151
|
|
152
|
Modality-specific effects of aversive expectancy in the anterior insula and medial prefrontal cortex. Pain 2019; 159:1529-1542. [PMID: 29613910 DOI: 10.1097/j.pain.0000000000001237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Expectations modulate the subjective experience of pain by increasing sensitivity to nociceptive inputs, an effect mediated by brain regions such as the insula. However, it is still unknown whether the neural structures underlying pain expectancy hold sensory-specific information or, alternatively, code for modality-independent features (eg, unpleasantness), potentially common with other negative experiences. We used functional magnetic resonance imaging to investigate neural activity underlying the expectation of different, but comparably unpleasant, pain and disgust. We presented participants with visual cues predicting either a painful heat or disgusting odor, and assessed how they affected the subsequent subjective experience of stimuli from the same (within-modality) or opposite (cross-modal) modality. We found a reliable influence of expectancy on the subjective experience of stimuli whose modality matched that of the previous cue. At the brain level, this effect was mediated by the intermediate dysgranular section of the insula, whereas it was suppressed by more anterior agranular portions of the same region. Instead, no expectancy modulation was observed when the modality of the cue differed from that of the subsequent stimulus. Our data suggest that the insular cortex encodes prospective aversive events in terms of their modality-specific features, and whether they match with subsequent stimulations.
Collapse
|
153
|
Association Between Sensorimotor Impairments and Functional Brain Changes in Patients With Low Back Pain: A Critical Review. Am J Phys Med Rehabil 2019; 97:200-211. [PMID: 29112509 DOI: 10.1097/phm.0000000000000859] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low back pain (LBP) coincides with sensorimotor impairments, for example, reduced lumbosacral tactile and proprioceptive acuity and postural control deficits. Recent functional magnetic resonance imaging studies suggest that sensorimotor impairments in LBP may be associated with brain changes. However, no consensus exists regarding the relationship between functional brain changes and sensorimotor behavior in LBP. Therefore, this review critically discusses the available functional magnetic resonance imaging studies on brain activation related to nonnociceptive somatosensory stimulation and motor performance in individuals with LBP. Four electronic databases were searched, yielding nine relevant studies. Patients with LBP showed reduced sensorimotor-related brain activation and a reorganized lumbar spine representation in higher-order (multi)sensory processing and motor regions, including primary and secondary somatosensory cortices, supplementary motor area, and superior temporal gyrus. These results may support behavioral findings of sensorimotor impairments in LBP. In addition, patients with LBP displayed widespread increased sensorimotor-evoked brain activation in regions often associated with abnormal pain processing. Overactivation in these regions could indicate an overresponsiveness to sensory inputs that signal potential harm to the spine, thereby inducing overgeneralized protective responses. Hence, functional brain changes could contribute to the development and recurrence of LBP. However, future studies investigating the causality between sensorimotor-related brain function and LBP are imperative.
Collapse
|
154
|
The Localization Research of Brain Plasticity Changes after Brachial Plexus Pain: Sensory Regions or Cognitive Regions? Neural Plast 2019; 2019:7381609. [PMID: 30728834 PMCID: PMC6341257 DOI: 10.1155/2019/7381609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Neuropathic pain after brachial plexus injury remains an increasingly prevalent and intractable disease due to inadequacy of satisfactory treatment strategies. A detailed mapping of cortical regions concerning the brain plasticity was the first step of therapeutic intervention. However, the specific mapping research of brachial plexus pain was limited. We aimed to provide some localization information about the brain plasticity changes after brachial plexus pain in this preliminary study. Methods 24 Sprague-Dawley rats received complete brachial plexus avulsion with neuropathic pain on the right forelimb successfully. Through functional imaging of both resting-state and block-design studies, we compared the amplitude of low-frequency fluctuations (ALFF) of premodeling and postmodeling groups and the changes of brain activation when applying sensory stimulation. Results The postmodeling group showed significant decreases on the mechanical withdrawal threshold (MWT) in the bilateral hindpaws and thermal withdrawal latency (TWL) in the left hindpaw than the premodeling group (P < 0.05). The amplitude of low-frequency fluctuations (ALFF) of the postmodeling group manifested increases in regions of the left anterodorsal hippocampus, left mesencephalic region, left dorsal midline thalamus, and so on. Decreased ALFF was observed in the bilateral entorhinal cortex compared to that of the premodeling group. The results of block-design scan showed significant differences in regions including the limbic/paralimbic system and somatosensory cortex. Conclusion We concluded that the entorhinal-hippocampus pathway, which was part of the Papez circuit, was involved in the functional integrated areas of brachial plexus pain processing. The regions in the “pain matrix” showed expected activation when applying instant nociceptive stimulus but remained silent in the resting status. This research confirmed the involvement of cognitive function, which brought novel information to the potential new therapy for brachial plexus pain.
Collapse
|
155
|
Sharvit G, Vuilleumier P, Corradi-Dell'Acqua C. Sensory-specific predictive models in the human anterior insula. F1000Res 2019; 8:164. [PMID: 30863539 PMCID: PMC6402078 DOI: 10.12688/f1000research.17961.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
Expectations affect the subjective experience of pain by increasing sensitivity to noxious events, an effect underlain by brain regions such as the insula. However, it has been debated whether these neural processes operate on pain-specific information or on more general signals encoding expectation of unpleasant events. To dissociate these possibilities, two independent studies ( Sharvit et al., 2018, Pain; Fazeli and Büchel, 2018, J. Neurosci) implemented a cross-modal expectancy paradigm, testing whether responses to pain could also be modulated by the expectation of similarly unpleasant, but painless, events. Despite their differences, the two studies report remarkably convergent (and in some cases complementary) findings. First, the middle-anterior insula response to noxious stimuli is modulated only by expectancy of pain but not of painless adverse events, suggesting coding of pain-specific information. Second, sub-portions of the middle-anterior insula mediate different aspects of pain predictive coding, related to expectancy and prediction error. Third, complementary expectancy effects are also observed for other negative experiences (i.e., disgust), suggesting that the insular cortex holds prospective models of a wide range of events concerning their sensory-specific features. Taken together, these studies have strong theoretical implications on the functional properties of the insular cortex.
Collapse
Affiliation(s)
- Gil Sharvit
- Haas School of Business, University of California, Berkeley, Berkeley, USA
| | - Patrik Vuilleumier
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Laboratory for Behavioural Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Corrado Corradi-Dell'Acqua
- Geneva Neuroscience Center, University of Geneva, Geneva, Switzerland.,Theory of Pain Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
156
|
Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli. Neuroimage 2019; 192:52-65. [PMID: 30669009 PMCID: PMC6503155 DOI: 10.1016/j.neuroimage.2019.01.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 01/25/2023] Open
Abstract
How pain emerges from cortical activities remains an unresolved question in pain neuroscience. A first step toward addressing this question consists in identifying brain activities that occur preferentially in response to painful stimuli in comparison to non-painful stimuli. A key confound that has affected this important comparison in many previous studies is the intensity of the stimuli generating painful and non-painful sensations. Here, we compared the brain activity during iso-intense painful and tactile sensations sampled by functional MRI in 51 healthy participants. Specifically, the perceived intensity was recorded for every stimulus and only the stimuli with rigorously matched perceived intensity were selected and compared between painful and tactile conditions. We found that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Neural responses in these areas were correlated with the perceived stimulus intensity, regardless of stimulus modality. More importantly, among these activated areas, we further identified a number of brain regions showing stronger responses to painful stimuli than to tactile stimuli when perceived intensity was carefully matched, including the bilateral opercular cortex, the left supplementary motor area and the right frontal middle and inferior areas. Among these areas, the right frontal middle area still responded more strongly to painful stimuli even when painful stimuli were perceived less intense than tactile stimuli, whereas in this condition other regions showed stronger responses to tactile stimuli. In contrast, the left postcentral gyrus, the visual cortex, the right parietal inferior gyrus, the left parietal superior gyrus and the right cerebellum had stronger responses to tactile stimuli than to painful stimuli when perceived intensity was matched. When tactile stimuli were perceived less intense than painful stimuli, the left postcentral gyrus and the right parietal inferior gyrus still responded more strongly to tactile stimuli while other regions now showed similar responses to painful and tactile stimuli. These results suggest that different brain areas may be engaged differentially when processing painful and tactile information, although their neural activities are not exclusively dedicated to encoding information of only one modality but are strongly determined by perceived stimulus intensity regardless of stimulus modality. Transient painful and tactile stimuli activate the same brain areas. Neural activity in these areas encode stimulus intensity. Among these areas, a few may be engaged differentially in pain and touch processing.
