151
|
Gray M, Innala L, Viau V. Central vasopressin V1A receptor blockade impedes hypothalamic-pituitary-adrenal habituation to repeated restraint stress exposure in adult male rats. Neuropsychopharmacology 2012; 37:2712-9. [PMID: 22828750 PMCID: PMC3473337 DOI: 10.1038/npp.2012.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that central arginine vasopressin (AVP) signaling can inhibit the hypothalamic-pituitary-adrenal (HPA) axis. To test a role for the AVP V1A receptor in stress HPA axis habituation, adult male rats were exposed to 5 consecutive days of 3 h restraint with or without continuous intracerebroventricular infusion of the V1A receptor antagonist d(CH2)5Tyr(Me)AVP (10 μg/day). Assessment of neuropeptide expression and HPA output under basal conditions revealed no effects of V1A receptor antagonism in stress naive animals. Between the first and last day of restraint exposure, controls showed marked declines in ACTH and corticosterone responses, and maintained plasma concentrations of testosterone. In contrast, V1A receptor antagonized animals displayed significantly smaller declines in ACTH and corticosterone responses, and a decrease in plasma testosterone. Despite their reduced expression of HPA axis habituation, antagonized animals continued to show stress-induced increases in AVP mRNA in the hypothalamic paraventricular nucleus and bed nucleus of the stria terminalis, and even higher levels of AVP expression in the medial amygdala relative to controls. The data leave open the nature and extent to which these and other AVP-containing pathways are recruited during repeated restraint, but nevertheless reveal a critical role for central V1A receptors in stress adaptation. As the effects of V1A receptor antagonism were restricted to the repeated restraint condition, we conclude that normal adaptation to stress involves a shift toward enhanced AVP utilization and/or V1A receptor signaling.
Collapse
Affiliation(s)
- Megan Gray
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leyla Innala
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Viau
- Neuroscience Program, Department of Cellular and Physiological Sciences, Life Science Centre, University of British Columbia, Vancouver, British Columbia, Canada,Neuroscience Program, Department of Cellular and Physiological Sciences, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3, Tel: +1 604 822 3899, Fax: +1 604 822 2316, E-mail:
| |
Collapse
|
152
|
Lutterschmidt DI, Wilczynski W. Sexually dimorphic effects of melatonin on brain arginine vasotocin immunoreactivity in green treefrogs (Hyla cinerea). BRAIN, BEHAVIOR AND EVOLUTION 2012; 80:222-32. [PMID: 22906877 DOI: 10.1159/000341238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 06/11/2012] [Indexed: 11/19/2022]
Abstract
Arginine vasotocin (AVT) and its mammalian homologue, arginine vasopressin (AVP), regulate a variety of social and reproductive behaviors, often with complex species-, sex- and context-dependent effects. Despite extensive evidence documenting seasonal variation in brain AVT/AVP, relatively few studies have investigated the environmental and/or hormonal factors mediating these seasonal changes. In the present study, we investigated whether the pineal hormone melatonin alters brain AVT immunoreactivity in green treefrogs (Hyla cinerea). Reproductively active male and female frogs were collected during the summer breeding season and a melatonin-filled or blank silastic capsule was surgically implanted subcutaneously. The duration of hormone treatment was 4 weeks, at which time frogs were eutha-nized and the brains and blood collected and processed for AVT immunohistochemistry and steroid hormone assay. We quantified AVT-immunoreactive (AVT-ir) cell bodies in the nucleus accumbens (NAcc), caudal striatum and amygda- la (AMG), anterior preoptic area, suprachiasmatic nucleus (SCN) and infundibular region of the ventral hypothalamus. Sex differences in AVT-ir cell number were observed in all brain regions except in the anterior preoptic area and ventral hypothalamus, with males having more AVT-ir cells than females in the NAcc, amygdala and SCN. Brain AVT was sensitive to melatonin signaling during the breeding season, and the effects of melatonin varied significantly with both region and sex. Treatment with melatonin decreased AVT immunoreactivity in both the NAcc and SCN in male H. cinerea. In contrast, brain AVT was relatively insensitive to melatonin signaling in females, indicating that the regulation of the AVT/AVP neuropeptide system by melatonin may be sexually dimorphic. Finally, melatonin did not significantly influence testosterone or estradiol concentrations of male or female frogs, respectively, suggesting that the effects of melatonin on AVT immunoreactivity are independent of changes in gonadal sex steroid hormones. Collectively, our results indicate that the AVT/AVP neuronal system may be an important target for melatonin in facilitating seasonal changes in reproductive physiology and social behavior.
Collapse
|
153
|
Jahagirdar V, Zoeller TR, Tighe DP, Wagner CK. Maternal hypothyroidism decreases progesterone receptor expression in the cortical subplate of foetal rat brain. J Neuroendocrinol 2012; 24:1126-34. [PMID: 22435967 DOI: 10.1111/j.1365-2826.2012.02318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steroid hormones exert profound effects on the development of brain areas controlling complex cognitive function in adulthood. One class, progestins, may contribute by acting on the progestin receptor (PR), which is transiently expressed in a critical layer of developing cortex: the subplate. PR expression in the subplate coincides with the establishment of ongoing cortical connectivity and may play an important organisational role. Identification of the factor(s) that regulate the precise timing of PR expression within subplate may help elucidate the function of PR. Thyroid hormone may interact with hormone response elements within the PR gene. The present study examined the effects of maternal hypothyroidism on levels of PR immunoreactivity (PR-IR) within the foetal subplate. Pregnant rats were made hypothyroid by the administration of methimazole and potassium perchlorate in drinking water. Maternal hypothyroidism significantly decreased PR-IR within the foetal subplate. Using the incorporation of 5-bromo-2'-deoxyuridine (BrDU) during subplate cell neurogenesis (embryonic day 13.5) to determine subplate cell survival in hypothyroid animals, we found that decreases in PR-IR cannot be attributed to significant subplate cell loss but are more likely the result of altered PR expression. Gestational thyroxine replacement to hypothyroid dams prevented the decrease in PR-IR within the subplate. These results identify thyroid hormone as a potential factor in the regulation of PR expression in the developing brain. These results are consistent with the idea that endocrine cross-talk between progesterone and thyroid hormone may be one mechanism by which maternal hypothyroidism alters normal cortical development.
Collapse
Affiliation(s)
- V Jahagirdar
- Department of Psychology and Center for Neuroscience Research, University at Albany, Albany, NY 12222, USA
| | | | | | | |
Collapse
|
154
|
Weathington JM, Strahan JA, Cooke BM. Social experience induces sex-specific fos expression in the amygdala of the juvenile rat. Horm Behav 2012; 62:154-61. [PMID: 22771954 DOI: 10.1016/j.yhbeh.2012.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
Abstract
To compare the response of the medial amygdala and central amygdala to juvenile social subjugation (JSS), we used unbiased stereology to quantify the immediate early gene product Fos in prepubertal rats after aggressive or benign social encounters or handling. We estimated the overall number of neurons and the proportion of Fos immunoreactive neurons in the posterodorsal (MePD) and posteroventral medial amygdala (MePV) and the central amygdala (CeA). Experience elicited Fos in a sex- and hemisphere-dependent manner in the MePD. The left MePD was selective for JSS in both sexes, but the right MePD showed a specific Fos response to JSS in males only. In the MePV, irrespective of hemisphere or sex, JSS elicited the greatest amount of Fos, benign social experience elicited an intermediate level, and handling the least. None of the experiential conditions elicited significant levels of Fos in the CeA. We found a previously unreported sex difference in the number of CeA neurons (M>F) that was highly significant and a strong trend toward a sex difference (M>F) in the MePD. These data show that the posterior MeA subnuclei are more responsive to JSS than to benign social interaction, that sex interacts with hemispheric laterality to determine the response of the MePD to JSS and that the MePV responds to social experience and JSS. Taken together, these findings support the hypothesis that juvenile rats process JSS in a sex-specific manner.
Collapse
Affiliation(s)
- Jill M Weathington
- Neuroscience Institute, Georgia State University, 100 Piedmont Avenue, SE, Atlanta, GA 30303‐5030, USA
| | | | | |
Collapse
|
155
|
Goodson JL, Wilson LC, Schrock SE. To flock or fight: neurochemical signatures of divergent life histories in sparrows. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10685-92. [PMID: 22723363 PMCID: PMC3386873 DOI: 10.1073/pnas.1203394109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many bird species exhibit dramatic seasonal switches between territoriality and flocking, but whereas neuroendocrine mechanisms of territorial aggression have been extensively studied, those of seasonal flocking are unknown. We collected brains in spring and winter from male field sparrows (Spizella pusilla), which seasonally flock, and male song sparrows (Melospiza melodia), which are territorial year-round in much of their range. Spring collections were preceded by field-based assessments of aggression. Tissue series were immunofluorescently multilabeled for vasotocin, mesotocin (MT), corticotropin-releasing hormone (CRH), vasoactive intestinal polypeptide, tyrosine hydroxylase, and aromatase, and labeling densities were measured in many socially relevant brain areas. Extensive seasonal differences are shared by both species. Many measures correlate significantly with both individual and species differences in aggression, likely reflecting evolved mechanisms that differentiate the less aggressive field sparrow from the more aggressive song sparrow. Winter-specific species differences include a substantial increase of MT and CRH immunoreactivity in the dorsal lateral septum (LS) and medial amygdala of field sparrows but not song sparrows. These species differences likely relate to flocking rather than the suppression of winter aggression in field sparrows, because similar winter differences were found for two other emberizids that are not territorial in winter--dark-eyed juncos (Junco hyemalis), which seasonally flock, and eastern towhees (Pipilo erythropthalmus), which do not flock. MT signaling in the dorsal LS is also associated with year-round species differences in grouping in estrildid finches, suggesting that common mechanisms are targeted during the evolution of different life histories.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
156
|
Taylor PV, Veenema AH, Paul MJ, Bredewold R, Isaacs S, de Vries GJ. Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats. Biol Sex Differ 2012; 3:15. [PMID: 22697211 PMCID: PMC3420237 DOI: 10.1186/2042-6410-3-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background Infectious diseases and inflammation during pregnancy increase the offspring’s risk for behavioral disorders. However, how immune stress affects neural circuitry during development is not well known. We tested whether a prenatal immune challenge interferes with the development of social play and with neural circuits implicated in social behavior. Methods Pregnant rats were given intraperitoneal injections of the bacterial endotoxin lipopolysaccharide (LPS – 100 μg /kg) or saline on the 15th day of pregnancy. Offspring were tested for social play behaviors between postnatal days 26–40. Brains were harvested on postnatal day 45 and processed for arginine vasopressin (AVP) mRNA in situ hybridization. Results In males, LPS treatment reduced the frequency of juvenile play behavior and reduced AVP mRNA expression in the medial amygdala and bed nucleus of the stria terminalis. These effects were not found in females. LPS treatment did not change AVP mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, or supraoptic nucleus of either sex, nor did it affect the sex difference in the size of the sexually dimorphic nucleus of the preoptic area. Conclusions Given AVP’s central role in regulating social behavior, the sexually dimorphic effects of prenatal LPS treatment on male AVP mRNA expression may contribute to the sexually dimorphic effect of LPS on male social play and may, therefore, increase understanding of factors that contribute to sex differences in social psychopathology.
