151
|
Norcini M, Sideris A, Martin Hernandez LA, Zhang J, Blanck TJJ, Recio-Pinto E. An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci 2014; 8:266. [PMID: 25221468 PMCID: PMC4148822 DOI: 10.3389/fnins.2014.00266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022] Open
Abstract
Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained post-operative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatic analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the seven miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | | | - Jin Zhang
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Neuroscience and Physiology, NYU Langone Medical Center New York, NY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center New York, NY, USA
| |
Collapse
|
152
|
Ferrandiz-Huertas C, Mathivanan S, Wolf CJ, Devesa I, Ferrer-Montiel A. Trafficking of ThermoTRP Channels. MEMBRANES 2014; 4:525-64. [PMID: 25257900 PMCID: PMC4194048 DOI: 10.3390/membranes4030525] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/11/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022]
Abstract
ThermoTRP channels (thermoTRPs) define a subfamily of the transient receptor potential (TRP) channels that are activated by changes in the environmental temperature, from noxious cold to injurious heat. Acting as integrators of several stimuli and signalling pathways, dysfunction of these channels contributes to several pathological states. The surface expression of thermoTRPs is controlled by both, the constitutive and regulated vesicular trafficking. Modulation of receptor surface density during pathological processes is nowadays considered as an interesting therapeutic approach for management of diseases, such as chronic pain, in which an increased trafficking is associated with the pathological state. This review will focus on the recent advances trafficking of the thermoTRP channels, TRPV1, TRPV2, TRPV4, TRPM3, TRPM8 and TRPA1, into/from the plasma membrane. Particularly, regulated membrane insertion of thermoTRPs channels contributes to a fine tuning of final channel activity, and indeed, it has resulted in the development of novel therapeutic approaches with successful clinical results such as disruption of SNARE-dependent exocytosis by botulinum toxin or botulinomimetic peptides.
Collapse
Affiliation(s)
| | - Sakthikumar Mathivanan
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Christoph Jakob Wolf
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante 03202, Spain.
| |
Collapse
|
153
|
Brenner DS, Golden JP, Vogt SK, Dhaka A, Story GM, Gereau RW. A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo. Pain 2014; 155:2124-33. [PMID: 25109670 DOI: 10.1016/j.pain.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 12/01/2022]
Abstract
The ability to sense and respond to thermal stimuli at varied environmental temperatures is essential for survival in seasonal areas. In this study, we show that mice respond similarly to ramping changes in temperature from a wide range of baseline temperatures. Further investigation suggests that this ability to adapt to different ambient environments is based on rapid adjustments made to a dynamic temperature set point. The adjustment of this set point requires transient receptor potential cation channel, subfamily member 8 (TRPM8), but not transient receptor potential cation channel, subfamily A, member 1 (TRPA1), and is regulated by phospholipase C (PLC) activity. Overall, our findings suggest that temperature response thresholds in mice are dynamic, and that this ability to adapt to environmental temperature seems to mirror the in vitro findings that PLC-mediated hydrolysis of phosphoinositol 4,5-bisphosphate modulates TRPM8 activity and thereby regulates the response thresholds to cold stimuli.
Collapse
Affiliation(s)
- Daniel S Brenner
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Neuroscience Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judith P Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sherri K Vogt
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ajay Dhaka
- Department of Biological Structure University of Washington, Seattle, WA 98195, USA; Neurobiology and Behavior Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Gina M Story
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Neuroscience Program, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
154
|
Hosoya T, Matsumoto K, Tashima K, Nakamura H, Fujino H, Murayama T, Horie S. TRPM8 has a key role in experimental colitis-induced visceral hyperalgesia in mice. Neurogastroenterol Motil 2014; 26:1112-21. [PMID: 24832648 DOI: 10.1111/nmo.12368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Transient receptor potential channel melastatin 8 (TRPM8) is activated by cold temperatures and cooling agents (menthol and icilin). Recent studies showed TRPM8 is expressed in visceral organs and peripheral sensory pathways. However, the role of TRPM8 in visceral hyperalgesia is poorly understood in pathological states such as inflammatory bowel disease. Hence, we investigated the distribution of TRPM8 and its involvement in visceral hyperalgesia in experimental colitis mice. METHODS TRPM8 immunoreactivity was detected using immunohistochemical staining with fluorescein-conjugated tyramide amplification. Visceral hyperalgesia was measured by the intracolonic administration of TRPM8 agonist, WS-12, in control and dextran sodium sulfate (DSS)-induced colitis mice. KEY RESULTS TRPM8 immunoreactivity in the distal colon was much higher than in the transverse and proximal colon under physiological conditions. TRPM8 immunoreactivity markedly increased in the distal colon mucosa of DSS-induced colitis mice compared with control mice. The number of TRPM8 nerve fibers in mucosa of DSS- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis model mice drastically increased compared with control mice. TRPM8 immunoreactivities colocalized with the calcitonin gene-related peptide- and substance P-immunoreactive nerve fibers in the mucosa. Intracolonic administration of WS-12 induced behavioral visceral pain-like responses. The numbers of these responses in the colitis model mice were 3 times higher than in control mice, and were decreased by pretreatment with the TRPM8 channel blocker AMTB. CONCLUSIONS & INFERENCES Increased expression of TRPM8 may contribute to the visceral hyperalgesia of experimental colitis.