Collapse
|
157
|
Nishioka K, Suzuki M, Nakajima M, Hara T, Iseki M, Hattori N. Painful legs and moving toes syndrome evaluated through brain single photon emission computed tomography: a case series. J Neurol 2019; 266:717-725. [PMID: 30637456 DOI: 10.1007/s00415-019-09194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 11/24/2022]
Abstract
Painful legs and moving toes (PLMT) syndrome is a clinical entity characterized by persistent pain in the feet or legs and involuntary movements of one or more toes. The precise patho-mechanisms of PLMT still remain unknown. Herein, we examined ten patients clinically identified with PLMT syndrome. All patients first presented persistent pain prior to the onset of motor symptoms. Each patient was examined by neurological investigation, neuro-imaging methods including brain magnetic resonance imaging (MRI) and electrophysiological methods. The brain single photon emission computed tomography (SPECT) images of eight patients indicated hypoperfusion of frontal lobes and cerebellum. The conjunction analysis of brain SPECT imaging data of all eight patients, using the 3D-SSP program, compared to 34 controls indicated significant hypoperfusion in the prefrontal cortical, occipital cortical, and cerebellar surfaces, and thalamus, and hyperperfusion in the surface of the anterior cingulate gyrus and parietal cortices including primary and secondary somatosensory cortices, bilaterally. These areas reflected on a part of the pain matrix. Other electrophysiological examinations did not indicate specific abnormalities to explain the patients' symptoms. On treatment with clonazepam, four out of nine patients could resolve their foot-related motor symptoms, but not the sensory symptoms. Overall, their pain was an intractable and persistent symptom throughout their clinical course. Our study infers that PLMT syndrome is fundamentally a chronic pain disorder, possibly relating to the central sensitization, involving the region of a part of pain matrix. Further studies need to confirm our results by adding more patients.
Collapse
Affiliation(s)
- Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Michimasa Suzuki
- Department of Radiology, Juntendo University School of Medicine, 3-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University School of Medicine, 3-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takeshi Hara
- Department of Neurosurgery, Juntendo University School of Medicine, 3-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masako Iseki
- Department of Anesthesiology, Juntendo University School of Medicine, 3-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
158
|
Abstract
While several features of brain activity can be used to predict the variability of painful percepts within a given individual, it is much more difficult to predict pain variability across individuals. Here, we used electrophysiology to sample brain activity of humans and rodents, and demonstrated that laser-induced gamma oscillations sampled by central electrodes predict pain sensitivity across individuals both reliably and selectively: reliably, because they consistently predict between-subject pain intensity in both humans and rodents; selectively, because they do not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. This discovery indicates that variability in an individual’s pain sensitivity is, at least partly, explained by variability in the amplitude of gamma oscillations of that individual. Individuals exhibit considerable and unpredictable variability in painful percepts in response to the same nociceptive stimulus. Previous work has found neural responses that, while not necessarily responsible for the painful percepts themselves, can still correlate well with intensity of pain perception within a given individual. However, there is no reliable neural response reflecting the variability in pain perception across individuals. Here, we use an electrophysiological approach in humans and rodents to demonstrate that brain oscillations in the gamma band [gamma-band event-related synchronization (γ-ERS)] sampled by central electrodes reliably predict pain sensitivity across individuals. We observed a clear dissociation between the large number of neural measures that reflected subjective pain ratings at within-subject level but not across individuals, and γ-ERS, which reliably distinguished subjective ratings within the same individual but also coded pain sensitivity across different individuals. Importantly, the ability of γ-ERS to track pain sensitivity across individuals was selective because it did not track the between-subject reported intensity of nonpainful but equally salient auditory, visual, and nonnociceptive somatosensory stimuli. These results also demonstrate that graded neural activity related to within-subject variability should be minimized to accurately investigate the relationship between nociceptive-evoked neural activities and pain sensitivity across individuals.
Collapse
|
159
|
Vanneste S, To WT, De Ridder D. Tinnitus and neuropathic pain share a common neural substrate in the form of specific brain connectivity and microstate profiles. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:388-400. [PMID: 30142355 DOI: 10.1016/j.pnpbp.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/06/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
Tinnitus and neuropathic pain share similar pathophysiological, clinical, and treatment characteristics. In this EEG study, a group of tinnitus (n = 100) and neuropathic pain (n = 100) patients are compared to each other and to a healthy control group (n = 100). Spectral analysis demonstrates gamma band activity within the primary auditory and somatosensory cortices in patients with tinnitus and neuropathic pain, respectively. A conjunction analysis further demonstrates an overlap of tinnitus and pain related activity in the anterior and posterior cingulate cortex as well as in the dorsolateral prefrontal cortex in comparison to healthy controls. Further analysis reveals that similar states characterize tinnitus and neuropathic pain patients, two of which differ from the healthy group and two of which are shared. Both pain and tinnitus patients spend half of the time in one specific microstate. Seed-based functional connectivity with the source within the predominant microstate shows delta, alpha1, and gamma lagged phase synchronization overlap with multiple brain areas between pain and tinnitus. These data suggest that auditory and somatosensory phantom perceptions share an overlapping brain network with common activation and connectivity patterns and are differentiated by specific sensory cortex gamma activation.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA.
| | - Wing Ting To
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
160
|
Employing pain and mindfulness to understand consciousness: a symbiotic relationship. Curr Opin Psychol 2019; 28:192-197. [PMID: 30776682 DOI: 10.1016/j.copsyc.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/30/2018] [Indexed: 11/22/2022]
Abstract
Consciousness, defined here as the quality of awareness of self and the corresponding sensory environment, is considered to be one of most enigmatic and contentious areas of scholarly dissection and investigation. The subjective experience of pain is constructed and modulated by a myriad of sensory, cognitive and affective dimensions. Thus, the study of pain can provide many inroads to a concept like consciousness that the traditional sense modalities do not. Mindfulness defined here as non-reactive awareness of the present moment, can uniquely control and/or modulate particular substrates of conscious experience. Thus, in combination with brain imaging methodologies, we propose that the interactions between pain and mindfulness could serve as a more comprehensive platform to disentangle the biological and psychological substrates of conscious experience. The present review provides a brief synopsis on how combining the study of pain and mindfulness can inform the study of consciousness, delineates the multiple, unique brain mechanisms supporting mindfulness-based pain relief, and describes how mindfulness uniquely improves the affective dimension of pain, an important consideration for the treatment of chronic pain.
Collapse
|
161
|
Abstract
Many odors activate the intranasal chemosensory trigeminal system where they produce cooling and other somatic sensations such as tingling, burning, or stinging. Specific trigeminal receptors are involved in the mediation of these sensations. Importantly, the trigeminal system also mediates sensitivity to airflow. The intranasal trigeminal and the olfactory system are closely connected. With regard to central nervous processing, it is most interesting that trigeminal stimuli can activate the piriform cortex, which is typically viewed as the primary olfactory cortex. This suggests that interactions between the two systems may form at a relatively early stage of processing. For example, there is evidence showing that acquired olfactory loss leads to reduced trigeminal sensitivity, probably on account of the lack of interaction in the central nervous system. Decreased trigeminal sensitivity may also be responsible for changes in airflow perception, leading to the impression of congested nasal airways.
