151
|
Al-Saffar NMS, Troy H, Wong Te Fong AC, Paravati R, Jackson LE, Gowan S, Boult JKR, Robinson SP, Eccles SA, Yap TA, Leach MO, Chung YL. Metabolic biomarkers of response to the AKT inhibitor MK-2206 in pre-clinical models of human colorectal and prostate carcinoma. Br J Cancer 2018; 119:1118-1128. [PMID: 30377337 PMCID: PMC6219501 DOI: 10.1038/s41416-018-0242-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AKT is commonly overexpressed in tumours and plays an important role in the metabolic reprogramming of cancer. We have used magnetic resonance spectroscopy (MRS) to assess whether inhibition of AKT signalling would result in metabolic changes that could potentially be used as biomarkers to monitor response to AKT inhibition. METHODS Cellular and metabolic effects of the allosteric AKT inhibitor MK-2206 were investigated in HT29 colon and PC3 prostate cancer cells and xenografts using flow cytometry, immunoblotting, immunohistology and MRS. RESULTS In vitro treatment with MK-2206 inhibited AKT signalling and resulted in time-dependent alterations in glucose, glutamine and phospholipid metabolism. In vivo, MK-2206 resulted in inhibition of AKT signalling and tumour growth compared with vehicle-treated controls. In vivo MRS analysis of HT29 subcutaneous xenografts showed similar metabolic changes to those seen in vitro including decreases in the tCho/water ratio, tumour bioenergetic metabolites and changes in glutamine and glutathione metabolism. Similar phosphocholine changes compared to in vitro were confirmed in the clinically relevant orthotopic PC3 model. CONCLUSION This MRS study suggests that choline metabolites detected in response to AKT inhibition are time and microenvironment-dependent, and may have potential as non-invasive biomarkers for monitoring response to AKT inhibitors in selected cancer types.
Collapse
Affiliation(s)
- Nada M S Al-Saffar
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Helen Troy
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Abbott Ireland Diagnostics Division, Pregnancy and Fertility Team, Lisnamuck, Longford, Ireland
| | - Anne-Christine Wong Te Fong
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Roberta Paravati
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - L Elizabeth Jackson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Jessica K R Boult
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
| | - Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, SW7 3RP, United Kingdom
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SW7 3RP, United Kingdom.
| |
Collapse
|
152
|
Kim MY, Bo HH, Choi EO, Kwon DH, Kim HJ, Ahn KI, Ji SY, Jeong JW, Park SH, Hong SH, Kim GY, Park C, Kim HS, Moon SK, Yun SJ, Kim WJ, Choi YH. Induction of Apoptosis by Citrus unshiu Peel in Human Breast Cancer MCF-7 Cells: Involvement of ROS-Dependent Activation of AMPK. Biol Pharm Bull 2018; 41:713-721. [PMID: 29709909 DOI: 10.1248/bpb.b17-00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fruit of Citrus unshiu MARKOVICH used for various purposes in traditional medicine has various pharmacological properties including antioxidant, anti-inflammatory, and antibacterial effects. Recently, the possibility of anti-cancer activity of the extracts or components of this fruit has been reported; however, the exact mechanism has not yet been fully understood. In this study, we evaluated the anti-proliferative effect of water extract of C. unshiu peel (WECU) on human breast cancer MCF-7 cells and investigated the underlying mechanism. Our results showed that reduction of MCF-7 cell survival by WECU was associated with the induction of apoptosis. WECU-induced apoptotic cell death was related to the activation of caspase-8 and -9, representative initiate caspases of extrinsic and intrinsic apoptosis pathways, respectively, and increase in the Bax : Bcl-2 ratio accompanied by cleavage of poly(ADP-ribose) polymerase (PARP). WECU also increased the mitochondrial dysfunction and cytosolic release of cytochrome c. In addition, AMP-activated protein kinase (AMPK) and its downstream target molecule, acetyl-CoA carboxylase, were activated in a concentration-dependent manner in WECU-treated cells. In contrast, compound C, an AMPK inhibitor, significantly inhibited WECU-induced apoptosis, while inhibiting increased expression of Bax and decreased expression of Bcl-2 by WECU and inhibition of WECU-induced PARP degradation. Furthermore, WECU provoked the production of reactive oxygen species (ROS); however, the activation of AMKP and apoptosis by WECU were prevented, when the ROS production was blocked by antioxidant N-acetyl cysteine. Therefore, our data indicate that WECU suppresses MCF-7 cell proliferation by activating the intrinsic and extrinsic apoptosis pathways through ROS-dependent AMPK pathway activation.
