151
|
Hiranmai RY, Kamaraj M. Occurrence, fate, and toxicity of emerging contaminants in a diverse ecosystem. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Activities that were developed for better/modern living conditions of humans are the primary source of contaminants to the natural ecosystem. Some of the compounds involved in urbanization and industrialization are termed emerging contaminants (ECs) or contaminants of emerging concern. ECs are either chemical or derived from natural sources which environmental concerns and public health have been raised in recent years. ECs enter wastewater treatment systems and migrate from here to different ecosystems as direct or by-products. They are persistent and also stay for a long duration due to their less biodegradation and photodegradation nature. Also, ECs accumulated in living cells and transformed through trophic levels. Technological developments and their application/utility in daily life led to the production of various components that are being added to the natural ecosystem. The treated/untreated wastewater enters into fresh/marine water bodies and gets accumulated into fauna, flora, and sediments. These pollutants/contaminants that are getting added on an everyday basis bring about changes in the existing ecosystem balances. ECs have been found in almost every country’s natural environment, and as a result, they became a global issue. The present review discusses the route and transport of selected ECs into the terrestrial ecosystem through water and other means and how they influence the natural process in an ecosystem. The ECs such as personal care products, pharmaceuticals, polyaromatic hydrocarbons, endocrine disruptors, nanoparticles, and microplastics are highlighted in this review.
Collapse
Affiliation(s)
- Rameshwar Yadav Hiranmai
- School of Environment and Sustainable Development, Central University of Gujarat , Sector-30 , Gandhinagar 382030 , Gujarat , India
| | - Murugesan Kamaraj
- Department of Biotechnology , College of Biological and Chemical Engineering, Addis Ababa Science and Technology University , Addis Ababa 16417 , Ethiopia
| |
Collapse
|
152
|
Wang L, Liu Y, Kaur M, Yao Z, Chen T, Xu M. Phytotoxic Effects of Polyethylene Microplastics on the Growth of Food Crops Soybean ( Glycine max) and Mung Bean ( Vigna radiata). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10629. [PMID: 34682374 PMCID: PMC8535555 DOI: 10.3390/ijerph182010629] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Accumulation of micro-plastics (MPs) in the environment has resulted in various ecological and health concerns. Nowadays, however, studies are mainly focused on toxicity of MPs on aquatic organisms, but only a few studies assess the toxic effects of micro-plastics on terrestrial plants, especially edible agricultural crops. The present study was aimed to investigate the adverse effects of polyethylene (PE) microplastics on the germination of two common food crops of China, i.e., soybean (Glycine max) and mung bean (Vigna radiata). Both the crops were treated with polyethylene microplastics (PE-MPs) of two sizes (6.5 μm and 13 μm) with six different concentrations (0, 10, 50, 100, 200, and 500 mg/L). Parameters studied were (i) seed vigor (e.g., germination energy, germination index, vigor index, mean germination speed, germination rate); (ii) morphology (e.g., root length, shoot length) and (iii) dry weight. It was found that the phyto-toxicity of PE-MPs to soybean (Glycine max) was greater than that of mung bean (Vigna radiata). On the 3rd day, the dry weight of soybean was inhibited at different concentrations as compared to the control and the inhibition showed decline with the increase in the concentration of PE-MPs. After the 7th day, the root length of soybean was inhibited by PE-MPs of 13 μm size, and the inhibition degree was positively correlated with the concentration, whereas the root length of mung bean was increased, and the promotion degree was positively correlated with the concentration. Present study indicated the necessity to explore the hazardous effects of different sizes of PE-MPs on the growth and germination process of agricultural crops. Additionally, our results can provide theoretical basis and data support for further investigation on the toxicity of PE-MPs to soybean and mung bean.