Collapse
Affiliation(s)
- Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany.
| | - Johannes Frasnelli
- Université du Québec à Trois-Rivières, Department of Anatomy, Trois-Rivières, QC, Canada
| |
Collapse
|
162
|
|
163
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
164
|
Tiemann L, Hohn VD, Ta Dinh S, May ES, Nickel MM, Gross J, Ploner M. Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli. Nat Commun 2018; 9:4487. [PMID: 30367033 PMCID: PMC6203833 DOI: 10.1038/s41467-018-06875-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Pain is a complex phenomenon involving perceptual, motor, and autonomic responses, but how the brain translates noxious stimuli into these different dimensions of pain is unclear. Here, we assessed perceptual, motor, and autonomic responses to brief noxious heat stimuli and recorded brain activity using electroencephalography (EEG) in humans. Multilevel mediation analysis reveals that each pain dimension is subserved by a distinct pattern of EEG responses and, conversely, that each EEG response differentially contributes to the different dimensions of pain. In particular, the translation of noxious stimuli into autonomic and motor responses involved the earliest N1 wave, whereas pain perception was mediated by later N2 and P2 waves. Gamma oscillations mediated motor responses rather than pain perception. These findings represent progress towards a mechanistic understanding of the brain processes translating noxious stimuli into pain and suggest that perceptual, motor, and autonomic dimensions of pain are partially independent rather than serial processes. Pain is a complex phenomenon involving not just the perception of pain, but also autonomic and motor responses. Here, the authors show that these different dimensions of pain are associated with distinct patterns of neural responses to noxious stimuli as measured using EEG.
Collapse
Affiliation(s)
- Laura Tiemann
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Son Ta Dinh
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Elisabeth S May
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Moritz M Nickel
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Centre for Cognitive Neuroimaging, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
165
|
Wriessnegger SC, Bauernfeind G, Kurz EM, Raggam P, Müller-Putz GR. Imagine squeezing a cactus: Cortical activation during affective motor imagery measured by functional near-infrared spectroscopy. Brain Cogn 2018; 126:13-22. [DOI: 10.1016/j.bandc.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
|
166
|
Liberati G, Klöcker A, Algoet M, Mulders D, Maia Safronova M, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Gamma-Band Oscillations Preferential for Nociception can be Recorded in the Human Insula. Cereb Cortex 2018; 28:3650-3664. [PMID: 29028955 PMCID: PMC6366557 DOI: 10.1093/cercor/bhx237] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
Transient nociceptive stimuli elicit robust phase-locked local field potentials (LFPs) in the human insula. However, these responses are not preferential for nociception, as they are also elicited by transient non-nociceptive vibrotactile, auditory, and visual stimuli. Here, we investigated whether another feature of insular activity, namely gamma-band oscillations (GBOs), is preferentially observed in response to nociceptive stimuli. Although nociception-evoked GBOs have never been explored in the insula, previous scalp electroencephalography and magnetoencephalography studies suggest that nociceptive stimuli elicit GBOs in other areas such as the primary somatosensory and prefrontal cortices, and that this activity could be closely related to pain perception. Furthermore, tracing studies showed that the insula is a primary target of spinothalamic input. Using depth electrodes implanted in 9 patients investigated for epilepsy, we acquired insular responses to brief thermonociceptive stimuli and similarly arousing non-nociceptive vibrotactile, auditory, and visual stimuli (59 insular sites). As compared with non-nociceptive stimuli, nociceptive stimuli elicited a markedly stronger enhancement of GBOs (150-300 ms poststimulus) at all insular sites, suggesting that this feature of insular activity is preferential for thermonociception. Although this activity was also present in temporal and frontal regions, its magnitude was significantly greater in the insula as compared with these other regions.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Anne Klöcker
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Marta Maia Safronova
- Department of Radiology, Neuroradiology Clinic, Erasme Hospital,
1070 Brussels, Belgium
| | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| |
Collapse
|
167
|
Sava SL, de Pasqua V, de Noordhout AM, Schoenen J. Visually induced analgesia during face or limb stimulation in healthy and migraine subjects. J Pain Res 2018; 11:1821-1828. [PMID: 30254484 PMCID: PMC6140700 DOI: 10.2147/jpr.s160276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Visually induced analgesia (VIA) defines a phenomenon in which viewing one’s own body part during its painful stimulation decreases the perception of pain. VIA occurs during direct vision of the stimulated body part and also when seeing it reflected in a mirror. To the best of our knowledge, VIA has not been studied in the trigeminal area, where it could be relevant for the control of headache. Subjects and methods We used heat stimuli (53°C) to induce pain in the right forehead or wrist in 11 healthy subjects (HSs) and 14 female migraine without aura (MO) patients between attacks. The subjects rated pain on a visual analog scale (VAS) and underwent contact heat-evoked potential (CHEP) recordings (five sequential blocks of four responses) with or without observation of their face/wrist in a mirror. Results During wrist stimulation, amplitude of the first block of P1–P2 components of CHEPs decreased compared to that in the control recording when HSs were seeing their wrist reflected in the mirror (p = 0.036; Z = 2.08); however, this was not found in MO patients. In the latter, the VAS pain score increased viewing the reflected wrist (p = 0.049; Z = 1.96). Seeing their forehead reflected in the mirror induced a significant increase in N2 latency of CHEPs in HSs, as well as an amplitude reduction in the first block of P1–P2 components of CHEPs both in HSs (p = 0.007; Z = 2.69) and MO patients (p = 0.035; Z = 2.10). Visualizing the body part did not modify habituation of CHEP amplitudes over the five blocks of averaged responses, neither during wrist nor during forehead stimulation. Conclusion This study adds to the available knowledge on VIA and demonstrates this phenomenon for painful stimuli in the trigeminal area, as long as CHEPs are used as indices of central pain processing. In migraine patients during interictal periods, VIA assessed with CHEPs is within normal limits in the face but absent at the wrist, possibly reflecting dysfunctioning of extracephalic pain control.
Collapse
Affiliation(s)
| | - Victor de Pasqua
- Headache Research Unit, Department of Neurology, Liège University, Liège, Belgium
| | | | - Jean Schoenen
- Headache Research Unit, Department of Neurology, Liège University, Liège, Belgium
| |
Collapse
|
168
|
Abstract
Persistent pain is common in elite athletes. The current review arose from a consensus initiative by the International Olympic Committee to advance the development of a standardized, scientific, and evidence-informed approach to management. We suggest that optimal management of persistent pain in elite athletes requires an understanding of contemporary pain science, including the rationale behind and implementation of a biopsychosocial approach to care. We argue that athletes and clinicians need to understand the biopsychosocial model because it applies to both pain and the impact of pain with special reference to the sport setting. Management relies on thorough and precise assessment that considers contributing factors across nociceptive, inflammatory, neuropathic, and centrally acting domains; these can include contextual and psychosocial factors. Pain management seeks to remove contributing factors wherever possible through targeted education; adjustment of mechanical loading, training, and performance schedules; psychological therapies; and management of inflammation.
