151
|
Mikuła-Pietrasik J, Kuczmarska A, Rubiś B, Filas V, Murias M, Zieliński P, Piwocka K, Książek K. Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radic Biol Med 2012; 52:2234-45. [PMID: 22579575 DOI: 10.1016/j.freeradbiomed.2012.03.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 01/08/2023]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene; RVT) is a natural phytoestrogen known to modulate the rate of senescence in cultured cells. The mechanism by which RVT affects this process is still elusive. In this paper we used human peritoneal mesothelial cells (HPMCs) to examine the effect of RVT (0.5 and 10 μM) on their growth and senescence, with particular emphasis paid to parameters associated with oxidative stress. The results showed that RVT used at a concentration of 0.5 μM (but not at 10 μM) markedly improved HPMC growth capacity, as evidenced by elevated expression of PCNA antigen, augmented fraction of cells in the S phase of the cell cycle, and increased number of divisions achieved before senescence. These effects coincided with diminished expression and activity of senescence-associated β-galactosidase but were not associated with changes in the telomere length and an incidence of apoptosis. Moreover cells exposed to 0.5 μM RVT were characterized by increased release of reactive oxygen species, which was accompanied by up-regulated biogenesis of mitochondria and collapsed mitochondrial membrane potential. At the same time, they displayed increased activity of superoxide dismutase and reduced DNA damage (8-OH-dG and γ-H2A.X level). The efficiency of 8-OH-dG repair was increased which could be related to increased activity of DNA glycosylase I (hOgg1). As shown using RT-PCR, expression of hOgg1 mRNA in these cells was markedly elevated. Collectively, our results indicate that delayed senescence of HPMCs exposed to RVT may be associated with mobilization of antioxidative and DNA repair mechanisms.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology, Poznań University of Medical Sciences, Święcickiego 6, 60-781 Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, Bach T, Zhao Y. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One 2012; 7:e37162. [PMID: 22615926 PMCID: PMC3353901 DOI: 10.1371/journal.pone.0037162] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 04/16/2012] [Indexed: 12/18/2022] Open
Abstract
Studies in the past have illuminated the potential benefit of resveratrol as an anticancer (pro-apoptosis) and life-extending (pro-survival) compound. However, these two different effects were observed at different concentration ranges. Studies of resveratrol in a wide range of concentrations on the same cell type are lacking, which is necessary to comprehend its diverse and sometimes contradictory cellular effects. In this study, we examined the effects of resveratrol on cell self-renewal and differentiation of human mesenchymal stem cells (hMSCs), a type of adult stem cells that reside in a number of tissues, at concentrations ranging from 0.1 to 10 µM after both short- and long-term exposure. Our results reveal that at 0.1 µM, resveratrol promotes cell self-renewal by inhibiting cellular senescence, whereas at 5 µM or above, resveratrol inhibits cell self-renewal by increasing senescence rate, cell doubling time and S-phase cell cycle arrest. At 1 µM, its effect on cell self-renewal is minimal but after long-term exposure it exerts an inhibitory effect, accompanied with increased senescence rate. At all concentrations, resveratrol promotes osteogenic differentiation in a dosage dependent manner, which is offset by its inhibitory effect on cell self-renewal at high concentrations. On the contrary, resveratrol suppresses adipogenic differentiation during short-term exposure but promotes this process after long-term exposure. Our study implicates that resveratrol is the most beneficial to stem cell development at 0.1 µM and caution should be taken in applying resveratrol as an anticancer therapeutic agent or nutraceutical supplement due to its dosage dependent effect on hMSCs.
Collapse
Affiliation(s)
- Lindsay Peltz
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Jessica Gomez
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Maribel Marquez
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Frances Alencastro
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Negar Atashpanjeh
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Tara Quang
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Thuy Bach
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
| | - Yuanxiang Zhao
- Biological Sciences Department, California State Polytechnic University at Pomona, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
153
|
Park MA, Hwang KA, Choi KC. Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab Anim Res 2011; 27:265-73. [PMID: 22232634 PMCID: PMC3251756 DOI: 10.5625/lar.2011.27.4.265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 01/01/2023] Open
Abstract
Acting as hormone mimics or antagonists in the interaction with hormone receptors, endocrine disrupting chemicals (EDCs) have the potentials of disturbing the endocrine system in sex steroid hormone-controlled organs and tissues. These effects may lead to the disruption of major regulatory mechanisms, the onset of developmental disorders, and carcinogenesis. Especially, among diverse EDCs, xenoestrogens such as bisphenol A, dioxins, and di(2-ethylhexyl)phthalate, have been shown to activate estrogen receptors (ERs) and to modulate cellular functions induced by ERs. Furthermore, they appear to be closely related with carcinogenicity in estrogen-dependant cancers, including breast, ovary, and prostate cancers. In in vivo animal models, prenatal exposure to xenoestrogens changed the development of the mouse reproductive organs and increased the susceptibility to further carcinogenic exposure and tumor occurence in adults. Unlike EDCs, which are chemically synthesized, several phytoestrogens such as genistein and resveratrol showed chemopreventive effects on specific cancers by contending with ER binding and regulating normal ER action in target tissues of mice. These results support the notion that a diet containing high levels of phytoestrogens can have protective effects on estrogen-related diseases. In spite of the diverse evidences of EDCs and phytoestrogens on causation and prevention of estrogen-dependant cancers provided in this article, there are still disputable questions about the dose-response effect of EDCs or chemopreventive potentials of phytoestrogens. As a wide range of EDCs including phytoestrogens have been remarkably increasing in the environment with the rapid growth in our industrial society and more closely affecting human and wildlife, the potential risks of EDCs in endocrine disruption and carcinogenesis are important issues and needed to be verified in detail.