Collapse
Affiliation(s)
- Patrick V Taylor
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA, 01003, USA.
| | | | | | | | | | | |
Collapse
|
157
|
Bingham B, Wang NXR, Innala L, Viau V. Postnatal aromatase blockade increases c-fos mRNA responses to acute restraint stress in adult male rats. Endocrinology 2012; 153:1603-8. [PMID: 22315450 DOI: 10.1210/en.2011-1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that the aromatization of testosterone to estrogen is important for the organizing effects of neonatal testosterone on neuroendocrine responses to acute challenges. However, the extent to which neonatal inhibition of aromatase alters the stress-induced activation of neural pathways has not been examined. Here we assessed central patterns of c-fos mRNA induced by 30 min of restraint in 65-d-old adult male rats that were implanted with sc capsules of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), introduced within 12 h of birth and removed on d 21 of weaning. Neonatal ATD decreased the expression of arginine vasopressin within extrahypothalamic regions in adults, confirming reduced estrogen exposure during development. As adults, ATD-treated animals showed higher corticosterone responses at 30 min of restraint exposure compared with control animals as well as higher c-fos expression levels in the paraventricular nucleus of the hypothalamus. ATD treatment also increased stress-induced c-fos within several limbic regions of the forebrain, in addition to areas involved in somatosensory processing. Based on these results, we propose that the conversion of testosterone to estrogen during the neonatal period exerts marked, system-wide effects to organize adult neuroendocrine responses to homeostatic threat.
Collapse
Affiliation(s)
- Brenda Bingham
- Department of Cellular and Physiological Sciences, Life Sciences Centre, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
158
|
Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 2012; 61:293-303. [PMID: 22100184 DOI: 10.1016/j.yhbeh.2011.11.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/19/2011] [Accepted: 11/02/2011] [Indexed: 01/17/2023]
Abstract
In the mammalian peripartum period, the activity of both the brain oxytocin and vasopressin system is elevated as part of the physiological adaptations occurring in the mother. This is reflected by increased expression and intracerebral release of oxytocin and vasopressin, as well as increased neuropeptide receptor expression and binding. In this review we discuss the functional role of the brain oxytocin and vasopressin system in the context of maternal behavior, specifically maternal care and maternal aggression in rodents. In order to enable the identification of significant and peptide-specific contributions to the display of maternal behavior, various complementary animal models of maternal care and/or maternal aggression were studied, including rats selectively bred for differences in anxiety-related behavior (HAB and LAB dams), monitoring of local neuropeptide release during ongoing maternal behavior, and local pharmacological or genetic manipulations of the neuropeptide systems. The medial preoptic area was identified as a major site for oxytocin- and vasopressin-mediated maternal care. Furthermore, both oxytocin and vasopressin release and receptor activation in the central amygdala and the bed nucleus of the stria terminalis play an important role for maternal aggression. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
159
|
Goodson JL, Kelly AM, Kingsbury MA. Evolving nonapeptide mechanisms of gregariousness and social diversity in birds. Horm Behav 2012; 61:239-50. [PMID: 22269661 PMCID: PMC3312996 DOI: 10.1016/j.yhbeh.2012.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 12/22/2022]
Abstract
Of the major vertebrate taxa, Class Aves is the most extensively studied in relation to the evolution of social systems and behavior, largely because birds exhibit an incomparable balance of tractability, diversity, and cognitive complexity. In addition, like humans, most bird species are socially monogamous, exhibit biparental care, and conduct most of their social interactions through auditory and visual modalities. These qualities make birds attractive as research subjects, and also make them valuable for comparative studies of neuroendocrine mechanisms. This value has become increasingly apparent as more and more evidence shows that social behavior circuits of the basal forebrain and midbrain are deeply conserved (from an evolutionary perspective), and particularly similar in birds and mammals. Among the strongest similarities are the basic structures and functions of avian and mammalian nonapeptide systems, which include mesotocin (MT) and arginine vasotocin (VT) systems in birds, and the homologous oxytocin (OT) and vasopressin (VP) systems, respectively, in mammals. We here summarize these basic properties, and then describe a research program that has leveraged the social diversity of estrildid finches to gain insights into the nonapeptide mechanisms of grouping, a behavioral dimension that is not experimentally tractable in most other taxa. These studies have used five monogamous, biparental finch species that exhibit group sizes ranging from territorial male-female pairs to large flocks containing hundreds or thousands of birds. The results provide novel insights into the history of nonapeptide functions in amniote vertebrates, and yield remarkable clarity on the nonapeptide biology of dinosaurs and ancient mammals. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
160
|
Valesky EM, Burda H, Kaufmann R, Oelschläger HHA. Distribution of oxytocin- and vasopressin-immunoreactive neurons in the brain of the eusocial mole rat (Fukomys anselli). Anat Rec (Hoboken) 2012; 295:474-80. [PMID: 22266748 DOI: 10.1002/ar.22414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/07/2011] [Indexed: 12/30/2022]
Abstract
Fukomys anselli, also known as Ansell's mole rat, is a subterranean, highly social (so-called eusocial) rodent that lives in Africa. These mole rats typically form multigenerational families consisting of a single monogamous breeding pair and their nonreproductive offspring. Research on other mammals suggests that oxytocin (OT) and vasopressin (VP) as well as the distribution of OT- and VP-receptors may influence social behavior and pair bonding. Recent studies on eusocial naked mole rats have shown a possible relation between sociality and OT-immunoreactive (OT-ir) processes. In this study, we examined expression patterns of OT and VP in the brains of F. anselli and the common Sprague-Dawley (SD) laboratory rat. As in other species, the majority of OT-ir and VP-ir neurons was found in the paraventricular (Pa) and supraoptic (SO) nuclei, and scattered labeling throughout the preoptic and anterior hypothalamic areas. We found no difference in either quality or quantity of OT- and VP-ir neurons between individuals of different social and reproductive ranks. Equally unexpected was the finding of specific OT-immunoreactivity in neurons of the mammillary complex of F. anselli that was not found in SD rats. Further studies are needed to determine whether these mammillary OT-ir neurons are causally related to monogamy in F. anselli and whether these correlates of monogamy are found in other species.
Collapse
Affiliation(s)
- Eva Maria Valesky
- Department of Anatomy III (Dr. Senckenbergische Anatomie), Goethe-University, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
161
|
Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: putative sex-specific correlates of posttraumatic stress disorder. Psychosom Med 2012; 74:153-9. [PMID: 22286850 PMCID: PMC3674026 DOI: 10.1097/psy.0b013e318240803a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Trauma is associated with increased risk for anxiety disorders such as posttraumatic stress disorder (PTSD). To further understand biologic mechanisms of PTSD, we examined the dark-enhanced startle response, a psychophysiological correlate of anxiety, and heart rate variability (HRV) in traumatized individuals with and without PTSD. The associations of these measures with PTSD may be sex-specific because of their associations with the bed nucleus of the stria terminalis, a sexually dimorphic brain structure in the limbic system that is approximately 2.5 times larger in men than in women. METHODS The study sample (N = 141) was recruited from a highly traumatized civilian population seeking treatment at Grady Memorial Hospital in Atlanta, Georgia. Psychophysiological responses during a dark-enhanced startle paradigm task included startle magnitude, assessed by eyeblink reflex, and measures of high-frequency HRV, during light and dark phases of the startle session. RESULTS The startle magnitude was higher during the dark phase than the light phase (mean ± standard error = 98.61 ± 10.68 versus 73.93 ± 8.21 μV, p < .001). PTSD was associated with a greater degree of dark-enhanced startle in women (p = .03) but not in men (p = .38, p interaction = .48). Although HRV measures did not differ between phases, high-frequency HRV was greater in men with PTSD compared with men without PTSD (p = .02). CONCLUSIONS This study demonstrates that the dark-enhanced paradigm provides novel insights into the psychophysiological responses associated with PTSD in traumatized civilian sample. Sex differences in altered parasympathetic and sympathetic function during anxiety regulation tasks may provide further insight into the neurobiological mechanisms of PTSD.