Collapse
Affiliation(s)
- T Hosoya
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan; Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
155
|
Patel R, Gonçalves L, Leveridge M, Mack SR, Hendrick A, Brice NL, Dickenson AH. Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: a comparison with topical menthol. Pain 2014; 155:2097-107. [PMID: 25083927 PMCID: PMC4220012 DOI: 10.1016/j.pain.2014.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Abstract
Menthol has historically been used topically to alleviate various pain conditions. At low concentrations, this non-selective TRPM8 agonist elicits a cooling sensation, however higher concentrations result in cold hyperalgesia in normal subjects and paradoxically analgesia in neuropathic patients. Through behavioural and electrophysiological means, we examined whether this back-translated into a pre-clinical rodent model. Menthol was applied topically to the hind paws of naive and spinal nerve-ligated (SNL) rats. In behavioural assays, menthol did not affect withdrawal thresholds to mechanical stimulation and 10% and 40% menthol rarely sensitised withdrawals to innocuous cooling in naïve rats. However, in SNL rats, 10% and 40% menthol alleviated cold hypersensitivity. This was partly corroborated by in vivo electrophysiological recordings of dorsal horn lamina V/VI neurones. As several studies have implicated TRPM8 in analgesia, we examined whether a novel systemically available TRPM8 agonist, M8-Ag, had more potent anti-hyperalgesic effects than menthol in neuropathic rats. In vitro, M8-Ag activates TRPM8, expressed in HEK293 cells, with an EC50 of 44.97 nM. In vivo, M8-Ag inhibited neuronal responses to innocuous and noxious cooling in SNL rats with no effect in sham-operated rats. This effect was modality selective; M8-Ag did not alter neuronal responses to mechanical, heat or brush stimulation. In addition, M8-Ag attenuated behavioural hypersensitivity to innocuous cooling but not mechanical stimulation. These data suggest that menthol induced hyperalgesia is not consistently replicable in the rat and that the analgesic properties are revealed by injury. Systemic TRPM8 agonists might be beneficial in neuropathy without affecting normal cold sensitivity.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Leonor Gonçalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
156
|
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15:573-89. [PMID: 25053448 DOI: 10.1038/nrn3784] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Experimental Gynaecology, KU Leuven, Herestraat 49 BOX 611, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| |
Collapse
|
157
|
Zappia KJ, Garrison SR, Hillery CA, Stucky CL. Cold hypersensitivity increases with age in mice with sickle cell disease. Pain 2014; 155:2476-2485. [PMID: 24953902 DOI: 10.1016/j.pain.2014.05.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Sickle cell disease (SCD) is associated with acute vaso-occlusive crises that trigger painful episodes and frequently involves ongoing, chronic pain. In addition, both humans and mice with SCD experience heightened cold sensitivity. However, studies have not addressed the mechanism(s) underlying the cold sensitization or its progression with age. Here we measured thermotaxis behavior in young and aged mice with severe SCD. Sickle mice had a marked increase in cold sensitivity measured by a cold preference test. Furthermore, cold hypersensitivity worsened with advanced age. We assessed whether enhanced peripheral input contributes to the chronic cold pain behavior by recording from C fibers, many of which are cold sensitive, in skin-nerve preparations. We observed that C fibers from sickle mice displayed a shift to warmer (more sensitive) cold detection thresholds. To address mechanisms underlying the cold sensitization in primary afferent neurons, we quantified mRNA expression levels for ion channels thought to be involved in cold detection. These included the transient receptor potential melastatin 8 (Trpm8) and transient receptor potential ankyrin 1 (Trpa1) channels, as well as the 2-pore domain potassium channels, TREK-1 (Kcnk2), TREK-2 (Kcnk10), and TRAAK (Kcnk4). Surprisingly, transcript expression levels of all of these channels were comparable between sickle and control mice. We further examined transcript expression of 83 additional pain-related genes, and found increased mRNA levels for endothelin 1 and tachykinin receptor 1. These factors may contribute to hypersensitivity in sickle mice at both the afferent and behavioral levels.
Collapse
Affiliation(s)
- Katherine J Zappia
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA Department of Pediatrics and Children's Research Institute, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | | | | | | |
Collapse
|
158
|
Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J Neurosci 2014; 34:4445-52. [PMID: 24671991 DOI: 10.1523/jneurosci.5387-13.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.
Collapse
|
159
|
Specific targeting of neurotoxic side effects and pharmacological profile of the novel cancer stem cell drug salinomycin in mice. J Mol Med (Berl) 2014; 92:889-900. [PMID: 24770997 DOI: 10.1007/s00109-014-1155-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Salinomycin is a polyether antibiotic which effectively eliminates a variety of cancer stem cells and chemotherapy-resistant tumor cells in vitro and in vivo. One important caveat for its clinical application is the paucity of preclinical pharmacological and safety data. In the present study, we thus aimed to elucidate pharmacokinetic properties of salinomycin and to assess the side effect profile of chronic treatment with this compound in C57Bl/6 mice. In addition, we tested whether neurotoxic side effects can be prevented by interference with the intracellular calcium homeostasis. We observed that salinomycin has a narrow therapeutic index; however, a dose of 5 mg/kg body weight was well tolerated, and analysis of blood parameters as well as organ histology of liver, kidney, skeletal muscle, and heart showed no abnormalities after daily salinomycin injection for 4 weeks. Pharmacokinetic evaluation revealed low micromolar peak concentrations and an almost complete systemic elimination within 5 h after injection. In contrast to low systemic toxicity, typical signs of a sensory polyneuropathy with mechanical and cold allodynia, distinct gait alterations, decreased sensory nerve action potential amplitudes, and loss of myelinated fibers in the sciatic nerve were observed in salinomycin-treated animals. Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger partially prevented the development of salinomycin-induced neuropathy in vivo, an approach which did not reduce salinomycin's antineoplastic efficacy in vitro. Taken together, this study establishes a framework of pharmacokinetic data for future preclinical trials and safety data for translational trials. Furthermore, we established a strategy to reduce salinomycin's off-target neurotoxic effects. KEY MESSAGE Salinomycin has a narrow therapeutic index; a dose of 5 mg/kg is tolerated in mice. Mice treated with salinomycin develop a painful sensory polyneuropathy. An optimized protocol was established to measure salinomycin in serum samples. Inhibition of Na(+)/Ca(2+) exchangers prevents salinomycin-induced neuropathy. Blocking mitochondrial Na(+)/Ca(2+) exchangers does not impair antineoplastic efficacy.
Collapse
|
160
|
Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014; 8:21. [PMID: 24795573 PMCID: PMC4001001 DOI: 10.3389/fnana.2014.00021] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
The word somatosensation comes from joining the Greek word for body (soma) with a word for perception (sensation). Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia) and at the base of the skull (the trigeminal ganglia). While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor a model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.
Collapse
Affiliation(s)
- Claire E. Le Pichon
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| | - Alexander T. Chesler
- Intramural Pain Program, Section on Sensory Cells and Circuits, National Center for Complementary and Alternative Medicine, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
161
|
Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 2014; 4:2501. [PMID: 24071625 PMCID: PMC3791479 DOI: 10.1038/ncomms3501] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/23/2013] [Indexed: 01/08/2023] Open
Abstract
TRPA1 is an ion channel and has been proposed as a thermosensor across species. In invertebrate and ancestral vertebrates such as fly, mosquito, frog, lizard and snakes, TRPA1 serves as a heat receptor, a sensory input utilized for heat avoidance or infrared detection. However, in mammals, whether TRPA1 is a receptor for noxious cold is highly controversial, as channel activation by cold was observed by some groups but disputed by others. Here we attribute the discrepancy to species differences. We show that cold activates rat and mouse TRPA1 but not human or rhesus monkey TRPA1. At the molecular level, a single residue within the S5 transmembrane domain (G878 in rodent but V875 in primate) accounts for the observed difference in cold sensitivity. This residue difference also underlies the species-specific effects of menthol. Together, our findings identify the species-specific cold activation of TRPA1 and reveal a molecular determinant of cold-sensitive gating. TRPA1 ion channels act as thermosensors across different species; however, studies on their role in noxious cold sensation have provided conflicting results in mammals. Chen et al. show that these discrepancies arise because cold activates rat and mouse TRPA1 but not human or rhesus monkey TRPA1.