Collapse
Affiliation(s)
- Min Yeong Kim
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Hyun Hwang Bo
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Eun Ok Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Da He Kwon
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Hong Jae Kim
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Kyu Im Ahn
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Seon Yeong Ji
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Jin-Woo Jeong
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Shin-Hyung Park
- Department of Pathology, Dongeui University College of Korean Medicine
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dongeui University
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology & Natural Resource, Chung-Ang University
| | - Seok-Joong Yun
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine
| | - Wun Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine.,Anti-Aging Research Center, Dongeui University
| |
Collapse
|
153
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
154
|
Prabhu KS, Siveen KS, Kuttikrishnan S, Iskandarani AN, Khan AQ, Merhi M, Omri HE, Dermime S, El-Elimat T, Oberlies NH, Alali FQ, Uddin S. Greensporone C, a Freshwater Fungal Secondary Metabolite Induces Mitochondrial-Mediated Apoptotic Cell Death in Leukemic Cell Lines. Front Pharmacol 2018; 9:720. [PMID: 30061828 PMCID: PMC6054921 DOI: 10.3389/fphar.2018.00720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Therapeutic agents used in the treatment of cancer are known to develop resistance against cancer cells. Hence, there is a continuing need to investigate novel agents for the treatment and management of cancer. Antitumor activity of greensporone C (GC), a new resorcylic acid lactone isolated from an organic extract of a culture of a Halenospora sp. freshwater fungus, was subjected for screening against a panel of leukemic cell lines (K562, U937, and AR320). In all the three cell lines, cell proliferation was inhibited in dose-dependent fashion. GC further arrested the cells in SubG0 phase in dose-dependent manner. Annexin V/PI dual staining data confirmed apoptotic death of treated K562 and U937 leukemic cells. Treatment with GC suppressed constitutively phosphorylated AKT and downregulated expression of inhibitor of apoptotic proteins XIAP, cIAP-1, and cIAP-2. In summation to this, GC-treated leukemic cells upregulated protein expression of pro-apoptotic proteins, Bax with concomitant decrease in expression of anti-apoptotic proteins including Bcl-2 and Bcl-xL. Upregulation of Bax was associated with cytochrome c release which was confirmed from the collapse of mitochondrial membrane. Released cytochrome c further activated caspase cascade which in turn initiated apoptosis process. Anticancer activity of this isolated fungal compound GC was potentiated via stimulating production of reactive oxygen species (ROS) along with depletion of reduced glutathione (GSH) levels in K562 and U937 leukemic cells. Pretreatment of these cells with N-acetyl cysteine prevented GC-induced depletion of reduced GSH level and mitochondrial-caspase-induced apoptosis. Altogether, our data show that GC modulates the apoptotic response of human leukemic cells and raises the possibility of its use as a novel therapeutic strategy for hematological malignancies.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad N Iskandarani
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Halima E Omri
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
155
|
Roelants C, Giacosa S, Pillet C, Bussat R, Champelovier P, Bastien O, Guyon L, Arnoux V, Cochet C, Filhol O. Combined inhibition of PI3K and Src kinases demonstrates synergistic therapeutic efficacy in clear-cell renal carcinoma. Oncotarget 2018; 9:30066-30078. [PMID: 30046388 PMCID: PMC6059021 DOI: 10.18632/oncotarget.25700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Potent inhibitors of PI3K (GDC-0941) and Src (Saracatinib) exhibit as individual agents, excellent oral anticancer activity in preclinical models and have entered phase II clinical trials in various cancers. We found that PI3K and Src kinases are dysregulated in clear cell renal carcinomas (ccRCCs), an aggressive disease without effective targeted therapies. In this study we addressed this challenge by testing GDC-0941 and Saracatinib as either single agents or in combination in ccRCC cell lines, as well as in mouse and PDX models. Our findings demonstrate that combined inhibition of PI3K and Src impedes cell growth and invasion and induces cell death of renal carcinoma cells providing preclinical evidence for a pairwise combination of these anticancer drugs as a rational strategy to improve renal cancer treatment.