Collapse
|
162
|
Frye CA, Bo E, Calamandrei G, Calzà L, Dessì-Fulgheri F, Fernández M, Fusani L, Kah O, Kajta M, Le Page Y, Patisaul HB, Venerosi A, Wojtowicz AK, Panzica GC. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 2012; 24:144-59. [PMID: 21951193 PMCID: PMC3245362 DOI: 10.1111/j.1365-2826.2011.02229.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Some environmental contaminants interact with hormones and may exert adverse consequences as a result of their actions as endocrine disrupting chemicals (EDCs). Exposure in people is typically a result of contamination of the food chain, inhalation of contaminated house dust or occupational exposure. EDCs include pesticides and herbicides (such as dichlorodiphenyl trichloroethane or its metabolites), methoxychlor, biocides, heat stabilisers and chemical catalysts (such as tributyltin), plastic contaminants (e.g. bisphenol A), pharmaceuticals (i.e. diethylstilbestrol; 17α-ethinylestradiol) or dietary components (such as phytoestrogens). The goal of this review is to address the sources, effects and actions of EDCs, with an emphasis on topics discussed at the International Congress on Steroids and the Nervous System. EDCs may alter reproductively-relevant or nonreproductive, sexually-dimorphic behaviours. In addition, EDCs may have significant effects on neurodevelopmental processes, influencing the morphology of sexually-dimorphic cerebral circuits. Exposure to EDCs is more dangerous if it occurs during specific 'critical periods' of life, such as intrauterine, perinatal, juvenile or puberty periods, when organisms are more sensitive to hormonal disruption, compared to other periods. However, exposure to EDCs in adulthood can also alter physiology. Several EDCs are xenoestrogens, which can alter serum lipid concentrations or metabolism enzymes that are necessary for converting cholesterol to steroid hormones. This can ultimately alter the production of oestradiol and/or other steroids. Finally, many EDCs may have actions via (or independent of) classic actions at cognate steroid receptors. EDCs may have effects through numerous other substrates, such as the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptors. Thus, EDCs, from varied sources, may have organisational effects during development and/or activational effects in adulthood that influence sexually-dimorphic, reproductively-relevant processes or other functions, by mimicking, antagonising or altering steroidal actions.
Collapse
Affiliation(s)
- C A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Rood BD, De Vries GJ. Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 2011; 519:2434-74. [PMID: 21456024 DOI: 10.1002/cne.22635] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neuropeptide vasopressin (AVP) has been implicated in the regulation of numerous physiological and behavioral processes. Although mice have become an important model for studying this regulation, there is no comprehensive description of AVP distribution in the mouse brain and spinal cord. With C57BL/6 mice, we used immunohistochemistry to corroborate the location of AVP-containing cells and to define the location of AVP-containing fibers throughout the mouse central nervous system. We describe AVP-immunoreactive (-ir) fibers in midbrain, hindbrain, and spinal cord areas, which have not previously been reported in mice, including innervation of the ventral tegmental area, dorsal and median raphe, lateral and medial parabrachial, solitary, ventrolateral periaqueductal gray, and interfascicular nuclei. We also provide a detailed description of AVP-ir innervation in heterogenous regions such as the amygdala, bed nucleus of the stria terminalis, and ventral forebrain. In general, our results suggest that, compared with other species, the mouse has a particularly robust and widespread distribution of AVP-ir fibers, which, as in other species, originates from a number of different cell groups in the telencephalon and diencephalon. Our data also highlight the robust nature of AVP innervation in specific regulatory nuclei, such as the ventral tegmental area and dorsal raphe nucleus among others, that are implicated in the regulation of many behaviors.
Collapse
Affiliation(s)
- Benjamin D Rood
- Center for Neuroendocrine Studies and Department of Psychology and Neuroscience, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
164
|
Kokras N, Sotiropoulos I, Pitychoutis P, Almeida O, Papadopoulou-Daifoti Z. Citalopram-mediated anxiolysis and differing neurobiological responses in both sexes of a genetic model of depression. Neuroscience 2011; 194:62-71. [DOI: 10.1016/j.neuroscience.2011.07.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/13/2011] [Accepted: 07/31/2011] [Indexed: 12/14/2022]
|
165
|
Murray EK, Varnum MM, Fernandez JL, de Vries GJ, Forger NG. Effects of neonatal treatment with valproic acid on vasopressin immunoreactivity and olfactory behaviour in mice. J Neuroendocrinol 2011; 23:906-14. [PMID: 21793947 PMCID: PMC3183375 DOI: 10.1111/j.1365-2826.2011.02196.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent findings demonstrate that epigenetic modifications are required for the sexual differentiation of the brain. For example, neonatal administration of the histone deacetylase inhibitor, valproic acid, blocks masculinisation of cell number in the principal nucleus of the bed nucleus of the stria terminalis (BNST). In the present study, we examined the effects of valproic acid on neurochemistry and behaviour, focusing on traits that are sexually dimorphic and linked to the BNST. Newborn mice were treated with saline or valproic acid and the effect on vasopressin immunoreactivity and olfactory preference behaviour was examined in adulthood. As expected, males had more vasopressin immunoreactive fibres than females in the lateral septum and medial dorsal thalamus, which are two projection sites of BNST vasopressin neurones. Neonatal valproic acid increased vasopressin fibre density specifically in females in the lateral septum, thereby reducing the sex difference, and increased vasopressin fibres in both sexes in the medial dorsal thalamus. The effects were not specific to BNST vasopressin projections, however, because valproic acid also significantly increased vasopressin immunoreactivity in the anterior hypothalamic area in both sexes. Subtle sex-specific effects of neonatal valproic acid treatment were observed on olfactory behaviour. As predicted, males showed a preference for investigating female-soiled bedding, whereas females showed a preference for male-soiled bedding. Valproic acid did not significantly alter olfactory preference, per se, although it increased the number of visits females made to female-soiled bedding and the overall time females spent investigating soiled versus clean bedding. Taken together, these results suggest that a transient disruption of histone deacetylation at birth does not have generalised effects on sexual differentiation, although it does produce lasting effects on brain neurochemistry and behaviour.
Collapse
Affiliation(s)
- E K Murray
- Neuroscience and Behavior Program, Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
166
|
Kabelik D, Schrock SE, Ayres LC, Goodson JL. Estrogenic regulation of dopaminergic neurons in the opportunistically breeding zebra finch. Gen Comp Endocrinol 2011; 173:96-104. [PMID: 21600208 PMCID: PMC3130106 DOI: 10.1016/j.ygcen.2011.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 11/19/2022]
Abstract
Steroid-induced changes in dopaminergic activity underlie many correlations between gonadal hormones and social behaviors. However, the effects of steroid hormones on the various behaviorally relevant dopamine cell groups remain unclear, and ecologically relevant species differences remain virtually unexplored. We examined the effects of estradiol (E2) manipulations on dopamine (DA) neurons of male and female zebra finches (Taeniopygia guttata), focusing on numbers of tyrosine hydroxylase-immunoreactive (TH-ir) cells in the A8-A15 cell groups, and on TH colocalization with Fos, conducted in the early A.M., in order to quantify basal transcriptional activity. TH is the rate-limiting enzyme for catecholamine synthesis, and specifically DA in the A8-A15 cell groups. In contrast to other examined birds and mammals, reducing E2 levels with the aromatase-inhibitor Letrozole failed to alter TH-ir neuron numbers within the ventral tegmental area (VTA; A10), while increasing neuron numbers in the central gray (CG; A11) and caudal midbrain A8 populations. Consistent with findings in other birds, but not mammals, we also found no effects of E2 manipulations (Letrozole or Letrozole plus E2 replacement) on TH-Fos colocalization in any location. In accordance with previous observations in both mammals and birds, E2 treatment decreased the number of TH-ir neurons in the A12 population of the tuberal hypothalamus, a cell group that inhibits the release of prolactin. In general, males and females exhibited similar TH-ir neuron numbers, although males exhibited significantly more TH-ir neurons in the A11 CG population than did females. These results suggest partial variability in E2 regulation of DA across species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, 1001 East Third St., Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
167
|
Raskin K, Mhaouty-Kodja S. Testostérone et contrôle central de l’érection. Basic Clin Androl 2011. [DOI: 10.1007/s12610-011-0135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Résumé
La testostérone orchestre l’organisation périnatale et l’activation adulte des structures nerveuses cérébrales et spinales impliquées dans l’expression du comportement sexuel mâle. Cette revue décrit brièvement les différents effets de la testostérone dans la régulation de la motivation sexuelle et de l’érection, et les modèles génétiques générés, jusqu’à présent, dans le but d’élucider ses mécanismes d’action centraux.