Collapse
|
169
|
Boll S, Almeida de Minas A, Raftogianni A, Herpertz S, Grinevich V. Oxytocin and Pain Perception: From Animal Models to Human Research. Neuroscience 2018; 387:149-161. [DOI: 10.1016/j.neuroscience.2017.09.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 09/24/2017] [Indexed: 11/24/2022]
|
170
|
Caruana F, Gerbella M, Avanzini P, Gozzo F, Pelliccia V, Mai R, Abdollahi RO, Cardinale F, Sartori I, Lo Russo G, Rizzolatti G. Motor and emotional behaviours elicited by electrical stimulation of the human cingulate cortex. Brain 2018; 141:3035-3051. [DOI: 10.1093/brain/awy219] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Affiliation(s)
- Fausto Caruana
- University of Parma, Department of Medicine and Surgery, Parma, Italy
| | - Marzio Gerbella
- Italian Institute of Technology (IIT), Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy
| | | | - Francesca Gozzo
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Veronica Pelliccia
- University of Parma, Department of Medicine and Surgery, Parma, Italy
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Roberto Mai
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | | | - Francesco Cardinale
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Giorgio Lo Russo
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca’ Granda, Milan, Italy
| | - Giacomo Rizzolatti
- University of Parma, Department of Medicine and Surgery, Parma, Italy
- CNR Institute of Neuroscience, Parma, Italy
| |
Collapse
|
171
|
Bar-Shalita T, Livshitz A, Levin-Meltz Y, Rand D, Deutsch L, Vatine JJ. Sensory modulation dysfunction is associated with Complex Regional Pain Syndrome. PLoS One 2018; 13:e0201354. [PMID: 30091986 PMCID: PMC6084887 DOI: 10.1371/journal.pone.0201354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 07/14/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Complex Regional Pain Syndrome (CRPS), a chronic pain condition, develops mainly after limb trauma and severely inhibits function. While early diagnosis is essential, factors for CRPS onset are elusive. Therefore, identifying those at risk is crucial. Sensory modulation dysfunction (SMD), affects the capacity to regulate responses to sensory input in a graded and adaptive manner and was found associated with hyperalgesia in otherwise healthy individuals, suggestive of altered pain processing. AIM To test SMD as a potential risk factor for CRPS. METHODS In this cross-sectional study, forty-four individuals with CRPS (29.9±11 years, 27 men) and 204 healthy controls (27.4±3.7 years, 105 men) completed the Sensory Responsiveness Questionnaire-Intensity Scale (SRQ-IS). A physician conducted the CRPS Severity Score (CSS), testing individuals with CRPS. RESULTS Thirty-four percent of the individuals with CRPS and twelve percent of the healthy individuals were identified to have SMD (χ2 (1) = 11.95; p<0.001). Logistic regression modeling revealed that the risk of CRPS is 2.68 and 8.21 times higher in individuals with sensory over- and sensory under-responsiveness, respectively, compared to non-SMD individuals (p = 0.03 and p = 0.01, respectively). CONCLUSIONS SMD, particularly sensory under-responsiveness, might serve as a potential risk factor for CRPS and therefore screening for SMD is recommended. This study provides the risk index probability clinical tool a simple evaluation to be applied by clinicians in order to identify those at risk for CRPS immediately after injury. Further research is needed.
Collapse
Affiliation(s)
- Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anatoly Livshitz
- Center for Rehabilitation of Pain Syndromes, Reuth Rehabilitation Hospital, Tel Aviv, Israel
| | - Yulia Levin-Meltz
- Center for Rehabilitation of Pain Syndromes, Reuth Rehabilitation Hospital, Tel Aviv, Israel
| | - Debbie Rand
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa Deutsch
- BioStats Statistical Consulting Ltd, Modiin, Israel
| | - Jean-Jacques Vatine
- Center for Rehabilitation of Pain Syndromes, Reuth Rehabilitation Hospital, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
172
|
Rizzolatti G, Fabbri‐Destro M, Caruana F, Avanzini P. System neuroscience: Past, present, and future. CNS Neurosci Ther 2018; 24:685-693. [PMID: 29924477 PMCID: PMC6490004 DOI: 10.1111/cns.12997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
In this review, we discuss first the anatomical and lesion studies that allowed the localization of fundamental functions in the cerebral cortex of primates including humans. Subsequently, we argue that the years from the end of the Second World War until the end of the last century represented the "golden age" of system neuroscience. In this period, the mechanisms-not only the localization-underlying sensory, and in particular visual functions were described, followed by those underlying cognitive functions and housed in temporal, parietal, and premotor areas. At the end of the last century, brain imaging techniques were developed that allowed the assessment of the functions of different cortical areas in a more precise and sophisticated way. However, brain imaging tells little about the neural mechanisms underlying functions. Furthermore, the brain imaging suffers from 3 major problems: time is absent, the data are merely correlative and the testing is often not ecological. We conclude our review discussing the possibility that these pitfalls might be overcome by using intracortical recordings (eg stereo-EEG), which have millisecond time resolution, allow direct electrical stimulation of specific sites, and finally enable to study patients while freely moving.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Istituto di NeuroscienzeConsiglio Nazionale delle RicercheParmaItaly
- Dipartimento di Medicina e ChirurgiaUniversità degli Studi di ParmaParmaItaly
| | | | - Fausto Caruana
- Dipartimento di Medicina e ChirurgiaUniversità degli Studi di ParmaParmaItaly
| | - Pietro Avanzini
- Istituto di NeuroscienzeConsiglio Nazionale delle RicercheParmaItaly
| |
Collapse
|
173
|
Adler-Neal AL, Zeidan F. Mindfulness Meditation for Fibromyalgia: Mechanistic and Clinical Considerations. Curr Rheumatol Rep 2018; 19:59. [PMID: 28752493 DOI: 10.1007/s11926-017-0686-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Fibromyalgia is a disorder characterized by widespread pain and a spectrum of psychological comorbidities, rendering treatment difficult and often a financial burden. Fibromyalgia is a complicated chronic pain condition that requires a multimodal therapeutic approach to optimize treatment efficacy. Thus, it has been postulated that mind-body techniques may prove fruitful in treating fibromyalgia. Mindfulness meditation, a behavioral technique premised on non-reactive sensory awareness, attenuates pain and improves mental health outcomes. However, the impact of mindfulness meditation on fibromyalgia-related outcomes has not been comprehensively characterized. The present review delineates the existing evidence supporting the effectiveness and hypothesized mechanisms of mindfulness meditation in treating fibromyalgia-related outcomes. RECENT FINDINGS Mindfulness-based interventions premised on cultivating acceptance, non-attachment, and social engagement may be most effective in decreasing fibromyalgia-related pain and psychological symptoms. Mindfulness-based therapies may alleviate fibromyalgia-related outcomes through multiple neural, psychological, and physiological processes. Mindfulness meditation may provide an effective complementary treatment approach for fibromyalgia patients, especially when combined with other reliable techniques (exercise; cognitive behavioral therapy). However, characterizing the specific analgesic mechanisms supporting mindfulness meditation is a critical step to fostering the clinical validity of this technique. Identification of the specific analgesic mechanisms supporting mindfulness-based pain relief could be utilized to better design behavioral interventions to specifically target fibromyalgia-related outcomes.
Collapse
Affiliation(s)
- Adrienne L Adler-Neal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Fadel Zeidan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
174
|
Whelan A, Johnson MI. Lysergic acid diethylamide and psilocybin for the management of patients with persistent pain: a potential role? Pain Manag 2018; 8:217-229. [PMID: 29722608 DOI: 10.2217/pmt-2017-0068] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, there has been interest in lysergic acid diethylamide (LSD) and psilocybin for depression, anxiety and fear of death in terminal illness. The aim of this review is to discuss the potential use of LSD and psilocybin for patients with persistent pain. LSD and psilocybin are 5-hydroxytryptamine receptor agonists and may interact with nociceptive and antinociceptive processing. Tentative evidence from a systematic review suggests that LSD (7 studies, 323 participants) and psilocybin (3 studies, 92 participants) may be beneficial for depression and anxiety associated with distress in life-threatening diseases. LSD and psilocybin are generally safe if administered by a healthcare professional, although further investigations are needed to assess their utility for patients with persistent pain, especially associated with terminal illness.