Collapse
Affiliation(s)
- Caroline Roelants
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France.,Inovarion, Paris, France
| | - Sofia Giacosa
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France
| | - Catherine Pillet
- Université Grenoble-Alpes, Inserm U1038, CEA, BIG-BGE, Grenoble, France
| | - Rémi Bussat
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France
| | | | - Olivier Bastien
- Université Grenoble-Alpes, CNRS-CEA-INRA, Laboratoire de Physiologie Cellulaire et Végétale, Grenoble, France
| | - Laurent Guyon
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France
| | - Valentin Arnoux
- Centre Hospitalier Université Grenoble-Alpes, CS 10217, Grenoble, France
| | - Claude Cochet
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France
| | - Odile Filhol
- Université Grenoble-Alpes, Inserm U1036, CEA, BIG-BCI, Grenoble, France
| |
Collapse
|
156
|
Altıntop MD, Sever B, Akalın Çiftçi G, Turan-Zitouni G, Kaplancıklı ZA, Özdemir A. Design, synthesis, in vitro and in silico evaluation of a new series of oxadiazole-based anticancer agents as potential Akt and FAK inhibitors. Eur J Med Chem 2018; 155:905-924. [PMID: 29966916 DOI: 10.1016/j.ejmech.2018.06.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/23/2022]
Abstract
In the current work, new 1,3,4-oxadiazole derivatives were synthesized and investigated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma and NIH/3T3 mouse embryonic fibroblast cell lines. Compounds 2, 6 and 9 were found to be the most potent anticancer agents against A549 and C6 cell lines and therefore their effects on apoptosis, caspase-3 activation, Akt, FAK, mitochondrial membrane potential and ultrastructural morphological changes were evaluated. N-(5-Nitrothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (9) increased early and late apoptotic cell population in A549 and C6 cells more than cisplatin and caused more mitochondrial membrane depolarization in both cell lines than cisplatin. On the other hand, N-(6-methoxybenzothiazol-2-yl)-2-[[5-[((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)methyl]-1,3,4-oxadiazol-2-yl]thio]acetamide (6) caused higher caspase-3 activation than cisplatin in both cell lines. Compound 6 showed significant Akt inhibitory activity in both cell lines. Moreover, compound 6 significantly inhibited FAK (Phospho-Tyr397) activity in C6 cell line. Molecular docking simulations demonstrated that compound 6 fitted into the active sites of Akt and FAK with high affinity and substrate-specific interactions. Furthermore, compounds 2, 6 and 9 caused apoptotic morphological changes in both cell lines obtained from micrographs by transmission electron microscopy. A computational study for the prediction of ADME properties of all compounds was also performed. These compounds did not violate Lipinski's rule, making them potential orally bioavailable anticancer agents.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülhan Turan-Zitouni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
157
|
Angenendt L, Mikesch JH, Görlich D, Busch A, Arnhold I, Rudack C, Hartmann W, Wardelmann E, Berdel WE, Stenner M, Schliemann C, Grünewald I. Stromal collagen type VI associates with features of malignancy and predicts poor prognosis in salivary gland cancer. Cell Oncol (Dordr) 2018; 41:517-525. [PMID: 29949051 DOI: 10.1007/s13402-018-0389-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Collagen Type VI (COLVI) is an extracellular matrix protein that is upregulated in various solid tumours during tumour progression and has been shown to stimulate proliferation, suppress apoptosis and promote invasion and metastasis. It has also been described as a mediator of chemotherapy resistance and as a therapeutic target in preclinical cancer models. Here, we aimed to analyse the prognostic role of COLVI in salivary gland cancer (SGC). METHODS Stromal COLVI protein expression was assessed in primary SGC specimens of 91 patients using immunohistochemistry (IHC). The IHC expression patterns obtained were subsequently correlated with various survival and clinicopathological features, including Ki-67 and p53 expression. RESULTS We found that COLVI was expressed in all SGC specimens. High expression was found to be associated with features of malignancy such as high histologic grades, advanced and invasive T stages and metastatic lymph node involvement (p < 0.05 for all variables). COLVI expression was also found to correlate with both Ki-67 and p53 expression (p < 0.01). We found that high COLVI expression predicted a significantly inferior 5-year overall survival (38.3%, 55.1% and 93.8%; p = 0.002) and remained a significant predictor of prognosis in a multivariate Cox regression analysis (hazard ratio, 2.62; 95% confidence interval, 1.22-5.61; p = 0.013). In all low-risk subgroups COLVI expression identified patients with an adverse outcome. Patients receiving adjuvant radiotherapy had a poor survival when expressing high levels of COLVI. CONCLUSIONS Our data indicate that stromal COLVI expression associates with key features of malignancy, represents a novel independent prognostic factor and may affect response to radiotherapy in SGC. Although our results warrant validation in an independent cohort, assessing stromal COLVI expression may be suitable for future diagnostic and therapeutic decision making in patients with SGC.
Collapse
Affiliation(s)
- Linus Angenendt
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| | - Jan-Henrik Mikesch
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Alina Busch
- Department of Internal Medicine II, University Hospital Eppendorf, Hamburg, Germany
| | - Irina Arnhold
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Claudia Rudack
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Markus Stenner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Münster, Münster, Germany
| | - Christoph Schliemann
- Department of Medicine A, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Inga Grünewald
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany.