Collapse
|
168
|
Kelly AM, Kingsbury MA, Hoffbuhr K, Schrock SE, Waxman B, Kabelik D, Thompson RR, Goodson JL. Vasotocin neurons and septal V1a-like receptors potently modulate songbird flocking and responses to novelty. Horm Behav 2011; 60:12-21. [PMID: 21295577 PMCID: PMC3106146 DOI: 10.1016/j.yhbeh.2011.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 02/06/2023]
Abstract
Previous comparisons of territorial and gregarious finches (family Estrildidae) suggest the hypothesis that arginine vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and V(1a)-like receptors in the lateral septum (LS) promote flocking behavior. Consistent with this hypothesis, we now show that intraseptal infusions of a V(1a) antagonist in male zebra finches (Taeniopygia guttata) reduce gregariousness (preference for a group of 10 versus 2 conspecific males), but have no effect on the amount of time that subjects spend in close proximity to other birds ("contact time"). The antagonist also produces a profound increase in anxiety-like behavior, as exhibited by an increased latency to feed in a novelty-suppressed feeding test. Bilateral knockdown of VT production in the BSTm using LNA-modified antisense oligonucleotides likewise produces increases in anxiety-like behavior and a potent reduction in gregariousness, relative to subjects receiving scrambled oligonucleotides. The antisense oligonucleotides also produced a modest increase in contact time, irrespective of group size. Together, these combined experiments provide clear evidence that endogenous VT promotes preferences for larger flock sizes, and does so in a manner that is coupled to general anxiolysis. Given that homologous peptide circuitry of the BSTm-LS is found across all tetrapod vertebrate classes, these findings may be predictive for other highly gregarious species.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Biology, Indiana University,1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Goodson JL, Kingsbury MA. Nonapeptides and the evolution of social group sizes in birds. Front Neuroanat 2011; 5:13. [PMID: 21427780 PMCID: PMC3049320 DOI: 10.3389/fnana.2011.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 02/16/2011] [Indexed: 01/06/2023] Open
Abstract
Species-typical patterns of grouping have profound impacts on many aspects of physiology and behavior. However, prior to our recent studies in estrildid finches, neural mechanisms that titrate species-typical group-size preferences, independent of other aspects of social organization (e.g., mating system and parental care), have been wholly unexplored, likely because species-typical group size is typically confounded with other aspects of behavior and biology. An additional complication is that components of social organization are evolutionarily labile and prone to repeated divergence and convergence. Hence, we cannot assume that convergence in social structure has been produced by convergent modifications to the same neural characters, and thus any comparative approach to grouping must include not only species that differ in their species-typical group sizes, but also species that exhibit convergent evolution in this aspect of social organization. Using five estrildid finch species that differ selectively in grouping (all biparental and monogamous) we have demonstrated that neural motivational systems evolve in predictable ways in relation to species-typical group sizes, including convergence in two highly gregarious species and convergence in two relatively asocial, territorial species. These systems include nonapeptide (vasotocin and mesotocin) circuits that encode the valence of social stimuli (positive–negative), titrate group-size preferences, and modulate anxiety-like behaviors. Nonapeptide systems exhibit functional and anatomical properties that are biased toward gregarious species, and experimental reductions of nonapeptide signaling by receptor antagonism and antisense oligonucleotides significantly decrease preferred group sizes in the gregarious zebra finch. Combined, these findings suggest that selection on species-typical group size may reliably target the same neural motivation systems when a given social structure evolves independently.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
170
|
Xie J, Kuenzel WJ, Sharp PJ, Jurkevich A. Appetitive and consummatory sexual and agonistic behaviour elicits FOS expression in aromatase and vasotocin neurones within the preoptic area and bed nucleus of the stria terminalis of male domestic chickens. J Neuroendocrinol 2011; 23:232-43. [PMID: 21219483 DOI: 10.1111/j.1365-2826.2011.02108.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some components of male sexual and agonistic behaviours are considered to be regulated by the same neurocircuitry in the medial preoptic nucleus (POM) and the medial portion of bed nucleus of the stria terminalis (BSTM). To better understand this neurocircuitry, numbers of aromatase- (ARO) or arginine vasotocin- (AVT) immunoreactive (ir) neurones expressing immediate early gene protein FOS were compared in the POM and BSTM of male chickens following sexual or agonistic behaviours. Observations were made on males showing: (i) appetitive (courtship) and consummatory (copulation) sexual behaviours; (ii) only appetitive sexual behaviour, or (iii) displaying agonistic behaviour toward other males. Control males were placed on their own in the observation pen, or only handled. In the POM, appetitive sexual behaviour increased ARO+FOS colocalisation, whereas agonistic behaviour decreased the number of visible ARO-ir cells. In the dorsolateral subdivision of BSTM (BSTM1), appetitive sexual behaviour also increased ARO+FOS colocalisation, although the numbers of visible ARO-ir and AVT-ir cells were not altered by sexual or agonistic behaviours. In the ventromedial BSTM (BSTM2), appetitive sexual behaviour increased ARO+FOS and AVT+FOS colocalisation, and all behaviours decreased the number of visible ARO-ir cells, particularly in males expressing consummatory sexual behaviour. Positive correlations were found between numbers of cells with ARO+FOS and AVT+FOS colocalisation in both subdivisions of the BSTM. Waltzing frequency was positively correlated with ARO+FOS colocalisation in the lateral POM, and in both subdivisions of the BSTM in males expressing sexual behaviour. Waltzing frequency in males expressing agonistic behaviour was negatively correlated with the total number of visible ARO-ir cells in the lateral POM and BSTM2. These observations suggest a key role for ARO and AVT neurones in BSTM2 in the expression of appetitive sexual behaviour, and differential roles for ARO cells in the POM and BSTM in the regulation of components of sexual and agonistic behaviours.
Collapse
Affiliation(s)
- J Xie
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | |
Collapse
|
171
|
Panzica GC, Bo E, Martini MA, Miceli D, Mura E, Viglietti-Panzica C, Gotti S. Neuropeptides and enzymes are targets for the action of endocrine disrupting chemicals in the vertebrate brain. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:449-72. [PMID: 21790321 DOI: 10.1080/10937404.2011.578562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are molecules that interfere with endocrine signaling pathways and produce adverse consequences on animal and human physiology, such as infertility or behavioral alterations. Some EDC act through binding to androgen or/and estrogen receptors primarily operating through a genomic mechanism regulating gene expression. This mechanism of action may induce profound developmental adverse effects, and the major targets of the EDC action are the gene products, i.e., mRNAs inducing the synthesis of various peptidic molecules, which include neuropeptides and enzymes related to neurotransmitters syntheses. Available immunohistochemical data on some of the systems that are affected by EDC in lower and higher vertebrates are detailed in this review.
Collapse
Affiliation(s)
- G C Panzica
- Laboratory of Neuroendocrinology, Department of Anatomy, Pharmacology, and Forensic Medicine, Neuroscience Institute of Turin (NIT), University of Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
172
|
Fokidis HB, Orchinik M, Deviche P. Context-specific territorial behavior in urban birds: no evidence for involvement of testosterone or corticosterone. Horm Behav 2011; 59:133-43. [PMID: 21078324 DOI: 10.1016/j.yhbeh.2010.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 02/07/2023]
Abstract
Testosterone produced by the gonads is a primary mediator of seasonal patterns of territoriality and may directly facilitate territorial behavior during an encounter with a potential intruder. Costs and benefits associated with territoriality can vary as a function of habitat, for example through differences in resource distribution between areas occupied by different individuals. We investigated behaviors in response to simulated territorial intrusions (hereafter territorial behaviors) in urban (Phoenix, Arizona) and nearby desert populations of two Sonoran Desert birds (Curve-billed Thrasher and Abert's Towhee). We also examined the degree to which these behaviors are mediated by testosterone (T) and the adrenal steroid, corticosterone (CORT), which can interact with T in territorial contexts. In both species, urban birds displayed more territorial behaviors than their desert conspecifics, but this difference was not associated with variation in either plasma total or in plasma free (i.e., unbound to binding globulins) T or CORT. In addition, neither plasma T nor plasma CORT changed as a function of duration of the simulated territorial intrusion. Urban Abert's Towhees displayed more territorial behaviors in areas where their population densities were high than in areas of low population densities. Urban Curve-billed Thrashers displayed more territorial behaviors in areas with a high proportion of desert-type vegetation, particularly in areas that differed in vegetation composition from nearby randomly sampled areas, than in areas with a high proportion of exotic or non-desert type vegetation. Associations between territorial behavior and habitat characteristics were not related to plasma T or CORT. Understanding the hormonal processes underlying these associations between behavior and habitat may provide insight into how free-ranging animals assess territorial quality and alter their defensive behavior accordingly.
Collapse
Affiliation(s)
- H Bobby Fokidis
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| | | | | |
Collapse
|
173
|
Soares MC, Bshary R, Fusani L, Goymann W, Hau M, Hirschenhauser K, Oliveira RF. Hormonal mechanisms of cooperative behaviour. Philos Trans R Soc Lond B Biol Sci 2010; 365:2737-50. [PMID: 20679116 DOI: 10.1098/rstb.2010.0151] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research on the diversity, evolution and stability of cooperative behaviour has generated a considerable body of work. As concepts simplify the real world, theoretical solutions are typically also simple. Real behaviour, in contrast, is often much more diverse. Such diversity, which is increasingly acknowledged to help in stabilizing cooperative outcomes, warrants detailed research about the proximate mechanisms underlying decision-making. Our aim here is to focus on the potential role of neuroendocrine mechanisms on the regulation of the expression of cooperative behaviour in vertebrates. We first provide a brief introduction into the neuroendocrine basis of social behaviour. We then evaluate how hormones may influence known cognitive modules that are involved in decision-making processes that may lead to cooperative behaviour. Based on this evaluation, we will discuss specific examples of how hormones may contribute to the variability of cooperative behaviour at three different levels: (i) within an individual; (ii) between individuals and (iii) between species. We hope that these ideas spur increased research on the behavioural endocrinology of cooperation.
Collapse
Affiliation(s)
- Marta C Soares
- Instituto Superior de Psicologia Aplicada, Unidade de Investigação em Eco-Etologia, Integrative Behavioural Biology Group, 1149-041 Lisboa, Portugal.
| | | | | | | | | | | | | |
Collapse
|
174
|
|
175
|
Wu MV, Shah NM. Control of masculinization of the brain and behavior. Curr Opin Neurobiol 2010; 21:116-23. [PMID: 20970320 DOI: 10.1016/j.conb.2010.09.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023]
Abstract
Sex steroid hormones exert a profound influence on the sexual differentiation and function of the neural circuits that mediate dimorphic behaviors. Both estrogen and testosterone are essential for male typical behaviors in many species. Recent studies with genetically modified mice provide important new insights into the logic whereby these two hormones coordinate the display of sexually dimorphic behaviors: estrogen sets up the masculine repertoire of sexual and territorial behaviors and testosterone controls the extent of these male displays.