Collapse
Affiliation(s)
- Andy Whelan
- Leeds Pain and Interventional Neuromodulation Service, Teaching Hospitals NHS Trust, Leeds, LS1 3EX2, UK
| | - Mark I Johnson
- Centre for Pain Research, Leeds Beckett University, Leeds, LS1 3HE, UK
| |
Collapse
|
175
|
Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix. Neuroimage 2018; 172:562-574. [DOI: 10.1016/j.neuroimage.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
|
176
|
The salience of self, not social pain, is encoded by dorsal anterior cingulate and insula. Sci Rep 2018; 8:6165. [PMID: 29670166 PMCID: PMC5906579 DOI: 10.1038/s41598-018-24658-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/28/2018] [Indexed: 01/17/2023] Open
Abstract
The human neural correlates of social rejection have attracted significant research interest, but remain subject to vigorous debate. Specifically, it has been proposed that a matrix of brain regions overlapping with the classical pain matrix, and including the dorsal anterior cingulate cortex (dACC) and the anterior insular cortex (AI) is critical for processing of social rejection. The present study expands on this conceptualization, by showing that these areas are involved in processing of self-relevant social evaluation, irrespective of valence. Forty healthy adolescents (N = 20 females) were tested in a magnetic resonance imaging (MRI) scanner. We used a novel paradigm that balanced participants' experience of rejection and acceptance. In addition, the paradigm also controlled for whether the social judgment was towards the participants or towards other fictitious players. By creating a "self" and "other" distinction, we show that right AI and dACC are involved in processing the salience of being judged by others, irrespective of the quality of this judgment. This finding supports the idea that these regions are not specific to social rejection or even to pain or metaphorically painful experiences, but activate to self-relevant, highly salient information.
Collapse
|
177
|
Assessment of Nociception and Pain in Participants in an Unresponsive or Minimally Conscious State After Acquired Brain Injury: The Relation Between the Coma Recovery Scale-Revised and the Nociception Coma Scale-Revised. Arch Phys Med Rehabil 2018; 99:1755-1762. [PMID: 29653106 DOI: 10.1016/j.apmr.2018.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To investigate the relation between consciousness and nociceptive responsiveness (ie, Nociception Coma Scale-Revised [NCS-R]), to examine the suitability of the NCS-R for assessing nociception in participants with disorders of consciousness (DOC), and to replicate previous findings on psychometric properties of the scale. DESIGN Specialized DOC program. SETTING Specialized DOC program and university hospitals. PARTICIPANTS Participants (N=85) diagnosed with DOC. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES We prospectively assessed consciousness with the Coma Recovery Scale-Revised (CRS-R). Responses during baseline, non-noxious, and noxious stimulations were scored with the NCS-R and CRS-R oromotor and motor subscales. RESULTS CRS-R total scores correlated with NCS-R total scores and subscores. CRS-R motor subscores correlated with NCS-R total scores and motor subscores, and CRS-R oromotor subscores correlated with NCS-R total scores as well as verbal and facial expression subscores. There was a difference between unresponsive wakefulness syndrome and minimally conscious state in the proportion of grimacing and/or crying participants during noxious conditions. We replicated previous findings on psychometric properties of the scale but found a different score as the best threshold for nociception. CONCLUSIONS We report a strong relation between the responsiveness to nociception and the level of consciousness. The NCS-R seems to be a valuable tool for assessing nociception in an efficient manner, but additional studies are needed to allow recommendations for clinical assessment of subjective pain experience.
Collapse
|
178
|
Moayedi M, Salomons TV, Atlas LY. Pain Neuroimaging in Humans: A Primer for Beginners and Non-Imagers. THE JOURNAL OF PAIN 2018; 19:961.e1-961.e21. [PMID: 29608974 PMCID: PMC6192705 DOI: 10.1016/j.jpain.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Human pain neuroimaging has exploded in the past 2 decades. During this time, the broader neuroimaging community has continued to investigate and refine methods. Another key to progress is exchange with clinicians and pain scientists working with other model systems and approaches. These collaborative efforts require that non-imagers be able to evaluate and assess the evidence provided in these reports. Likewise, new trainees must design rigorous and reliable pain imaging experiments. In this article we provide a guideline for designing, reading, evaluating, analyzing, and reporting results of a pain neuroimaging experiment, with a focus on functional and structural magnetic resonance imaging. We focus in particular on considerations that are unique to neuroimaging studies of pain in humans, including study design and analysis, inferences that can be drawn from these studies, and the strengths and limitations of the approach.
Collapse
Affiliation(s)
- Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Tim V Salomons
- School of Psychology and Clinical Language Science, University of Reading, Reading, UK; Centre for Integrated Neuroscience and Neurodynamics, University of Reading, Reading, UK
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
179
|
Granovsky Y, Shor M, Shifrin A, Sprecher E, Yarnitsky D, Bar-Shalita T. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura. THE JOURNAL OF PAIN 2018; 19:943-951. [PMID: 29597079 DOI: 10.1016/j.jpain.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/11/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. PERSPECTIVE This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain.
Collapse
Affiliation(s)
- Yelena Granovsky
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Merav Shor
- Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Alla Shifrin
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - David Yarnitsky
- Department of Neurology, Rambam Medical Center, Haifa, Israel; The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
180
|
The Relationship Between Structural and Functional Brain Changes and Altered Emotion and Cognition in Chronic Low Back Pain Brain Changes. Clin J Pain 2018; 34:237-261. [DOI: 10.1097/ajp.0000000000000534] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
181
|
Chakravarthy K, Kent AR, Raza A, Xing F, Kinfe TM. Burst Spinal Cord Stimulation: Review of Preclinical Studies and Comments on Clinical Outcomes. Neuromodulation 2018; 21:431-439. [PMID: 29431275 DOI: 10.1111/ner.12756] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Burst spinal cord stimulation (SCS) technology uses a novel waveform that consists of closely packed high-frequency electrical impulses followed by a quiescent period. Within the growing field of neuromodulation, burst stimulation is unique in that it mimics the natural burst firing of the nervous system, in particular the thalamo-cingulate rhythmicity, resulting in modulation of the affective and attentional components of pain processing (e.g., medial thalamic pathways). STUDY DESIGN A review of preclinical and clinical studies regarding burst SCS for various chronic pain states. METHODS Available literature was reviewed on burst stimulation technology. Data sources included relevant literature identified through searches of PubMed, MEDLINE/OVID, SCOPUS, and manual searches of the bibliographies of known primary and review articles. OUTCOME MEASURES The primary outcome measure was to understand the mechanisms of action with regards to burst stimulation and to review clinical data on the indications of burst SCS for various chronic pain states. RESULTS We present both mechanisms of action and review uses of burst stimulation for various pain states. CONCLUSIONS Burst stimulation offers a novel pain reduction tool with the absence of uncomfortable paresthesia for failed back surgery syndrome, diabetic neuropathic pain, and anesthesia dolorosa. Preclinical models have emphasized that the potential mechanisms for burst therapy could be related to neural coding algorithms that mimic the natural nervous system firing patterns, resulting in effects on both the medial and lateral pain pathways. Other mechanisms include frequency dependent opioid release, modulation of the pain gate, and activation of electrical and chemical synapses.
Collapse
Affiliation(s)
- Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | - Adil Raza
- Abbott, Neuromodulation Division, Plano, TX, USA
| | - Fang Xing
- Department of Anesthesiology and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas M Kinfe
- Division of Functional Neurosurgery, Stereotaxy and Neuromodulation, Rheinische Friedrich Wilhelms, University Hospital, Bonn, Germany
| |
Collapse
|
182
|
Borg C, Faillenot I, Peyron R, Laurent B. Retrieving autobiographical experience of painful events in a phantom limb: brain concomitants in a case report. Neurocase 2018; 24:41-48. [PMID: 29388508 DOI: 10.1080/13554794.2018.1429636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the case of a patient who had an important experience with painful events, allowing the investigation of brain concomitants to painful (P) memories in fMRI. The patient had to recall P events that were contrasted with non-painful (NP) memories. Painful memories of the right lower limb activated the left paracentral lobule,fronto-insular operculum and superior parietal cortex. Additionally, whilst the recall of non-painful events activated the hippocampus, the recall of painful events did not enhance the hippocampal signal to significant levels. These suggest that brain activations differ for the autobiographical recall of painful and non-painful memories.