Collapse
|
162
|
Yoo S, Lim JY, Hwang SW. Sensory TRP channel interactions with endogenous lipids and their biological outcomes. Molecules 2014; 19:4708-44. [PMID: 24739932 PMCID: PMC6271031 DOI: 10.3390/molecules19044708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/30/2023] Open
Abstract
Lipids have long been studied as constituents of the cellular architecture and energy stores in the body. Evidence is now rapidly growing that particular lipid species are also important for molecular and cellular signaling. Here we review the current information on interactions between lipids and transient receptor potential (TRP) ion channels in nociceptive sensory afferents that mediate pain signaling. Sensory neuronal TRP channels play a crucial role in the detection of a variety of external and internal changes, particularly with damaging or pain-eliciting potentials that include noxiously high or low temperatures, stretching, and harmful substances. In addition, recent findings suggest that TRPs also contribute to altering synaptic plasticity that deteriorates chronic pain states. In both of these processes, specific lipids are often generated and have been found to strongly modulate TRP activities, resulting primarily in pain exacerbation. This review summarizes three standpoints viewing those lipid functions for TRP modulations as second messengers, intercellular transmitters, or bilayer building blocks. Based on these hypotheses, we discuss perspectives that account for how the TRP-lipid interaction contributes to the peripheral pain mechanism. Still a number of blurred aspects remain to be examined, which will be answered by future efforts and may help to better control pain states.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| |
Collapse
|
163
|
Kim YS, Park JH, Choi SJ, Bae JY, Ahn DK, McKemy DD, Bae YC. Central connectivity of transient receptor potential melastatin 8-expressing axons in the brain stem and spinal dorsal horn. PLoS One 2014; 9:e94080. [PMID: 24710558 PMCID: PMC3977991 DOI: 10.1371/journal.pone.0094080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/11/2014] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7%) and unmyelinated fibers (76.3%), suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.
Collapse
Affiliation(s)
- Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jun Hong Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Su Jung Choi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Dong Kuk Ahn
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - David D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
164
|
Patel R, Gonçalves L, Newman R, Jiang FL, Goldby A, Reeve J, Hendrick A, Teall M, Hannah D, Almond S, Brice N, Dickenson AH. Novel TRPM8 antagonist attenuates cold hypersensitivity after peripheral nerve injury in rats. J Pharmacol Exp Ther 2014; 349:47-55. [PMID: 24472724 DOI: 10.1124/jpet.113.211243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal cold sensitivity is a common feature of a range of neuropathies. In the murine somatosensory system, multiple aspects of cold sensitivity are dependent on TRPM8, both short term and in response to peripheral nerve injury. The specialized nature of cold-sensitive afferents and the restricted expression of TRPM8 render it an attractive target for the treatment of cold hypersensitivity. This current study examines the effect of a novel TRPM8 antagonist (M8-An) in naive and spinal nerve-ligated rats through behavioral and in vivo electrophysiological approaches. In vitro, M8-An inhibited icilin-evoked Ca(2+) currents in HEK293 cells stably expressing human TRPM8 with an IC(50) of 10.9 nM. In vivo, systemic M8-An transiently decreased core body temperature. Deep dorsal horn recordings were made in vivo from neurons innervating the hind paw. M8-An inhibited neuronal responses to innocuous and noxious cooling of the receptive field in spinal nerve-ligated rats but not in naive rats. No effect on neuronal responses to mechanical and heat stimulation was observed. In addition, M8-An also attenuated behavioral responses to cold but not mechanical stimulation after nerve ligation without affecting the uninjured contralateral response. The data presented here support a contribution of TRPM8 to the pathophysiology of cold hypersensitivity in this model and highlight the potential of the pharmacological block of TRPM8 in alleviating the associated symptoms.
Collapse
Affiliation(s)
- Ryan Patel
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom (R.P., L.G., A.H.D.); Takeda Cambridge Ltd, Cambridge, United Kingdom (R.N., A.G., J.R., A.H., M.T., D.H., S.A., N.B.); and Takeda Singapore Pte Ltd, Chromos, Singapore (F.L.J.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Characterization of acute and chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted antioxidant on the neuropathies. Anesthesiology 2014; 120:459-73. [PMID: 24064792 DOI: 10.1097/01.anes.0000435634.34709.65] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxaliplatin, a chemotherapeutic agent used for the treatment of colorectal cancer, induces dose-limiting neuropathy that compromises quality of life. This study aimed to reproduce, in mice, patients' symptoms of oxaliplatin-induced neuropathy and to observe effects of SS-31, a mitochondria-targeted antioxidant on the neuropathy. METHODS Neuropathy was induced by single or repeated injections of oxaliplatin. Cold and mechanical hypersensitivities were assessed by 15°C-cold plate, temperature preference, and von Frey tests. Morphology of peripheral nerves and dorsal root ganglions, expression of spinal cord c-Fos, density of intraepidermal nerve fibers, and levels of dorsal root ganglion-reactive oxygen/nitrogen species were examined. SS-31 was administered concomitantly or after oxaliplatin injections. RESULTS Single injection of oxaliplatin induced cold hypersensitivity in forepaws but not in hind paws which resolved within days (maximal forepaw shakes: 28 ± 1.5 vs. 9.3 ± 1.6/150 s, mean ± SEM, P < 0.001, n = 6 per group). Oxaliplatin-administered mice disfavored 10° and 15°C plates more than control. Paw stimulation at 15°C induced c-Fos-positive cells within superficial laminae of the dorsal horn in C7-T1 segments. Weekly administrations induced gradual development of persistent mechanical allodynia in the hind paws (minimal mechanical threshold: 0.19 ± 0.08 vs. 0.93 ± 0.11 g, P < 0.001, n = 10 per group). Microscopy revealed no overt morphological changes in peripheral nerves and dorsal root ganglions. Concomitant SS-31 administration with repeated oxaliplatin administration attenuated both cold and mechanical hypersensitivity. Decrease in intraepidermal nerve fibers and increase in dorsal root ganglion-reactive oxygen/nitrogen species were also attenuated. Acute SS-31 administration after symptoms were established reversed only cold hypersensitivity. CONCLUSION This model of oxaliplatin-induced neuropathy mimicked patients' conditions. SS-31 has potentials to prevent both acute and chronic neuropathies but is only helpful in treatment of acute neuropathy. (Anesthesiology 2014; 120:459-73).
Collapse
|
166
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
167
|
Icilin reduces voltage-gated calcium channel currents in naïve and injured DRG neurons in the rat spinal nerve ligation model. Brain Res 2014; 1557:171-9. [PMID: 24560602 DOI: 10.1016/j.brainres.2014.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022]
Abstract
Recently, the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified as molecular sensors for cold, and it has been suggested that they play a crucial role in allodynia by modulating voltage-gated calcium channel currents (ICa(V)). The aim of this study was to analyze the modulation of ICa(V) by the TRPM8-agonist icilin in vitro and to investigate the analgesic effect of icilin in a neuropathic pain model in vivo. Whole cell patch-clamp recordings were performed on isolated naïve and injured rat dorsal root ganglia (DRG) neurons, and the analgesic efficacy of icilin applied topically to the paws or intrathecally was tested in rats after spinal nerve ligation (SNL). ICa(V) (depolarization from -80 to 0mV) in naïve DRG neurons was reduced dose dependently (0.002-200µM) by icilin (18-80%). Subtype isolation of calcium channels show a marked reduction of L-type channel currents compared to N-type channel currents. The effects of icilin on ICa(V) were not significantly different in non-injured and SNL-injured DRG neurons. In vivo, neither topical (10-200µM) nor intrathecal application of icilin (0.1nM to 1µM) affected tactile allodynia or thermal hyperalgesia after SNL, but it increases cold allodynia 6h after application. We conclude that the icilin-induced modulation of ICa(V) in DRG neurons is unlikely to mediate analgesic effects or contribute directly to the pathogenesis of cold allodynia in the rat SNL model, but it is a potential mechanism for the analgesic effects of icilin in other pain models.