Collapse
Affiliation(s)
- Melody V Wu
- Program in Neuroscience, University of California, San Francisco, MC2722, San Francisco, CA 94158, USA
| | | |
Collapse
|
176
|
The medial preoptic nucleus integrates the central influences of testosterone on the paraventricular nucleus of the hypothalamus and its extended circuitries. J Neurosci 2010; 30:11762-70. [PMID: 20810896 DOI: 10.1523/jneurosci.2852-10.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Testosterone contributes to sex differences in hypothalamic-pituitary-adrenal (HPA) function in humans and rodents, but the central organization of this regulation remains unclear. The medial preoptic nucleus (MPN) stands out as an important candidate in this regard because it contains androgen receptors and projects to forebrain nuclei integrating cognitive-affective information and regulating HPA responses to homeostatic threat. These include the HPA effector neurons of the paraventricular nucleus (PVN) of the hypothalamus, medial amygdala, and lateral septum. To test the extent to which androgen receptors in the MPN engage these cell groups, we compared in adult male rats the effects of unilateral microimplants of testosterone and the androgen receptor antagonist hydroxyflutamide into the MPN on acute restraint induced activation and/or neuropeptide expression levels. The basic effects of these implants were lateralized to the sides of the nuclei ipsilateral to the implants. Testosterone, but not hydroxyflutamide implants, decreased stress-induced Fos and arginine vasopressin (AVP) heteronuclear RNA expression in the PVN, as well as Fos expression in the lateral septum. In unstressed animals, AVP mRNA expression in the PVN decreased and increased in response to testosterone and hydroxflutamide MPN implants, respectively. The differential influences of these implants on AVP mRNA expression were opposite in the medial amygdala. These results confirm a role for androgen receptors in the MPN to concurrently modulate neuropeptide expression and activational responses in the PVN and its extended circuitries. This suggests that the MPN is capable of bridging converging limbic influences to the HPA axis with changes in gonadal status.
Collapse
|
177
|
Iwata E, Nagai Y, Sasaki H. Social rank modulates brain arginine vasotocin immunoreactivity in false clown anemonefish (Amphiprion ocellaris). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:337-345. [PMID: 19116767 DOI: 10.1007/s10695-008-9298-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 12/10/2008] [Indexed: 05/27/2023]
Abstract
The brain nanopeptide arginine vasotocin (AVT) and its mammalian homolog arginine vasopressin are involved in the regulation of social and reproductive behavior. We investigated the relationship between social rank formation and the brain AVT system in the false clown anemonefish (Amphiprion ocellaris), which forms a social rank that leads to sex differentiation in higher-ranked individuals. Tanks of three sexually immature fish were kept for 90 days and each fish's behavior was observed once a month. The social rank of each individual was distinguishable by behavior, but gonadosomatic index (GSI) did not differ significantly. The number of AVT neurons in the magnocellular layer in the preoptic area (POA) increased in subordinate individuals and declined with increasing hierarchical dominance. These results suggest that social rank formation modulates AVT production in the brain of the clown anemonefish and may influence their later sex differentiation.
Collapse
Affiliation(s)
- Eri Iwata
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan.
| | - Yukiko Nagai
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| | - Hideaki Sasaki
- College of Science and Engineering, Iwaki Meisei University, 5-5-1 Chuoudai, Ihino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|
178
|
Perrone R, Batista G, Lorenzo D, Macadar O, Silva A. Vasotocin actions on electric behavior: interspecific, seasonal, and social context-dependent differences. Front Behav Neurosci 2010; 4. [PMID: 20802858 PMCID: PMC2928667 DOI: 10.3389/fnbeh.2010.00052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 07/16/2010] [Indexed: 11/24/2022] Open
Abstract
Social behavior diversity is correlated with distinctively distributed patterns of a conserved brain network, which depend on the action of neuroendocrine messengers that integrate extrinsic and intrinsic cues. Arginine vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Weakly electric fish use their electric organ discharges (EODs) as social behavioral displays. We examined the effect of AVT on EOD rate in two species of Gymnotiformes with different social strategies: Gymnotus omarorum, territorial and highly aggressive, and Brachyhypopomus gauderio, gregarious and aggressive only between breeding males. AVT induced a long-lasting and progressive increase of EOD rate in isolated B. gauderio, partially blocked by the V1a AVT receptor antagonist (Manning compound, MC), and had no effects in G. omarorum. AVT also induced a long-lasting increase in the firing rate (prevented by MC) of the isolated medullary pacemaker nucleus (PN) of B. gauderio when tested in an in vitro preparation, indicating that the PN is the direct effector of AVT actions. AVT is involved in the seasonal, social context-dependent nocturnal increase of EOD rate that has been recently described in B. gauderio to play a role in mate selection. AVT produced the additional nocturnal increase of EOD rate in non-breeding males, whereas MC blocked it in breeding males. Also, AVT induced a larger EOD rate increase in reproductive dyads than in agonistic encounters. We demonstrated interspecific, seasonal, and context-dependent actions of AVT on the PN that contribute to the understanding of the mechanisms the brain uses to shape sociality.
Collapse
Affiliation(s)
- Rossana Perrone
- Departamento de Neurofisiología, Instituto Clemente Estable, Ministerio de Educación y Cultura Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
179
|
Ho JM, Murray JH, Demas GE, Goodson JL. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 2010; 58:368-77. [PMID: 20382147 PMCID: PMC4195792 DOI: 10.1016/j.yhbeh.2010.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 11/26/2022]
Abstract
Arginine vasopressin (AVP) and its nonmammalian homolog arginine vasotocin influence social behaviors ranging from affiliation to resident-intruder aggression. Although numerous sites of action have been established for these behavioral effects, the involvement of specific AVP cell groups in the brain is poorly understood, and socially elicited Fos responses have not been quantified for many of the AVP cell groups found in rodents. Surprisingly, this includes the AVP population in the posterior part of the medial bed nucleus of the stria terminalis (BSTMP), which has been extensively implicated, albeit indirectly, in various aspects of affiliation and other social behaviors. We examined the Fos responses of eight hypothalamic and three extra-hypothalamic AVP-immunoreactive (-ir) cell groups to copulation, nonaggressive male-male interaction, and aggressive male-male interaction in both dominant and subordinate C57BL/6J mice. The BSTMP cells exhibited a response profile that was unlike all other cell groups: from a control baseline of approximately 5% of AVP-ir neurons colocalizing with Fos, colocalization increased significantly to approximately 12% following nonaggressive male-male interaction, and to approximately 70% following copulation. Aggressive interactions did not increase colocalization beyond the level observed in nonaggressive male mice. These results suggest that BSTMP neurons in mice may increase AVP-Fos colocalization selectively in response to affiliation-related stimuli, similar to findings in finches. In contrast, virtually all other cell groups were responsive to negative aspects of interaction, either through elevated AVP-Fos colocalization in subordinate animals, positive correlations of AVP-Fos colocalization with bites received, and/or negative correlations of AVP-Fos colocalization with dominance. These findings greatly expand what is known of the contributions of specific brain AVP cell groups to social behavior.
Collapse
Affiliation(s)
- Jacqueline M Ho
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | |
Collapse
|
180
|
Xu L, Pan Y, Young KA, Wang Z, Zhang Z. Oxytocin and vasopressin immunoreactive staining in the brains of Brandt's voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton). Neuroscience 2010; 169:1235-47. [PMID: 20573572 DOI: 10.1016/j.neuroscience.2010.05.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Immunoreactive (ir) staining of the neuropeptides oxytocin (OT) and vasopressin (AVP) was performed in the brains of Brandt's voles (Lasiopodomys brandtii) and greater long-tailed hamsters (Tscherskia triton)-two species that differ remarkably in social behaviors. Social Brandt's voles had higher densities of OT-ir cells in the medial preoptic area (MPOA) and medial amygdala (MeA) as well as higher densities of AVP-ir cells in the lateral hypothalamus (LH) compared to solitary greater long-tailed hamsters. In contrast, the hamsters had higher densities of OT-ir cells in the anterior hypothalamus (AH) and LH and higher densities of AVP-ir cells in the MPOA than the voles. OT-ir and AVP-ir fibers were also found in many forebrain areas with subtle species differences. Given the roles of OT and AVP in the regulation of social behaviors in other rodent species, our data support the hypothesis that species-specific patterns of central OT and AVP pathways may underlie species differences in social behaviors. However, despite a higher density of OT-ir cells in the paraventricular nucleus of the hypothalamus (PVN) in females than in males in both species, no other sex differences were found in OT-ir or AVP-ir staining. These data failed to support our prediction that a sexually dimorphic pattern of neuropeptide staining in the brain is more apparent in Brandt's voles than in greater long-tailed hamsters.
