; 132:17-26. [PMID: 30447924 DOI: 10.1016/j.critrevonc.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
A unique group of genes, encoding tumour associated antigens, known as the Cancer/Testis Antigens (CTAs), have been explored as novel markers of disease progression and as targets of immunotherapy in several cancers, including the haematological malignancy Multiple Myeloma (MM). This review aims to update the knowledge of CTA involvement in MM pathogenesis and how their potential as biomarkers for disease monitoring and targets of immunotherapy has been explored in the MM disease arena. Despite the initial promise of these antigens, their use as immunotherapy targets has not been successful, yet with a greater understanding of their role in disease pathogenesis they may still have a significant role to play as biomarkers of disease and therapeutic targets.
Collapse
Affiliation(s)
- Karen Shires
- Division of Haematology, Department of Pathology, University of Cape Town and National Health Laboratory Service/Groote Schuur Hospital, Cape Town, South Africa.
| | - Teagan Van Wyk
- Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
168
|
Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics 2018; 10:115. [PMID: 30185218 PMCID: PMC6126015 DOI: 10.1186/s13148-018-0550-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
The melanoma antigen gene (MAGE) proteins are a group of highly conserved family members that contain a common MAGE homology domain. Type I MAGEs are relevant cancer-testis antigens (CTAs), and originally considered as attractive targets for cancer immunotherapy due to their typically high expression in tumor tissues but restricted expression in normal adult tissues. Here, we reviewed the recent discoveries and ideas that illustrate the biological functions of MAGE family in cancer progression. Furthermore, we also highlighted the current understanding of the epigenetic mechanism of MAGE family expression in human cancers.
Collapse
|
169
|
Tang SL, Gao YL, Hu WZ. Retracted Article: TRIM22 functions as an oncogene in gliomas through regulating the Wnt/β-catenin signaling pathway. RSC Adv 2018; 8:30894-30901. [PMID: 35548737 PMCID: PMC9085489 DOI: 10.1039/c8ra05684f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
The tripartite motif-containing (TRIM) family is a group of proteins that are implicated in a plethora of pathological conditions. TRIM22 has been found to be involved in various cancers; however, the role of TRIM22 in gliomas has not been reported. The present study aimed to evaluate the expression pattern of TRIM22 and its function in gliomas. TRIM22 expressions in glioma tissues and cell lines were measured by RT-PCR and western blot analysis. To knockdown TRIM22 by small hairpin RNAs (shTRIM22), the U118 cells were transfected with pLKO.1-shTRIM22 plasmid or pLKO.1 plasmid. Cell proliferation was measured using CCK-8 assay. Transwell assays were performed to evaluate the migration and invasion. The epithelial-mesenchymal transition (EMT) was assessed by detecting the expressions of E-cadherin, N-cadherin and vimentin with western blot analysis. A xenograft mouse model was established to evaluate the effect of TRIM22 silencing on tumor growth in vivo. The expressions of β-catenin, cyclin D1, and c-Myc were analyzed by western blot analysis. TRIM22 was significantly overexpressed in glioma tissues and cell lines. In vitro studies demonstrated that TRIM22 knockdown inhibited cell proliferation, migration, and invasion. Additionally, TRIM22 silencing increased the expressions of E-cadherin, and decreased the expressions of N-cadherin and vimentin. Nude mouse xenograft assay showed that TRIM22 silencing inhibited tumor growth in vivo. Furthermore, silencing of TRIM22 inhibited the activation of the Wnt/β-catenin pathway. Treatment with LiCl, an activator of the Wnt/β-catenin pathway, attenuated the effects of shTRIM22 on U118 cells. Silencing of TRIM22 inhibited proliferation, migration and invasion, as well as repressing the EMT process in glioma cells. The Wnt/β-catenin pathway was involved in the effect of TRIM22.
Collapse
Affiliation(s)
- Shi-Lei Tang
- Department of Neurosurgery, Huaihe Hospital of Henan University No. 8 Baobei Road Kaifeng 475000 Henan Province China +86-0371-23906516 +86-0371-23906516
| | - Yuan-Lin Gao
- Department of Neurology, Kaifeng Central Hospital Kaifeng 475000 Henan Province China
| | - Wen-Zhong Hu
- Department of Neurosurgery, Huaihe Hospital of Henan University No. 8 Baobei Road Kaifeng 475000 Henan Province China +86-0371-23906516 +86-0371-23906516
| |
Collapse
|
170
|
Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol 2018; 53:75-89. [PMID: 30171980 DOI: 10.1016/j.semcancer.2018.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer-testis antigens (CTAs) are considered as unique and promising cancer biomarkers and targets for cancer therapy. CTAs are multifunctional protein group with specific expression patterns in normal embryonic and adult cells and various types of cancer cells. CTAs are involved in regulating of the basic cellular processes during development, stem cell differentiation and carcinogenesis though the biological roles and cell functions of CTA families remain largely unclear. Analysis of CTA expression patterns in embryonic germ and somatic cells, pluripotent and multipotent stem cells, cancer stem cells and their cell descendants indicates that rearrangements of characteristic CTA profiles (aberrant expression) could be associated with cancer transformation and failure of the developmental program of cell lineage specification and germ line restriction. Therefore, aberrant CTA profiles can be used as panels of biomarkers for diagnoses and the selection of cancer treatment strategies. Moreover, immunogenic CTAs are prospective targets for cancer immunotherapy. Clinical trials testing broad range of cancer therapeutic vaccines against antigens of MAGEA and NY-ESO-1 families for treating various cancers have shown mixed clinical efficiency, safety and tolerability, suggesting the requirement of in-depth research of CTA expression in normal and cancer stem cells and extensive clinical trials for improving cancer immunotherapy technologies. This review focuses on recent advancement in study of CTAs in normal and cancer cells, particularly in normal and cancer stem cells, and provides a new insight into CTA expression patterns during normal and cancer stem cell lineage development. Additionally, new approaches in development of effective CTA-based therapies exclusively targeting cancer stem cells will be discussed.
