151
|
You YH, Aktaruzzaman M, Heo I, Park JM, Hong JW, Hong SB. Talaromyces halophytorum sp. nov. Isolated from Roots of Limonium tetragonum in Korea. MYCOBIOLOGY 2020; 48:133-138. [PMID: 32363041 PMCID: PMC7178876 DOI: 10.1080/12298093.2020.1723389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
Talaromyces halophytorum sp. nov. was isolated from the roots of halophyte Limonium tetragonum collected from Seocheon-gun, Korea in November 2015. It showed a slow growth on yeast extract sucrose agar at 25 °C, no growth at 4 °C or 37 °C and produced smooth-walled and globose to sub-globose conidia. T. halophytorum is phylogenetically distinct from the other reported Talaromyces species of section Trachyspermi based on multi-locus sequence typing results using partial fragments of β-tubulin, calmodulin, ITS, and RNA polymerase II genes.
Collapse
Affiliation(s)
- Young-Hyun You
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, South Korea
| | - Md. Aktaruzzaman
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
| | - Inbeom Heo
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
| | - Jong Myong Park
- Department of Infectious Disease Diagnosis, Incheon Institute of Public Health and Environment, Incheon, South Korea
| | - Ji Won Hong
- Department of Hydrogen and Renewable Energies, Kyungpook National University, Daegu, South Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Wanju, South Korea
- CONTACT Seung-Beom Hong
| |
Collapse
|
152
|
|
153
|
Peng L, Li L, Liu X, Chen J, Shi C, Guo W, Xu Q, Fan G, Liu X, Li D. Chromosome-Level Comprehensive Genome of Mangrove Sediment-Derived Fungus Penicillium variabile HXQ-H-1. J Fungi (Basel) 2019; 6:jof6010007. [PMID: 31878043 PMCID: PMC7151134 DOI: 10.3390/jof6010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/19/2023] Open
Abstract
Penicillium is an ascomycetous genus widely distributed in the natural environment and is one of the dominant fungi involved in the decomposition of mangroves, which can produce a variety of antitumor compounds and bioactive substances. However, in mangrove ecosystems there is no complete genome in this genus. In this study, we isolated a fungus strain named Penicillium variabile HXQ-H-1 from coast mangrove (Fujian Province, China). We generated a chromosome-level genome with total size of 33.32 Mb, scaffold N50 of 5.23 Mb and contig N50 of 96.74 kb. Additionally, we anchored about 95.91% assembly sequences into the longest seven scaffolds, and predicted 10,622 protein-coding genes, in which 99.66% could be annotated by eight protein databases. The secondary metabolites analysis reveals the strain has various gene clusters involving polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and terpene synthase that may have a largely capacity of biotechnological potential. Comparison genome analysis between Penicillium variabile and Talaromyces islandicus reveals a small difference in the total number of genes, whereas HXQ-H-1 has a higher gene number with COG functional annotation. Evolutionary relationship of Penicillum based on genome-wide data was carried out for the first time, showing the strain HXQ-H-1 is closely related to Talaromyces islandicus. This genomic resource may provide a new resource for development of novel bioactive antibiotics, drug candidates and precursors in Penicillium variabile.
Collapse
Affiliation(s)
- Ling Peng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Liangwei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Xiaochuan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Chengcheng Shi
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Wenjie Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (L.P.); (L.L.); (X.L.); (J.C.); (C.S.); (W.G.); (Q.X.); (G.F.)