Collapse
Affiliation(s)
- Lin Wang
- Department of Environmental Science, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Department of Environmental Science, Miami College, Henan University, Kaifeng 475002, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
| | - Yi Liu
- Department of Environmental Science, Miami College, Henan University, Kaifeng 475002, China
| | - Mandeep Kaur
- Department of Environmental Science, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
| | - Zhisheng Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Taizheng Chen
- Department of Environmental Science, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
| | - Ming Xu
- Department of Environmental Science, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng 475004, China
| |
Collapse
|
153
|
Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. WATER 2021. [DOI: 10.3390/w13192736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microplastic contamination has become a problem, as plastic production has increased worldwide. Microplastics are plastics with particles of less than 5 mm and are absorbed through soil, water, atmosphere, and living organisms and finally affect human health. However, information on the distribution, toxicity, analytical methods, and removal techniques for microplastics is insufficient. For clear microplastic analytical methods and removal technologies, this article includes the following: (1) The distribution and contamination pathways of microplastics worldwide are reviewed. (2) The health effects and toxicity of microplastics were researched. (3) The sampling, pretreatment, and analytical methods of microplastics were all reviewed through various related articles. (4) The various removal techniques of microplastics were categorized by wastewater treatment process, physical treatment, chemical treatment, and biological treatment. This paper will be of great help to microplastic analysis and removal techniques.
Collapse
|
154
|
Jiang S, Wang F, Li Q, Sun H, Wang H, Yao Z. Environment and food safety: a novel integrative review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54511-54530. [PMID: 34431060 PMCID: PMC8384557 DOI: 10.1007/s11356-021-16069-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 04/12/2023]
Abstract
Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
155
|
Nakazawa Y, Abe T, Matsui Y, Shinno K, Kobayashi S, Shirasaki N, Matsushita T. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment. WATER RESEARCH 2021; 203:117550. [PMID: 34418646 DOI: 10.1016/j.watres.2021.117550] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
One of the main purposes of drinking water treatment is to reduce turbidity originating from clay particles. Relatively little is known about the removal of other types of particles, including conventionally sized powdered activated carbon (PAC) and superfine PAC (SPAC), which are intentionally added during the treatment process; microplastic particles; and viruses. To address this knowledge gap, we conducted a preliminary investigation in full-scale water treatment plants and then studied the removal of these particles during coagulation-flocculation, sedimentation, and rapid sand filtration (CSF) in bench-scale experiments in which these particles were present together. Numbers of all target particles were greatly decreased by coagulation-flocculation and sedimentation (CS). Subsequent rapid sand filtration greatly reduced the concentrations of PAC and SPAC but not the concentrations of viruses, microplastic particles, and clay particles. Overall removal rates by CSF were 4.6 logs for PAC and SPAC, 3.5 logs for viruses, 2.9 logs for microplastics, and 2.8 logs for clay. The differences in removals were not explained by particle sizes or zeta potentials. However, for clays, PAC and SPAC, for which the particle size distributions were wide, smaller particles were less efficiently removed. The ratios of both clay to PAC and clay to SPAC particles increased greatly after rapid sand filtration because removal rates of PAC and SPAC particles were about 2 logs higher than removal rates of clay particles. The trend of greater reduction of PAC concentrations than turbidity was confirmed by measurements made in 14 full-scale water purification plants in which residual concentrations of PAC in treated water were very low, 40-200 particles/mL. Clay particles therefore accounted for most of the turbidity in sand filtrate, even though PAC was employed. The removal rate of microplastic particles was comparable to that of clays. Sufficient turbidity removal would therefore provide comparable removal of microplastics. We investigated the effect of mechanical/photochemical weathering on the removal of microplastics via CSF. Photochemical weathering caused a small increment in the removal rate of microplastics during CS but a small reduction in the removal rate of microplastics during rapid sand filtration; mechanical weathering decreased the removal rate via CS but increased the removal rate via rapid sand filtration. The changes of removal of microplastics might have been caused by changes of their zeta potential.
Collapse
Affiliation(s)
- Yoshifumi Nakazawa
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Saitama, Wako 351-0197, Japan
| | - Taketo Abe
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan.