Collapse
Affiliation(s)
- Olga Gordeeva
- Laboratory of Cell and Molecular Mechanisms of Histogenesis, Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
171
|
Li W, Hong R, Lai LT, Dong Q, Ni P, Chelliah R, Huq M, Ismail SNB, Chandola U, Ang Z, Lin B, Chen X, Chen L, Zhang LF. Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. J Mol Biol 2018; 430:2734-2746. [DOI: 10.1016/j.jmb.2018.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
172
|
Buneeva O, Kopylov A, Kapitsa I, Ivanova E, Zgoda V, Medvedev A. The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins. Cells 2018; 7:E91. [PMID: 30065189 PMCID: PMC6115780 DOI: 10.3390/cells7080091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are a crucial target for the actions of neurotoxins, causing symptoms of Parkinson's disease in various experimental animal models, and also neuroprotectors. There is evidence that mitochondrial dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) influences functioning of the ubiquitin-proteasomal system (UPS) responsible for selective proteolytic degradation of proteins from various intracellular compartments (including mitochondria) and neuroprotective effects of certain anti-Parkisonian agents (monoamine oxidase inhibitors) may be associated with their effects on the UPS. In this study, we have investigated the effect of the neurotoxin MPTP and neuroprotector isatin, and their combination on the profile of ubiquitinated brain mitochondrial proteins. The development of movement disorders induced by MPTP administration caused dramatic changes in the profile of ubiquitinated proteins associated with mitochondria. Pretreatment with the neuroprotector isatin decreased manifestations of MPTP-induced Parkinsonism, and had a significant impact on the profile of ubiquitinated mitochondrial proteins (including oxidative modified proteins). Administration of isatin alone to intact mice also influenced the profile of ubiquitinated mitochondrial proteins, and increased the proportion of oxidized proteins carrying the ubiquitination signature. These alterations in the ubiquitination of mitochondrial proteins observed within 2 h after administration of MPTP and isatin obviously reflect immediate short-term biological responses to these treatments.
Collapse
Affiliation(s)
- Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Inga Kapitsa
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Elena Ivanova
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Victor Zgoda
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| |
Collapse
|
173
|
TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ 2018; 26:902-917. [PMID: 30042493 DOI: 10.1038/s41418-018-0169-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/20/2023] Open
Abstract
BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.
Collapse
|
174
|
Sang M, Meng L, Sang Y, Liu S, Ding P, Ju Y, Liu F, Gu L, Lian Y, Li J, Wu Y, Zhang X, Shan B. Circular RNA ciRS-7 accelerates ESCC progression through acting as a miR-876-5p sponge to enhance MAGE-A family expression. Cancer Lett 2018; 426:37-46. [DOI: 10.1016/j.canlet.2018.03.049] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 01/18/2023]
|
175
|
Abstract
Drug transporter proteins are critical to the distribution of a wide range of endogenous compounds and xenobiotics such as hormones, bile acids, peptides, lipids, sugars, and drugs. There are two classes of drug transporters- the solute carrier (SLC) transporters and ATP-binding cassette (ABC) transporters -which predominantly differ in the energy source utilized to transport substrates across a membrane barrier. Despite their hydrophobic nature and residence in the membrane bilayer, drug transporters have dynamic structures and adopt many conformations during the translocation process. Whereas there is significant literature evidence for the substrate specificity and structure-function relationship for clinically relevant drug transporters proteins, there is less of an understanding in the regulatory mechanisms that contribute to the functional expression of these proteins. Post-translational modifications have been shown to modulate drug transporter functional expression via a wide range of molecular mechanisms. These modifications commonly occur through the addition of a functional group (e.g. phosphorylation), a small protein (e.g. ubiquitination), sugar chains (e.g. glycosylation), or lipids (e.g. palmitoylation) on solvent accessible amino acid residues. These covalent additions often occur as a result of a signaling cascade and may be reversible depending on the type of modification and the intended fate of the signaling event. Here, we review the significant role in which post-translational modifications contribute to the dynamic regulation and functional consequences of SLC and ABC drug transporters and highlight recent progress in understanding their roles in transporter structure, function, and regulation.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA
| | | | - Peter W Swaan
- Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA.
| |
Collapse
|
176
|
Jeong J, Jin S, Choi H, Kwon JT, Kim J, Kim J, Park ZY, Cho C. Characterization of MAGEG2 with testis-specific expression in mice. Asian J Androl 2018; 19:659-665. [PMID: 27852984 PMCID: PMC5676425 DOI: 10.4103/1008-682x.192033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Male germ cell development is a well-defined process occurring in numerous seminiferous tubules of the testis. Uncovering testicular novel genes related to intrinsic regulation of spermatogenesis is essential for the understanding of spermatogenesis. In the present study, we investigated mouse Mageg2, which belongs to a group of melanoma-associated antigens (MAGEs). Mageg2 is transcribed in the testis specifically, and its expression level is increased at the pachytene spermatocyte stage, indicating that Mageg2 is expressed predominantly in germ cells. We generated an antibody against mouse MAGEG2 for further characterization at the protein level. Immunoblot analysis suggested that MAGEG2 has specific testicular expression and the expression primarily occurred in pachytene spermatocytes. Proteomic analyses demonstrated that mouse MAGEG2 binded to testicular germ cell-specific serine/threonine-protein kinase 31 (STK31) and heat shock protein 9 (HSPA9). Direct binding with both interaction partners was confirmed by co-immunoprecipitation. We found that STK31 and HSPA9 bind MAGEG2 directly but not with each other. Interestingly, MAGEG2 reduced the kinase activity of STK31. Our study suggests that mouse MAGEG2 has at least two functions, including chaperone activity related to HSPA9 and regulation of pachytene spermatocyte-specific kinase, STK31. Altogether, our results provide the first information about MAGEG2 at the transcript and protein levels and suggest its potential molecular functions.