Collapse
Affiliation(s)
- L Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
181
|
Semaan SJ, Kauffman AS. Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 2010; 20:424-31. [PMID: 20471241 DOI: 10.1016/j.conb.2010.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022]
Abstract
Males and females exhibit numerous anatomical and physiological differences in the brain that often underlie important sex differences in physiology or behavior, including aspects relating to reproduction. Neural sex differences are both region-specific and trait-specific and may consist of divergences in synapse morphology, neuron size and number, and specific gene expression levels. In most cases, sex differences are induced by the sex steroid hormonal milieu during early perinatal development. In rodents, the hypothalamic anteroventral periventricular nucleus (AVPV) is sexually differentiated as a result of postnatal sex steroids, and also specific neuronal populations in this nucleus are sexually dimorphic, with females possessing more kisspeptin, dopaminergic, and GABA/glutamate neurons than males. The ability of female rodents, but not males, to display an estrogen-induced luteinizing hormone (LH) surge is consistent with the higher levels of these neuropeptides in the AVPV of females. Of these AVPV populations, the recently identified kisspeptin system has been most strongly implicated as a crucial component of the sexually dimorphic LH surge mechanism, though GABA and glutamate have also received some attention. New findings have suggested that the sexual differentiation and development of kisspeptin neurons in the AVPV is mediated by developmental estradiol signaling. Although apoptosis is the most common process implicated in neuronal sexual differentiation, it is currently unknown how developmental estradiol acts to differentiate specific neuronal populations in the AVPV, such as kisspeptin or dopaminergic neurons.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
182
|
Bosch OJ, Pförtsch J, Beiderbeck DI, Landgraf R, Neumann ID. Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. J Neuroendocrinol 2010; 22:420-9. [PMID: 20163514 DOI: 10.1111/j.1365-2826.2010.01984.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The neuropeptide arginine vasopressin was recently shown to be an important regulator of female social behaviour, including maternal care and aggression. A key brain site for vasopressin- as well as oxytocin-mediated maternal care is the medial preoptic area (MPOA). Together with the adjacent bed nucleus of the stria terminalis (BNST), these brain regions are considered to form a 'super-region' for maternal behaviour. In the present study, we investigated the vasopressin and oxytocin systems within the MPOA and the BNST during maternal care in lactating rats in more detail. Binding to V1a and oxytocin receptors in the BNST and to oxytocin receptors in the MPOA was increased in lactation. Furthermore, microdialysis revealed that vasopressin release significantly increased (MPOA) or tended to increase (BNST) during different phases of maternal care (i.e. with or without suckling stimulus). In support, manipulations of V1a receptors in the MPOA are known to alter maternal care. We now show that local injection of a selective V1a receptor antagonist bilaterally into the BNST did not affect maternal care, but reduced maternal aggression and tended to lower anxiety-related behaviour. The release of oxytocin did not change in any of the brain regions during maternal care. The results obtained indicate that locally-released vasopressin within the MPOA and the BNST is important for the maintenance of complex maternal behaviours, including maternal care and aggression, respectively.
Collapse
Affiliation(s)
- O J Bosch
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
183
|
Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol 2010; 31:203-16. [PMID: 20176046 PMCID: PMC2885357 DOI: 10.1016/j.yfrne.2010.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 01/01/2023]
Abstract
The study of sex differences has produced major insights into the organization of animal phenotypes and the regulatory mechanisms generating phenotypic variation from similar genetic templates. Teleost fishes display the greatest diversity of sexual expression among vertebrate animals. This diversity appears to arise from diversity in the timing of sex determination and less functional interdependence among the components of sexuality relative to tetrapod vertebrates. Teleost model systems therefore provide powerful models for understanding gonadal and non-gonadal influences on behavioral and physiological variation. This review addresses socially-controlled sex change and alternate male phenotypes in fishes. These sexual patterns are informative natural experiments that illustrate how variation in conserved neuroendocrine pathways can give rise to a wide range of reproductive adaptations. Key regulatory factors underlying sex change and alternative male phenotypes that have been identified to date include steroid hormones and the neuropeptides GnRH and arginine vasotocin, but genomic approaches are now implicating a diversity of other influences as well.
Collapse
|
184
|
Kabelik D, Morrison JA, Goodson JL. Cryptic regulation of vasotocin neuronal activity but not anatomy by sex steroids and social stimuli in opportunistic desert finches. BRAIN, BEHAVIOR AND EVOLUTION 2010; 75:71-84. [PMID: 20332615 DOI: 10.1159/000297522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/19/2009] [Indexed: 01/12/2023]
Abstract
In most vertebrate species, the production of vasotocin (VT; non-mammals) and vasopressin (VP; mammals) in the medial bed nucleus of the stria terminalis (BSTm) waxes and wanes with seasonal reproductive state; however, opportunistically breeding species might need to maintain high levels of this behaviorally relevant neuropeptide year-round in anticipation of unpredictable breeding opportunities. We here provide support for this hypothesis and demonstrate that these neurons are instead regulated 'cryptically' via hormonal regulation of their activity levels, which may be rapidly modified to adjust VT signaling. First, we show that combined treatment of male and female zebra finches (Estrildidae: Taeniopygia guttata) with the androgen receptor antagonist flutamide and the aromatase inhibitor 1,4,6-androstatriene-3,17-dione does not alter the expression of VT immunoreactivity within the BSTm; however, both hormonal treatment and social housing environment (same-sex versus mixed-sex) alter VT colocalization with the immediate early gene product Fos (a proxy marker of neural activation) in the BSTm. In a second experiment, manipulations of estradiol (E2) levels with the aromatase inhibitor letrozole (LET) or subcutaneous E2 implants failed to alter colocalization, suggesting that the colocalization effects in experiment 1 were solely androgenic. LET treatment also did not affect VT immunoreactivity in a manner reversible by E2 treatment. Finally, comparisons of VT immunoreactivity in breeding and nonbreeding individuals of several estrildid species demonstrate that year-round stability of VT immunoreactivity is found only in highly opportunistic species, and is therefore not essential to the maintenance of long-term pair bonds, which are ubiquitous in the Estrildidae.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Indiana University, Bloomington, USA.
| | | | | |
Collapse
|
185
|
Gray M, Bingham B, Viau V. A comparison of two repeated restraint stress paradigms on hypothalamic-pituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J Neuroendocrinol 2010; 22:92-101. [PMID: 20002965 DOI: 10.1111/j.1365-2826.2009.01941.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The available evidence continues to illustrate an inhibitory influence of male gonadal activity on the hypothalamic-pituitary-adrenal (HPA) axis under acute stress. However, far less is known about how these systems interact during repeated stress. Because HPA output consistently declines across studies examining repeated restraint, the potential mechanisms mediating this habituation are often inferred as being equivalent, even though these studies use a spectrum of restraint durations and exposures. To test this generalisation, as well as to emphasise a potential influence of the male gonadal axis on the process of HPA habituation, we compared the effects of two commonly used paradigms of repeated restraint in the rodent: ten daily episodes of 0.5 h of restraint and five daily episodes of 3 h of restraint. Both paradigms produced comparable declines in adrenocorticotrophic hormone and corticosterone between the first and last day of testing. However, marked differences in testosterone levels, as well as corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) expression, occurred between the two stress groups. Plasma testosterone levels remained relatively higher in animals exposed to 0.5 h of restraint compared to 3 h of restraint, whereas forebrain gonadotrophin-releasing hormone (GnRH) cell counts increased in both groups. AVP mRNA was increased after 3 h, but not after 0.5 h of repeated restraint, in the medial parvicellular paraventricular nucleus and in the posterior bed nucleus of the stria terminalis (BST), and increased with 0.5 h of repeated restraint in the medial amygdala. CRH mRNA was increased after 3 h, but not after 0.5 h of repeated restraint, in the central amygdala and anterior BST. The data obtained illustrate that, despite comparable declines in HPA responses, the pathways recruited for stress adaptation appear to be distinct between restraint groups. Given the extreme sensitivity of limbic AVP to testosterone, and conversely CRH to circulating glucocorticoids, whether differences in endocrine profiles might explain these neuropeptide differences remains to be seen. Nonetheless, the present study provides several new entry points for testing gonadal influences on stress-specific HPA habituation.
Collapse
Affiliation(s)
- M Gray
- Neuroscience Program, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
186
|
Harony H, Wagner S. The Contribution of Oxytocin and Vasopressin to Mammalian Social Behavior: Potential Role in Autism Spectrum Disorder. Neurosignals 2010; 18:82-97. [DOI: 10.1159/000321035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 01/09/2023] Open
|
187
|
Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 2010; 11:9-17. [DOI: 10.1038/nrn2754] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Bolborea M, Ansel L, Weinert D, Steinlechner S, Pévet P, Klosen P. The bed nucleus of the stria terminalis in the Syrian hamster (Mesocricetus auratus): absence of vasopressin expression in standard and wild-derived hamsters and galanin regulation by seasonal changes in circulating sex steroids. Neuroscience 2009; 165:819-30. [PMID: 19909796 DOI: 10.1016/j.neuroscience.2009.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a nucleus of the forebrain highly sensitive to sex steroids and containing vasopressin neurons implicated in several social- and reproduction-related behaviours such as scent-marking, aggression, pair bonding and parental behaviour. Sexually dimorphic vasopressin expression in BNST neurons has been reported in almost all rodents, with the notable exception of the Syrian hamster. In this species, vasopressin expression is completely absent in the BNST. Because almost all Syrian hamsters used in research are derived from a very small breeding stock captured in 1930, we compared commercially available Syrian hamsters with a recently captured, wild-derived breeding stock. We checked for vasopressin expression using in situ hybridization and immunohistochemistry. Vasopressin expression in BNST neurons was completely absent in both breeding stocks, confirming the absence of BNST vasopressin expression in Mesocricetus auratus and ruling out a breeding artefact. Because vasopressin expression in BNST neurons appears to be strictly dependent on circulating sex steroids, the absence of vasopressin expression in Syrian hamster BNST neurons might be due to an insensitivity of these neurons to sex steroids. BNST vasopressin neurons also express galanin. Although galanin expression in the BNST is not sexually dimorphic in the Syrian hamster, it appears to be regulated by sex steroids. In the Djungarian hamster, photoperiodically driven seasonal variations of circulating sex steroids result in a seasonal rhythm of galanin expression in BNST neurons. We analysed the sex steroid dependence of galanin expression in the Syrian hamster. Castration and short photoperiod-induced sexual quiescence both resulted in downregulation of galanin mRNA in cell bodies (BNST) and immunoreactivity in the fibres (lateral septum). Testosterone supplementation of short photoperiod-adapted animals was able to restore galanin expression. Thus Syrian hamster BNST neurons respond to circulating sex steroids and their seasonal variations as observed in other rodent species.