Collapse
Affiliation(s)
- Min-Ah Park
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
154
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A, Cuzzocrea S, Rizzarelli E, Calabrese EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta Mol Basis Dis 2011; 1822:753-83. [PMID: 22108204 DOI: 10.1016/j.bbadis.2011.11.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This paper introduces the emerging role of exogenous molecules in hormetic-based neuroprotection and the mitochondrial redox signaling concept of hormesis and its applications to the field of neuroprotection and longevity. Maintenance of optimal long-term health conditions is accomplished by a complex network of longevity assurance processes that are controlled by vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, such as polyphenols and L-carnitine/acetyl-L-carnitine, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. Hormesis provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose response relationships, their mechanistic foundations, their relationship to the concept of biological plasticity as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways including sirtuin, Nrfs and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
|
155
|
Opposing actions of rosiglitazone and resveratrol on mineralization in human vascular smooth muscle cells. J Mol Cell Cardiol 2011; 51:862-71. [DOI: 10.1016/j.yjmcc.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/20/2011] [Indexed: 12/29/2022]
|
156
|
Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML, Yen ML. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 2011; 26:2552-63. [PMID: 21713995 DOI: 10.1002/jbmr.460] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reports of the bone-protective effects of resveratrol, a naturally occurring phytoestrogen and agonist for the longevity gene SIRT1, have highlighted this compound as a candidate for therapy of osteoporosis. Moreover, SIRT1 antagonism enhances adipogenesis. There has been speculation that resveratrol can promote osteogenesis through SIRT1, but the mechanism remains unclear. In this study we investigated the molecular mechanism of how resveratrol can modulate the lineage commitment of human mesenchymal stem cells to osteogenesis other than adipogenesis. We found that resveratrol promoted spontaneous osteogenesis but prevented adipogenesis in human embryonic stem cell-derived mesenchymal progenitors. Resveratrol upregulated the expression of osteo-lineage genes RUNX2 and osteocalcin while suppressing adipo-lineage genes PPARγ2 and LEPTIN in adipogenic medium. Furthermore, we found that the osteogenic effect of resveratrol was mediated mainly through SIRT1/FOXO3A with a smaller contribution from the estrogenic pathway. Resveratrol activated SIRT1 activity and enhanced FOXO3A protein expression, a known target of SIRT1, in an independent manner. As a result, resveratrol increased the amount of the SIRT1-FOXO3A complex and enhanced FOXO3A-dependent transcriptional activity. Ectopic overexpression or silencing of SIRT1/FOXO3A expression regulated RUNX2 promoter activity, suggesting an important role for SIRT1-FOXO3A complex in regulating resveratrol-induced RUNX2 gene transcription. Further mutational RUNX2 promoter analysis and chromatin immunoprecipitation assay revealed that resveratrol-induced SIRT1-FOXO3A complex bound to a distal FOXO response element (-1269/-1263), an action that transactivated RUNX2 promoter activity in vivo. Taken together, our results describe a novel mechanism of resveratrol in promoting osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis.
Collapse
Affiliation(s)
- Pei-Chi Tseng
- Department of Primary Care Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Males and females generally have different finger proportions. In males, digit 2 is shorter than digit 4, but in females digit 2 is the same length or longer than digit 4. The second- to fourth-digit (2D:4D) ratio correlates with numerous sexually dimorphic behavioral and physiological conditions. Although correlational studies suggest that digit ratios reflect prenatal exposure to androgen, the developmental mechanism underlying sexually dimorphic digit development remains unknown. Here we report that the 2D:4D ratio in mice is controlled by the balance of androgen to estrogen signaling during a narrow window of digit development. Androgen receptor (AR) and estrogen receptor α (ER-α) activity is higher in digit 4 than in digit 2. Inactivation of AR decreases growth of digit 4, which causes a higher 2D:4D ratio, whereas inactivation of ER-α increases growth of digit 4, which leads to a lower 2D:4D ratio. We also show that addition of androgen has the same effect as inactivation of ER and that addition of estrogen mimics the reduction of AR. Androgen and estrogen differentially regulate the network of genes that controls chondrocyte proliferation, leading to differential growth of digit 4 in males and females. These studies identify previously undescribed molecular dimorphisms between male and female limb buds and provide experimental evidence that the digit ratio is a lifelong signature of prenatal hormonal exposure. Our results also suggest that the 2D:4D ratio can serve as an indicator of disrupted endocrine signaling during early development, which may aid in the identification of fetal origins of adult diseases.
Collapse
|
158
|
Bioactive antioxidant mixtures promote proliferation and migration on human oral fibroblasts. Arch Oral Biol 2011; 56:812-22. [DOI: 10.1016/j.archoralbio.2011.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 12/17/2022]
|
159
|
Lee YM, Shin SI, Shin KS, Lee YR, Park BH, Kim EC. The role of sirtuin 1 in osteoblastic differentiation in human periodontal ligament cells. J Periodontal Res 2011; 46:712-21. [DOI: 10.1111/j.1600-0765.2011.01394.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
160
|
Wilkinson A, Hewitt RN, McNamara LE, McCloy D, Dominic Meek RM, Dalby MJ. Biomimetic microtopography to enhance osteogenesis in vitro. Acta Biomater 2011; 7:2919-25. [PMID: 21459166 DOI: 10.1016/j.actbio.2011.03.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 11/19/2022]
Abstract
Biomimicry is being used in the next generation of biomaterials. Tuning material surface features such as chemistry, stiffness and topography allow the control of cell adhesion, proliferation, growth and differentiation. Here, microtopographical features with nanoscale depths, similar in scale to osteoclast resorption pits, were used to promote in vitro bone formation in basal medium. Primary human osteoblasts were used to represent an orthopaedically relevant cell type and analysis of adhesions, cytoskeleton, osteospecific proteins (phospho-Runx2 and osteopontin) and mineralisation (alizarin red) was performed. The results further demonstrate the potential for biomimicry in material design and show that the osteoblast response can be tuned from changes in feature size.