Collapse
Affiliation(s)
- Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Sora Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Heejin Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
177
|
LNX1/LNX2 proteins: functions in neuronal signalling and beyond. Neuronal Signal 2018; 2:NS20170191. [PMID: 32714586 PMCID: PMC7373230 DOI: 10.1042/ns20170191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Ligand of NUMB Protein X1 and X2 (LNX1 and LNX2) are E3 ubiquitin ligases, named for their ability to interact with and promote the degradation of the cell fate determinant protein NUMB. On this basis they are thought to play a role in modulating NUMB/NOTCH signalling during processes such as cortical neurogenesis. However, LNX1/2 proteins can bind, via their four PDZ (PSD95, DLGA, ZO-1) domains, to an extraordinarily large number of other proteins besides NUMB. Many of these interactions suggest additional roles for LNX1/2 proteins in the nervous system in areas such as synapse formation, neurotransmission and regulating neuroglial function. Twenty years on from their initial discovery, I discuss here the putative neuronal functions of LNX1/2 proteins in light of the anxiety-related phenotype of double knockout mice lacking LNX1 and LNX2 in the central nervous system (CNS). I also review what is known about non-neuronal roles of LNX1/2 proteins, including their roles in embryonic patterning and pancreas development in zebrafish and their possible involvement in colorectal cancer (CRC), osteoclast differentiation and immune function in mammals. The emerging picture places LNX1/2 proteins as potential regulators of multiple cellular signalling processes, but in many cases the physiological significance of such roles remains only partly validated and needs to be considered in the context of the tight control of LNX1/2 protein levels in vivo.
Collapse
|
178
|
Schooten E, Di Maggio A, van Bergen en Henegouwen PM, Kijanka MM. MAGE-A antigens as targets for cancer immunotherapy. Cancer Treat Rev 2018; 67:54-62. [DOI: 10.1016/j.ctrv.2018.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
|
179
|
Õunap K, Kurg K, Võsa L, Maiväli Ü, Teras M, Planken A, Ustav M, Kurg R. Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett 2018; 16:211-218. [PMID: 29928403 PMCID: PMC6006456 DOI: 10.3892/ol.2018.8684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) represent a class of tumor antigens that are expressed in a variety of malignant tumors, however, their expression in healthy normal tissues is restricted to germ cells of testis, fetal ovary and placenta. The restricted expression and immunogenicity of these antigens make them ideal targets for immunotherapy in human cancer. In the present study the presence of naturally occurring antibodies against two MAGEA subfamily proteins, MAGEA4 and MAGEA10, was analyzed in patients with melanoma at different stages of disease. Results indicated that the anti-MAGEA4/MAGEA10 immune response in melanoma patients was heterogeneous, with only ~8% of patients having a strong response. Comparing the number of strongly responding patients between different stages of disease revealed that the highest number of strong responses was detected among stage II melanoma patients. These findings support the model that the immune system is involved in the control of melanoma in the early stages of disease.
Collapse
Affiliation(s)
- Kadri Õunap
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Kristiina Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Liisi Võsa
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Marina Teras
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Anu Planken
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
180
|
Koliopoulos MG, Lethier M, van der Veen AG, Haubrich K, Hennig J, Kowalinski E, Stevens RV, Martin SR, Reis e Sousa C, Cusack S, Rittinger K. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition. Nat Commun 2018; 9:1820. [PMID: 29739942 PMCID: PMC5940772 DOI: 10.1038/s41467-018-04214-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Mathilde Lethier
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | | | - Kevin Haubrich
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva Kowalinski
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Rebecca V Stevens
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen R Martin
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Stephen Cusack
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
181
|
de Manuel M, Shiina T, Suzuki S, Dereuddre-Bosquet N, Garchon HJ, Tanaka M, Congy-Jolivet N, Aarnink A, Le Grand R, Marques-Bonet T, Blancher A. Whole genome sequencing in the search for genes associated with the control of SIV infection in the Mauritian macaque model. Sci Rep 2018; 8:7131. [PMID: 29739964 PMCID: PMC5940699 DOI: 10.1038/s41598-018-25071-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
In the Mauritian macaque experimentally inoculated with SIV, gene polymorphisms potentially associated with the plasma virus load at a set point, approximately 100 days post inoculation, were investigated. Among the 42 animals inoculated with 50 AID50 of the same strain of SIV, none of which received any preventive or curative treatment, nine individuals were selected: three with a plasma virus load (PVL) among the lowest, three with intermediate PVL values and three among the highest PVL values. The complete genomes of these nine animals were then analyzed. Initially, attention was focused on variants with a potential functional impact on protein encoding genes (non-synonymous SNPs (NS-SNPs) and splicing variants). Thus, 424 NS-SNPs possibly associated with PVL were detected. The 424 candidates SNPs were genotyped in these 42 SIV experimentally infected animals (including the nine animals subjected to whole genome sequencing). The genes containing variants most probably associated with PVL at a set time point are analyzed herein.
Collapse
Affiliation(s)
- Marc de Manuel
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Nathalie Dereuddre-Bosquet
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Henri-Jean Garchon
- Inserm U1173, Simone Veil School of Health Sciences, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
- Genetics Division, Ambroise Paré Hospital (AP-HP), Boulogne-Billancourt, France
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, Japan
| | - Nicolas Congy-Jolivet
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
- Laboratoire d'immunologie, CHU de Toulouse, France
| | - Alice Aarnink
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France
| | - Roger Le Grand
- CEA - Université Paris-Sud 11 - INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, 92265, Fontenay-aux-Roses, France
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology, UPF-CSIC, PRBB, Dr. Aiguader 88, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, ICREA, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, CRG, Barcelona Institute of Science and Technology (BIST, Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Antoine Blancher
- Laboratoire d'immunogénétique moléculaire (LIMT, EA 3034, Faculté de médecine Purpan, Université Toulouse 3 (Université Paul Sabatier, UPS), Toulouse, France.