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- Correspondence: (X.L.); (D.L.); Tel.: +86-532-5571-1134 (X.L.); +86-532-8203-1619 (D.L.)
| | - Dehai Li
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Correspondence: (X.L.); (D.L.); Tel.: +86-532-5571-1134 (X.L.); +86-532-8203-1619 (D.L.)
| |
Collapse
|
154
|
Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, Carnegie AJ, Moreno G, Luangsaard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger JM, Bessette AE, Bessette AR, De la Peña-Lastra S, García D, Gené J, Pham THG, Heykoop M, Malysheva E, Malysheva V, Martín MP, Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamčík S, Alves A, Andrade JP, Aninat MJ, Araújo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Caboň M, Cafà G, Caffot MLH, Cai L, Carlavilla JR, Chávez R, de Castro RRL, Delgat L, Deschuyteneer D, Dios MM, Domínguez LS, Evans HC, Eyssartier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Durán C, Glienke C, Gonçalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrieta-González I, Ivanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolařík M, Kubátová A, Lodge DJ, Loizides M, Luque D, Manjón JL, Marbach PAS, Massola NS, Mata M, Miller AN, Mongkolsamrit S, Moreau PA, Morte A, Mujic A, Navarro-Ródenas A, Németh MZ, Nóbrega TF, Nováková A, Olariaga I, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodríguez A, Requejo Ó, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklenář F, Smith JA, Sousa JO, Souza HG, De Souza JT, Švec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpipattana D, Torres-Garcia D, Vaca I, Vaghefi N, van Iperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjević Ž, Groenewald JZ. Fungal Planet description sheets: 951-1041. PERSOONIA 2019; 43:223-425. [PMID: 32214501 PMCID: PMC7085856 DOI: 10.3767/persoonia.2019.43.06] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/09/2019] [Indexed: 11/25/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - L Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - F Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - W J Swart
- Department of Plant Sciences (Division of Plant Pathology), University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - P Alvarado
- ALVALAB, La Rochela 47, 39012 Santander, Spain
| | - A J Carnegie
- Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Australia
| | - G Moreno
- Departamento de Ciencias de la Vida (Área de Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - J Luangsaard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - A V Alexandrova
- Lomonosov Moscow State University (MSU), Faculty of Biology, 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
- Peoples' Friendship University of Russia (RUDN University) 6 Miklouho-Maclay Str., 117198, Moscow, Russia
| | - I G Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil
| | - J-M Bellanger
- CEFE, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier 3, EPHE, IRD, INSERM, 1919 route de Mende, F-34293 Montpellier Cedex 5, France
| | | | | | - S De la Peña-Lastra
- Departamento de Edafoloxía e Química Agrícola, Facultade de Biología, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - D García
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - J Gené
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - T H G Pham
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
- Saint Petersburg State Forestry University, 194021, 5U Institutsky Str., Saint Petersburg, Russia
| | - M Heykoop
- Departamento de Ciencias de la Vida (Área de Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - E Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, RUS-197376, Saint Petersburg, Russia
| | - V Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, RUS-197376, Saint Petersburg, Russia
| | - M P Martín
- Real Jardín Botánico RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - O V Morozova
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, RUS-197376, Saint Petersburg, Russia
| | - W Noisripoom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - B E Overton
- Department of Biology, 205 East Campus Science Center, Lock Haven University, Lock Haven, PA 17745 USA
| | - A E Rea
- Department of Biology, 205 East Campus Science Center, Lock Haven University, Lock Haven, PA 17745 USA
| | - B J Sewall
- Department of Biology, 1900 North 12th Street, Temple University, Philadelphia, PA 19122 USA
| | - M E Smith
- Department of Plant Pathology & Florida Museum of Natural History, 2527 Fifield Hall, Gainesville FL 32611, USA
| | - C W Smyth
- Department of Biology, 205 East Campus Science Center, Lock Haven University, Lock Haven, PA 17745 USA
| | - K Tasanathai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - C M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Biosystematics Division, Agricultural Research Council - Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa
| | - S Adamčík
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovakia
| | - A Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - J P Andrade
- Universidade Estadual de Feira de Santana, Bahia, Brazil and Faculdades Integradas de Sergipe, Sergipe, Brazil