Collapse
Affiliation(s)
- Andrew Wilkinson
- Centre for Cell Engineering, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
161
|
Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S, Stein TP, Sebedio JL, Pujos‐Guillot E, Falempin M, Simon C, Coxam V, Andrianjafiniony T, Gauquelin‐Koch G, Picquet F, Blanc S. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 2011; 25:3646-60. [PMID: 21715682 DOI: 10.1096/fj.10-177295] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Iman Momken
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Laurence Stevens
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Audrey Bergouignan
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | | | - Floriane Rudwill
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Isabelle Chery
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Alexandre Zahariev
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - Sandrine Zahn
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| | - T. Peter Stein
- Department of SurgeryUniversity of Medicine and Dentistry of New Jersey Newark New Jersey USA
| | - Jean Louis Sebedio
- UMR 1019, Institut National de Recherche Agronomique (INRA)Université d'Auvergne Clermont Ferrand France
| | - Estelle Pujos‐Guillot
- UMR 1019, Institut National de Recherche Agronomique (INRA)Université d'Auvergne Clermont Ferrand France
| | - Maurice Falempin
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Chantal Simon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U870/INRA 1235Faculté de Médecine de Lyon Sud Lyon France
| | - Véronique Coxam
- Unité de Nutrition Humaine, UMR 1019Alimentation Squelette et Métabolisme Saint Genes Champanelle France
| | | | | | - Florence Picquet
- Laboratoire Activité Physique, Muscle et SantéUniversité de Lille I Lille France
| | - Stéphane Blanc
- Unité Mixte de Recherche (UMR) 7178, Centre National de la Recherche Scientifique (CNRS)Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg Strasbourg France
| |
Collapse
|
162
|
Rayalam S, Della-Fera MA, Baile CA. Synergism between resveratrol and other phytochemicals: implications for obesity and osteoporosis. Mol Nutr Food Res 2011; 55:1177-85. [PMID: 21538845 DOI: 10.1002/mnfr.201000616] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/31/2011] [Accepted: 02/22/2011] [Indexed: 12/19/2022]
Abstract
Resveratrol, a phytoalexin, has gained much attention recently due to its effects on sirtuins. While the anti-cancer properties of resveratrol have been extensively investigated, the anti-adipogenic and osteogenic effects of resveratrol are also gaining considerable interest. The finding that resveratrol supplementation mimics caloric restriction prompted researchers to study the effects of resveratrol on lipid metabolism. Mesenchymal stem cells are the precursors for both adipocytes and osteoblasts. In the aging population, differentiation to adipocytes dominates over the differentiation to osteoblasts in bone marrow, contributing to the increased tendency for fractures to occur in the elderly. Thus, an inverse relationship exists between adipocytes and osteoblasts in the bone marrow. Resveratrol acts on several molecular targets in adipocytes and osteoblasts leading to a decrease in adipocyte number and size and an increase in osteogenesis. Furthermore, resveratrol in combination with genistein and quercetin synergistically decreased adipogenesis in murine and human adipocytes. A recent in vivo study showed that phytochemicals including resveratrol in combination with vitamin D prevented weight gain and bone loss in a postmenopausal rat model. Therefore, combinations of resveratrol with other phytochemicals may lead to potential novel potent therapies for both obesity and osteoporosis.
Collapse
Affiliation(s)
- Srujana Rayalam
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
163
|
Arvidson K, Abdallah BM, Applegate LA, Baldini N, Cenni E, Gomez-Barrena E, Granchi D, Kassem M, Konttinen YT, Mustafa K, Pioletti DP, Sillat T, Finne-Wistrand A. Bone regeneration and stem cells. J Cell Mol Med 2011; 15:718-46. [PMID: 21129153 PMCID: PMC3922662 DOI: 10.1111/j.1582-4934.2010.01224.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022] Open
Abstract
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.
Collapse
Affiliation(s)
- K Arvidson
- Department of Clinical Dentistry, Center for Clinical Resarch, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Uysal T, Gorgulu S, Yagci A, Karslioglu Y, Gunhan O, Sagdic D. Effect of resveratrol on bone formation in the expanded inter-premaxillary suture: early bone changes. Orthod Craniofac Res 2011; 14:80-7. [DOI: 10.1111/j.1601-6343.2011.01511.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
165
|
Calabrese EJ, Mattson MP, Calabrese V. Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 2011; 29:980-1015. [PMID: 21115559 DOI: 10.1177/0960327110383625] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resveratrol induces hormetic dose responses in a wide range of biological models, affecting numerous endpoints of biomedical and therapeutic significance. These responses were reported for numerous human tumor cell lines affecting breast, prostate, colon, lung, uterine and leukemia. In such cases, low concentrations of resveratrol enhanced tumor cell proliferation whereas higher concentrations were inhibitory. Similar resveratrol-induced biphasic dose responses were seen with several parasitic diseases, including Leishmaniasis and trichinella. Hormetic effects were also reported in animal models for cardiovascular induced injury, gastric lesions, ischemic stroke, Alzheimer's disease and osteoporosis. In these cases, there was often a protective effect at low doses but an adverse effect at higher doses, exacerbating the disease process/incidence. This analysis indicates that many effects induced by resveratrol are dependent on dose and that opposite effects occur at low and high doses, being indicative of a hormetic dose response. Despite consistent occurrence of hormetic dose responses of resveratrol in a wide range of biomedical models, epidemiologic and clinical trials are needed to assess the nature of its dose-response in humans.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, University of Massachusetts, Amherst, MA 01003,USA.