| |
Collapse
|
158
|
Banerji U, Dean EJ, Pérez-Fidalgo JA, Batist G, Bedard PL, You B, Westin SN, Kabos P, Garrett MD, Tall M, Ambrose H, Barrett JC, Carr TH, Cheung SYA, Corcoran C, Cullberg M, Davies BR, de Bruin EC, Elvin P, Foxley A, Lawrence P, Lindemann JPO, Maudsley R, Pass M, Rowlands V, Rugman P, Schiavon G, Yates J, Schellens JHM. A Phase I Open-Label Study to Identify a Dosing Regimen of the Pan-AKT Inhibitor AZD5363 for Evaluation in Solid Tumors and in PIK3CA-Mutated Breast and Gynecologic Cancers. Clin Cancer Res 2018; 24:2050-2059. [PMID: 29066505 DOI: 10.1158/1078-0432.ccr-17-2260] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: This phase I, open-label study (Study 1, D3610C00001; NCT01226316) was the first-in-human evaluation of oral AZD5363, a selective pan-AKT inhibitor, in patients with advanced solid malignancies. The objectives were to investigate the safety, tolerability, and pharmacokinetics of AZD5363, define a recommended dosing schedule, and evaluate preliminary clinical activity.Experimental Design: Patients were aged ≥18 years with World Health Organization (WHO) performance status of 0 to 1. Dose escalation was conducted within separate continuous and intermittent [4 days/week (4/7) or 2 days/week (2/7)] schedules with safety, pharmacokinetic, and pharmacodynamic analyses. Expansion cohorts of approximately 20 patients each explored AZD5363 activity in PIK3CA-mutant breast and gynecologic cancers.Results: MTDs were 320, 480, and 640 mg for continuous (n = 47), 4/7 (n = 21), and 2/7 (n = 22) schedules, respectively. Dose-limiting toxicities were rash and diarrhea for continuous, hyperglycemia for 2/7, and none for 4/7. Common adverse events were diarrhea (78%) and nausea (49%) and, for Common Terminology Criteria for Adverse Events grade ≥3 events, hyperglycemia (20%). The recommended phase II dose (480 mg bid, 4/7 intermittent) was assessed in PIK3CA-mutant breast and gynecologic expansion cohorts: 46% and 56% of patients, respectively, showed a reduction in tumor size, with RECIST responses of 4% and 8%. These responses were less than the prespecified 20% response rate; therefore, the criteria to stop further recruitment to the PIK3CA-mutant cohort were met.Conclusions: At the recommended phase II dose, AZD5363 was well tolerated and achieved plasma levels and robust target modulation in tumors. Proof-of-concept responses were observed in patients with PIK3CA-mutant cancers treated with AZD5363. Clin Cancer Res; 24(9); 2050-9. ©2017 AACRSee related commentary by Costa and Bosch, p. 2029.
Collapse
Affiliation(s)
- Udai Banerji
- Clinical Pharmacology and Trials, Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Emma J Dean
- Medical Oncology (Drug Development), University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - J Alejandro Pérez-Fidalgo
- Department of Oncology and Hematology, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, CIBERONC, Valencia, Spain
| | - Gerald Batist
- Department of Oncology, Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Philippe L Bedard
- Department of Medical Oncology, The Princess Margaret Cancer Centre, Toronto, Canada
| | - Benoit You
- Medical Oncology Department, Institut de Cancérologie des Hospices Civils de Lyon, CITOHL, Université Lyon 1, Lyon, France
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | | | - Mathew Tall
- Clinical PD Biomarker Group, The Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | | | | | | | | | | | | - Paul Elvin
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Martin Pass
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | - Paul Rugman
- IMED, AstraZeneca, Cambridge, United Kingdom
| | | | - James Yates
- IMED, AstraZeneca, Cambridge, United Kingdom
| | - Jan H M Schellens
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
159
|
Zhang D, Wang C, Li Z, Li Y, Dai D, Han K, Lv L, Lu Y, Hou L, Wang J. CCNG2 Overexpression Mediated by AKT Inhibits Tumor Cell Proliferation in Human Astrocytoma Cells. Front Neurol 2018; 9:255. [PMID: 29720957 PMCID: PMC5915460 DOI: 10.3389/fneur.2018.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 01/22/2023] Open
Abstract
The cyclin family protein CCNG2 has an important inhibitory role in cancer initiation and progression, but the exact mechanism is still unknown. In this study, we examined the relationship between CCNG2 and the malignancy of astrocytomas and whether the AKT pathway, which is upregulated in astrocytomas, may inhibit CCNG2 expression. CCNG2 expression was found to be negatively associated with the pathological grade and proliferative activity of astrocytomas, as the highest expression was found in control brain tissue (N = 31), whereas the lowest expression was in high-grade glioma tissue (N = 31). Additionally, CCNG2 overexpression in glioma cell lines, T98G and U251 inhibited proliferation and arrested cells in the G0/G1 phase. Moreover, CCNG2 overexpression could increase glioma cells apoptosis. In contrast, AKT activity increased in glioma cells that had low CCNG2 expression. Expression of CCNG2 was higher in cells treated with the AKT kinase inhibitor MK-2206 indicating that the presence of phosphorylated AKT may inhibit the expression of CCNG2. Inhibition of AKT also led to decreased colony formation in T98G and U251 cells and knocked down of CCNG2 reversed the result. Finally, overexpression of CCNG2 in glioma cells reduced tumor volume in a murine model. To conclude, low expression of CCNG2 correlated with the severity astrocytoma and CCNG2 overexpression could induce apoptosis and inhibit proliferation. Inhibition of AKT activity increased the expression of CCNG2. The present study highlights the regulatory consequences of CCNG2 expression and AKT activity in astrocytoma tumorigenesis and the potential use of CCNG2 in anticancer treatment.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chunhui Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yiming Li