| | - M J Aninat
- Servicio Agrícola y Ganadero, Laboratorio Regional Valparaíso, Unidad de Fitopatología, Antonio Varas 120, Valparaíso, Código Postal 2360451, Chile
| | - R V B Araújo
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - J J Bordallo
- Laboratorio de Investigacion, San Vicente Raspeig, 03690 Alicante, Spain
| | - T Boufleur
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Caixa Postal 09, CEP 13418-900, Piracicaba-SP, Brazil
| | - R Baroncelli
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Calle del Duero, 12; 37185 Villamayor (Salamanca), Spain
| | - R W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - J Bolin
- 7340 Viale Sonata, Lake Worth, FL 33467, USA
| | - J Cabero
- Asociación Micológica Zamorana, 49080 Zamora, Spain
| | - M Caboň
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84523, Bratislava, Slovakia
| | - G Cafà
- CABI Europe-UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK
| | - M L H Caffot
- Instituto de Ecorregiones Andinas (INECOA), CONICET-Universidad Nacional de Jujuy, CP 4600, San Salvador de Jujuy, Jujuy, Argentina
| | - L Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - J R Carlavilla
- Departamento de Ciencias de la Vida (Área de Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - R Chávez
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 917002, Santiago, Chile
| | - R R L de Castro
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Caixa Postal 09, CEP 13418-900, Piracicaba-SP, Brazil
| | - L Delgat
- Department of Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | | | - M M Dios
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca, Catamarca, Argentina
| | - L S Domínguez
- Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal, CONICET, Universidad Nacional de Córdoba, CC 495, 5000, Córdoba, Argentina
| | - H C Evans
- CAB International, UK Centre, Egham, Surrey TW20 9TY, UK
| | - G Eyssartier
- Attaché honoraire au Muséum national d'histoire naturelle de Paris, 180 allée du Château, F-24660 Sanilhac, France
| | - B W Ferreira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | | | - F Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | - C Gil-Durán
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 917002, Santiago, Chile
| | - C Glienke
- Federal University of Paraná, Curitiba, Brazil
| | - M F M Gonçalves
- Departamento de Biologia, CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - H Gryta
- Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
| | - J Guarro
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - W Himaman
- Forest Entomology and Microbiology Research Group, Department of National Parks, Wildlife and Plant Conservation, 61 Phaholyothin Road, Chatuchak, Bangkok 10900, Thailand
| | - N Hywel-Jones
- BioAsia Life Sciences Institute, 1938 Xinqun Rd, Pinghu, Zhejiang 314200, PR China
| | - I Iturrieta-González
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - N E Ivanushkina
- All-Russian collection of microorganisms (VKM), IBPM RAS, prospect Nauki, 5, Pushchino, Moscow Region, Russia
| | - P Jargeat
- Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
| | - A N Khalid
- Department of Botany, University of Punjab, Quaid e Azam campus, Lahore 54590, Pakistan
| | - J Khan
- Center for Plant Sciences and Biodiversity, University of Swat, KP, Pakistan
| | - M Kiran
- Department of Botany, University of Punjab, Quaid e Azam campus, Lahore 54590, Pakistan
| | - L Kiss
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - G A Kochkina
- All-Russian collection of microorganisms (VKM), IBPM RAS, prospect Nauki, 5, Pushchino, Moscow Region, Russia
| | - M Kolařík
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic
| | - A Kubátová
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic
| | - D J Lodge
- Department of Plant Pathology, 2105 Miller Plant Sciences Bldg., University of Georgia, Athens, GA 30606, USA
| | | | - D Luque
- C/Severo Daza 31, 41820 Carrión de los Céspedes (Sevilla), Spain
| | - J L Manjón
- Departamento de Ciencias de la Vida (Área de Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - P A S Marbach
- Federal University of Recôncavo da Bahia, Bahia, Brazil
| | - N S Massola
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Caixa Postal 09, CEP 13418-900, Piracicaba-SP, Brazil
| | - M Mata
- Departamento de Ciencias de la Vida (Área de Botánica), Facultad de Ciencias, Universidad de Alcalá, E-28805 Alcalá de Henares, Madrid, Spain
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - S Mongkolsamrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - P-A Moreau
- Université de Lille, Faculté de pharmacie de Lille, EA 4483, F-59000 Lille, France
| | - A Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - A Mujic
- Department of Biology, Fresno State University, 2555 East San Ramon Ave, Fresno CA 93740, USA
| | - A Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - M Z Németh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest H-1022, Herman Otto út 15, Hungary
| | - T F Nóbrega