| | | | | |
Collapse
|
166
|
Baile CA, Yang JY, Rayalam S, Hartzell DL, Lai CY, Andersen C, Della-Fera MA. Effect of resveratrol on fat mobilization. Ann N Y Acad Sci 2011; 1215:40-7. [PMID: 21261640 DOI: 10.1111/j.1749-6632.2010.05845.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Higher levels of body fat are associated with increased risk for development of numerous adverse health conditions. Phytochemicals are potential agents to inhibit differentiation of preadipocytes, stimulate lipolysis, and induce apoptosis of existing adipocytes, thereby reducing adipose tissue mass. Resveratrol decreased adipogenesis and viability in maturing preadipocytes; these effects were mediated not only through down-regulating adipocyte specific transcription factors and enzymes but also by genes that modulate mitochondrial function. Additionally, resveratrol increased lipolysis and reduced lipogenesis in mature adipocytes. In addition, combining resveratrol with other natural products produced synergistic activities from actions on multiple molecular targets in the adipocyte life cycle. Treatment of mice with resveratrol alone was shown to improve resistance to weight gain caused by a high-fat diet. Moreover, dietary supplementation of aged ovariectomized rats with a combination of resveratrol and vitamin D, quercetin, and genistein not only decreased weight gain but also inhibited bone loss. Combining several phytochemicals, including resveratrol, or using them as templates for synthesizing new drugs, provides a large potential for using phytochemicals to target adipocyte adipogenesis, apoptosis, and lipolysis.
Collapse
|
167
|
Chen J, Olivares-Navarrete R, Wang Y, Herman TR, Boyan BD, Schwartz Z. Protein-disulfide isomerase-associated 3 (Pdia3) mediates the membrane response to 1,25-dihydroxyvitamin D3 in osteoblasts. J Biol Chem 2010; 285:37041-50. [PMID: 20843786 DOI: 10.1074/jbc.m110.157115] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase-associated 3 (Pdia3) is a multifunctional protein hypothesized to be a membrane receptor for 1,25(OH)(2)D(3). In intestinal epithelium and chondrocytes, 1,25(OH)(2)D(3) stimulates rapid membrane responses that are different from genomic effects via the vitamin D receptor (VDR). In this study, we show that 1,25(OH)(2)D(3) stimulates phospholipase A(2) (PLA(2))-dependent rapid release of prostaglandin E(2) (PGE(2)), activation of protein kinase C (PKC), and regulation of bone-related gene transcription and mineralization in osteoblast-like MC3T3-E1 cells (WT) via a mechanism involving Pdia3. Pdia3 was present in caveolae based on co-localization with lipid rafts and caveolin-1. In Pdia3-silenced (Sh-Pdia3) cells, 1,25(OH)(2)D(3) failed to stimulate PKC and PGE(2) responses; in Pdia3-overexpressing cells (Ov-Pdia3), responses to 1,25(OH)(2)D(3) were augmented. Downstream mediators of Pdia3, PLA(2)-activating protein (PLAA) and arachidonic acid, stimulated similar PKC activation in wild-type, Sh-Pdia3, and Ov-Pdia3 cells supporting the hypothesis that Pdia3 mediates the membrane action of 1,25(OH)(2)D(3). Treatment of MC3T3-E1 cells with 1,25(OH)(2)D(3) for 9 min stimulated rapid phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and increased expression of alkaline phosphatase, MMP-13, and osteopontin but decreased expression of osteocalcin, osteoprotegerin (mRNA and protein), and smad2. These effects were attenuated in Sh-Pdia3 cells. Sh-Pdia3 cells produced higher numbers of von Kossa-positive nodules and alizarin red-positive nodules compared with WT cells with or without 1,25(OH)(2)D(3) treatment whereas Ov-Pdia3 did not show any mineralization. Our data suggest Pdia3 is an important initiator of 1,25(OH)(2)D(3)-stimulated membrane signaling pathways, which have both genomic and non genomic effects during osteoblast maturation.
Collapse
Affiliation(s)
- Jiaxuan Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, USA
| | | | | | | | | | | |
Collapse
|
168
|
Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T. Berries: improving human health and healthy aging, and promoting quality life--a review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2010; 65:299-308. [PMID: 20645129 DOI: 10.1007/s11130-010-0177-1] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The importance of the diet in relation to human health has increased the interest of consumers on nutraceuticals rich foods, and especially on fruits and vegetables. Berries are rich sources of a wide variety of antioxidant phenolics; these phytochemicals include flavonoids, stilbenes, tannins, and phenolic acids. Reactive oxidant species and free radicals are produced in an extensive range of physiological processes. In addition to the antioxidant defenses produced in the body, there are exogenous sources supplied by the diet; this is the case of berry fruits, among others. The insufficiency of antioxidant defense mechanisms is associated to the pathology of chronic disorders such as cardiovascular diseases, inflammation, and diabetes. Therefore, the enforcement of the latter mechanisms is of the utmost importance. The isolation and characterization of compounds that may delay the onset of aging is receiving intense research attention; some berry phenolics are being associated with this functional performance. Berry phenolics may also act as antimicrobials which may be of help in the control of the wild spectra of pathogens, in view of recent problems associated with antibiotic resistance. Most of the research works on the antioxidant activity of bioactive constituents of berries has been carried out using in vitro assays. In view of this, the human studies investigating the bioavailability and potential toxicity of phenolics are receiving more attention. Finally, we would like to emphasize the necessity of associating new plant breeding and genetic studies of berries with the expression and overexpression of compounds for human health and healthy aging.