| | - Koki Shinno
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Sakiko Kobayashi
- Graduate School of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Nobutaka Shirasaki
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| | - Taku Matsushita
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
156
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Micro/nanoplastics effects on organisms: A review focusing on 'dose'. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126084. [PMID: 34229388 DOI: 10.1016/j.jhazmat.2021.126084] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 05/17/2023]
Abstract
Microplastics have become predominant contaminants, attracting much political and scientific attention. Despite the massively-increasing research on microplastics effects on organisms, the debate of whether environmental concentrations pose hazard and risk continues. This study critically reviews published literatures of microplastics effects on organisms within the context of "dose". It provides substantial evidence of the common occurrence of threshold and hormesis dose responses of numerous aquatic and terrestrial organisms to microplastics. This finding along with accumulated evidence indicating the capacity of organisms for recovery suggests that the linear-no-threshold model is biologically irrelevant and should not serve as a default model for assessing the microplastics risks. The published literature does not provide sufficient evidence supporting the general conclusion that environmental doses of microplastics cause adverse effects on individual organisms. Instead, doses that are smaller than the dose of toxicological threshold and more likely to occur in the environment may even induce positive effects, although the ecological implications of these responses remain unknown. This study also shows that low doses of microplastics can reduce whereas high doses can increase the negative effects of other pollutants. The mechanisms explaining these findings are discussed, providing a novel perspective for evaluating the risks of microplastics in the environment.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
157
|
Agathokleous E, Iavicoli I, Barceló D, Calabrese EJ. Ecological risks in a 'plastic' world: A threat to biological diversity? JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126035. [PMID: 33992919 DOI: 10.1016/j.jhazmat.2021.126035] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microplastics pollution is predicted to increase in the coming decades, raising concerns about its effects on living organisms. Although the effects of microplastics on individual organisms have been extensively studied, the effects on communities, biological diversity, and ecosystems remain underexplored. This paper reviews the published literature concerning how microplastics affect communities, biological diversity, and ecosystem processes. Microplastics increase the abundance of some taxa but decrease the abundance of some other taxa, indicating trade-offs among taxa and altered microbial community composition in both the natural environment and animals' gut. The alteration of community composition by microplastics is highly conserved across taxonomic ranks, while the alpha diversity of microbiota is often reduced or increased, depending on the microplastics dose and environmental conditions, suggesting potential threats to biodiversity. Biogeochemical cycles, greenhouse gas fluxes, and atmospheric chemistry, can also be altered by microplastics pollution. These findings suggest that microplastics may impact the U.N. Sustainability Development Goals (SDGs) to improve atmospheric, soil, and water quality and sustaining biodiversity.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
158
|
Wang F, Wang X, Song N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147133. [PMID: 33895518 DOI: 10.1016/j.scitotenv.2021.147133] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Little research has focused on the combined pollution of microplastics (MPs) and heavy metals in soil, especially the mechanism of their interaction. We conducted a 45-day microcosm experiment to test the hypothesis that polyethylene (PE) MPs and cadmium (Cd) had a joint toxicity to lettuce fitness. The effects of MPs at different addition ratios on Cd bioavailability and soil properties were also investigated in the microenvironment of three levels of Cd-contaminated soils. The results showed that the 10% MPs had an adverse impact on the plant biomass and significantly decreased soil pH and cation exchange capacity (CEC), but significantly increased soil dissolved organic carbon (DOC). The presence of MPs increased the soil Cd bioavailability and plant Cd concentrations and accumulations across all three levels of Cd-contaminated soils, which potentially aggregated the combined toxicity. The amounts of the bacterial 16SRNA and the fungal ITSRNA genes displayed a hormesis effect in response to the MP addition ratios while the abundance of Cd resistance genes cadA and czcA increased across all three Cd levels. The regression path analysis indicated that MPs affected shoot Cd concentrations by altering soil properties, which directly and indirectly contributed to the alteration mechanism, while the soil pH, DOC, and Cd bioavailability played core roles. The results suggest that the co-exposure of PE MPs in heavy metal-contaminated soil may therefore increase the toxicity, uptake, accumulation, and bioavailability of heavy metals by altering the properties of the soil microenvironment, which deserves further research.