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - A Nováková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - I Olariaga
- Biology and Geology Physics and Inorganic Chemistry Department, Rey Juan Carlos university, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - S M Ozerskaya
- All-Russian collection of microorganisms (VKM), IBPM RAS, prospect Nauki, 5, Pushchino, Moscow Region, Russia
| | - M A Palma
- Servicio Agrícola y Ganadero, Laboratorio Regional Valparaíso, Unidad de Fitopatología, Antonio Varas 120, Valparaíso, Código Postal 2360451, Chile
| | | | - E Piontelli
- Universidad de Valparaíso, Facultad de Medicina, Profesor Emérito Cátedra de Micología, Angámos 655, Reñaca, Viña del Mar, Código Postal 2540064, Chile
| | - E S Popov
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
- Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, RUS-197376, Saint Petersburg, Russia
| | - A Rodríguez
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Ó Requejo
- Grupo Micológico Gallego, San Xurxo, A Laxe 12b, 36470, Salceda de Caseleas, Spain
| | - A C M Rodrigues
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, 50670-420 Recife, PE, Brazil
| | - I H Rong
- Biosystematics Division, Agricultural Research Council - Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa
| | - J Roux
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - K A Seifert
- Biodiversity (Mycology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - B D B Silva
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - F Sklenář
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic
| | - J A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611-0680, USA
| | - J O Sousa
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970 Natal, RN, Brazil
| | - H G Souza
- Federal University of Recôncavo da Bahia, Bahia, Brazil
| | - J T De Souza
- Federal University of Lavras, Minas Gerais, Brazil
| | - K Švec
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 12801 Prague 2, Czech Republic
| | - P Tanchaud
- 2 rue des Espics, F-17250 Soulignonne, France
| | - J B Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - F Terasawa
- Federal University of Paraná, Curitiba, Brazil
| | - D Thanakitpipattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - D Torres-Garcia
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - I Vaca
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - N Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - O V Vasilenko
- All-Russian collection of microorganisms (VKM), IBPM RAS, prospect Nauki, 5, Pushchino, Moscow Region, Russia
| | - A Verbeken
- Department of Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, Belgium
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - J C Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, plaza de Ramón y Cajal s/n, E-28040, Madrid, Spain
| | - M Zapata
- Servicio Agrícola y Ganadero, Laboratorio Regional Chillán, Unidad de Fitopatología, Claudio Arrau 738, Chillán, Código Postal 3800773, Chile
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
155
|
Akinfala TO, Houbraken J, Sulyok M, Adedeji AR, Odebode AC, Krska R, Ezekiel CN. Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa bean hybrids in Nigeria. Int J Food Microbiol 2019; 316:108490. [PMID: 31874327 DOI: 10.1016/j.ijfoodmicro.2019.108490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023]
Abstract
Fungi and mycotoxin contamination of cocoa beans during fermentation and storage may constitute a hazard in the cocoa value chain and risk to consumers of its products. In this study, fungal profile and secondary metabolite patterns in two cocoa bean hybrids, F and T series, during fermentation and storage were determined. Additionally, secondary metabolite production by the recovered fungi in the beans was examined in culture media. Fungal isolates spanned six genera and eight species: Aspergillus niger, A. tamarii, Paecilomyces variotii, Penicillium citrinum, Pseudopithomyces palmicola, Simplicillium sp., Talaromyces atroroseus and Talaromyces sp.. In both hybrids, Aspergilli (38%) dominated the other fungi while more than one half of all the fungal isolates were from the beans in storage. Among the diverse secondary metabolites produced in media by the isolates were uncommon compounds, e.g. aspulvinone E produced by A. niger, aspterric acid by P. variotii, scalusamid A and sydowinin A by P. citrinum, norlichexanthone and siccanol by Simplicillium, and fallacinol and orsellinic acid by Talaromyces. The strains of P. citrinum produced up to 372 mg/kg citrinin. Forty-four fungal metabolites were quantified in both bean hybrids across the various processing stages, with about 86% occurring in the fermented beans stored for 30 days. The nephrotoxic citrinin, which was not previously reported in cocoa beans worldwide, was the only mycotoxin found in the fermented beans at overall mean concentration of 368 μg/kg. Additionally, its metabolite, dihydrocitrinone, was detected in fermented and stored beans. Consumption of freshly fermented cocoa beans may result in citrinin exposure. Appropriate fungal and mycotoxin control measures are proposed.