Collapse
|
168
|
Anderson EM, Jenkins AC, Caudle RM, Neubert JK. The effects of a co-application of menthol and capsaicin on nociceptive behaviors of the rat on the operant orofacial pain assessment device. PLoS One 2014; 9:e89137. [PMID: 24558480 PMCID: PMC3928399 DOI: 10.1371/journal.pone.0089137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
- * E-mail:
| | - Alan C. Jenkins
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| | - Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
169
|
Luo J, Walters ET, Carlton SM, Hu H. Targeting Pain-evoking Transient Receptor Potential Channels for the Treatment of Pain. Curr Neuropharmacol 2014; 11:652-63. [PMID: 24396340 PMCID: PMC3849790 DOI: 10.2174/1570159x113119990040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic pain affects billions of lives globally and is a major public health problem in the United States. However, pain management is still a challenging task due to a lack of understanding of the fundamental mechanisms of pain. In the past decades transient receptor potential (TRP) channels have been identified as molecular sensors of tissue damage and inflammation. Activation/sensitization of TRP channels in peripheral nociceptors produces neurogenic inflammation and contributes to both somatic and visceral pain. Pharmacological and genetic studies have affirmed the role of TRP channels in multiple forms of inflammatory and neuropathic pain. Thus pain-evoking TRP channels emerge as promising therapeutic targets for a wide variety of pain and inflammatory conditions.
Collapse
Affiliation(s)
- Jialie Luo
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| | - Susan M Carlton
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069
| | - Hongzhen Hu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
170
|
Laursen WJ, Bagriantsev SN, Gracheva EO. TRPA1 channels: chemical and temperature sensitivity. CURRENT TOPICS IN MEMBRANES 2014; 74:89-112. [PMID: 25366234 DOI: 10.1016/b978-0-12-800181-3.00004-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.
Collapse
Affiliation(s)
- Willem J Laursen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
171
|
Abstract
Several TRP channels exhibit highly temperature-dependent gating properties, which leads to steep changes in depolarising current upon either cooling or heating. Based on this characteristic feature, these so-called "thermoTRPs" have been widely studied with the aim to elucidate their potential key role as thermosensors in the somatosensory system and to understand the basis of their high thermal sensitivity. In this chapter, I provide a brief critical overview of current knowledge on the role of TRP channels in thermosensing and on the thermodynamic and molecular basis of their steep temperature dependence.
Collapse
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 bus 802, 3000, Leuven, Belgium,
| |
Collapse
|
172
|
Madrid R, Pertusa M. Intimacies and physiological role of the polymodal cold-sensitive ion channel TRPM8. CURRENT TOPICS IN MEMBRANES 2014; 74:293-324. [PMID: 25366241 DOI: 10.1016/b978-0-12-800181-3.00011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detection of environmental temperature is critical for the survival of the most diverse organisms. Thermosensitive transient receptor potential (thermoTRP) channels have evolved as a class of ion channels activated by a wide range of temperatures. These molecular thermal sensors are spread through the different TRP channel subfamilies. Among the Melastatin subfamily of TRP channels, the eighth member, TRPM8, is a calcium-permeable cationic ion channel activated by cold, by substances that evoke cold sensation such as menthol, and by voltage. This channel is considered the main molecular entity responsible for the sensitivity to cold of primary sensory neurons of the somatosensory system. Here we present to the readers a summary of some the most relevant biophysical properties, physiological role, and molecular intimacies of this polymodal thermoTRP channel.
Collapse
Affiliation(s)
- Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
173
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel. Finally, we examine the physiological role of TRPM8 and its emerging link to various human diseases, including pain, prostate cancer, dry eye disease, and metabolic disorders.
Collapse
Affiliation(s)
- Laura Almaraz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avenida S. Ramón y Cajal s.n., San Juan de Alicante, 03550, Spain
| | | | | | | |
Collapse
|
174
|
Kambiz S, Duraku LS, Holstege JC, Hovius SER, Ruigrok TJH, Walbeehm ET. Thermo-sensitive TRP channels in peripheral nerve injury: a review of their role in cold intolerance. J Plast Reconstr Aesthet Surg 2013; 67:591-9. [PMID: 24439213 DOI: 10.1016/j.bjps.2013.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 10/30/2013] [Accepted: 12/17/2013] [Indexed: 11/16/2022]
Abstract
One of the sensory complications of traumatic peripheral nerve injury is thermal intolerance, which manifests in humans mainly as cold intolerance. It has a major effect on the quality of life, and adequate therapy is not yet available. In order to better understand the pathophysiological background of thermal intolerance, we focus first on the various transient receptor potential (TRP) channels that are involved in temperature sensation, including their presence in peripheral nerves and in keratinocytes. Second, the role of thermo-sensitive TRP channels in cold and heat intolerance is described showing three different mechanisms that contribute to thermal intolerance in the skin: (a) an increased expression of TRP channels on nerve fibres and on keratinocytes, (b) a lower activation threshold of TRP channels and (c) the sprouting of non-injured nerve fibres. Finally, the data that are available on the effects of TRP channel agonists and antagonists and their clinical use are discussed. In conclusion, TRP channels play a major role in temperature sensation and in cold and heat intolerance. Unfortunately, the available pharmaceutical agents that successfully target TRP channels and counteract thermal intolerance are still very limited. Yet, our focus should remain on TRP channels since it is difficult to imagine a reliable treatment for thermal intolerance that will not involve TRP channels.
Collapse
Affiliation(s)
- S Kambiz
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - L S Duraku
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J C Holstege
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - S E R Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T J H Ruigrok
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E T Walbeehm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
175
|
Abstract
Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.
Collapse
Affiliation(s)
- David Julius
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
176
|
Abstract
Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.
Collapse
|
177
|
Vinuela-Fernandez I, Sun L, Jerina H, Curtis J, Allchorne A, Gooding H, Rosie R, Holland P, Tas B, Mitchell R, Fleetwood-Walker S. The TRPM8 channel forms a complex with the 5-HT(1B) receptor and phospholipase D that amplifies its reversal of pain hypersensitivity. Neuropharmacology 2013; 79:136-51. [PMID: 24269608 DOI: 10.1016/j.neuropharm.2013.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/07/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
Abstract
Effective relief from chronic hypersensitive pain states remains an unmet need. Here we report the discovery that the TRPM8 ion channel, co-operating with the 5-HT(1B) receptor (5-HT(1B)R) in a subset of sensory afferents, exerts an influence at the spinal cord level to suppress central hypersensitivity in pain processing throughout the central nervous system. Using cell line models, ex vivo rat neural tissue and in vivo pain models, we assessed functional Ca(2+) fluorometric responses, protein:protein interactions, immuno-localisation and reflex pain behaviours, with pharmacological and molecular interventions. We report 5-HT(1B)R expression in many TRPM8-containing afferents and direct interaction of these proteins in a novel multi-protein signalling complex, which includes phospholipase D1 (PLD1). We provide evidence that the 5-HT(1B)R activates PLD1 to subsequently activate PIP 5-kinase and generate PIP2, an allosteric enhancer of TRPM8, achieving a several-fold increase in potency of TRPM8 activation. The enhanced activation responses of synaptoneurosomes prepared from spinal cord and cortical regions of animals with a chronic inflammatory pain state are inhibited by TRPM8 activators that were applied in vivo topically to the skin, an effect potentiated by co-administered 5-HT(1B)R agonists and attenuated by 5-HT(1B)R antagonists, while 5-HT(1B)R agents alone had no detectable effect. Corresponding results are seen when assessing reflex behaviours in inflammatory and neuropathic pain models. Control experiments with alternative receptor/TRP channel combinations reveal no such synergy. Identification of this novel receptor/effector/channel complex and its impact on nociceptive processing give new insights into possible strategies for enhanced analgesia in chronic pain.