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dawei Dai
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kaiwei Han
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liquan Lv
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yicheng Lu
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junyu Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
160
|
Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother 2018; 99:947-955. [DOI: 10.1016/j.biopha.2018.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
|
161
|
Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 100:226-232. [PMID: 29432993 DOI: 10.1016/j.biopha.2018.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 01/19/2023] Open
Abstract
Oridonin, a bioactive diterpenoid purified from Rabdosia rubescens, has been shown to possess anticancer capacity in several cancer types. However, its effects on oral squamous cell carcinoma (OSCC) cells remain unclear. This study aimed to investigate the anticancer ability of oridonin in OSCC cells, including proliferation, apoptosis and underlying mechanisms using the OSCC cell lines, UM1 and SCC25. The results showed that oridonin not only inhibited proliferation and clonal formation but also induced G2/M cell cycle arrest and apoptosis in UM1 and SCC25 cells in a dose-dependent manner. Western blot revealed that oridonin treatment increased the ratio of Bax/Bcl-2, and activated the cleavage of caspase-3, caspase-9 and PARP-1. Oridonin also induced G2/M phase arrest in OSCC cells via down-regulating the G2/M transition-related proteins such as cyclin B1 or up-regulating cyclin D1, cyclin D3, P21, p-CDK1 and cyclin A2. In addition, oridonin treatment significantly inhibited the phosphorylation of PI3K and Akt and inhibited tumor growth of OSCC xenograft in nude mice. Taken together, these results suggested that oridonin possesses anti-oral cancer capacity via inhibiting the PI3K/Akt signaling and induce apoptosis and G2/M-phase arrest. Therefore, oridonin may be a potential anticancer drug for the treatment of oral cancer.
Collapse
|
162
|
Aziz AUR, Farid S, Qin K, Wang H, Liu B. PIM Kinases and Their Relevance to the PI3K/AKT/mTOR Pathway in the Regulation of Ovarian Cancer. Biomolecules 2018; 8:biom8010007. [PMID: 29401696 PMCID: PMC5871976 DOI: 10.3390/biom8010007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is a medical term that includes a number of tumors with different molecular biology, phenotypes, tumor progression, etiology, and even different diagnosis. Some specific treatments are required to address this heterogeneity of ovarian cancer, thus molecular characterization may provide an important tool for this purpose. On a molecular level, proviral-integration site for Moloney-murine leukemia virus (PIM) kinases are over expressed in ovarian cancer and play a vital role in the regulation of different proteins responsible for this tumorigenesis. Likewise, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is also a central regulator of the ovarian cancer. Interestingly, recent research has linked the PIM kinases to the PI3K/AKT/mTOR pathway in several types of cancers, but their connection in ovarian cancer has not been studied yet. Once the exact relationship of PIM kinases with the PI3K/AKT/mTOR pathway is acquired in ovarian cancer, it will hopefully provide effective treatments on a molecular level. This review mainly focuses on the role of PIM kinases in ovarian cancer and their interactions with proteins involved in its progression. In addition, this review suggests a connection between the PIM kinases and the PI3K/AKT/mTOR pathway and their parallel mechanism in the regulation of ovarian cancer.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sumbal Farid
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China.
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
163
|
Fernandes MS, Sanches JM, Seruca R. Targeting the PI3K Signalling as a Therapeutic Strategy in Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:35-53. [PMID: 30623365 DOI: 10.1007/978-3-030-02771-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer mortality worldwide. Regarded as a heterogeneous disease, a number of biomarkers have been proposed to help in the stratification of CRC patients and to enable the selection of the best therapy for each patient towards personalized therapy. However, although the molecular mechanisms underlying the development of CRC have been elucidated, the therapeutic strategies available for these patients are still quite limited. Thus, over the last few years, a multitude of novel targets and therapeutic strategies have emerged focusing on deregulated molecules and pathways that are implicated in cell growth and survival. Particularly relevant in CRC are the activating mutations in the oncogene PIK3CA that frequently occur in concomitancy with KRAS and BRAF mutations and that lead to deregulation of the major signalling pathways PI3K and MAPK, downstream of EGFR. This review focus on the importance of the PI3K signalling in CRC development, on the current knowledge of PI3K inhibition as a therapeutic approach in CRC and on the implications PI3K signalling molecules may have as potential biomarkers and as new targets for directed therapies in CRC patients.