Collapse
Affiliation(s)
- Taye O Akinfala
- Department of Botany, University of Ibadan, Oyo State, Nigeria
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Abiodun R Adedeji
- Cocoa Research Institute of Nigeria (CRIN), Ibadan, Oyo State, Nigeria
| | | | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| |
Collapse
|
156
|
Garcia MV, Bernardi AO, Parussolo G, Stefanello A, Lemos JG, Copetti MV. Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. Food Res Int 2019; 126:108593. [DOI: 10.1016/j.foodres.2019.108593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
157
|
Sanitization of packaging and machineries in the food industry: Effect of hydrogen peroxide on ascospores and conidia of filamentous fungi. Int J Food Microbiol 2019; 316:108421. [PMID: 31743823 DOI: 10.1016/j.ijfoodmicro.2019.108421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/11/2019] [Accepted: 11/03/2019] [Indexed: 11/22/2022]
Abstract
In the food industry, sterilization of packaging and filling machines by hydrogen peroxide (HP) is a widespread practice. Its effectiveness is usually tested by means of inactivation tests on selected test microorganisms that were any case chosen without taking into account that food products could be also spoiled by microorganisms presumably resistant to HP. For this reason, the aim of this work was to assess the resistance of different ascospore-forming moulds (Talaromyces bacillisporus, Aspergillus hiratsukae, Chaetomium globosum) to HP, in order to find the most resistant to this kind of chemical stress, and to compare their resistance with that registered for other moulds, including test microorganism Aspergillus brasiliensis ATCC 16404. Tests were carried out from 50 to 60 °C on spores or conidia, depending on the strain, either by immersing inoculated strips (aluminium, tin-plate, HDPE, PET) in HP, or by directly inoculating cells in the sanitizing medium. In both tests, T. bacillisporus proved the most resistant strain, followed by A. hiratsukae, C. globosum and A. brasiliensis at all temperatures tested. In test without a supporting material, D values of T. bacillisporus varied from 6 to 23 s. In test with metallic or plastic strips, D values of T. bacillisporus were higher on plastic materials, compared to those obtained on metallic ones up to 53 °C, whereas at higher temperatures D values proved similar. For A. hiratsukae, D values were similar if different materials were compared, except for D50 on aluminium and HDPE, which proved slightly higher (3.1-3.4 s) than those obtained on tin-plate and PET (2.7-2.8 s). Analogously, ascospores of C. globosum behaved in a similar way if different materials were compared, except for D50 values that varied in a wide range (from 2.9 s on tin-plate to 4.0 s on HDPE). A. brasiliensis was rapidly inactivated by the synergistic effect of heat and hydrogen peroxide, so for this strain it was not possible to calculate any D value. Based on the results obtained in this paper, tested ascospore-forming moulds proved to be sensibly more resistant to HP than other heat-sensitive strains tested, their D values always being significantly higher, regardless of the strain considered and the supporting material assessed. Ascospore-forming moulds could be furtherly investigated, as for practical purposes they seemed most suitable as target microorganisms than heat-sensitive microorganisms such as Aspergillus brasiliensis ATCC 16404, their use during bio-validations of sanitizing processes on machineries used for refrigerated products (pH > 4.5) or non-refrigerated acid products (pH ≤ 4.5) leading to more performing results.