Collapse
Affiliation(s)
- Fangli Wang
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xuexia Wang
- Institute of plant nutrition and resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
159
|
Sarkar AK, Rubin AE, Zucker I. Engineered Polystyrene-Based Microplastics of High Environmental Relevance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10491-10501. [PMID: 34291927 PMCID: PMC8383278 DOI: 10.1021/acs.est.1c02196] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 05/19/2023]
Abstract
Microplastic (MP) pollution-an emerging environmental challenge of the 21st century-refers to accumulation of environmentally weathered polymer-based particles with potential environmental and health risks. Because of technical and practical challenges when using environmental MPs for risk assessment, most available data are generated using plastic models of limited environmental relevancy (i.e., with physicochemical characteristics inherently different from those of environmental MPs). In this study, we assess the effect of dominant weathering conditions-including thermal, photo-, and mechanical degradation-on surface and bulk characteristics of polystyrene (PS)-based single-use products. Further, we augment the environmental relevance of model-enabled risk assessment through the design of engineered MPs. A set of optimized laboratory-based weathering conditions demonstrated a synergetic effect on the PS-based plastic, which was fragmented into millions of 1-3 μm MP particles in under 16 h. The physicochemical properties of these engineered MPs were compared to those of their environmental counterpart and PS microbeads often used as MP models. The engineered MPs exhibit high environmental relevance with rough and oxidized surfaces and a heterogeneous fragmented morphology. Our results suggest that this top-down synthesis protocol combining major weathering mechanisms can fabricate improved, realistic, and reproducible PS-based plastic models with high levels of control over the particles' properties. Through increased environmental relevancy, our plastic model bolsters the field of risk assessment, enabling more reliable estimations of risk associated with an emerging pollutant of global concern.
Collapse
Affiliation(s)
- Amit Kumar Sarkar
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrey Ethan Rubin
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ines Zucker
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Porter
School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
160
|
Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146546. [PMID: 33770602 DOI: 10.1016/j.scitotenv.2021.146546] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 05/14/2023]
Abstract
Microplastic is an emerging contaminant of concern in soil globally due to its widespread and potential risks on the ecological system. Some basic issues such as the occurrence, source, and potential risks of microplastics in the soil are still open questions. These problems arise due to the lack of systematic and comprehensive analysis of microplastic in soils. Therefore, we comprehensively reviewed the current status of knowledge on microplastics in soil on detection, occurrence, characterization, source, and potential risk. Our review suggests that microplastics are ubiquitous in soil matrices globally. However, the research progress of microplastics in the soil is restricted by inherent technological inconsistencies and difficulties in analyzing particles in complex matrices, and studies on the occurrence and distribution of microplastics in soil environments remain very scarce, especially in Africa, South America, and Oceania. The consistency of the characteristics and composition of the microplastics in the aquatic environment and soil demonstrate they may share sources and exchange microplastics. Wide and varied sources of microplastic are constantly filling the soil, which causes the accumulation of microplastics in the soil. Studies on the effects and potential risks of microplastics in soil ecosystems are also reviewed. Limited research has shown that the combination and interaction of microplastics with contaminants they absorbed may affect soil health and function, and even migration along the food chain. The occurrence and impact of microplastic on the soil depend on the morphology, chemical components, and natural factors. We conclude that large research gaps exist in the quantification and estimation of regional emissions of microplastics in soil, factors affecting the concentration of microplastics, and microplastic disguising as soil carbon storage, which need more effort.