- Laboratoire d'immunologie, CHU de Toulouse, France.
| |
Collapse
|
182
|
DNA replication stress and its impact on chromosome segregation and tumorigenesis. Semin Cancer Biol 2018; 55:61-69. [PMID: 29692334 DOI: 10.1016/j.semcancer.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/11/2023]
Abstract
Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.
Collapse
|
183
|
Abstract
PURPOSE OF REVIEW Antenatal Bartter syndrome (aBS) is a heterogenous disease resulting from defective ion transport in the thick ascending limb of the loop of Henle. Novel insights into the pathophysiology, as well as the recent identification of a novel genetic cause of aBS, merit an update on this topic. RECENT FINDINGS In aBS, severe salt losing is further aggravated by defective salt sensing in the macula densa, where a reduced tubular salt concentration is perceived and glomerular filtration is increased instead of decreased. As patients with aBS come of age, there is an increased incidence of proteinuria and impaired renal function.Moreover, we recently reported a new form of aBS. Indeed, we described a series of nine families in whom pregnancies with male fetuses where complicated by acute polyhydramnios, preterm delivery and with severe but transient polyuria. We identified mutations in melanoma-associated antigen D2 in all study participants and showed, in vivo and in vitro, reduced expression of the furosemide and thiazide sensitive transporters sodium-potassium-2-chloride cotransporter and sodium chloride cotransporter, respectively. SUMMARY Genetic studies revealed the complexity of ion transport in the thick ascending limb of the loop of Henle and will help to clarify the pathophysiology, which is essential to design new therapies.
Collapse
|
184
|
Shukla SA, Bachireddy P, Schilling B, Galonska C, Zhan Q, Bango C, Langer R, Lee PC, Gusenleitner D, Keskin DB, Babadi M, Mohammad A, Gnirke A, Clement K, Cartun ZJ, Van Allen EM, Miao D, Huang Y, Snyder A, Merghoub T, Wolchok JD, Garraway LA, Meissner A, Weber JS, Hacohen N, Neuberg D, Potts PR, Murphy GF, Lian CG, Schadendorf D, Hodi FS, Wu CJ. Cancer-Germline Antigen Expression Discriminates Clinical Outcome to CTLA-4 Blockade. Cell 2018; 173:624-633.e8. [PMID: 29656892 DOI: 10.1016/j.cell.2018.03.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/11/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
CTLA-4 immune checkpoint blockade is clinically effective in a subset of patients with metastatic melanoma. We identify a subcluster of MAGE-A cancer-germline antigens, located within a narrow 75 kb region of chromosome Xq28, that predicts resistance uniquely to blockade of CTLA-4, but not PD-1. We validate this gene expression signature in an independent anti-CTLA-4-treated cohort and show its specificity to the CTLA-4 pathway with two independent anti-PD-1-treated cohorts. Autophagy, a process critical for optimal anti-cancer immunity, has previously been shown to be suppressed by the MAGE-TRIM28 ubiquitin ligase in vitro. We now show that the expression of the key autophagosome component LC3B and other activators of autophagy are negatively associated with MAGE-A protein levels in human melanomas, including samples from patients with resistance to CTLA-4 blockade. Our findings implicate autophagy suppression in resistance to CTLA-4 blockade in melanoma, suggesting exploitation of autophagy induction for potential therapeutic synergy with CTLA-4 inhibitors.
Collapse
Affiliation(s)
- Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Pavan Bachireddy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Bastian Schilling
- Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | | | - Qian Zhan
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clyde Bango
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rupert Langer
- Department of Pathology, University of Bern, 3012 Bern, Switzerland
| | - Patrick C Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Gusenleitner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Derin B Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | | | | | | | - Kendell Clement
- Broad Institute, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zachary J Cartun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Ying Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alexandra Snyder
- Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Taha Merghoub
- Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Jedd D Wolchok
- Weill Cornell Medical College, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10016, USA
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Alexander Meissner
- Broad Institute, Cambridge, MA 02142, USA; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey S Weber
- New York University Langone Medical Center, New York, NY 10016, USA
| | | | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Patrick R Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany; German Cancer Consortium (DKTK), 69121 Heidelberg, Germany
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
185
|
Furmanová K, Byška J, Gröller EM, Viola I, Paleček JJ, Kozlíková B. COZOID: contact zone identifier for visual analysis of protein-protein interactions. BMC Bioinformatics 2018; 19:125. [PMID: 29625561 PMCID: PMC5889581 DOI: 10.1186/s12859-018-2113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Studying the patterns of protein-protein interactions (PPIs) is fundamental for understanding the structure and function of protein complexes. The exploration of the vast space of possible mutual configurations of interacting proteins and their contact zones is very time consuming and requires the proteomic expert knowledge. RESULTS In this paper, we propose a novel tool containing a set of visual abstraction techniques for the guided exploration of PPI configuration space. It helps proteomic experts to select the most relevant configurations and explore their contact zones at different levels of detail. The system integrates a set of methods that follow and support the workflow of proteomics experts. The first visual abstraction method, the Matrix view, is based on customized interactive heat maps and provides the users with an overview of all possible residue-residue contacts in all PPI configurations and their interactive filtering. In this step, the user can traverse all input PPI configurations and obtain an overview of their interacting amino acids. Then, the models containing a particular pair of interacting amino acids can be selectively picked and traversed. Detailed information on the individual amino acids in the contact zones and their properties is presented in the Contact-Zone list-view. The list-view provides a comparative tool to rank the best models based on the similarity of their contacts to the template-structure contacts. All these techniques are interactively linked with other proposed methods, the Exploded view and the Open-Book view, which represent individual configurations in three-dimensional space. These representations solve the high overlap problem associated with many configurations. Using these views, the structural alignment of the best models can also be visually confirmed. CONCLUSIONS We developed a system for the exploration of large sets of protein-protein complexes in a fast and intuitive way. The usefulness of our system has been tested and verified on several docking structures covering the three major types of PPIs, including coiled-coil, pocket-string, and surface-surface interactions. Our case studies prove that our tool helps to analyse and filter protein-protein complexes in a fraction of the time compared to using previously available techniques.