Collapse
Affiliation(s)
- Maria Sofia Fernandes
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisboa, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Miguel Sanches
- Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
164
|
Jin Y, Xie Y, Ostriker AC, Zhang X, Liu R, Lee MY, Leslie KL, Tang W, Du J, Lee SH, Wang Y, Sessa WC, Hwa J, Yu J, Martin KA. Opposing Actions of AKT (Protein Kinase B) Isoforms in Vascular Smooth Muscle Injury and Therapeutic Response. Arterioscler Thromb Vasc Biol 2017; 37:2311-2321. [PMID: 29025710 PMCID: PMC5699966 DOI: 10.1161/atvbaha.117.310053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Drug-eluting stent delivery of mTORC1 (mechanistic target of rapamycin complex 1) inhibitors is highly effective in preventing intimal hyperplasia after coronary revascularization, but adverse effects limit their use for systemic vascular disease. Understanding the mechanism of action may lead to new treatment strategies. We have shown that rapamycin promotes vascular smooth muscle cell differentiation in an AKT2-dependent manner in vitro. Here, we investigate the roles of AKT (protein kinase B) isoforms in intimal hyperplasia. APPROACH AND RESULTS We found that germ-line-specific or smooth muscle-specific deletion of Akt2 resulted in more severe intimal hyperplasia compared with control mice after arterial denudation injury. Conversely, smooth muscle-specific Akt1 knockout prevented intimal hyperplasia, whereas germ-line Akt1 deletion caused severe thrombosis. Notably, rapamycin prevented intimal hyperplasia in wild-type mice but had no therapeutic benefit in Akt2 knockouts. We identified opposing roles for AKT1 and AKT2 isoforms in smooth muscle cell proliferation, migration, differentiation, and rapamycin response in vitro. Mechanistically, rapamycin induced MYOCD (myocardin) mRNA expression. This was mediated by AKT2 phosphorylation and nuclear exclusion of FOXO4 (forkhead box O4), inhibiting its binding to the MYOCD promoter. CONCLUSIONS Our data reveal opposing roles for AKT isoforms in smooth muscle cell remodeling. AKT2 is required for rapamycin's therapeutic inhibition of intimal hyperplasia, likely mediated in part through AKT2-specific regulation of MYOCD via FOXO4. Because AKT2 signaling is impaired in diabetes mellitus, this work has important implications for rapamycin therapy, particularly in diabetic patients.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Cycle Proteins
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Forkhead Transcription Factors
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Humans
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/deficiency
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
- Vascular System Injuries/prevention & control
Collapse
Affiliation(s)
- Yu Jin
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Yi Xie
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Allison C Ostriker
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Xinbo Zhang
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Renjing Liu
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Monica Y Lee
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Kristen L Leslie
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Waiho Tang
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Jing Du
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Seung Hee Lee
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Yingdi Wang
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - William C Sessa
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - John Hwa
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Jun Yu
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.)
| | - Kathleen A Martin
- From the Department of Internal Medicine, Yale Cardiovascular Research Center, Section of Cardiovascular Medicine (Y.J., Y.X., A.C.O., K.L.L., W.T., J.D., S.H.L., Y.W., J.H., K.A.M.) and Department of Pharmacology (Y.J., Y.X., A.C.O., M.Y.L., K.L.L., W.C.S., K.A.M.), Yale University, New Haven, CT; Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT (X.Z.); Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, Australia (R.L.); Sydney Medical School, University of Sydney, Sydney, Australia (R.L.); and Department of Physiology and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (J.Y.).