Collapse
Affiliation(s)
- Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Km. 9.6 Libr. Norte Carr. Irapuato-León, Apdo., Postal 629, Irapuato, Guanajuato 36821, Mexico
| | | | | | | |
Collapse
|
169
|
Galtieri A, Tellone E, Ficarra S, Russo A, Bellocco E, Barreca D, Scatena R, Laganà G, Leuzzi U, Giardina B. Resveratrol treatment induces redox stress in red blood cells: a possible role of caspase 3 in metabolism and anion transport. Biol Chem 2010; 391:1057-65. [DOI: 10.1515/bc.2010.100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractResveratrol, an important phytoalexine found in many plants, has been shown to be significantly effective in the treatment of several pathological conditions such as cancer, coronary heart disease and osteoarthritis. This study focuses on the effects of this drug on human red blood cells. In particular, we have examined the influence of resveratrol on Band 3, the anion exchanger protein, and hemoglobin as a function of the oxygenation-deoxygenation cycle. Moreover, special attention has been given to the metabolic changes imposed by caspase 3 activation. Resveratrol has proved to lower superoxide production, thereby decreasing heme-iron oxidation and saving the reducing power required for met-hemoglobin reduction. Oxygen binding experiments showed that resveratrol interacts with hemoglobin, shifting the T→R conformational transition towards the higher-affinity R state. This might contribute to altering the metabolic balance of the cell through an intensification of the pentose phosphate pathway. Moreover, at high oxygenation levels of the erythrocytic hemoglobin, resveratrol induces a significant activation of caspase 3, the action of which on Band 3 has a strong impact on cellular metabolism and anion transport.
Collapse
|
170
|
Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010; 31:266-300. [PMID: 20051526 PMCID: PMC3365845 DOI: 10.1210/er.2009-0024] [Citation(s) in RCA: 876] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205-7199, USA.
| |
Collapse
|
171
|
Trzeciakiewicz A, Habauzit V, Mercier S, Barron D, Urpi-Sarda M, Manach C, Offord E, Horcajada MN. Molecular mechanism of hesperetin-7-O-glucuronide, the main circulating metabolite of hesperidin, involved in osteoblast differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:668-75. [PMID: 19921838 DOI: 10.1021/jf902680n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Citrus fruit hesperidin is hydrolyzed by gut microflora into aglycone form (hesperetin) and then conjugated mainly into glucuronides. We previously demonstrated that hesperetin enhanced osteoblast differentiation. In this study, we examined the effect of hesperetin-7-O-glucuronide (Hp7G) on primary rat osteoblast proliferation and differentiation. The impact of Hp7G on specific bone signaling pathways was explored. Osteoblasts were exposed to physiological concentrations of 1 (Hp7G1) and 10 (Hp7G10) microM of conjugate. The glucuronide did not affect proliferation but enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from day 14 of exposure. Hp7G significantly induced mRNA expression of ALP, Runx2, and Osterix after 48 h of exposure. Moreover, phosphorylation of Smad1/5/8 was enhanced by Hp7G, while ERK1/2 remained unchanged after 48 h. Hp7G decreased RANKL gene expression. These results suggest that Hp7G may regulate osteoblast differentiation through Runx2 and Osterix stimulation, and might be implicated in the regulation of osteoblast/osteoclast communication.
Collapse
Affiliation(s)
- Anna Trzeciakiewicz
- INRA Clermont-Ferrand/Theix, Human Nutrition Unit UMR1019, F-63122 St. Genes Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Woo JT, Yonezawa T, Nagai K. Phytochemicals That Stimulate Osteoblastic Differentiation and Bone Formation. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
173
|
Abstract
The polyphenolic phytoalexin resveratrol (RSV) and its analogues have received tremendous attention over the past couple of decades because of a number of reports highlighting their benefits in vitro and in vivo in a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. These studies have underscored the high degree of diversity in terms of the signaling networks and cellular effector mechanisms that are affected by RSV. The activity of RSV has been linked to cell-surface receptors, membrane signaling pathways, intracellular signal-transduction machinery, nuclear receptors, gene transcription, and metabolic pathways. The promise shown by RSV has prompted heightened interest in studies aimed at translating these observations to clinical settings. In this review, we present a comprehensive account of the basic chemistry of RSV, its bioavailability, and its multiple intracellular target proteins and signaling pathways.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.
| | | |
Collapse
|
174
|
Zhou H, Shang L, Li X, Zhang X, Gao G, Guo C, Chen B, Liu Q, Gong Y, Shao C. RETRACTED: Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res 2009; 315:2953-62. [PMID: 19665018 DOI: 10.1016/j.yexcr.2009.07.030] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/30/2009] [Accepted: 07/24/2009] [Indexed: 01/22/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. The authors were alerted about the loading control in a Western blot analysis of ERK phosphorylation shown in Figure 6B, and they were unable to locate the original scan. Although the authors stand by the conclusion based on this figure, and the conclusion of the entire article, they wish to retract this article.
Collapse
Affiliation(s)
- Haibin Zhou
- Institute of Molecular Medicine and Genetics, Shandong University, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Ksiazek K. A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 2009; 12:105-16. [PMID: 19405814 DOI: 10.1089/rej.2009.0830] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years mesenchymal stem cells (MSCs) have generated a great deal of excitement as an attractive alternative to embryonic stem cells (ESCs) in cell-based regenerative medicine. In contrast to cells of embryonic origin, however, the clinical application of MSCs is heavily restricted by their finite ability of self-renewal, in which they resemble the rest of the somatic cells. Yet the mechanisms controlling MSC proliferation and senescence remain unclear. This review summarizes recent advances in our understanding of the factors affecting MSC expansion in vitro and discusses the pattern of their senescence with particular emphasis on the role of telomere shortening, activation of effectory pathways, and oxidative stress. The issues associated with MSC growth and senescence will be shown in the context of other somatic cells, and all of the parallels and disparities will be delineated precisely.