Collapse
Affiliation(s)
- Ignacio Vinuela-Fernandez
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Liting Sun
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Helen Jerina
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - John Curtis
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Andrew Allchorne
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Hayley Gooding
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Roberta Rosie
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Pamela Holland
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Basak Tas
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom
| | - Rory Mitchell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom.
| | - Sue Fleetwood-Walker
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
178
|
Due MR, Park J, Zheng L, Walls M, Allette YM, White FA, Shi R. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. J Neurochem 2013; 128:776-786. [PMID: 24147766 DOI: 10.1111/jnc.12500] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here, we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound's pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggest that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic. Following spinal cord injury (SCI), acrolein involvement in neuropathic pain is likely through direct activation and elevated levels of pro-nociceptive channel TRPA1. While acrolein elevation correlates with neuropathic pain, suppression of this aldehyde by hydralazine leads to an analgesic effect. Acrolein may serve as a novel therapeutic target for preclinical and clinical SCI to relieve both acute and chronic post-SCI neuropathic pain.
Collapse
Affiliation(s)
- Michael R Due
- Department of Anesthesia, Indiana University School of Medicine
| | - Jonghyuck Park
- Department of Basic Medical Sciences, School of Veterinary Medicine, and Weldon School of Biomedical Engineering, Purdue University
| | - Lingxing Zheng
- Department of Basic Medical Sciences, School of Veterinary Medicine, and Weldon School of Biomedical Engineering, Purdue University
| | - Michael Walls
- Department of Basic Medical Sciences, School of Veterinary Medicine, and Weldon School of Biomedical Engineering, Purdue University
| | - Yohance M Allette
- Department of Cell Biology and Anatomy, Indiana University School of Medicine
| | - Fletcher A White
- Department of Anesthesia, Indiana University School of Medicine.,Department of Cell Biology and Anatomy, Indiana University School of Medicine
| | - Riyi Shi
- Department of Anesthesia, Indiana University School of Medicine.,Department of Basic Medical Sciences, School of Veterinary Medicine, and Weldon School of Biomedical Engineering, Purdue University
| |
Collapse
|
179
|
Abstract
TRP channels constitute a large superfamily of cation channel forming proteins, all related to the gene product of the transient receptor potential (trp) locus in Drosophila. In mammals, 28 different TRP channel genes have been identified, which exhibit a large variety of functional properties and play diverse cellular and physiological roles. In this article, we provide a brief and systematic summary of expression, function, and (patho)physiological role of the mammalian TRP channels.
Collapse
Affiliation(s)
- Maarten Gees
- Laboratory Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | |
Collapse
|
180
|
Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci 2013; 33:12543-52. [PMID: 23884957 DOI: 10.1523/jneurosci.5765-12.2013] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic pain associated with injury or disease can result from dysfunction of sensory afferents whereby the threshold for activation of pain-sensing neurons (nociceptors) is lowered. Neurotrophic factors control nociceptor development and survival, but also induce sensitization through activation of their cognate receptors, attributable, in part, to the modulation of ion channel function. Thermal pain is mediated by channels of the transient receptor potential (TRP) family, including the cold and menthol receptor TRPM8. Although it has been shown that TRPM8 is involved in cold hypersensitivity, the molecular mechanisms underlying this pain modality are unknown. Using microarray analyses to identify mouse genes enriched in TRPM8 neurons, we found that the glial cell line-derived neurotrophic factor (GDNF) family receptor GFRα3 is expressed in a subpopulation of TRPM8 sensory neurons that have the neurochemical profile of cold nociceptors. Moreover, we found that artemin, the specific GFRα3 ligand that evokes heat hyperalgesia, robustly sensitized cold responses in a TRPM8-dependent manner in mice. In contrast, GFRα1 and GFRα2 are not coexpressed with TRPM8 and their respective ligands GDNF and neurturin did not induce cold pain, whereas they did evoke heat hyperalgesia. Nerve growth factor induced mild cold sensitization, consistent with TrkA expression in TRPM8 neurons. However, bradykinin failed to alter cold sensitivity even though its receptor expresses in a subset of TRPM8 neurons. These results show for the first time that only select neurotrophic factors induce cold sensitization through TRPM8 in vivo, unlike the broad range of proalgesic agents capable of promoting heat hyperalgesia.