Collapse
Affiliation(s)
- Céline Borg
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,b Psychology Department , University of Lyon , Lyon , France.,c Study of Cognitive Mechanisms Laboratory , University of Lyon , Bron , France
| | - Isabelle Faillenot
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France
| | - Roland Peyron
- d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France.,e Pain Center , CHU Nord Saint-Etienne , Saint Priest-en-Jarez , France
| | - Bernard Laurent
- a Neurology/Neuropsychology CMRR Unit , CHU Nord Saint-Etienne , Saint-Priest-en-Jarez , France.,d CNRL, INSERM U1028; UCB Lyon1 , University Jean Monnet , Saint-Etienne , France.,e Pain Center , CHU Nord Saint-Etienne , Saint Priest-en-Jarez , France
| |
Collapse
|
183
|
Zhou F, Gu L, Hong S, Liu J, Jiang J, Huang M, Zhang Y, Gong H. Altered low-frequency oscillation amplitude of resting state-fMRI in patients with discogenic low-back and leg pain. J Pain Res 2018; 11:165-176. [PMID: 29386913 PMCID: PMC5767087 DOI: 10.2147/jpr.s151562] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective The aim of this study was to explore the amplitude of intrinsic low-frequency oscillations (LFOs) in patients with discogenic low-back and leg pain (LBLP). Participants and methods We obtained and compared the LFO amplitude from 25 right-handed discogenic LBLP patients (13 males; mean age 55.16±1.83 years) and 27 well-matched healthy controls (15 males; mean age 52.96±1.63 years). The LFO amplitude was examined using the voxel-wise amplitude of low-frequency fluctuations (ALFFs), and partial correlation analysis was performed to determine the relationship between the regions with altered ALFF values and clinical parameters in discogenic LBLP patients. Results Compared with healthy controls, the patients with discogenic LBLP showed a significant increase in ALFF in the affective system of the pain matrix (left anterior cingulate cortex, right anterior insula/frontal operculum, and bilateral orbitofrontal cortex) and information-processing regions (middle occipital/temporal gyrus). In addition, a significant decrease in ALFF was observed in the default mode network (DMN; inferior parietal lobule (IPL) and medial prefrontal cortex [mPFC]) and the processing system of the pain matrix (basal ganglia/thalamus/midbrain, postcentral gyrus [PoCG], and fusiform gyrus). Several regions with altered ALFF were associated with disease duration, visual analog scale scores, Barthel index, and fine sensory modality measurements (two-point tactile discrimination of the left and/or right leg). Further operating characteristic curves analysis suggested that the mean ALFF values in the right IPL, left IPL/PoCG, left anterior cingulate cortex, and left mPFC could serve as markers to separate individuals with discogenic LBLP from healthy subjects. Conclusion Our results revealed widespread abnormalities in ALFF in the pain matrix and information-processing regions as well as a decrease in ALFF in the DMN. These results open up an important new avenue to better understand the nature of the link between intrinsic activity and peripheral pain and sensory impairment in discogenic LBLP patients.
Collapse
Affiliation(s)
- Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Lili Gu
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shunda Hong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Jiaqi Liu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
184
|
Geha P, Schulman BR, Dib-Hajj SD, Waxman SG. Brain activity associated with pain in inherited erythromelalgia: stimulus-free pain engages brain areas involved in valuation and learning. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2018; 3:8-14. [PMID: 31080911 PMCID: PMC6505710 DOI: 10.1016/j.ynpai.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 06/09/2023]
Abstract
Inherited erythromelalgia (IEM) is a chronic pain disorder caused by gain-of-function mutations of peripheral sodium channel Nav1.7, in which warmth triggers severe pain. Little is known about the brain representation of pain in IEM. Here we study two subjects with the IEM Nav1.7-S241T mutation using functional brain imaging (fMRI). Subjects were scanned during each of five visits. During each scan, pain was first triggered using a warming boot and subjects rated their thermal-heat pain. Next, the thermal stimulus was terminated and subjects rated stimulus-free pain. Last, subjects performed a control visual rating task. Thermal-heat induced pain mapped to the frontal gyrus, ventro-medial prefrontal cortex, superior parietal lobule, supplementary motor area, insula, primary and secondary somato-sensory motor cortices, dorsal and ventral striatum, amygdala, and hippocampus. Stimulus-free pain, by contrast, mapped mainly to the frontal cortex, including dorsal, ventral and medial prefrontal cortex, and supplementary motor area. Examination of time periods when stimulus-free pain was changing showed further activations in the valuation network including the rostral anterior cingulate cortex, striatum and amygdala, in addition to brainstem, thalamus, and insula. We conclude that, similar to other chronic pain conditions, the brain representation of stimulus-free pain during an attack in subjects with IEM engages brain areas involved in acute pain as well as valuation and learning.
Collapse
Affiliation(s)
- Paul Geha
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States
- The John B. Pierce Laboratory, New Haven CT 06519, United States
| | - Betsy R. Schulman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States
- Neurorehabilitation Research Center, Veterans Affairs Hospital, West Haven, CT 06516, United States
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States
- Neurorehabilitation Research Center, Veterans Affairs Hospital, West Haven, CT 06516, United States
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, United States
- Neurorehabilitation Research Center, Veterans Affairs Hospital, West Haven, CT 06516, United States
| |
Collapse
|
185
|
A novel and effective fMRI decoding approach based on sliced inverse regression and its application to pain prediction. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
186
|
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84:407-423. [PMID: 28807753 PMCID: PMC5729102 DOI: 10.1016/j.neubiorev.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Assessing clinical pain and metrics related to function or quality of life predominantly relies on patient reported subjective measures. These outcome measures are generally not applicable to the preclinical setting where early signs pointing to analgesic value of a therapy are sought, thus introducing difficulties in animal to human translation in pain research. Evaluating brain function in patients and respective animal model(s) has the potential to characterize mechanisms associated with pain or pain-related phenotypes and thereby provide a means of laboratory to clinic translation. This review summarizes the progress made towards understanding of brain function in clinical and preclinical pain states elucidated using an imaging approach as well as the current level of validity of translational pain imaging. We hypothesize that neuroimaging can describe the central representation of pain or pain phenotypes and yields a basis for the development and selection of clinically relevant animal assays. This approach may increase the probability of finding meaningful new analgesics that can help satisfy the significant unmet medical needs of patients.
Collapse
Affiliation(s)
| | - Christian Geber
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany; DRK Schmerz-Zentrum Mainz, Mainz, Germany
| | - Richard Hargreaves
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States
| | - Frank Birklein
- Department of Neurology, University Medical Centre Mainz, Mainz, Germany
| | - David Borsook
- Center for Pain and the Brain, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
187
|
|
188
|
How do morphological alterations caused by chronic pain distribute across the brain? A meta-analytic co-alteration study. NEUROIMAGE-CLINICAL 2017; 18:15-30. [PMID: 30023166 PMCID: PMC5987668 DOI: 10.1016/j.nicl.2017.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
•In chronic pain, gray matter (GM) alterations are not distributed randomly across the brain.•The pattern of co-alterations resembles that of brain connectivity.•The alterations' distribution partly rely on the pathways of functional connectivity.•This method allows us to identify tendencies in the distribution of GM co-alteration related to chronic pain.