Collapse
Affiliation(s)
- M Bolborea
- Tierärztliche Hochschule, Institut für Zoologie, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
189
|
Grippo AJ, Trahanas DM, Zimmerman RR, Porges SW, Carter CS. Oxytocin protects against negative behavioral and autonomic consequences of long-term social isolation. Psychoneuroendocrinology 2009; 34:1542-53. [PMID: 19553027 PMCID: PMC2841348 DOI: 10.1016/j.psyneuen.2009.05.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/29/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Positive social interactions and social support may protect against various forms of mental and physical illness, although the mechanisms for these effects are not well identified. The socially monogamous prairie vole, which--like humans--forms social bonds and displays high levels of parasympathetic activity, has provided a useful model for investigating neurobiological systems that mediate the consequences of sociality. In the present study, adult female prairie voles were exposed to social isolation or continued pairing with a female sibling (control conditions) for 4 weeks. During weeks 3 and 4 of this period, animals were administered oxytocin (20 microg/50 microl, s.c.) or saline vehicle (50 microl, s.c.) daily for a total of 14 days. In Experiment 1, autonomic parameters were recorded during and following isolation or pairing. Isolation (vs. pairing) significantly increased basal heart rate (HR) and reduced HR variability and vagal regulation of the heart; these changes in isolated animals were prevented with oxytocin administration. In Experiment 2, behaviors relevant to depression [sucrose intake and swimming in the forced swim test (FST)] were measured as a function of isolation. Isolation reduced sucrose intake and increased immobility in the FST; these behaviors also were prevented by oxytocin. Administration of oxytocin did not significantly alter cardiac, autonomic or behavioral responses of paired animals. These findings support the hypothesis that oxytocinergic mechanisms can protect against behavioral and cardiac dysfunction in response to chronic social stressors, and can provide insight into social influences on behavior and autonomic function in humans.
Collapse
Affiliation(s)
- Angela J. Grippo
- Dept. Psychology, Northern Illinois University, PM 357, DeKalb, IL 60115,Corresponding Author: Angela J. Grippo, Ph.D., Northern Illinois University, Department of Psychology, PM 357, DeKalb, IL 60115, Phone: 815-753-7070, Fax: 815-753-8088,
| | - Diane M. Trahanas
- Brain-Body Center, Dept. Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St. (MC 912), Chicago, IL 60612
| | - Robert R. Zimmerman
- Brain-Body Center, Dept. Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St. (MC 912), Chicago, IL 60612
| | - Stephen W. Porges
- Brain-Body Center, Dept. Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St. (MC 912), Chicago, IL 60612
| | - C. Sue Carter
- Brain-Body Center, Dept. Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St. (MC 912), Chicago, IL 60612
| |
Collapse
|
190
|
Abstract
Epigenetic changes in the nervous system are emerging as a critical component of enduring effects induced by early life experience, hormonal exposure, trauma and injury, or learning and memory. Sex differences in the brain are largely determined by steroid hormone exposure during a perinatal sensitive period that alters subsequent hormonal and nonhormonal responses throughout the lifespan. Steroid receptors are members of a nuclear receptor transcription factor superfamily and recruit multiple proteins that possess enzymatic activity relevant to epigenetic changes such as acetylation and methylation. Thus steroid hormones are uniquely poised to exert epigenetic effects on the developing nervous system to dictate adult sex differences in brain and behavior. Sex differences in the methylation pattern in the promoter of estrogen and progesterone receptor genes are evident in newborns and persist in adults but with a different pattern. Changes in response to injury and in methyl-binding proteins and steroid receptor coregulatory proteins are also reported. Many steroid-induced epigenetic changes are opportunistic and restricted to a single lifespan, but new evidence suggests endocrine-disrupting compounds can exert multigenerational effects. Similarly, maternal diet also induces transgenerational effects, but the impact is sex specific. The study of epigenetics of sex differences is in its earliest stages, with needed advances in understanding of the hormonal regulation of enzymes controlling acetylation and methylation, coregulatory proteins, transient versus stable DNA methylation patterns, and sex differences across the epigenome to fully understand sex differences in brain and behavior.
Collapse
|
191
|
Goodson JL, Kabelik D. Dynamic limbic networks and social diversity in vertebrates: from neural context to neuromodulatory patterning. Front Neuroendocrinol 2009; 30:429-441. [PMID: 19520105 PMCID: PMC2763925 DOI: 10.1016/j.yfrne.2009.05.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/11/2009] [Accepted: 05/22/2009] [Indexed: 11/19/2022]
Abstract
Vertebrate animals exhibit a spectacular diversity of social behaviors, yet a variety of basic social behavior processes are essential to all species. These include social signaling; discrimination of conspecifics and sexual partners; appetitive and consummatory sexual behaviors; aggression and dominance behaviors; and parental behaviors (the latter with rare exceptions). These behaviors are of fundamental importance and are regulated by an evolutionarily conserved, core social behavior network (SBN) of the limbic forebrain and midbrain. The SBN encodes social information in a highly dynamic, distributed manner, such that behavior is most strongly linked to the pattern of neural activity across the SBN, not the activity of single loci. Thus, shifts in the relative weighting of activity across SBN nodes can conceivably produce almost limitless variation in behavior, including diversity across species (as weighting is modified through evolution), across behavioral contexts (as weights change temporally) and across behavioral phenotypes (as weighting is specified through heritable and developmental processes). Individual neural loci may also express diverse relationships to behavior, depending upon temporal variations in their functional connectivity to other brain regions ("neural context"). We here review the basic properties of the SBN and show how behavioral variation relates to functional connectivity of the network, and discuss ways in which neuroendocrine factors adjust network activity to produce behavioral diversity. In addition to the actions of steroid hormones on SBN state, we examine the temporally plastic and evolutionarily labile properties of the nonapeptides (the vasopressin- and oxytocin-like neuropeptides), and show how variations in nonapeptide signaling within the SBN serve to promote behavioral diversity across social contexts, seasons, phenotypes and species. Although this diversity is daunting in its complexity, the search for common "organizing principles" has become increasingly fruitful. We focus on multiple aspects of behavior, including sexual behavior, aggression and affiliation, and in each of these areas, we show how broadly relevant insights have been obtained through the examination of behavioral diversity in a wide range of vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - David Kabelik
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
192
|
Holmes MM, Goldman BD, Goldman SL, Seney ML, Forger NG. Neuroendocrinology and sexual differentiation in eusocial mammals. Front Neuroendocrinol 2009; 30:519-533. [PMID: 19416733 PMCID: PMC2748139 DOI: 10.1016/j.yfrne.2009.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 12/21/2022]
Abstract
Sexual differentiation of the mammalian nervous system has been studied intensively for over 25 years. Most of what we know, however, comes from work on relatively non-social species in which direct reproduction (i.e., production of offspring) is virtually the only route to reproductive success. In social species, an individual's inclusive fitness may include contributions to the gene pool that are achieved by supporting the reproductive efforts of close relatives; this feature is most evident in eusocial organisms. Here, we review what is known about neuroendocrine mechanisms, sexual differentiation, and effects of social status on the brain and spinal cord in two eusocial mammals: the naked mole-rat and Damaraland mole-rat. These small rodents exhibit the most rigidly organized reproductive hierarchy among mammals, with reproduction suppressed in a majority of individuals. Our findings suggest that eusociality may be associated with a relative lack of sex differences and a reduced influence of gonadal hormones on some functions to which these hormones are usually tightly linked. We also identify neural changes accompanying a change in social and reproductive status, and discuss the implications of our findings for understanding the evolution of sex differences and the neuroendocrinology of reproductive suppression.
Collapse
Affiliation(s)
- Melissa M Holmes
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA 01003, USA
| | - Bruce D Goldman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Sharry L Goldman
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marianne L Seney
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nancy G Forger
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
193
|
Kelly SJ, Leggett DC, Cronise K. Sexually dimorphic effects of alcohol exposure during development on the processing of social cues. Alcohol Alcohol 2009; 44:555-60. [PMID: 19767624 DOI: 10.1093/alcalc/agp061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The study used an animal model of fetal alcohol spectrum disorders (FASD) to investigate the impact of alcohol exposure during a period equivalent to all three trimesters in humans on social recognition memory. It was hypothesized that the effects on specific aspects of social recognition memory would be sexually dimorphic. METHODS This study exposed rats to ethanol during both the prenatal and early postnatal periods. Two control groups included a group exposed to the administration procedures but not ethanol and a non-treated group. At approximately 90 days, all rats were tested repeatedly in a test of social recognition memory with a juvenile animal of the same sex. Experimental rats of both sexes were allowed to investigate an unknown juvenile for either 2, 3 or 5 min and then, after a delay of 30, 60, 120 and 180 min, were allowed to investigate the same juvenile for 5 min. RESULTS Male rats investigated the juvenile for much longer than female rats. Ethanol-exposed male rats showed a deficit in recognition memory that was evident with longer delays when the initial investigation time was either 2- or 3-min long. In contrast, ethanol-exposed female rats showed a deficit in recognition memory only when the initial investigation period was of 2 min. Measurement of oxytocin receptor binding in the amygdala region indicated that ethanol exposure lowered oxytocin receptor binding in females but not males. CONCLUSIONS The results suggest that ethanol exposure during development caused a deficit in memory duration but not encoding in males and a deficit in encoding but not memory duration in females. The deficit in ethanol-exposed females may be related to changes in oxytocin receptors in the amygdala.