Collapse
Affiliation(s)
- Krzysztof Ksiazek
- Department of Pathophysiology, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
176
|
Shakibaei M, Harikumar KB, Aggarwal BB. Resveratrol addiction: to die or not to die. Mol Nutr Food Res 2009; 53:115-28. [PMID: 19072742 DOI: 10.1002/mnfr.200800148] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Resveratrol, a polyphenol derived from red grapes, berries, and peanuts, has been shown to mediate death of a wide variety of cells. The mechanisms by which resveratrol mediates cell death include necrosis, apoptosis, autophagy, and others. While most studies suggest that resveratrol kills tumor cells selectively, evidence is emerging that certain normal cells such as endothelial cells, lymphocytes, and chondrocytes are vulnerable to resveratrol. Cell killing by this stilbene may be mediated through any of numerous mechanisms that involve activation of mitochondria and of death caspases; upregulation of cyclin-dependent kinase inhibitors, tumor suppressor gene products, or death-inducing cytokines and cytokine receptors; or downregulation of cell survival proteins (survivin, cFLIP, cIAPs, X-linked inhibitor of apoptosis protein (XIAP), bcl-2, bcl-XL) or inhibition of cell survival kinases (e.g., mitogen-activiated protein kinases (MAPKs), AKT/phosphoinositide 3-kinase (PI3K), PKC, EGFR kinase) and survival transcription factors (nuclear factor-kappaB (NF-kappaB), activating protein 1 (AP-1), HIF-1alpha, signal transducer and activator of transcription (STAT3)). Induction of any of these pathways by resveratrol leads to cell death. While cell death is a hallmark of resveratrol, this polyphenol also has been linked with suppression of inflammation, arthritis, and cardiovascular diseases and delaying of aging. These attributes of resveratrol are discussed in detail in this review.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | | | | |
Collapse
|
177
|
Trzeciakiewicz A, Habauzit V, Mercier S, Lebecque P, Davicco MJ, Coxam V, Demigne C, Horcajada MN. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway. J Nutr Biochem 2009; 21:424-31. [PMID: 19427185 DOI: 10.1016/j.jnutbio.2009.01.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 12/11/2022]
Abstract
Hesperidin found in citrus fruits has been reported to be a promising bioactive compound for maintaining an optimal bone status in ovariectomized rodent models. In this study, we examined the capacity of hesperetin (Hp) to affect the proliferation, differentiation and mineralization of rodent primary osteoblasts. Then, the impact of Hp on signalling pathways known to be implicated in bone formation was explored. We exposed osteoblasts to physiological concentrations of 1 microM Hp (Hp1) and 10 microM Hp (Hp10). Neither proliferation nor mineralization was affected by Hp at either dose during 19 days of exposure. Hp at both doses enhanced differentiation by significantly increasing alkaline phosphatase (ALP) activity from Day 14 of exposure (Day 19: Hp1: +9%, Hp10: +14.8% vs. control; P<.05). However, Hp did not induce an obvious formation of calcium nodules. The effect of Hp10 on ALP was inhibited by addition of noggin protein, suggesting a possible action of this flavanone through the bone morphogenetic protein (BMP) pathway. Indeed, Hp10 significantly induced (1.2- to 1.4-fold) mRNA expression of genes involved in this signalling pathway (i.e., BMP2, BMP4, Runx2 and Osterix) after 48 h of exposure. This was strengthened by enhanced phosphorylation of the complex Smad1/5/8. Osteocalcin mRNA level was up-regulated by Hp only at 10 microM (2.2 fold vs. control). The same dose of Hp significantly decreased osteopontin (OPN) protein level (50% vs. control) after 14 days of culture. Our findings suggest that Hp may regulate osteoblast differentiation through BMP signalling and may influence the mineralization process by modulating OPN expression.
Collapse
Affiliation(s)
- Anna Trzeciakiewicz
- INRA Clermont-Ferrand/Theix, Human Nutrition Unit UMR1019, ASM, Saint Genès-Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Zhou Y, Zhu ZL, Guan XX, Hou WW, Yu HY. Reciprocal roles between caffeine and estrogen on bone via differently regulating cAMP/PKA pathway: the possible mechanism for caffeine-induced osteoporosis in women and estrogen's antagonistic effects. Med Hypotheses 2009; 73:83-5. [PMID: 19278793 DOI: 10.1016/j.mehy.2009.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 02/05/2023]
Abstract
Caffeine is consumed by most people in Europe and North America. As a risk factor for osteoporosis, caffeine has been reported to decrease bone mineral density, negatively influence calcium absorption and increase the risk of bone fracture in women. Except for the epidemiological observations and several studies which proved caffeine's unfavorable effects on osteoblast proliferation and impaired ability to form bone, little mechanism is known for the caffeine-induced osteoporosis. Since our unpublished studies showed that the precursor cells of osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs), were more sensitive than osteoblasts when exposed to the same dose of caffeine. We herein hypothesize that MSCs may be the primary target cells for caffeine-induced osteoporosis. It is well established that increasing cyclic 3',5'-adenosine monophosphate (cAMP) can regulate the expression of key genes involved in bone metabolism, including Cbfa1, PPARgamma, RANKL and OPG. We thereby propose the hypothesis that caffeine, a known inhibitor of cAMP phosphodiesterase, may affect bone metabolism by activating cAMP-dependent protein kinase A (PKA) pathway. In addition, considering the fact observed in epidemiology that caffeine's negative effects on bone only occurred in postmenopausal women and the inverse roles of caffeine and estrogen on bone metabolism, we postulate that caffeine may exert its undesirable influences on bone only in absence or low level of estrogen in vivo and estrogen may antagonize the adverse effect of caffeine on bone. Since several studies have demonstrated that estrogen may have ability to temper the biological effects of cAMP stimulators' roles on bone through cAMP to regulate some important genes' expression in bone metabolism. We assume that estrogen may block cAMP-dependent PKA pathway which is shared by caffeine, to exhibit its antagonistic roles.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Oral Diseases, No.14, 3rd Section, Remin South Road, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | |
Collapse
|
179
|
Abstract
Recent research has provided insights into dietary components that may optimise bone health and stimulate bone formation. Fruit and vegetable intake, as well as grains and other plant-derived food, have been linked to decreased risk of major chronic diseases including osteoporosis. This effect has been partially attributed to the polyphenols found in these foods. Thus, it has been suggested that these compounds may provide desirable bone health benefits through an action on bone cell metabolism. The present review will focus on how some polyphenols can modulate osteoblast function and reports which cellular signalling pathways are potentially implicated. However, to date, despite numerous investigations, few studies have provided clear evidence that phenolic compounds can act on osteoblasts. Polyphenols cited in the present review seem to be able to modulate the expression of transcription factors such as runt-related transcription factor-2 (Runx2) and Osterix, NF-kappaB and activator protein-1 (AP-1). It appears that polyphenols may act on cellular signalling such as mitogen-activated protein kinase (MAPK), bone morphogenetic protein (BMP), oestrogen receptor and osteoprotegerin/receptor activator of NF-kappaB ligand (OPG/RANKL) and thus may affect osteoblast functions. However, it is also important to take in account the possible interaction of these compounds on osteoclast metabolism to better understand the positive correlation reported between the consumption of fruit and vegetables and bone mass.