Collapse
|
181
|
Targeting TRP channels for pain relief. Eur J Pharmacol 2013; 716:61-76. [DOI: 10.1016/j.ejphar.2013.03.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/04/2013] [Indexed: 11/23/2022]
|
182
|
Montrucchio DP, Córdova MM, Soares Santos AR. Plant derived aporphinic alkaloid S-(+)-dicentrine induces antinociceptive effect in both acute and chronic inflammatory pain models: evidence for a role of TRPA1 channels. PLoS One 2013; 8:e67730. [PMID: 23861794 PMCID: PMC3701576 DOI: 10.1371/journal.pone.0067730] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/21/2013] [Indexed: 11/18/2022] Open
Abstract
S-(+)-dicentrine is an aporphinic alkaloid found in several plant species, mainly from Lauraceae family, which showed significant antinociceptive activity in an acute model of visceral pain in mice. In this work, we extended the knowledge on the antinociceptive properties of S-(+)-dicentrine and showed that this alkaloid also attenuates mechanical and cold hypersensitivity associated with cutaneous inflammation induced by Complete Freund's Adjuvant in mice. Given orally, S-(+)-dicentrine (100 mg/kg) reversed CFA-induced mechanical hypersensitivity, evaluated as the paw withdrawal threshold to von Frey hairs, and this effect lasted up to 2 hours. S-(+)-dicentrine also reversed CFA-induced cold hypersensitivity, assessed as the responses to a drop of acetone in the injured paw, but did not reverse the heat hypersensitivity, evaluated as the latency time to paw withdrawal in the hot plate (50°C). Moreover, S-(+)-dicentrine (100 mg/kg, p.o.) was effective in inhibit nociceptive responses to intraplantar injections of cinnamaldehyde, a TRPA1 activator, but not the responses induced by capsaicin, a TRPV1 activator. When administered either by oral or intraplantar routes, S-(+)-dicentrine reduced the licking time (spontaneous nociception) and increased the latency time to paw withdrawal in the cold plate (cold hypersensitivity), both induced by the intraplantar injection of cinnamaldehyde. Taken together, our data adds information about antinociceptive properties of S-(+)-dicentrine in inflammatory conditions, reducing spontaneous nociception and attenuating mechanical and cold hypersensitivity, probably via a TRPA1-dependent mechanism. It also indicates that S-(+)-dicentrine might be potentially interesting in the development of new clinically relevant drugs for the management of persistent pain, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Deise Prehs Montrucchio
- Departamento de Farmácia, Setor de Ciências da Saúde, Universidade Federal do Paraná, Curitiba, PR, Brasil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Marina Machado Córdova
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Adair Roberto Soares Santos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
- * E-mail:
| |
Collapse
|
183
|
McCoy DD, Zhou L, Nguyen AK, Watts AG, Donovan CM, McKemy DD. Enhanced insulin clearance in mice lacking TRPM8 channels. Am J Physiol Endocrinol Metab 2013; 305:E78-88. [PMID: 23651844 PMCID: PMC3725566 DOI: 10.1152/ajpendo.00542.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blood glucose concentration is tightly regulated by the rate of insulin secretion and clearance, a process partially controlled by sensory neurons serving as metabolic sensors in relevant tissues. The activity of these neurons is regulated by the products of metabolism which regulate transmitter release, and recent evidence suggests that neuronally expressed ion channels of the transient receptor potential (TRP) family function in this critical process. Here, we report the novel finding that the cold and menthol-gated channel TRPM8 is necessary for proper insulin homeostasis. Mice lacking TRPM8 respond normally to a glucose challenge while exhibiting prolonged hypoglycemia in response to insulin. Additionally, Trpm8-/- mice have increased rates of insulin clearance compared with wild-type animals and increased expression of insulin-degrading enzyme in the liver. TRPM8 channels are not expressed in the liver, but TRPM8-expressing sensory afferents innervate the hepatic portal vein, suggesting a TRPM8-mediated neuronal control of liver insulin clearance. These results demonstrate that TRPM8 is a novel regulator of serum insulin and support the role of sensory innervation in metabolic homeostasis.
Collapse
Affiliation(s)
- Daniel D McCoy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
184
|
Ambient temperature affects the temperature threshold for TRPM8 activation through interaction of phosphatidylinositol 4,5-bisphosphate. J Neurosci 2013; 33:6154-9. [PMID: 23554496 DOI: 10.1523/jneurosci.5672-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cold sensation is an important and fundamental sense for animals and it is known to be affected by ambient temperature. Transient Receptor Potential Melastatin 8 (TRPM8), a nonselective cation channel expressed in a subset of peripheral afferent fibers, acts as a cold sensor, having an activation threshold of ∼28°C. Although the cold temperature threshold of TRPM8 is affected by menthol or pH, ambient temperature has not been reported to affect it. Because the cold temperature threshold was thought to be unchanged by alterations in ambient temperature, the relativity of temperature sensing in different ambient temperatures could not be understood at the level of molecular function of thermosensitive TRP channels. Here, we show that ambient temperature changed the temperature threshold for activation of human and rat TRPM8 in a heterologous expression system and cold responses in mouse DRG neurons. Moreover, reducing the level of cellular phosphatidylinositol 4,5-bisphosphate (PIP2) attenuated changes in the cold temperature threshold after alterations in ambient temperature. A single amino acid mutation at position 1008 in the C terminus of TRPM8 (arginine to glutamine) also attenuated changes in the cold temperature threshold induced by ambient temperature. These findings suggest that ambient temperature does affect the temperature threshold for TRPM8 activation through interaction of PIP2.
Collapse
|
185
|
Abstract
Mammalian somatosenory neurons respond to thermal stimuli and allow animals to reliably discriminate hot from cold and to select their preferred environments. Previously, we generated mice that are completely insensitive to temperatures from noxious cold to painful heat (-5 to 55°C) by ablating several different classes of nociceptor early in development. In the present study, we have adopted a selective ablation strategy in adult mice to study this phenotype and have demonstrated that separate populations of molecularly defined neurons respond to hot and cold. TRPV1-expressing neurons are responsible for all behavioral responses to temperatures between 40 and 50°C, whereas TRPM8 neurons are required for cold aversion. We also show that more extreme cold and heat activate additional populations of nociceptors, including cells expressing Mrgprd. Therefore, although eliminating Mrgprd neurons alone does not affect behavioral responses to temperature, when combined with ablation of TRPV1 or TRPM8 cells, it significantly decreases responses to extreme heat and cold, respectively. Ablation of TRPM8 neurons distorts responses to preferred temperatures, suggesting that the pleasant thermal sensation of warmth may in fact just reflect reduced aversive input from TRPM8 and TRPV1 neurons. As predicted by this hypothesis, mice lacking both classes of thermosensor exhibited neither aversive nor attractive responses to temperatures between 10 and 50°C. Our results provide a simple cellular basis for mammalian thermosensation whereby two molecularly defined classes of sensory neurons detect and encode both attractive and aversive cues.
Collapse
|
186
|
TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 2013; 110:7476-81. [PMID: 23596210 DOI: 10.1073/pnas.1217431110] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis. TRPM8 expression, localized immunohistochemically in transgenic TRPM8(GFP) mouse colon, was up-regulated in both human- and murine-inflamed colon samples, as measured by real-time PCR. Wild-type mice (but not TRPM8-nulls) treated systemically with the TRPM8 agonist, icilin showed an attenuation of chemically induced colitis, as reflected by a decrease in macroscopic and microscopic damage scores, bowel thickness, and myeloperoxidase activity compared with untreated animals. Furthermore, icilin treatment reduced the 2,4,6-trinitrobenzenesulfonic acid-induced increase in levels of inflammatory cytokines and chemokines in the colon. In comparison with wild-type mice, Dextran Sodium Sulfate (DSS)-treated TRPM8 knockout mice showed elevated colonic levels of the inflammatory neuropeptide calcitonin-gene-related peptide, although inflammatory indices were equivalent for both groups. Further, TRPM8 activation by icilin blocked capsaicin-triggered calcitonin-gene-related peptide release from colon tissue ex vivo and blocked capsaicin-triggered calcium signaling in Transient Receptor Potential Vaniloid-1 (TRPV1) and TRPM8 transfected HEK cells. Our data document an anti-inflammatory role for TRPM8 activation, in part due to an inhibiton of neuropeptide release, pointing to a novel therapeutic target for colitis and other inflammatory diseases.