Collapse
|
189
|
Hauck M, Schröder S, Meyer-Hamme G, Lorenz J, Friedrichs S, Nolte G, Gerloff C, Engel AK. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity. Sci Rep 2017; 7:16307. [PMID: 29176684 PMCID: PMC5701238 DOI: 10.1038/s41598-017-13633-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
Recent studies support the view that cortical sensory, limbic and executive networks and the autonomic nervous system might interact in distinct manners under the influence of acupuncture to modulate pain. We performed a double-blind crossover design study to investigate subjective ratings, EEG and ECG following experimental laser pain under the influence of sham and verum acupuncture in 26 healthy volunteers. We analyzed neuronal oscillations and inter-regional coherence in the gamma band of 128-channel-EEG recordings as well as heart rate variability (HRV) on two experimental days. Pain ratings and pain-induced gamma oscillations together with vagally-mediated power in the high-frequency bandwidth (vmHF) of HRV decreased significantly stronger during verum than sham acupuncture. Gamma oscillations were localized in the prefrontal cortex (PFC), mid-cingulate cortex (MCC), primary somatosensory cortex and insula. Reductions of pain ratings and vmHF-power were significantly correlated with increase of connectivity between the insula and MCC. In contrast, connectivity between left and right PFC and between PFC and insula correlated positively with vmHF-power without a relationship to acupuncture analgesia. Overall, these findings highlight the influence of the insula in integrating activity in limbic-saliency networks with vagally mediated homeostatic control to mediate antinociception under the influence of acupuncture.
Collapse
Affiliation(s)
- Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Gesa Meyer-Hamme
- HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jürgen Lorenz
- Faculty of Life Science, Laboratory of Human Biology and Physiology, Applied Science University, 21033, Hamburg, Germany
| | - Sunja Friedrichs
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,HanseMerkur Center for Traditional Chinese Medicine at the University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
190
|
Lötsch J, Weyer-Menkhoff I, Tegeder I. Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings. Eur J Pain 2017; 22:471-484. [PMID: 29160600 DOI: 10.1002/ejp.1148] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review. Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice. Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone. During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting. While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy. SIGNIFICANCE Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.
Collapse
Affiliation(s)
- J Lötsch
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - I Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| | - I Tegeder
- Institute of Clinical Pharmacology, Goethe - University, Frankfurt am Main, Germany
| |
Collapse
|
191
|
de Valence T, Elia N, Czarnetzki C, Dumont L, Tramèr MR, Lysakowski C. Effect of sufentanil on bispectral index in the elderly. Anaesthesia 2017; 73:216-222. [PMID: 29098683 DOI: 10.1111/anae.14102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
Abstract
We examined the impact of adding sufentanil during anaesthesia induction with propofol on bispectral index values in elderly patients (≥ 65 years). Patients were randomly assigned to receive a target-controlled sufentanil infusion (effect-site concentration of 0.3 ng.ml-1 ) or matching placebo, followed by a target-controlled propofol induction (initial effect-site concentration of 0.5 μg.ml-1 ; step-wise increase of 0.5 μg.ml-1 ) until loss of consciousness defined as an Observer's Assessment of Alertness/Sedation score < 2. Seventy-one patients (sufentanil 35, placebo 36) completed the study. Mean (SD) age was 72.3 (5.8) years; 41% were women. At loss of consciousness, mean (SD) bispectral index value was 75.0 (8.6) with sufentanil and 70.0 (8.0) with placebo; mean difference -5.0 (95% confidence interval -8.9 to -1.1), p = 0.013. Post-hoc analyses suggest that the difference was significant in men only (mean difference -7.3 (-11.8 to -2.6), p = 0.003). Sufentanil co-induction with propofol results in higher bispectral index values at loss of consciousness in elderly patients.
Collapse
Affiliation(s)
- T de Valence
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - N Elia
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Institute of Global Health, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - C Czarnetzki
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - L Dumont
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Medical Faculty, University of Geneva, Geneva, Switzerland
| | - M R Tramèr
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Medical Faculty, University of Geneva, Geneva, Switzerland
| | - C Lysakowski
- Division of Anaesthesiology, Department of Anaesthesiology, Pharmacology and Intensive Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Medical Faculty, University of Geneva, Geneva, Switzerland
| |
Collapse
|
192
|
Neves RM, van Keulen S, Yang M, Logothetis NK, Eschenko O. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. J Neurophysiol 2017; 119:904-920. [PMID: 29093170 DOI: 10.1152/jn.00552.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α2-adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information along an ascending noxious pathway.
Collapse
Affiliation(s)
- Ricardo M Neves
- Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| | - Silvia van Keulen
- Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| | - Mingyu Yang
- Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| | - Nikos K Logothetis
- Max Planck Institute for Biological Cybernetics , Tübingen , Germany.,Centre for Imaging Sciences, Biomedical Imaging Institute, The University of Manchester , Manchester , United Kingdom
| | - Oxana Eschenko
- Max Planck Institute for Biological Cybernetics , Tübingen , Germany
| |
Collapse
|
193
|
Weissman-Fogel I, Granovsky Y, Bar-Shalita T. Sensory Over-Responsiveness among Healthy Subjects is Associated with a Pronociceptive State. Pain Pract 2017; 18:473-486. [PMID: 28782305 DOI: 10.1111/papr.12619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/28/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Chronic pain patients show hypersensitivity to sensory nonpainful stimuli. Sensory over-responsiveness (SOR) to innocuous daily stimuli, experienced as painful, is prevalent in 10% of the healthy population. This altered sensory processing may be an expression of overfacilitation, or a less efficient pain-inhibitory process in the pain pathways. We therefore aimed to investigate specifically the pain-inhibitory system of subjects with SOR who are otherwise healthy, not studied as of yet. METHODS Thirty healthy subjects, divided into an SOR group (n = 14) and a non-SOR group (n = 16) based on responses to the Sensory Responsiveness Questionnaire, were psychophysically tested in order to evaluate (1) hyperalgesic responses; (2) adaptation/sensitization to 14 phasic heat stimuli; (3) habituation; (4) 6-minute after-sensations; and (5) conditioned pain modulation (CPM) (ie, phasic heat stimuli applied with and without hand immersion in a hot water bath). RESULTS The SOR group differed from the non-SOR group in (1) a steeper escalation in NPS ratings to temperature increase (P = 0.003), indicating hyperalgesia; (2) increased sensitization (P < 0.001); (3) habituation responses (P < 0.001); (4) enhanced pain ratings during the after-sensation (P = 0.006); and (5) no group difference was found in CPM. CONCLUSIONS SOR is associated with a pronociceptive state, expressed by amplification of experimental pain, yet with sufficient inhibitory processes. Our results support previous findings of enhanced facilitation of pain-transmitting pathways but also reveal preserved inhibitory mechanisms, although they were slower to react.
Collapse
Affiliation(s)
- Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus and the Laboratory of Clinical Neurophysiology, Faculty of Medicine, Technion, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
194
|
Physical pain increases interpersonal trust in females. Eur J Pain 2017; 22:150-160. [DOI: 10.1002/ejp.1111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/31/2022]
|
195
|
Davis KD, Flor H, Greely HT, Iannetti GD, Mackey S, Ploner M, Pustilnik A, Tracey I, Treede RD, Wager TD. Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nat Rev Neurol 2017; 13:624-638. [PMID: 28884750 DOI: 10.1038/nrneurol.2017.122] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic pain is the greatest source of disability globally and claims related to chronic pain feature in many insurance and medico-legal cases. Brain imaging (for example, functional MRI, PET, EEG and magnetoencephalography) is widely considered to have potential for diagnosis, prognostication, and prediction of treatment outcome in patients with chronic pain. In this Consensus Statement, a presidential task force of the International Association for the Study of Pain examines the capabilities of brain imaging in the diagnosis of chronic pain, and the ethical and legal implications of its use in this way. The task force emphasizes that the use of brain imaging in this context is in a discovery phase, but has the potential to increase our understanding of the neural underpinnings of chronic pain, inform the development of therapeutic agents, and predict treatment outcomes for use in personalized pain management. The task force proposes standards of evidence that must be satisfied before any brain imaging measure can be considered suitable for clinical or legal purposes. The admissibility of such evidence in legal cases also strongly depends on laws that vary between jurisdictions. For these reasons, the task force concludes that the use of brain imaging findings to support or dispute a claim of chronic pain - effectively as a pain lie detector - is not warranted, but that imaging should be used to further our understanding of the mechanisms underlying pain.