Collapse
|
180
|
Jiang H, Xu Y, Li W, Ma K, Cai L, Wang G. Low-dose radiation does not induce proliferation in tumor cells in vitro and in vivo. Radiat Res 2008; 170:477-487. [PMID: 19024655 DOI: 10.1667/rr1132.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
We have demonstrated that exposure of mice to low-dose radiation (75 mGy) stimulated bone marrow cell proliferation and peripheral mobilization (Li et al., Exp. Hematol. 32, 1088-1096, 2004). It is unclear whether such stimulating effects induced by low-dose radiation can also occur in tumor cells. In the present study, cells of two leukemia cell lines and five solid tumor cell lines together with four normal human cell lines were used to determine whether exposure to low-dose radiation (25 to 200 mGy X rays) can cause a stimulating effect on cell proliferation. A stimulating effect was found in the normal cell lines but not in the two leukemia and five solid tumor cell lines in response to low-dose radiation exposure in vitro. Examination of cell cycling changes and cell death for these cells by flow cytometry at different times after low-dose irradiation did not identify any changes attributable to the distinct effects of low-dose radiation on cell proliferation between tumor and normal cells. To provide further evidence for the absence of low-dose radiation-induced stimulating effects in tumor cells in vivo, cells of two solid tumor cell lines were implanted in nude mice. Exposure of tumor cells in vitro before implantation in nude mice or of tumor-bearing mice to low-dose radiation (75 mGy X rays) did not stimulate tumor growth compared to the tumor-bearing mice without low-dose radiation exposure. These results suggest that low-dose radiation stimulates growth of normal cells but not of leukemia and solid tumor cells in vitro and also does not stimulate growth of solid tumor cells in vivo.
Collapse
Affiliation(s)
- Hongyu Jiang
- Department of Hematology and Oncology, The First Clinical College, Jilin University Normal Bethune Health Science Center, Changchun 130021, China
| | | | | | | | | | | |
Collapse
|
181
|
Ray R, Novotny NM, Crisostomo PR, Lahm T, Abarbanell A, Meldrum DR. Sex steroids and stem cell function. Mol Med 2008; 14:493-501. [PMID: 18475312 DOI: 10.2119/2008-00004.ray] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Accepted: 04/30/2008] [Indexed: 12/20/2022] Open
Abstract
Gender dimorphisms exist in the pathogenesis of a variety of cardiovascular, cardiopulmonary, neurodegenerative, and endocrine disorders. Estrogens exert immense influence on myocardial remodeling following ischemic insult, partially through paracrine growth hormone production by bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells. Estrogens also facilitate the mobilization of endothelial progenitor cells to the ischemic myocardium and enhance neovascularization at the ischemic border zone. Moreover, estrogens limit pathological myocardial remodeling through the inhibitory effects on the proliferation of the cardiac fibroblasts. Androgens also may stimulate endothelial progenitor cell migration from the bone marrow, yet the larger role of androgens in disease pathogenesis is not well characterized. The beneficial effects of sex steroids include alteration of lipid metabolism in preadipocytes, modulation of bone metabolism and skeletal maturation, and prevention of osteoporosis through their effects on osteogenic precursors. In an example of sex steroid-specific effects, neural stem cells exhibit enhanced proliferation in response to estrogens, whereas androgens mediate inhibitory effects on their proliferation. Although stem cells can offer significant therapeutic benefits in various cardiovascular, neurodegenerative, endocrine disorders, and disorders of bone metabolism, a greater understanding of sex hormones on diverse stem cell populations is required to improve their ultimate clinical efficacy. In this review, we focus on the effects of estrogen and testosterone on various stem and progenitor cell types, and their relevant intracellular mechanisms.
Collapse
Affiliation(s)
- Rinki Ray
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
182
|
Sato K, Hamanoue M, Takamatsu K. Inhibitors of p38 mitogen-activated protein kinase enhance proliferation of mouse neural stem cells. J Neurosci Res 2008; 86:2179-89. [PMID: 18338804 DOI: 10.1002/jnr.21668] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The p38 mitogen-activated protein kinase (MAPK) is induced in response to environmental stress. Although p38 MAPK has been implicated in diverse cellular processes, including cell proliferation, differentiation, and survival of differentiated cells in the central nervous system (CNS), the expression profile and roles of p38 MAPK in the developing brain remain largely unknown. In the present study, we demonstrate that p38 MAPK is expressed predominantly in nestin-positive cells in the cerebral cortex in embryonic day 10 (E10) brain and that expression of the protein decreases gradually during development. To investigate the roles of p38 MAPK in the embryonic brain, two selective p38 MAPK inhibitors, SB202190 and SB203580, were added to the primary neuronal cultures from E10-E14 brains. After 7 days of exposure to these inhibitors, but not SB202474, a negative analog of SB203580, numerous large neurospheres were present. MAPK inhibitors also selectively increased the growth rate of neural stem cells (NSCs) purified from secondary neurospheres and the number of bromodeoxyuridine-positive NSCs. Thus, p38 MAPK inhibitors are potent stimulators of NSC proliferation, and p38 MAPK may be an intrinsic negative regulator of NSC proliferation during early brain development.