Collapse
Affiliation(s)
- Ling Yang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
161
|
Basini G, Bussolati S, Andriani L, Grolli S, Ramoni R, Bertini S, Iemmi T, Menozzi A, Berni P, Grasselli F. Nanoplastics impair in vitro swine granulosa cell functions. Domest Anim Endocrinol 2021; 76:106611. [PMID: 33662764 DOI: 10.1016/j.domaniend.2021.106611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 01/09/2023]
Abstract
Soil, water, and air pollution by plastic represents an issue of great concern since the particles produced by degradation of plastic materials can be ingested by animals and humans, with still uncertain health consequences. As a contribution on this crucial subject, the present work reports an investigation on the in vitro effects of different concentrations of polystyrene nanoplastics (5, 25, and 75 µg/mL) on swine granulosa cells, a model of endocrine reproductive cells. In particular, cell growth (BrDU incorporation and ATP production), steroidogenesis (17-β estradiol and progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Nanoplastics, at the highest concentration, stimulated cell proliferation (P < 0.05), while cell viability resulted unaffected. Steroidogenesis was disrupted (P < 0.05). Both enzymatic and non-enzymatic scavenging activity were increased after exposure at the highest nanoplastic dose (P < 0.05, P < 0.001). Nitric oxide secretion was increased by 25 and 75 µg/mL (P < 0.05) while superoxide generation was stimulated (P < 0.001) only by the highest concentration tested. Taken together, main features of cultured swine granulosa cells resulted affected by exposure to nanoplastics. These results raise concerns since environment nanoplastic contamination can represents a serious threat to animal and human health.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
162
|
Facemasks: A Looming Microplastic Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137068. [PMID: 34281005 PMCID: PMC8297027 DOI: 10.3390/ijerph18137068] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Single-use disposable facemasks have been used as a preventive measure against the ongoing COVID-19 pandemic. However, many researchers have found evidence that these facemasks are being dumped into lakes, rivers, and open garbage dumps. Facemasks have the potential of releasing microplastic fibers into the environment; a phenomenon that has been poorly investigated. Moreover, microplastic fibers composed of plastics have the potential of affecting the flora and fauna of many ecosystems. In this preliminary study, we investigate how many microplastic fibers had been released to the water by KF-AD, KF94, surgical, and FFP1 standard facemasks, which are the most widely available facemask standards in South Korea. The waterbody in our research was mechanically agitated for 24, 48, and 72 h. Findings showed that most of the layers of facemasks are composed of polypropylene. The surgical and KF94 standard facemasks released the highest number of microplastic fibers. Furthermore, under our research conditions, a single facemask can release at least 47 microplastic fibers per day (e.g., KF-AD standard mask), which can lead to the release of at least 1381 million microplastic fibers per day in total in South Korea if 70% of the urban population uses a single mask every day. Moreover, the released microplastic fibers significantly increased when the agitation time extended from 24 to 48 h. This finding suggests that the number of released microplastic fibers is likely to increase drastically.
Collapse
|
163
|
Ahamed A, Veksha A, Giannis A, Lisak G. Flexible packaging plastic waste – environmental implications, management solutions, and the way forward. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100684] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
164
|
de Sousa FDB. Management of plastic waste: A bibliometric mapping and analysis. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:664-678. [PMID: 33624576 DOI: 10.1177/0734242x21992422] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This work aims to provide the first holistic and deep bibliometric mapping and analysis of the management of plastic waste. Data from the last five years were obtained from a Scopus database search. Relevant information on scientific production, contributions by country and institutions, sources, reference authors, and topic trends were obtained, being analysed using the VOSviewer and Bibliometrix R-package software programs. The results clearly have shown a significant increase in the number of publications over the years, depicting the great influence of the People's Republic of China, since the most relevant authors, publications, and institutes are Chinese. Regarding the topic trends, there is a massive concern about plastic pollution, especially related to plastic in water bodies (mainly microplastics), and the socio-environmental problems which plastic may cause/aggravate, with recycling and the circular economy emerging as possible solutions.
Collapse
Affiliation(s)
- Fabiula Danielli Bastos de Sousa
- Technology Development Center, Universidade Federal de Pelotas, Rua Gomes Carneiro, Pelotas - Rio Grande do Sul, Brazil
- Center of Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Avenida dos Estados, Santo André - São Paulo, Brazil
| |
Collapse
|
165
|
Castelvetro V, Corti A, Ceccarini A, Petri A, Vinciguerra V. Nylon 6 and nylon 6,6 micro- and nanoplastics: A first example of their accurate quantification, along with polyester (PET), in wastewater treatment plant sludges. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124364. [PMID: 33139109 DOI: 10.1016/j.jhazmat.2020.124364] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A novel procedure for nylon 6 and nylon 6,6 polyamide (PAs) microplastics (MPs) quantification is described for the first time. The overall procedure, including quantification of poly(ethylene terephthalate) (PET), was tested on wastewater treatment plant (WWTP) sludges. The three polymers account for the largest global share of synthetic textile microfibers, being possibly the most common MPs released upon laundering in urban wastewaters. Therefore, measuring their content in WWTP sludges may provide an accurate picture of the potential risks associated with both the inflow of these MPs in natural water bodies and the practice of using WWTP sludges as agricultural soil amendment. The novel procedure involves PAs depolymerization by acid hydrolysis followed by derivatization of the monomers 6-aminohexanoic acid (AHA) and hexamethylene diamine (HMDA) with a fluorophore. Reversed-phase HPLC analysis with fluorescence detection results in high sensitivities for both AHA (LOD = 8.85·10-4 mg/L, LOQ = 3.73·10-3 mg/L) and HMDA (LOD = 2.12·10-4, LOQ = 7.04·10-4 mg/L). PET quantification involves depolymerization, in this case by alkaline hydrolysis, followed by HPLC analysis of its comonomer terephthalic acid. Eight sludge samples from four WWTPs in Italy showed contamination in the 29.3-215.3 ppm and 10.6-134.6 ppm range for nylon 6 and nylon 6,6, respectively, and in the 520-1470 ppm range for PET.