Collapse
|
158
|
Peterson SW, Jurjević Ž. The Talaromyces pinophilus species complex. Fungal Biol 2019; 123:745-762. [DOI: 10.1016/j.funbio.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023]
|
159
|
Chen C, Sun W, Liu X, Wei M, Liang Y, Wang J, Zhu H, Zhang Y. Anti-inflammatory spiroaxane and drimane sesquiterpenoids from Talaromyces minioluteus (Penicillium minioluteum). Bioorg Chem 2019; 91:103166. [DOI: 10.1016/j.bioorg.2019.103166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 11/29/2022]
|
160
|
Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Med Microbiol Immunol 2019; 209:1-13. [PMID: 31555911 DOI: 10.1007/s00430-019-00635-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality associated with systemic fungal infections in humans cannot be underestimated. The nematode Caenorhabditis elegans has become popular for the in vivo study of the pathogenesis of human fungal pathogens and as an antifungal drug-screening tool. C. elegans offers many advantages as a model organism for the study of human fungal diseases, including lack of ethics requirements, easy maintenance in the laboratory, fully sequenced genome, availability of genetic mutants, and the possibility of liquid assays for high-throughput antifungal screening. Its major drawbacks include the inability to grow at 37 °C and absence of an adaptive immune response. However, several virulence factors involved in the pathogenesis of medically important fungal pathogens have been identified using the C. elegans model, consequently providing new leads for drug discovery and potential drug targets. We review the use of C. elegans as a model animal to understand the pathogenesis of medically important human fungal pathogens and the discovery of novel antifungal compounds. The review makes a case for C. elegans as a suitable invertebrate model for a plethora of practical applications in the investigation of fungal pathogenesis as well as its amenability for liquid-based high-throughput screening of potential antifungal compounds.
Collapse
|
161
|
Whipple KM, Shmalberg JW, Joyce AC, Beatty SS. Cytologic identification of fungal arthritis in a Labrador Retriever with disseminated
Talaromyces helicus
infection. Vet Clin Pathol 2019; 48:449-454. [DOI: 10.1111/vcp.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kellie M. Whipple
- Department of Comparative, Diagnostic, and Population Medicine College of Veterinary Medicine University of Florida Gainesville FL USA
| | - Justin W. Shmalberg
- Department of Comparative, Diagnostic, and Population Medicine College of Veterinary Medicine University of Florida Gainesville FL USA
| | - Ashley C. Joyce
- University of Florida Veterinary Hospitals University of Florida Gainesville FL USA
| | - Sarah S. Beatty
- Department of Comparative, Diagnostic, and Population Medicine College of Veterinary Medicine University of Florida Gainesville FL USA
| |
Collapse
|
162
|
Crognale S, Pesciaroli L, Felli M, Petruccioli M, D'Annibale A, Bresciani A, Peterson SW. Aspergillus olivimuriae sp. nov., a halotolerant species isolated from olive brine. Int J Syst Evol Microbiol 2019; 69:2899-2906. [PMID: 31274407 DOI: 10.1099/ijsem.0.003575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultative halo-tolerant Aspergillus strain was isolated from olive brine waste, the effluent from the debittering process of table olives. Phenotypic and molecular characteristics showed clearly that the isolate represents a novel species. Based on the source of isolation, the new species has been named Aspergillus olivimuriae. It was found tolerant to high concentrations of NaCl (15 %) or sucrose (60 %) and it exhibits substantial growth under these conditions. Although the new species grew profusely at 37 °C, no growth was observed at 40 °C, conidia en masse were avellaneous on all media. The description of the new species Aspergillus olivimuriae brings the total species of Aspergillus sect. Flavipedes to 15. The type strain of A. olivimuriae sp. nov. is NRRL 66783 (CCF 6208), its whole genome has been deposited as PRJNA498048.