Collapse
Affiliation(s)
- Kenichiro Sato
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
183
|
Dalby MJ, Andar A, Nag A, Affrossman S, Tare R, McFarlane S, Oreffo ROC. Genomic expression of mesenchymal stem cells to altered nanoscale topographies. J R Soc Interface 2008; 5:1055-65. [PMID: 18270147 PMCID: PMC2607434 DOI: 10.1098/rsif.2008.0016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 01/21/2008] [Accepted: 01/21/2008] [Indexed: 12/22/2022] Open
Abstract
The understanding of cellular response to the shape of their environment would be of benefit in the development of artificial extracellular environments for potential use in the production of biomimetic surfaces. Specifically, the understanding of how cues from the extracellular environment can be used to understand stem cell differentiation would be of special interest in regenerative medicine. In this paper, the genetic profile of mesenchymal stem cells cultured on two osteogenic nanoscale topographies (pitted surface versus raised islands) are compared with cells treated with dexamethasone, a corticosteroid routinely used to stimulate bone formation in culture from mesenchymal stem cells, using 19k gene microarrays as well as 101 gene arrays specific for osteoblast and endothelial biology. The current studies show that by altering the shape of the matrix a cell response (genomic profile) similar to that achieved with chemical stimulation can be elicited. Here, we show that bone formation can be achieved with efficiency similar to that of dexamethasone with the added benefit that endothelial cell development is not inhibited. We further show that the mechanism of action of the topographies and dexamethasone differs. This could have an implication for tissue engineering in which a simultaneous, targeted, development of a tissue, such as bone, without the suppression of angiogenesis to supply nutrients to the new tissue is required. The results further demonstrate that perhaps the shape of the extracellular matrix is critical to tissue development.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
184
|
In vitro evaluation of the cytotoxic and anti-proliferative properties of resveratrol and several of its analogs. Cell Mol Biol Lett 2008; 13:553-69. [PMID: 18516504 PMCID: PMC6275965 DOI: 10.2478/s11658-008-0022-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 05/06/2008] [Indexed: 11/20/2022] Open
Abstract
Resveratrol (RES), a component of red wine, possesses anti-inflammatory properties. The studies described in the present work were aimed at evaluating the potential for RES and related stilbene analogs (piceatannol, PIC; pterostilbene, TPS; trans-stilbene, TS; and trans-stilbene oxide, TSO) to exhibit toxicity towards RAW 264.7 mouse macrophages. The effect of TS, TSO, RES and TPS on RAW 264.7 macrophage viability was determined by two standard methods: (a) the MTT assay and (b) the trypan blue dye exclusion test. Whereas macrophages were more sensitive to PIC (LC50 trypan ∼ 1.3 μM) and to TPS (LC50 trypan ∼ 4.0 μM and LC50 MTT ∼ 8.3 μM) than to RES (LC50 trypan ∼ 8.9 μM and LC50 MTT ∼ 29.0 μM), they were relatively resistant to TSO (LC50 trypan ∼ 61.0 μM and LC50 MTT > 100 μM) and to TS (LC50 trypan ≥ 5.0 μM and LC50 MTT ≥ 5.0 μM). The ability of selected stilbenes (RES, TPS and PIC) to exhibit growth inhibitory effects was also examined. Although RES and TPS were observed to inhibit cell proliferation in macrophages (IC50 ≤ 25 μM), these cells were resistant to growth inhibition by PIC (IC50 ≥ 50 μM). The data obtained in the present analysis demonstrate that substituted stilbene compounds such as RES have the capacity to exhibit cytotoxic and anti-proliferative activities in macrophages.
Collapse
|
185
|
Huang L, Qiu N, Zhang C, Wei HY, Li YL, Zhou HH, Xiao ZS. Nitroglycerin enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via nitric oxide pathway. Acta Pharmacol Sin 2008; 29:580-6. [PMID: 18430366 DOI: 10.1111/j.1745-7254.2008.00778.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM To investigate the effect of nitroglycerin (NTG) on cell proliferation and osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSC) and its mechanisms. METHODS Primary HBMSC were cultured in osteogenic differentiation medium consisting of phenol red-free alpha-minimum essential media plus 10% fetal bovine serum (dextran-coated charcoal stripped) supplemented with 10 nmol/L dexamethasone, 50 mg/L ascorbic acid, and 10 mmol/L beta-glycerophosphate for inducing osteoblastic differentiation. The cells were treated with NTG (0.1-10 micromol/L) alone or concurrent incubation with different nitric oxide synthase (NOS) inhibitors. Nitric oxide (NO) production was measured by using a commercial NO kit. Cell proliferation was measured by 5-bromodeoxyuridine (BrdU) incorporation. The osteoblastic differentiation of HBMSC culture was evaluated by measuring cellular alkaline phosphatase (ALP) activity and calcium deposition, as well as osteoblastic markers by real-time RT-PCR. RESULTS The treatment of HBMSC with NTG (0.1-10 micromol/L) led to a dose-dependent increase of NO production in the conditional medium. The release of NO by NTG resulted in increased cell proliferation and osteoblastic differentiation of HBMSC, as evidenced by the increment of the BrdU incorporation, the induction of ALP activity in the early stage, and the calcium deposition in the latter stage. The increment of NO production was also correlated with the upregulation of osteoblastic markers in HBMSC cultures. However, the stimulatory effect of NTG (10 micromol/L) could not be abolished by either N(G ) -nitro-L-arginine methyl ester, an antagonist of endothelial NOS, or 1400W, a selective blocker of inducible NOS activity. CONCLUSION NTG stimulates cell proliferation and osteoblastic differentiation of HBMSC through a direct release of NO, which is independent on intracellular NOS activity.
Collapse
Affiliation(s)
- Li Huang
- Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| | | | | | | | | | | | | |
Collapse
|