Collapse
Affiliation(s)
| | - Jan Byška
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Eduard M Gröller
- Institute of Visual Computing & Human-Centered Technology, TU Wien, Wien, Austria
| | - Ivan Viola
- Institute of Visual Computing & Human-Centered Technology, TU Wien, Wien, Austria
| | - Jan J Paleček
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
186
|
Willett CS, Wilson EM. Evolution of Melanoma Antigen-A11 (MAGEA11) During Primate Phylogeny. J Mol Evol 2018; 86:240-253. [PMID: 29574604 DOI: 10.1007/s00239-018-9838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Melanoma antigen-A11 (MAGE-A11) is an X-linked and primate-specific steroid hormone receptor transcriptional coregulator and proto-oncogenic protein whose increased expression promotes the growth of prostate cancer. The MAGEA11 gene is expressed at low levels in normal human testis, ovary, and endometrium, and at highest levels in castration-resistant prostate cancer. Annotated genome predictions throughout the surviving primate lineage show that MAGEA11 acquired three 5' coding exons unique within the MAGEA subfamily during the evolution of New World monkeys (NWM), Old World monkeys (OWM), and apes. MAGE-A11 in all primates has a conserved FXXIF coactivator-binding motif that suggests interaction with p160 coactivators contributed to its early evolution as a transcriptional coregulator. An ancestral form of MAGE-A11 in the more distantly related lemur has significant amino acid sequence identity with human MAGE-A11, but lacks coregulator activity based on the absence of the three 5' coding exons that include a nuclear localization signal (NLS). NWM MAGE-A11 has greater amino acid sequence identity than lemur to human MAGE-A11, but inframe premature stop codons suggest that MAGEA11 is a pseudogene in NWM. MAGE-A11 in OWM and apes has nearly identical 5' coding exon amino acid sequence and conserved interaction sites for p300 acetyltransferase and cyclin A. We conclude that the evolution of MAGEA11 within the lineage leading to OWM and apes resulted in steroid hormone receptor transcriptional coregulator activity through the acquisition of three 5' coding exons that include a NLS sequence and nonsynonymous substitutions required to interact with cell cycle regulatory proteins and transcription factors.
Collapse
Affiliation(s)
- Christopher S Willett
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-7500, USA
| | - Elizabeth M Wilson
- Laboratories for Reproductive Biology, Department of Pediatrics, Lineberger Comprehensive Cancer Center, and Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599-7500, USA.
| |
Collapse
|
187
|
Zhang PP, Ding DZ, Shi B, Zhang SQ, Gu LL, Wang YC, Cheng C. Expression of TRIM28 correlates with proliferation and Bortezomib-induced apoptosis in B-cell non-Hodgkin lymphoma. Leuk Lymphoma 2018; 59:2639-2649. [PMID: 29569972 DOI: 10.1080/10428194.2018.1452207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pei-Pei Zhang
- Department of Immunity, Medical College, Nantong University, Nantong, P. R. China
| | - Da-Zhi Ding
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Bing Shi
- Department of Oncology, The Second People’s Hospital of Nantong, Nantong, P. R. China
| | - Shu-Qing Zhang
- Department of Clinical Laboratory, The Second People’s Hospital of Nantong, Nantong, P. R. China
| | - Ling-Li Gu
- Department of Clinical Laboratory, The Second People’s Hospital of Nantong, Nantong, P. R. China
| | - Yu-Chan Wang
- Department of Pathogenic Biology, Medical College, Nantong University, Nantong, P. R. China
| | - Chun Cheng
- Department of Immunity, Medical College, Nantong University, Nantong, P. R. China
| |
Collapse
|
188
|
Wijesuriya TM, De Ceuninck L, Masschaele D, Sanderson MR, Carias KV, Tavernier J, Wevrick R. The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways. Hum Mol Genet 2018; 26:4215-4230. [PMID: 28973533 DOI: 10.1093/hmg/ddx311] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
In Prader-Willi syndrome (PWS), obesity is caused by the disruption of appetite-controlling pathways in the brain. Two PWS candidate genes encode MAGEL2 and necdin, related melanoma antigen proteins that assemble into ubiquitination complexes. Mice lacking Magel2 are obese and lack leptin sensitivity in hypothalamic pro-opiomelanocortin neurons, suggesting dysregulation of leptin receptor (LepR) activity. Hypothalamus from Magel2-null mice had less LepR and altered levels of ubiquitin pathway proteins that regulate LepR processing (Rnf41, Usp8, and Stam1). MAGEL2 increased the cell surface abundance of LepR and decreased their degradation. LepR interacts with necdin, which interacts with MAGEL2, which complexes with RNF41 and USP8. Mutations in the MAGE homology domain of MAGEL2 suppress RNF41 stabilization and prevent the MAGEL2-mediated increase of cell surface LepR. Thus, MAGEL2 and necdin together control LepR sorting and degradation through a dynamic ubiquitin-dependent pathway. Loss of MAGEL2 and necdin may uncouple LepR from ubiquitination pathways, providing a cellular mechanism for obesity in PWS.