Collapse
|
187
|
A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci 2013; 33:2837-48. [PMID: 23407943 DOI: 10.1523/jneurosci.1943-12.2013] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many primary sensory neurons are polymodal, responding to multiple stimulus modalities (chemical, thermal, or mechanical), yet each modality is recognized differently. Although polymodality implies that stimulus encoding occurs in higher centers, such as the spinal cord or brain, recent sensory neuron ablation studies find that behavioral responses to different modalities require distinct subpopulations, suggesting the existence of modality-specific labeled lines at the level of the sensory afferent. Here we provide evidence that neurons expressing TRPM8, a cold- and menthol-gated channel required for normal cold responses in mammals, represents a labeled line solely for cold sensation. We examined the behavioral significance of conditionally ablating TRPM8-expressing neurons in adult mice, finding that, like animals lacking TRPM8 channels (Trpm8(-/-)), animals depleted of TRPM8 neurons ("ablated") are insensitive to cool to painfully cold temperatures. Ablated animals showed little aversion to noxious cold and did not distinguish between cold and a preferred warm temperature, a phenotype more profound than that of Trpm8(-/-) mice which exhibit only partial cold-avoidance and -preference behaviors. In addition to acute responses, cold pain associated with inflammation and nerve injury was significantly attenuated in ablated and Trpm8(-/-) mice. Moreover, cooling-induced analgesia after nerve injury was abolished in both genotypes. Last, heat, mechanical, and proprioceptive behaviors were normal in ablated mice, demonstrating that TRPM8 neurons are dispensable for other somatosensory modalities. Together, these data show that, although some limited cold sensitivity remains in Trpm8(-/-) mice, TRPM8 neurons are required for the breadth of behavioral responses evoked by cold temperatures.
Collapse
|
188
|
McCoy ES, Taylor-Blake B, Street SE, Pribisko AL, Zheng J, Zylka MJ. Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold. Neuron 2013; 78:138-51. [PMID: 23523592 DOI: 10.1016/j.neuron.2013.01.030] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a classic molecular marker of peptidergic primary somatosensory neurons. Despite years of research, it is unknown whether these neurons are required to sense pain or other sensory stimuli. Here, we found that genetic ablation of CGRPα-expressing sensory neurons reduced sensitivity to noxious heat, capsaicin, and itch (histamine and chloroquine) and impaired thermoregulation but did not impair mechanosensation or β-alanine itch-stimuli associated with nonpeptidergic sensory neurons. Unexpectedly, ablation enhanced behavioral responses to cold stimuli and cold mimetics without altering peripheral nerve responses to cooling. Mechanistically, ablation reduced tonic and evoked activity in postsynaptic spinal neurons associated with TRPV1/heat, while profoundly increasing tonic and evoked activity in spinal neurons associated with TRPM8/cold. Our data reveal that CGRPα sensory neurons encode heat and itch and tonically cross-inhibit cold-responsive spinal neurons. Disruption of this crosstalk unmasks cold hypersensitivity, with mechanistic implications for neuropathic pain and temperature perception.
Collapse
Affiliation(s)
- Eric S McCoy
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, CB #7545, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
189
|
Genes, molecules and patients--emerging topics to guide clinical pain research. Eur J Pharmacol 2013; 716:188-202. [PMID: 23500200 PMCID: PMC3793871 DOI: 10.1016/j.ejphar.2013.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 01/23/2023]
Abstract
This review selectively explores some areas of pain research that, until recently, have been poorly understood. We have chosen four topics that relate to clinical pain and we discuss the underlying mechanisms and related pathophysiologies contributing to these pain states. A key issue in pain medicine involves crucial events and mediators that contribute to normal and abnormal pain signaling, but remain unseen without genetic, biomarker or imaging analysis. Here we consider how the altered genetic make-up of familial pains reveals the human importance of channels discovered by preclinical research, followed by the contribution of receptors as stimulus transducers in cold sensing and cold pain. Finally we review recent data on the neuro-immune interactions in chronic pain and the potential targets for treatment in cancer-induced bone pain.
Collapse
|
190
|
Abstract
Of somatosensory modalities, cold is one of the more ambiguous percepts, evoking the pleasant sensation of cooling, the stinging bite of cold pain, and welcome relief from chronic pain. Moreover, unlike the precipitous thermal thresholds for heat activation of thermosensitive afferent neurons, thresholds for cold fibers are across a range of cool to cold temperatures that spans over 30 °C. Until recently, how cold produces this myriad of biological effects has been poorly studied, yet new advances in our understanding of cold mechanisms may portend a better understanding of sensory perception as well as provide novel therapeutic approaches. Chief among these was the identification of a number of ion channels that either serve as the initial detectors of cold as a stimulus in the peripheral nervous system, or are part of rather sophisticated differential expression patterns of channels that conduct electrical signals, thereby endowing select neurons with properties that are amenable to electrical signaling in the cold. This review highlights the current understanding of the channels involved in cold transduction as well as presents a hypothetical model to account for the broad range of cold thermal thresholds and distinct functions of cold fibers in perception, pain, and analgesia.
Collapse
Affiliation(s)
- David D. McKemy
- Section of Neurobiology,
Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
191
|
Li L, Zhang X. Differential inhibition of the TRPM8 ion channel by Gαq and Gα 11. Channels (Austin) 2013; 7:115-8. [PMID: 23334401 DOI: 10.4161/chan.23466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cold temperature is encoded by the cold-sensitive ion channel TRPM8 in somatosensory neurons. It has been unclear how TRPM8 is modulated so that it can mediate distinct type of cold signaling. We have recently reported that activated Gαq directly inhibits TRPM8 after activation of Gq-coupled receptors. Here, we further show that activation of the muscarinic receptor M1R, which is known to inhibit M currents through PLCβ-mediated hydrolysis of PtdIns(4,5)P 2, similarly inhibited TRPM8 potently, but inhibition was not prevented by the PLC inhibitor U73122. Interestingly, although Gαq and Gα 11 are indistinguishable in activating PLCβ and hydrolysing PtdIns(4,5)P 2, activated Gα 11 inhibited TRPM8 to a lesser extent than activated Gαq. The differential TRPM8 inhibition is determined by a specific residue E197 on Gα 11, because mutating this residue to the corresponding residue on Gαq restored TRPM8 inhibition to a similar degree as mediated by Gαq. These results reinforce the idea that activated Gαq directly inhibits TRPM8 independently from PtdIns(4,5)P 2 hydrolysis-mediated inhibition of TRPM8.
Collapse
Affiliation(s)
- Lin Li
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
192
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
193
|
Avelino A, Charrua A, Frias B, Cruz C, Boudes M, de Ridder D, Cruz F. Transient receptor potential channels in bladder function. Acta Physiol (Oxf) 2013; 207:110-22. [PMID: 23113869 DOI: 10.1111/apha.12021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/27/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023]
Abstract
The transient receptor potential (TRP) superfamily of cationic ion channels includes proteins involved in the transduction of several physical and chemical stimuli to finely tune physiological functions. In the urinary bladder, they are highly expressed in, but not restricted to, primary afferent neurons. The urothelium and some interstitial cells also express several TRP channels. In this review, we describe the expression and the known roles of some members of TRP subfamilies, namely TRPV, TRPM and TRPA, in the urinary bladder. The therapeutic interest of modulating the activity of TRP channels to treat bladder dysfunctions is also discussed.