Collapse
Affiliation(s)
- Sandra J Kelly
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | | | | |
Collapse
|
194
|
Kabelik D, Kelly AM, Goodson JL. Dopaminergic regulation of mate competition aggression and aromatase-Fos colocalization in vasotocin neurons. Neuropharmacology 2009; 58:117-25. [PMID: 19540858 DOI: 10.1016/j.neuropharm.2009.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 11/24/2022]
Abstract
Recent experiments demonstrate that aggressive competition for potential mates involves different neural mechanisms than does territorial, resident-intruder aggression. However, despite the obvious importance of mate competition aggression, we know little about its regulation. Immediate early gene experiments show that in contrast to territorial aggression, mate competition in finches is accompanied by the activation of neural populations associated with affiliation and motivation, including vasotocin (VT) neurons in the medial bed nucleus of the stria terminalis (BSTm) and midbrain dopamine (DA) neurons that project to the BSTm. Although VT is known to facilitate mate competition aggression, the role of DA has not previously been examined. We now show that in male zebra finches (Taeniopygia guttata), mate competition aggression is inhibited by the D(2) agonist quinpirole, though not the D(1) agonist SKF-38393 or the D(4) agonist PD168077. The D(3) agonist 7-OH-DPAT also inhibited aggression, but only following high dose treatment that may affect aggression via nonspecific binding to D(2) receptors. Central VT infusion failed to restore D(2) agonist-inhibited aggression in a subsequent experiment, demonstrating that D(2) does not suppress aggression by inhibiting VT release from BSTm neurons. In a final experiment, we detected D(2) agonist-induced increases in immunofluorescent colocalization of the product of the immediate early gene c-fos and the steroid-converting enzyme aromatase (ARO) within VT neurons of the BSTm. Thus, although VT and DA appear to influence mate competition aggression independently, BSTm VT neurons are clearly influenced by the activation of D(2) receptors, which may modify future behaviors.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, 1001 East Third St., Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
195
|
Goodson JL, Kabelik D, Schrock SE. Dynamic neuromodulation of aggression by vasotocin: influence of social context and social phenotype in territorial songbirds. Biol Lett 2009; 5:554-6. [PMID: 19493876 DOI: 10.1098/rsbl.2009.0316] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The homologous neuropeptides vasotocin (VT) and vasopressin (VP) influence agonistic behaviours across many taxa, but peptide-behaviour relationships are complex and purportedly species-specific. Putative species-specific effects in songbirds are confounded with context, however, such that territorial species have been tested only in resident-intruder paradigms and gregarious species have been tested only in a mate competition paradigm. Using the territorial violet-eared waxbill (Estrildidae: Uraeginthus granatina), we now show that a V(1a) receptor antagonist reduces male aggression during mate competition (as in gregarious finches), but does not affect resident-intruder aggression in dominant males. However, the V(1a) antagonist disinhibits aggression in less aggressive (typically subordinate) males. These results are consistent with recent data on the activation of different VT cell groups during positive and negative social interactions. Thus, VT influences aggression similarly across territorial and gregarious species, but in context- and phenotype-specific ways that probably reflect the differential activation of discrete VT cell groups.
Collapse
Affiliation(s)
- James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
196
|
Shepard KN, Michopoulos V, Toufexis DJ, Wilson ME. Genetic, epigenetic and environmental impact on sex differences in social behavior. Physiol Behav 2009; 97:157-70. [PMID: 19250945 PMCID: PMC2670935 DOI: 10.1016/j.physbeh.2009.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 01/23/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
The field of behavioral neuroendocrinology has generated thousands of studies that indicate differences in brain structure and reactivity to gonadal steroids that produce sex-specific patterns of social behavior. However, rapidly emerging evidence shows that genetic polymorphisms and resulting differences in the expression of neuroactive peptides and receptors as well as early-life experience and epigenetic changes are important modifiers of social behavior. Furthermore, due to its inherent complexity, the neurochemical mechanisms underlying sex differences in social behavior are usually studied in a tightly regulated laboratory setting rather than in complex environments. Importantly, specific hormones may elicit a range of different behaviors depending on the cues present in these environments. For example, individuals exposed to a psychosocial stressor may respond differently to the effects of a gonadal steroid than those not exposed to chronic stress. The objective of this review is not to re-examine the activational effects of hormones on sex differences in social behavior but rather to consider how genetic and environmental factors modify the effects of hormones on behavior. We will focus on estrogen and its receptors but consideration is also given to the role of androgens. Furthermore, we have limited our discussions to the importance of oxytocin and vasopressin as targets of gonadal steroids and how these effects are modified by genetic and experiential situations. Taken together, the data clearly underscore the need to expand research initiatives to consider gene-environment interactions for better understanding of the neurobiology of sex differences in social behavior.
Collapse
Affiliation(s)
- Kathryn N. Shepard
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| | - Vasiliki Michopoulos
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| | | | - Mark E. Wilson
- Division of Psychobiology, Yerkes National Primate Research Center, Emory University Atlanta GA 30322
| |
Collapse
|
197
|
Ditzen B, Schaer M, Gabriel B, Bodenmann G, Ehlert U, Heinrichs M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol Psychiatry 2009; 65:728-31. [PMID: 19027101 DOI: 10.1016/j.biopsych.2008.10.011] [Citation(s) in RCA: 491] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND In nonhuman mammals, the neuropeptide oxytocin has repeatedly been shown to increase social approach behavior and pair bonding. In particular, central nervous oxytocin reduces behavioral and neuroendocrine responses to social stress and is suggested to mediate the rewarding aspects of attachment in highly social species. However, to date there have been no studies investigating the effects of central oxytocin mechanisms on behavior and physiology in human couple interaction. METHODS In a double-blind placebo-controlled design, 47 heterosexual couples (total n = 94) received oxytocin or placebo intranasally before a standard instructed couple conflict discussion in the laboratory. The conflict session was videotaped and coded for verbal and nonverbal interaction behavior (e.g., eye contact, nonverbal positive behavior, and self-disclosure). Salivary cortisol was repeatedly measured during the experiment. RESULTS Oxytocin significantly increased positive communication behavior in relation to negative behavior during the couple conflict discussion (F = 4.18, p = .047) and significantly reduced salivary cortisol levels after the conflict compared with placebo (F = 7.14, p = .011). CONCLUSIONS These results are in line with animal studies indicating that central oxytocin facilitates approach and pair bonding behavior. Our findings imply an involvement of oxytocin in couple interaction and close relationships in humans.
Collapse
Affiliation(s)
- Beate Ditzen
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
198
|
Godwin J. Social determination of sex in reef fishes. Semin Cell Dev Biol 2009; 20:264-70. [DOI: 10.1016/j.semcdb.2008.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/06/2008] [Indexed: 11/30/2022]
|
199
|
de Vries GJ, Södersten P. Sex differences in the brain: the relation between structure and function. Horm Behav 2009; 55:589-96. [PMID: 19446075 PMCID: PMC3932614 DOI: 10.1016/j.yhbeh.2009.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/24/2022]
Abstract
In the fifty years since the organizational hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain that depend on the organizational effects of gonadal hormones early in development. Remarkably, in most cases we do not understand how the two are related. This paper makes the case that overstating the magnitude or constancy of sex differences in behavior and too narrowly interpreting the functional consequences of structural differences are significant roadblocks in resolving this issue.
Collapse
Affiliation(s)
- Geert J de Vries
- Department of Psychology and Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003 9333, USA.
| | | |
Collapse
|
200
|
Mura E, Barale C, Quinn MJ, Panzica G, Ottinger MA, Viglietti-Panzica C. Organizational effects of DDE on brain vasotocin system in male Japanese quail. Neurotoxicology 2009; 30:479-84. [PMID: 19442834 DOI: 10.1016/j.neuro.2009.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 12/22/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
p,p'-DDE, or ethylene, 1,1-dichloro-2,2-bis(p-chlorophenyl), is the main metabolite of the pesticide DDT, or 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane. It is an androgen receptor antagonist and testosterone hydroxylase modulator that is also more persistent than its parent compound. In a previous study we demonstrated that embryonic exposure to different doses of p,p'-DDE accelerated onset of puberty in females and reduced male reproductive behavior. In the present study we investigated the long-term effects of the exposure to p,p'-DDE on the differentiation of male Japanese quail (Coturnix japonica) limbic circuits related to male copulatory behavior: the parvocellular vasotocin (VT) system. We observed a decrease in the density of VT-immunoreactive fibers within the medial preoptic nucleus, bed nucleus of the stria terminalis, and lateral septum in p,p'-DDE-treated birds, while no differences could be detected in the magnocellular neurons of the supraoptic nucleus. In particular the lowest dose of p,p'-DDE causes the highest decrease of VT immunoreactivity. This study provides further evidence for VT system sensitivity towards endocrine disrupting chemicals and demonstrates that the VT system may be an appropriate and sensitive biomarker for early p,p'-DDE exposure in birds.
Collapse
Affiliation(s)
- Elena Mura
- Laboratory of Neuroendocrinology, Dept. Anatomy, Pharmacology, and Forensic Medicine, Neuroscience Institute of Torino, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|