Collapse
Affiliation(s)
- Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy.
| | - Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| | - Antonella Petri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Virginia Vinciguerra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy; CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Pisa, Italy
| |
Collapse
|
166
|
Palos R, Gutiérrez A, Vela FJ, Olazar M, Arandes JM, Bilbao J. Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:3529-3557. [PMID: 35310012 PMCID: PMC8929416 DOI: 10.1021/acs.energyfuels.0c03918] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 05/15/2023]
Abstract
This review collects a wide range of initiatives and results that expose the potential of the refineries to be converted into waste refineries. Thus, they will use their current units for the valorization of consumer society wastes (waste plastics and end-of-life tires in particular) that are manufactured with petroleum derivatives. The capacity, technological development, and versatility of fluid catalytic cracking (FCC) and hydroprocessing units make them appropriate for achieving this goal. Polyolefinic plastics (polyethylene and polypropylene), the waxes obtained in their fast pyrolysis, and the tire pyrolysis oils can be cofed together with the current streams of the industrial units. Conventional refineries have the opportunity of operating as waste refineries cofeeding these alternative feeds and tailoring the properties of the fuels and raw materials produced to be adapted to commercial requirements within the oil economy frame. This strategy will contribute in a centralized and rational way to the recycling of the consumer society wastes on a large scale. Furthermore, the use of already existing and, especially, depreciated units for the production of fuels and raw materials (such as light olefins and aromatics) promotes the economy of the recycling process.
Collapse
|
167
|
Hasegawa T, Nakaoka M. Trophic transfer of microplastics from mysids to fish greatly exceeds direct ingestion from the water column. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116468. [PMID: 33477061 DOI: 10.1016/j.envpol.2021.116468] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Predators ingest microplastics directly from the environment and indirectly via trophic transfer, yet studies have not investigated the contribution of each pathway to microplastic ingestion in fish. We assessed the relative importance of the two exposure routes using mysids (Neomysis spp.) and a benthic fish (Myoxocephalus brandti) as a model prey-predator system. We first exposed the mysids to fluorescent polyethylene beads (27-32 μm) at concentrations of 200 and 2000 μg/L. We then exposed the fish to water containing the same concentrations of polyethylene beads or to nine mysids pre-exposed to polyethylene beads. We quantified the size and overall mass of polyethylene beads in mysids and in fish to assess polyethylene beads fragmentation by the mysids. Mysids ingested 2-3 more polyethylene beads from water containing the higher concentration, and fish ingested 3-11 times more polyethylene beads via trophic transfer than from the water column. The percentage of fragmented particles was higher in mysids and in fish fed bead-exposed mysids, suggesting that the mysids can fragment polyethylene beads. Our experiments demonstrate that trophic transfer is a major route of microplastic ingestion by fish and that prey such as mysids can fragment microplastics. Small particles can translocate from the digestive system into tissues and exert adverse physiological effects. Trophic transfer of microplastics may therefore pose more serious threats to organisms at higher trophic levels.
Collapse
Affiliation(s)
- Takaaki Hasegawa
- Graduate School of Environmental Science, Hokkaido University, 060-0810, Hokkaido, Japan.
| | - Masahiro Nakaoka
- Field Science Center for Northern Biosphere, Hokkaido University, 1 Aikappu, Akkeshi-cho, Akkeshi-gun, Hokkaido, 088-1113, Japan.
| |
Collapse
|