Collapse
Affiliation(s)
| | - Leentje De Ceuninck
- Department of Biochemistry, VIB Center for Medical Biotechnology and Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Delphine Masschaele
- Department of Biochemistry, VIB Center for Medical Biotechnology and Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Matthea R Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton T6G 2H7, Canada
| | | | - Jan Tavernier
- Department of Biochemistry, VIB Center for Medical Biotechnology and Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
189
|
Park S, Sung Y, Jeong J, Choi M, Lee J, Kwon W, Jang S, Park SJ, Kim HS, Lee MH, Kim DJ, Liu K, Kim SH, Dong Z, Ryoo ZY, Kim MO. hMAGEA2 promotes progression of breast cancer by regulating Akt and Erk1/2 pathways. Oncotarget 2018; 8:37115-37127. [PMID: 28415749 PMCID: PMC5514895 DOI: 10.18632/oncotarget.16184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most abundant cancer worldwide and a severe problem for women. Notably, breast cancer has a high mortality rate, mainly because of tumor progression and metastasis. Triple-negative breast cancer (TNBC) is highly progressive and lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Therefore, there are no established therapeutic targets against TNBC. In this study, we investigated whether the expression of human melanoma-associated antigen A2 (MAGEA2) is associated with TNBC. We found that hMAGEA2 is significantly overexpressed in human TNBC tissues; we also observed oncogenic properties using TNBC cell lines (MDA-MB-231 and MDA-MB-468). The overexpression of hMAGEA2 in MDA-MB-231 cell line showed dramatically increased cellular proliferation, colony formation, invasion, and xenograft tumor formation and growth. Conversely, knockdown of hMAEGA2 in MDA-MB-468 cell line suppressed cellular proliferation, colony formation, and xenograft tumor formation. Additionally, we showed that hMAGEA2 regulated the activation of Akt and Erk1/2 signaling pathways. These data indicate that hMAGEA2 is important for progression of TNBC and may serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Song Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Hyeng-Soo Kim
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Mee-Hyun Lee
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Dong Joon Kim
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Kangdong Liu
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Sung-Hyun Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea.,China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zigang Dong
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| |
Collapse
|
190
|
Liu GM, Zhang YM. Targeting FBPase is an emerging novel approach for cancer therapy. Cancer Cell Int 2018; 18:36. [PMID: 29556139 PMCID: PMC5845355 DOI: 10.1186/s12935-018-0533-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Metabolic reprogramming is an emerging hallmark of cancer. Glucose homeostasis is reciprocally controlled by the catabolic glycolysis and anabolic gluconeogenesis pathways. Previous studies have mainly focused on catabolic glycolysis, but recently, FBPase, a rate-limiting enzyme in gluconeogenesis, was found to play critical roles in tumour initiation and progression in several cancer types. Here, we review recent ideas and discoveries that illustrate the clinical significance of FBPase expression in various cancers, the mechanism through which FBPase influences cancer, and the mechanism of FBPase silencing. Furthermore, we summarize some of the drugs targeting FBPase and discuss their potential use in clinical applications and the problems that remain unsolved.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| | - Yao-Ming Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou, 514000 China
| |
Collapse
|
191
|
Melanoma antigen-D2 controls cell cycle progression and modulates the DNA damage response. Biochem Pharmacol 2018; 153:217-229. [PMID: 29371029 DOI: 10.1016/j.bcp.2018.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 01/28/2023]
Abstract
Overexpression of the ubiquitous type II melanoma antigen-D2 (MAGED2) in numerous types of cancer suggests that this protein contributes to carcinogenesis, a well-documented characteristic of other MAGE proteins. Modification of MAGED2 intracellular localization during cell cycle phases and following treatment with camptothecin (CPT) and phosphorylation by ATM/ATR following ionizing irradiation led us to investigate the molecular functions of MAGED2 in the cellular response to DNA damage. Cell cycle regulators, cell cycle progression, and bromodeoxyuridine (BrdU) incorporation were compared between MAGED2-sufficient and -depleted U2OS cells following exposure to CPT. At 24 h post-CPT removal, MAGED2-depleted cells had lower levels of p21 and p27, and there was an increase in S phase BrdU-positive cells with a concurrent decrease in cells in G2. These cell cycle modifications were p21-independent, but ATR-, SKP2-, and CDC20-dependent. Importantly, while MAGED2 depletion reduced CHK2 phosphorylation after 8 h of CPT treatment, it enhanced and prolonged CHK1 phosphorylation after a 24 h recovery period, indicating sustained ATR activation. MAGED2 depletion had no impact on cell survival under our experimental conditions. In summary, our data indicate that MAGED2 reduced CPT-related replicative stress, suggesting a role for this protein in genomic stability.
Collapse
|
192
|
Maine EA, Westcott JM, Prechtl AM, Dang TT, Whitehurst AW, Pearson GW. The cancer-testis antigens SPANX-A/C/D and CTAG2 promote breast cancer invasion. Oncotarget 2018; 7:14708-26. [PMID: 26895102 PMCID: PMC4924746 DOI: 10.18632/oncotarget.7408] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Genes that are normally biased towards expression in the testis are often induced in tumor cells. These gametogenic genes, known as cancer-testis antigens (CTAs), have been extenstively investigated as targets for immunotherapy. However, despite their frequent detection, the degree to which CTAs support neoplastic invasion is poorly understood. Here, we find that the CTA genes SPANX-A/C/D and CTAG2 are coordinately induced in breast cancer cells and regulate distinct features of invasive behavior. Our functional analysis revealed that CTAG2 interacts with Pericentrin at the centrosome and is necessary for directional migration. Conversely, SPANX-A/C/D interacts with Lamin A/C at the inner nuclear membrane and is required for the formation of actin-rich cellular protrusions that reorganize the extracellular matrix. Importantly, SPANX-A/C/D was required for breast cancer cells to spontaneously metastasize to the lung, demonstrating that CTA reactivation can be critical for invasion dependent phenotypes in vivo. Moreover, elevated SPANX-A/C/D expression in breast cancer patient tumors correlated with poor outcome. Together, our results suggest that distinct CTAs promote tumor progression by regulating complementary cellular functions that are integrated together to induce invasive behavior.