Collapse
Affiliation(s)
- A. Avelino
- Department of Experimental Biology; Faculty of Medicine of University of Porto; Porto; Portugal
| | | | | | | | | | - D. de Ridder
- Department of Molecular Cell Biology; Laboratory Ion Channel Research; KU Leuven; Leuven; Belgium
| | | |
Collapse
|
194
|
Reply to Voets et al.: Constellation pharmacology is poised to answer scientific questions. Proc Natl Acad Sci U S A 2012. [DOI: 10.1073/pnas.1215574109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
195
|
Pan R, Tian Y, Gao R, Li H, Zhao X, Barrett JE, Hu H. Central mechanisms of menthol-induced analgesia. J Pharmacol Exp Ther 2012; 343:661-72. [PMID: 22951274 DOI: 10.1124/jpet.112.196717] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Menthol is one of the most commonly used chemicals in our daily life, not only because of its fresh flavor and cooling feeling but also because of its medical benefit. Previous studies have suggested that menthol produces analgesic action in acute and neuropathic pain through peripheral mechanisms. However, the central actions and mechanisms of menthol remain unclear. Here, we report that menthol has direct effects on the spinal cord. Menthol decreased both ipsilateral and contralateral pain hypersensitivity induced by complete Freund's adjuvant in a dose-dependent manner. Menthol also reduced both first and second phases of formalin-induced spontaneous nocifensive behavior. We then identified the potential central mechanisms underlying the analgesic effect of menthol. In cultured dorsal horn neurons, menthol induced inward and outward currents in a dose-dependent manner. The menthol-activated current was mediated by Cl(-) and blocked by bicuculline, suggesting that menthol activates γ-aminobutyric acid type A receptors. In addition, menthol blocked voltage-gated sodium channels and voltage-gated calcium channels in a voltage-, state-, and use-dependent manner. Furthermore, menthol reduced repetitive firing and action potential amplitude, decreased neuronal excitability, and blocked spontaneous synaptic transmission of cultured superficial dorsal horn neurons. Liquid chromatography/tandem mass spectrometry analysis of brain menthol levels indicated that menthol was rapidly concentrated in the brain when administered systemically. Our results indicate that menthol produces its central analgesic action on inflammatory pain probably via the blockage of voltage-gated Na(+) and Ca(2+) channels. These data provide molecular and cellular mechanisms by which menthol decreases neuronal excitability, therefore contributing to menthol-induced central analgesia.
Collapse
Affiliation(s)
- Rong Pan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Leucettamols, bifunctionalized sphingoid-like compounds obtained from a marine sponge Leucetta sp., act as non-electrophilic activators of the TRPA1 channel and potent inhibitors of the icilin-mediated activation of the TRPM8 channel, while they are inactive on CB₁, CB₂ and TRPV1 receptors. Leucettamols represent the first compounds of marine origin to target TRPA1 and the first class of natural products to inhibit TRPM8 channels. The preparation of a small series of semi-synthetic derivatives revealed interesting details on the structure-activity relationships within this new chemotype of simple acyclic TRP modulators.
Collapse
|
197
|
Mandadi S, Armati PJ, Roufogalis BD. Protein kinase C modulation of thermo-sensitive transient receptor potential channels: Implications for pain signaling. J Nat Sci Biol Med 2012; 2:13-25. [PMID: 22470230 PMCID: PMC3312694 DOI: 10.4103/0976-9668.82311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A variety of molecules are reported to be involved in chronic pain. This review outlines the specifics of protein kinase C (PKC), its isoforms and their role in modulating thermo-sensitive transient receptor potential (TRP) channels TRPV1-4, TRPM8, and TRPA1. Anatomically, PKC and thermo-sensitive TRPs are co-expressed in cell bodies of nociceptive dorsal root ganglion (DRG) neurons, which are used as physiological correlates of peripheral and central projections involved in pain transmission. In the past decade, modulation of painful heat-sensitive TRPV1 by PKC has received the most attention. Recently, PKC modulation of other newly discovered thermo-sensitive pain-mediating TRPs has come into focus. Such modulation may occur under conditions of chronic pain resulting from nerve damage or inflammation. Since thermo-TRPs are primary detectors of acute pain stimuli, their modulation by PKC can severely alter their function, resulting in chronic pain. Comprehensive knowledge of pain signaling involving interaction of specific isoforms of PKC with specific thermo-sensitive TRP channels is incomplete. Such information is necessary to dissect out modality specific mechanisms to better manage the complex polymodal nature of chronic pain. This review is an attempt to update the readers on current knowledge of PKC modulation of thermo-sensitive TRPs and highlight implications of such modulation for pain signaling
Collapse
Affiliation(s)
- Sravan Mandadi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
198
|
Effect of synthetic eel calcitonin, elcatonin, on cold and mechanical allodynia induced by oxaliplatin and paclitaxel in rats. Eur J Pharmacol 2012; 696:62-9. [PMID: 23001015 DOI: 10.1016/j.ejphar.2012.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 11/23/2022]
Abstract
Oxaliplatin and paclitaxel are commonly used anti-cancer drugs, but they frequently cause peripheral neuropathic pain. In this study, we investigated the effect of elcatonin, a synthetic eel calcitonin, on oxaliplatin- and paclitaxel-induced neuropathy in rats. The rats were treated with a single dose of oxaliplatin (6 mg/kg, i.p.) or repeated doses of paclitaxel (2 mg/kg, i.p.) on 4 alternate days. Both treatments resulted in cold and mechanical allodynia. We assessed the anti-allodynic effects of subcutaneously administered elcatonin (20 U/kg/day) by using a newly developed method to provide cold stimulation (8°C) directly to the hind paw of the rats and by using the von Frey test. Elcatonin almost completely reversed the effects of both cold and mechanical allodynia. To determine the mechanism of this anti-allodynic effect, we examined the effect of elcatonin on neuropathy induced by intraplantar injection of two organic compounds: allyl isothiocyanate (1 nmol/paw), which activates transient receptor potential ankyrin-1 channels, and menthol (1.28 μmol/paw), which activates transient receptor potential ankyrin-1 and melastatin-8. Pre-administration of elcatonin almost completely prevented cold and mechanical allodynia from being induced by both compounds. These results suggest that elcatonin attenuates oxaliplatin- and paclitaxel-induced neuropathic pain by inhibiting the cellular signaling related to transient receptor potential ankyrin-1 and melastatin-8. Thus, we conclude that administration of elcatonin may improve the quality of life of cancer patients receiving chemotherapy.
Collapse
|
199
|
Affiliation(s)
- Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine and TRP Research Platform Leuven (TRPLe), University of Leuven, Leuven, Belgium.
| |
Collapse
|
200
|
Vetter I, Touska F, Hess A, Hinsbey R, Sattler S, Lampert A, Sergejeva M, Sharov A, Collins LS, Eberhardt M, Engel M, Cabot PJ, Wood JN, Vlachová V, Reeh PW, Lewis RJ, Zimmermann K. Ciguatoxins activate specific cold pain pathways to elicit burning pain from cooling. EMBO J 2012; 31:3795-808. [PMID: 22850668 DOI: 10.1038/emboj.2012.207] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 06/28/2012] [Indexed: 12/18/2022] Open
Abstract
Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|