| |
Collapse
|
165
|
Mori Y, Shirai T, Terauchi R, Tsuchida S, Mizoshiri N, Hayashi D, Arai Y, Kishida T, Mazda O, Kubo T. Antitumor effects of pristimerin on human osteosarcoma cells in vitro and in vivo. Onco Targets Ther 2017; 10:5703-5710. [PMID: 29238202 PMCID: PMC5713707 DOI: 10.2147/ott.s150071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
There are very few treatments for musculoskeletal tumors, compared to other cancers; thus, novel therapeutic drugs are needed. Pristimerin (PM) is a triterpene compound isolated from plant extracts that reportedly has antitumor effects on various cancers, such as of the breast and prostate. The purpose of this study was to evaluate the antitumor effects of PM on human osteosarcoma cells. Treatment of the human osteosarcoma cell lines, MNNG and 143B, with PM led to a dose-dependent decrease in cell viability. The effects of PM on apoptosis were evaluated with the Annexin V/propidium iodide assay and analysis of caspases 3, 8, and 9 activities. Western blot analysis showed that PM caused a decrease in the expression of Akt, mTOR, and NF-κB. The volumes and weights of human osteosarcoma xenografts decreased significantly with PM treatment. The results of this study revealed that PM can inhibit human osteosarcoma growth in vitro and in vivo, and may be a novel therapeutic agent for the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuji Arai
- Department of Sports and Para-Sports Medicine
| | - Tunao Kishida
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
166
|
Yin L, Fang Z, Shen NJ, Qiu YH, Li AJ, Zhang YJ. Downregulation of A20 increases the cytotoxicity of IFN-γ in hepatocellular carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2841-2850. [PMID: 29033545 PMCID: PMC5628674 DOI: 10.2147/dddt.s135993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, effective therapeutic strategy. Interferon-gamma (IFN-γ) is a pleiotropic cytokine with immunomodulatory, antiviral, and antitumor effects. Although IFN-γ is a promising antitumor agent, its application is limited by resistance in tumor cells. A20 is a zinc-finger protein that was initially identified as a gene product induced by tumor necrosis factor α in human umbilical vein endothelial cells. In this study, we found that silencing of A20 combined with IFN-γ significantly represses cell viability, and induces apoptosis and cell-cycle arrest in HCC cells. By investigating mechanisms implicated in A20 and IFN-γ-mediated signaling pathways, we revealed that the phosphoinositide 3-kinase/Akt signaling pathway and antiapoptotic B-cell lymphoma 2 proteins were repressed. Moreover, we also found that phosphorylation of STAT1 and STAT3 was significantly enhanced after the downregulation of A20 in combination with treatment of IFN-γ. Inhibitor of STAT1 but not STAT3 could block the antitumor effect of IFN-γ. Therefore, targeting A20 enhances the cytotoxicity of IFN-γ against HCC cells and may present a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Lei Yin
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zheng Fang
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ning-Jia Shen
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying-He Qiu
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ai-Jun Li
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Jie Zhang
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
167
|
Woo SU, Sangai T, Akcakanat A, Chen H, Wei C, Meric-Bernstam F. Vertical inhibition of the PI3K/Akt/mTOR pathway is synergistic in breast cancer. Oncogenesis 2017; 6:e385. [PMID: 28991258 PMCID: PMC5668884 DOI: 10.1038/oncsis.2017.86] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Deregulation and activation of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian (or mechanistic) target of rapamycin (mTOR) pathway have a major role in proliferation and cell survival in breast cancer. However, as single agents, mTOR inhibitors have had modest antitumor efficacy. In this study, we evaluated the effects of vertical inhibition of mTOR and Akt in breast cancer cell lines and xenografts. We assessed the effects of mTOR inhibitor rapamycin and Akt inhibitor MK-2206, given as single drugs or in combination, on cell signaling, cell proliferation and apoptosis in a panel of cancer cell lines in vitro. The antitumor efficacy was tested in vivo. We demonstrated that MK-2206 inhibited Akt phosphorylation, cell proliferation and apoptosis in a dose-dependent manner in breast cancer cell lines. Rapamycin inhibited S6 phosphorylation and cell proliferation, and resulted in lower levels of apoptosis induction. Furthermore, the combination treatment inhibited phosphorylation of Akt and S6, synergistically inhibited proliferation and induced apoptosis with a higher efficacy. In vivo combination inhibited tumor growth more than either agent alone. Our data suggest that a combination of Akt and mTOR inhibitors have greater antitumor activity in breast cancer cells, which may be a viable approach to treat patients.
Collapse
Affiliation(s)
- S-U Woo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - T Sangai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - C Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
168
|
Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7:50. [PMID: 29034071 PMCID: PMC5629766 DOI: 10.1186/s13578-017-0179-x] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
Apigenin is a common dietary flavonoid that is abundantly present in many fruits, vegetables and Chinese medicinal herbs and serves multiple physiological functions, such as strong anti-inflammatory, antioxidant, antibacterial and antiviral activities and blood pressure reduction. Therefore, apigenin has been used as a traditional medicine for centuries. Recently, apigenin has been widely investigated for its anti-cancer activities and low toxicity. Apigenin was reported to suppress various human cancers in vitro and in vivo by multiple biological effects, such as triggering cell apoptosis and autophagy, inducing cell cycle arrest, suppressing cell migration and invasion, and stimulating an immune response. In this review, we focus on the most recent advances in the anti-cancer effects of apigenin and their underlying mechanisms, and we summarize the signaling pathways modulated by apigenin, including the PI3K/AKT, MAPK/ERK, JAK/STAT, NF-κB and Wnt/β-catenin pathways. We also discuss combinatorial strategies to enhance the anti-cancer effect of apigenin on various cancers and its use as an adjuvant chemotherapeutic agent to overcome cancer drug resistance or to alleviate other adverse effects of chemotherapy. The functions of apigenin against cancer stem cells are also summarized and discussed. These data demonstrate that apigenin is a promising reagent for cancer therapy. Apigenin appears to have the potential to be developed either as a dietary supplement or as an adjuvant chemotherapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Xiaohui Yan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Miao Qi