Collapse
Affiliation(s)
- Erin A Maine
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill M Westcott
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amanda M Prechtl
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tuyen T Dang
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Angelique W Whitehurst
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,The Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gray W Pearson
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,The Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
193
|
Cho JG, Park S, Lim CH, Kim HS, Song SY, Roh TY, Sung JH, Suh W, Ham SJ, Lim KH, Park SG. ZNF224, Krüppel like zinc finger protein, induces cell growth and apoptosis-resistance by down-regulation of p21 and p53 via miR-663a. Oncotarget 2018; 7:31177-90. [PMID: 27105517 PMCID: PMC5058748 DOI: 10.18632/oncotarget.8870] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
ZNF224 is a Krüppel-associated box-containing zinc-finger protein which represses gene transcription by interacting with various co-repressors. However, its consensus DNA sequences and target genes are not fully identified. In this study, we identified and characterized consensus DNA sequences containing 5′-CAGC-3′; recognized by ZNF224 through ChIP-sequencing, which further confirmed by ELISA, SPR, qPCR, and luciferase activity assay. ZNF224 increased miR-663a transcription by binding to miR-663a promoter, which in turn binds to 3′; UTR of p53 and p21 to decrease their expression. miR-663a antagonist abolished ZNF224-mediated suppression of p21 and p53, resulting in the enhanced apoptosis by CPT. The analyses using human breast ductal carcinoma tissues exhibited that the expression of ZNF224 and miR-663a was increased in cancer compared to non-cancer region. Consequently, ZNF224 increases cell survival and decreases apoptosis by decreasing the expression of p53 and p21 via miR-663a as a transcriptional activator. Taken together, we identified and characterized DNA binding element of ZNF224, and its target genes, miR-663a, which provides a novel insight in the down-regulation of p21 and p53 via miR-663a by ZNF224 in breast cancer.
Collapse
Affiliation(s)
- Jin Gu Cho
- Department of Biomedical Science, CHA University, Sungnam-si, Gyunggi-do, Korea.,Laboratory for Tracing of Gene Function, Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyunggi-do, Korea
| | - Seho Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Chae Hyun Lim
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Hong Sook Kim
- Laboratory for Tracing of Gene Function, Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyunggi-do, Korea
| | - Seung Yong Song
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Jong-Hyuk Sung
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon, Korea
| | - Wonhee Suh
- Department of Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Seok-Jin Ham
- Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Key-Hwan Lim
- Laboratory for Tracing of Gene Function, Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyunggi-do, Korea
| | - Sang Gyu Park
- Laboratory for Tracing of Gene Function, Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Gyunggi-do, Korea
| |
Collapse
|
194
|
Diaz M, Pecinka A. Scaffolding for Repair: Understanding Molecular Functions of the SMC5/6 Complex. Genes (Basel) 2018; 9:genes9010036. [PMID: 29329249 PMCID: PMC5793187 DOI: 10.3390/genes9010036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Chromosome organization, dynamics and stability are required for successful passage through cellular generations and transmission of genetic information to offspring. The key components involved are Structural maintenance of chromosomes (SMC) complexes. Cohesin complex ensures proper chromatid alignment, condensin complex chromosome condensation and the SMC5/6 complex is specialized in the maintenance of genome stability. Here we summarize recent knowledge on the composition and molecular functions of SMC5/6 complex. SMC5/6 complex was originally identified based on the sensitivity of its mutants to genotoxic stress but there is increasing number of studies demonstrating its roles in the control of DNA replication, sister chromatid resolution and genomic location-dependent promotion or suppression of homologous recombination. Some of these functions appear to be due to a very dynamic interaction with cohesin or other repair complexes. Studies in Arabidopsis indicate that, besides its canonical function in repair of damaged DNA, the SMC5/6 complex plays important roles in regulating plant development, abiotic stress responses, suppression of autoimmune responses and sexual reproduction.
Collapse
Affiliation(s)
- Mariana Diaz
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
- Max Planck Institute for Plant Breeding Research (MPIPZ), Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ales Pecinka
- Institute of Experimental Botany of the Czech Academy of Sciences (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 77900 Olomouc-Holice, Czech Republic.
| |
Collapse
|
195
|
Desumoylase SENP6 maintains osteochondroprogenitor homeostasis by suppressing the p53 pathway. Nat Commun 2018; 9:143. [PMID: 29321472 PMCID: PMC5762923 DOI: 10.1038/s41467-017-02413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023] Open
Abstract
The development, growth, and renewal of skeletal tissues rely on the function of osteochondroprogenitors (OCPs). Protein sumoylation/desumoylation has emerged as a pivotal mechanism for stem cell/progenitor homeostasis, and excessive sumoylation has been associated with cell senescence and tissue aging, but its role in regulating OCP function is unclear. Here we show that postnatal loss of the desumoylase SUMO1/sentrin-specific peptidase 6 (SENP6) causes premature aging. OCP-specific SENP6 knockout mice exhibit smaller skeletons, with elevated apoptosis and cell senescence in OCPs and chondrocytes. In Senp6 ‒/‒ cells, the two most significantly elevated pathways are p53 signaling and senescence-associated secreted phenotypes (SASP), and Trp53 loss partially rescues the skeletal and cellular phenotypes caused by Senp6 loss. Furthermore, SENP6 interacts with, desumoylates, and stabilizes TRIM28, suppressing p53 activity. Our data reveals a crucial role of the SENP6-p53 axis in maintaining OCP homeostasis during skeletal development.
Collapse
|
196
|
Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase. Mol Cell 2018; 69:113-125.e6. [DOI: 10.1016/j.molcel.2017.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
|
197
|
Zeng P, Wang Y, Zheng Y, Song X, Yin Y. Cancer‑testis antigen HCA587/MAGEC2 interacts with the general transcription coactivator TAF9 in cancer cells. Mol Med Rep 2017; 17:3226-3231. [PMID: 29257297 DOI: 10.3892/mmr.2017.8260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma-associated antigen 587/melanoma antigen gene (HCA587/MAGEC2) is a cancer‑testis antigen, which is highly expressed in various types of tumors, but not in normal tissues with the exception of male germ‑line cells. HCA587/MAGEC2 has been previously recognized as a tumor‑specific target for immunotherapy; however, its biological functions have been relatively understudied. To investigate the function of HCA587/MAGEC2, the amino acid sequence of HCA587/MAGEC2 was analyzed by bioinformatics and it was demonstrated that HCA587/MAGEC2 contains a 9‑amino acid transactivation domain which may mediate the interaction of most transcription factors with TATA‑box binding protein associated factor 9 (TAF9), a general transcription coactivator. Co‑immunoprecipitation experiments revealed that HCA587/MAGEC2 interacted with TAF9 in transfected 293T and in A375 melanoma cells endogenously expressing HCA587/MAGEC2, and confirmed the endogenous interaction of HCA587/MAGEC2 and TAF9 within cells. Endogenous HCA587/MAGEC2 and TAF9 were demonstrated to be co‑localized principally in the nucleus of tumor cells using immunofluorescence. Glutathione-S-transferase pull‑down experiments demonstrated that HCA587/MAGEC2 interacts with TAF9 directly and the conserved region in the TAF9 may becrucial for HCA587/MAGEC2 binding. The present study demonstrated that the cancer‑testis antigen HCA587/MAGEC2 directly interacted with TAF9, which may provide novel information for identifying the oncogenic functions of HCA587/MAGEC2 in tumor cells.