Collapse
Affiliation(s)
- Karen D Davis
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Room MP12-306, Toronto, Ontario M5T 2S8, Canada.,Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Ruprecht-Karls-Universität Heidelberg, J5, D-86169 Mannheim, Germany
| | - Henry T Greely
- Stanford Program in Neuroscience and Society, Center for Law and the Biosciences, Stanford Law School, Stanford University, Stanford, California 94305-8610, USA
| | - Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 1070 Arastradero, Suite 200, Palo Alto, California 94304, USA
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Amanda Pustilnik
- Center for Law, Brain &Behavior, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, USA.,University of Maryland School of Law, 500 W. Baltimore Street, Baltimore, Maryland 21201, USA
| | - Irene Tracey
- Nuffield Department of Clinical Neurosciences, University of Oxford, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rolf-Detlef Treede
- Center for Biomedicine and Medical Technology Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany
| | - Tor D Wager
- Department of Psychology and Neuroscience, Muezinger D244, 345 UCB, Boulder, Colorado 80309-0345, USA.,Institute of Cognitive Science, University of Colorado, 344 UCB, Boulder, Colorado 80309-0344, USA
| |
Collapse
|
196
|
Lelic D, Hansen TM, Mark EB, Olesen AE, Drewes AM. The effects of analgesics on central processing of tonic pain: A cross-over placebo controlled study. Neuropharmacology 2017. [DOI: 10.1016/j.neuropharm.2017.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
197
|
Prestimulus Theta Oscillations and Connectivity Modulate Pain Perception. J Neurosci 2017; 36:5026-33. [PMID: 27147655 DOI: 10.1523/jneurosci.3325-15.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/18/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The perception of pain is strongly influenced by cognitive processes, such as expectations toward the efficacy of pain medication. It is reasonable to assume that such processes, among other sources of fluctuation, are reflected in ongoing brain activity, which in turn influences perceptual processing. To identify specific prestimulus EEG activity, and connectivity patterns related to subsequent pain perception in humans, we contrasted painful with nonpainful sensations delivered at the individual threshold level determined by the psychophysical QUEST estimation method (Watson and Pelli, 1983). The 64-channel EEG was recorded using active electrodes during a constant stimulation procedure. The power contrast between trials sorted by rating revealed a signal decrease of 8% before stimulus onset in theta-band (4-7 Hz) at T7/FT7 as well as increased theta-power by 6% at T8/FT8. Gamma-band power was increased (12%, 28-32 Hz) at frontocentral sites (all p < 0.05). Changes in theta-band power are covarying with subsequent pain perception, as well as lowered frontolateral theta-band connectivity for painful percepts. A decrease in frontoparietal connectivity for painful sensations was also identified in the gamma-band (28-32 Hz). A single-trial logistic regression revealed significant information content in the EEG signal at temporal electrode T7 in theta-band (p < 0.01) and frontal electrode F1 in gamma-band (all p < 0.02). The observed patterns suggest top-down modulation of the theta-band effects by a frontocentral network node. These findings contribute to the understanding of ongoing subjective pain sensitivity, potentially relevant to both clinical diagnostics and pain management. SIGNIFICANCE STATEMENT The perceived intensity of a constant stimulus is known to vary considerably across multiple presentations. Here, we used state-of-the-art psychophysical methods in an EEG experiment to identify the specific neuronal activity before stimulus onset that reflects the subsequent perception of pain. We found specific oscillatory activity at the bilateral insular cortices as well as connectivity patterns that reflect and correlate with subsequent ratings. These results further the understanding of pain perception and are potentially relevant for the decoding of ongoing pain sensitivity and pain management.
Collapse
|
198
|
Inui T, Kumagaya S, Myowa-Yamakoshi M. Neurodevelopmental Hypothesis about the Etiology of Autism Spectrum Disorders. Front Hum Neurosci 2017; 11:354. [PMID: 28744208 PMCID: PMC5504094 DOI: 10.3389/fnhum.2017.00354] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/20/2017] [Indexed: 11/13/2022] Open
Abstract
Previous models or hypotheses of autism spectral disorder (ASD) failed to take into full consideration the chronological and causal developmental trajectory, leading to the emergence of diverse phenotypes through a complex interaction between individual etiologies and environmental factors. Those phenotypes include persistent deficits in social communication and social interaction (criteria A in DSM-5), and restricted, repetitive patterns of behavior, interests, or activities (criteria B in DSM-5). In this article, we proposed a domain-general model that can explain criteria in DSM-5 based on the assumption that the same etiological mechanism would trigger the various phenotypes observed in different individuals with ASD. In the model, we assumed the following joint causes as the etiology of autism: (1) Hypoplasia of the pons in the brainstem, occurring immediately following neural tube closure; and (2) Deficiency in the GABA (γ-aminobutyric acid) developmental switch during the perinatal period. Microstructural abnormalities of the pons directly affect both the structural and functional development of the brain areas strongly connected to it, especially amygdala. The impairment of GABA switch could not only lead to the deterioration of inhibitory processing in the neural network, but could also cause abnormal cytoarchitecture. We introduced a perspective that atypical development in both brain structure and function can give full explanation of diverse phenotypes and pathogenetic mechanism of ASD. Finally, we discussed about neural mechanisms underlying the phenotypic characteristics of ASD that are not described in DSM-5 but should be considered as important foundation: sleep, global precedence, categorical perception, intelligence, interoception and motor control.
Collapse
Affiliation(s)
- Toshio Inui
- Department of Psychology, Otemon Gakuin UniversityOsaka, Japan
| | - Shinichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of TokyoTokyo, Japan
| | | |
Collapse
|
199
|
Abstract
The exact mechanism underlying fibromyalgia is unknown, but increased facilitatory modulation and/or dysfunctional descending inhibitory pathway activity are posited as possible mechanisms contributing to sensitization of the central nervous system. The primary goal of this study is to identify a fibromyalgia neural circuit that can account for these abnormalities in central pain. The second goal is to gain a better understanding of the functional connectivity between the default and the executive attention network (salience network plus dorsal lateral prefrontal cortex) in fibromyalgia. We examine neural activity associated with fibromyalgia (N = 44) and compare these with healthy controls (N = 44) using resting state source localized EEG. Our data support an important role of the pregenual anterior cingulate cortex but also suggest that the degree of activation and the degree of integration between different brain areas is important. The inhibition of the connectivity between the dorsal lateral prefrontal cortex and the posterior cingulate cortex on the pain inhibitory pathway seems to be limited by decreased functional connectivity with the pregenual anterior cingulate cortex. Our data highlight the functional dynamics of brain regions integrated in brain networks in fibromyalgia patients.
Collapse
Affiliation(s)
- Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, United States of America
- * E-mail:
| | - Jan Ost
- BRAIN, Sint Augustinus Hospital Antwerp, Antwerp, Belgium
| | | | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
200
|
Eisenblätter A, Lewis R, Dörfler A, Forster C, Zimmermann K. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin. Ann Neurol 2017; 81:104-116. [PMID: 27997033 DOI: 10.1002/ana.24841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. METHODS Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. RESULTS The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. INTERPRETATION We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116.
Collapse
Affiliation(s)
- Anneka Eisenblätter
- Department of Anesthesiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Richard Lewis
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Arnd Dörfler
- Department of Neuroradiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Forster
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Zimmermann
- Department of Anesthesiology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|