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Pengfei Li
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Yihong Zhan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, 710119 China
| |
Collapse
|
169
|
Huang BX, Newcomer K, Kevala K, Barnaeva E, Zheng W, Hu X, Patnaik S, Southall N, Marugan J, Ferrer M, Kim HY. Identification of 4-phenylquinolin-2(1H)-one as a specific allosteric inhibitor of Akt. Sci Rep 2017; 7:11673. [PMID: 28916818 PMCID: PMC5601486 DOI: 10.1038/s41598-017-11870-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
Akt plays a major role in tumorigenesis and the development of specific Akt inhibitors as effective cancer therapeutics has been challenging. Here, we report the identification of a highly specific allosteric inhibitor of Akt through a FRET-based high-throughput screening, and characterization of its inhibitory mechanism. Out of 373,868 compounds screened, 4-phenylquinolin-2(1H)-one specifically decreased Akt phosphorylation at both T308 and S473, and inhibited Akt kinase activity (IC50 = 6 µM) and downstream signaling. 4-Phenylquinolin-2(1H)-one did not alter the activity of upstream kinases including PI3K, PDK1, and mTORC2 as well as closely related kinases that affect cell proliferation and survival such as SGK1, PKA, PKC, or ERK1/2. This compound inhibited the proliferation of cancer cells but displayed less toxicity compared to inhibitors of PI3K or mTOR. Kinase profiling efforts revealed that 4-phenylquinolin-2(1H)-one does not bind to the kinase active site of over 380 human kinases including Akt. However, 4-phenylquinolin-2(1H)-one interacted with the PH domain of Akt, apparently inducing a conformation that hinders S473 and T308 phosphorylation by mTORC2 and PDK1. In conclusion, we demonstrate that 4-phenylquinolin-2(1H)-one is an exquisitely selective Akt inhibitor with a distinctive molecular mechanism, and a promising lead compound for further optimization toward the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Bill X Huang
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Kenny Newcomer
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Rockville, MD, 20852, USA
| | - Elena Barnaeva
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Wei Zheng
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Samarjit Patnaik
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Noel Southall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Juan Marugan
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20850, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Rockville, MD, 20852, USA.
| |
Collapse
|
170
|
Wu N, Huang Y, Zou Z, Gimenez-Capitan A, Yu L, Hu W, Zhu L, Sun X, Sanchez JJ, Guan W, Liu B, Rosell R, Wei J. High BIM mRNA levels are associated with longer survival in advanced gastric cancer. Oncol Lett 2017; 13:1826-1834. [PMID: 28454330 DOI: 10.3892/ol.2017.5660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy drugs, including 5-fluorouracil (5-FU), oxaliplatin and docetaxel, are commonly used in the treatment of gastric cancer (GC). Apoptosis-relevant genes may be associated with drug resistance. In the present study, the messenger RNA (mRNA) expression levels of B-cell lymphoma 2 interacting mediator of cell death (BIM), astrocyte elevated gene-1 (AEG-1) and AXL receptor tyrosine kinase (AXL) were investigated in 131 advanced GC samples, and the expression levels of these genes were correlated with patients' overall survival (OS). All 131 patients received first-line FOLFOX combination chemotherapy with folinic acid and 5-FU, in which 56 patients were further treated with second-line docetaxel-based chemotherapy. A correlation between the mRNA expression levels of BIM and AEG-1 was observed (rs=0.30; P=0.002). There was no association between the mRNA expression levels of any of the individual genes analyzed and OS in patients only receiving first-line FOLFOX chemotherapy. In a subgroup of patients receiving docetaxel-based second-line chemotherapy, those with high or intermediate levels of BIM exhibited a median OS of 18.2 months [95% confidence interval (CI), 12.8-23.6], compared with 9.6 months (95% CI, 8.9-10.3) in patients with low BIM levels (P=0.008). However, there was no correlation between the mRNA expression levels of AEG-1 or AXL and OS. The risk of mortality was higher in patients with low BIM mRNA levels than in those with high or intermediate BIM mRNA levels (hazard ratio, 2.61; 95% CI, 1.21-5.62; P=0.010). Therefore, BIM may be considered as a biomarker to identify whether patients could benefit from docetaxel-based second-line chemotherapy in GC.
Collapse
Affiliation(s)
- Nandie Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Ying Huang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Ana Gimenez-Capitan
- Pangaea Biotech, Department of Oncology, USP Dexeus University Institute, Barcelona 08001, Spain
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xia Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jose Javier Sanchez
- Department of Preventive Medicine and Public Health, Autonomous University of Madrid, Madrid 28001, Spain
| | - Wenxian Guan
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Rafael Rosell
- Pangaea Biotech, Department of Oncology, USP Dexeus University Institute, Barcelona 08001, Spain.,Department of Medical Oncology, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona 08916, Spain
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|