Collapse
Affiliation(s)
- Pumei Zeng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yutian Zheng
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
198
|
Liu S, Liu F, Huang W, Gu L, Meng L, Ju Y, Wu Y, Li J, Liu L, Sang M. MAGE-A11 is activated through TFCP2/ZEB1 binding sites de-methylation as well as histone modification and facilitates ESCC tumor growth. Oncotarget 2017; 9:3365-3378. [PMID: 29423052 PMCID: PMC5790469 DOI: 10.18632/oncotarget.22973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
Recently, we have reported that the product of Melanoma Antigens Genes (MAGE) family member MAGE-A11 is an independent poor prognostic marker for esophageal squamous cell carcinoma (ESCC). However, the reason how MAGE-A11 is activated in ESCC progression still remains unclear. In the current study, we demonstrated that DNA methylation and the subsequent histone posttranslational modifications play crucial roles in the regulation of MAGE-A11 in ESCC progression. We found that the methylation rate of TFCP2/ZEB1 binding site on MAGE-A11 promoter in ESCC tissues and cells is higher than the normal esophageal epithelial tissues and cells. Transcription factors TFCP2 and ZEB1 directly bind MAGE-A11 promoter and regulate the endogenous MAGE-A11 expression in a methylation-dependent manner in ESCC cells. Following MAGE-A11 promoter methylation, the methyl-CpG-binding protein MeCP2 was found to bind the methylated MAGE-A11 promoter to mediate histone deactylation by recruiting HDAC1 and HDAC2. Simultaneously, histone inactivation marks including H3K27me3 as well as H3K9me3 were increased, whereas histone activation mark H3K4me3 was decreased. HDAC inhibitor Trichostatin A (TSA) increased DNA methylase inhibitor Decitabine (DAC)-induced MAGE-A11 expression. siRNA-mediated knockdown of histone methltransferase EZH2 or DZNep (a EZH2 inhibitor) treatment increased DAC-induced MAGE-A11 expression. Our results indicate that MAGE-A11 is activated through DNA demethylation, histone acetylation and histone methylation in ESCC, and its activation promotes ESCC tumor growth.
Collapse
Affiliation(s)
- Shina Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Weina Huang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lina Gu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yingchao Ju
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Animal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Yunyan Wu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Juan Li
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Lihua Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| | - Meixiang Sang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China.,Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China
| |
Collapse
|
199
|
Wei Y, Wang Y, Gong J, Rao L, Wu Z, Nie T, Shi D, Zhang L. High expression of MAGE-A9 contributes to stemness and malignancy of human hepatocellular carcinoma. Int J Oncol 2017; 52:219-230. [PMID: 29138811 DOI: 10.3892/ijo.2017.4198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 01/30/2023] Open
Abstract
MAGE-A9, a well-characterized cancer testis antigen (CTA), belongs to a member of melanoma antigen gene (MAGE) family. In human malignancies, aberrant expression of MAGE genes correlated with poor clinical prognosis, increased tumor growth, metastases, and enrichment in stem cell populations of certain cancers. Cancer stem cells (CSCs) have been proposed to contribute to the major malignant phenotypes of liver cancer, including recurrence, metastasis and chemoresistance. However, expression and potential role of MAGE-A9 in liver cancer stem cells (LCSCs) still remain unclear. In the present study, we first analyzed the expression profiling of MAGE family genes in EpCAM+ and EpCAM- human hepatocellular carcinoma (HCC), based on public Gene Expression Omnibus (GEO) database. Among these examined MAGE members, MAGE-A9 is the only one with significantly higher expression in EpCAM+ HCC specimens as compared with EpCAM- HCC. Quantitative PCR analysis further confirmed that MAGE-A9 expression significantly elevated in a subtype of HCC patients that had features of hepatic stem/progenitor cells with high-level expression of EpCAM and α-fetoprotein (AFP). Moreover, MAGE-A9 displayed remarkably enriched expression in EpCAM+ HCC cells that were sorted by fluorescence-activated cell sorting and cultured HCC cell spheroids with characteristics of stem/progenitor cells. Functional experiments further revealed that MAGE-A9 overexpression promoted cell proliferation, colony formation, migration, chemoresistance, and tumorigenicity in the context of EpCAM+ HCC cells, whereas MAGE-A9 knockdown significantly inhibited anchorage-dependent and spheroid colony formation and in vivo tumorigenicity. Collectively, these data demonstrate that MAGE-A9 functions as an important regulator of LCSCs, and MAGE-A9 may serve as a potential therapeutic target against HCC stem/progenitor cells.
Collapse
Affiliation(s)
- Youping Wei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Yanqin Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Jing Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Lihua Rao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Zhiwei Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Teng Nie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Dongling Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| | - Liming Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|
200
|
Wani S, Maharshi N, Kothiwal D, Mahendrawada L, Kalaivani R, Laloraya S. Interaction of the Saccharomyces cerevisiae RING-domain protein Nse1 with Nse3 and the Smc5/6 complex is required for chromosome replication and stability. Curr Genet 2017; 64:599-617. [DOI: 10.1007/s00294-017-0776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022]
|