Collapse
Affiliation(s)
- Silvia Crognale
- Department for Innovation of Biological, Agro-food and Forestry Systems, General and Applied Microbiology Lab, University of Tuscia, Viterbo 01100, Italy
| | - Lorena Pesciaroli
- Department for Innovation of Biological, Agro-food and Forestry Systems, General and Applied Microbiology Lab, University of Tuscia, Viterbo 01100, Italy
| | - Martina Felli
- Department for Innovation of Biological, Agro-food and Forestry Systems, General and Applied Microbiology Lab, University of Tuscia, Viterbo 01100, Italy
| | - Maurizio Petruccioli
- Department for Innovation of Biological, Agro-food and Forestry Systems, General and Applied Microbiology Lab, University of Tuscia, Viterbo 01100, Italy
| | - Alessandro D'Annibale
- Department for Innovation of Biological, Agro-food and Forestry Systems, General and Applied Microbiology Lab, University of Tuscia, Viterbo 01100, Italy
| | | | - Stephen W Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Peoria 61604, USA
| |
Collapse
|
163
|
Genomic analysis provides insights into the transmission and pathogenicity of Talaromyces marneffei. Fungal Genet Biol 2019; 130:54-61. [DOI: 10.1016/j.fgb.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/20/2022]
|
164
|
Guevara-Suarez M, García D, Cano-Lira JF, Guarro J, Gené J. Species diversity in Penicillium and Talaromyces from herbivore dung, and the proposal of two new genera of penicillium-like fungi in Aspergillaceae. Fungal Syst Evol 2019; 5:39-75. [PMID: 32467914 PMCID: PMC7250020 DOI: 10.3114/fuse.2020.05.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coprophilous fungi are saprotrophic organisms that show great diversity, mainly on herbivore dung. The physico-chemical characteristics of this peculiar substrate combined with the high level of fungal adaptation to different environmental conditions offer the perfect setting for discovering new taxa. This study focused on the species diversity of penicillium-like fungi isolated mainly from herbivore dung collected at different Spanish locations. From 130 samples, a total of 104 isolates were obtained, and 48 species were identified. Preliminary identifications were based on morphology and partial β-tubulin (tub2) gene sequences. Putative new taxa were characterized by a multi-gene sequencing analysis testing the tub2, the internal transcribed spacer rDNA (ITS), calmodulin (cmdA), and RNA polymerase II second largest subunit (rpb2) genes, and a detailed phenotypic study. Using this polyphasic approach and following the genealogical concordance phylogenetic species recognition (GCPSR) method, we propose the new genera Penicillago (for Penicillium nodositatum) and Pseudopenicillium (for Penicillium megasporum and P. giganteum) in the family Aspergillaceae, and 11 new species, including seven Penicillium, three Talaromyces and one Pseudopenicillium. A lectotype and epitype are designed for Penicillium nodositatum. Our results show that the species diversity of penicillium-like fungi on herbivore dung has not been widely studied and that this substrate seems to be a good reservoir of interesting Eurotialean fungi.
Collapse
Affiliation(s)
- M Guevara-Suarez
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain.,Laboratorio de Micología y Fitopatología (LAMFU), Vicerrectoría de Investigaciones, Universidad de los Andes, Bogotá, Colombia
| | - D García
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J F Cano-Lira
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - J Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
165
|
Crous P, Carnegie A, Wingfield M, Sharma R, Mughini G, Noordeloos M, Santini A, Shouche Y, Bezerra J, Dima B, Guarnaccia V, Imrefi I, Jurjević Ž, Knapp D, Kovács G, Magistà D, Perrone G, Rämä T, Rebriev Y, Shivas R, Singh S, Souza-Motta C, Thangavel R, Adhapure N, Alexandrova A, Alfenas A, Alfenas R, Alvarado P, Alves A, Andrade D, Andrade J, Barbosa R, Barili A, Barnes C, Baseia I, Bellanger JM, Berlanas C, Bessette A, Bessette A, Biketova A, Bomfim F, Brandrud T, Bransgrove K, Brito A, Cano-Lira J, Cantillo T, Cavalcanti A, Cheewangkoon R, Chikowski R, Conforto C, Cordeiro T, Craine J, Cruz R, Damm U, de Oliveira R, de Souza J, de Souza H, Dearnaley J, Dimitrov R, Dovana F, Erhard A, Esteve-Raventós F, Félix C, Ferisin G, Fernandes R, Ferreira R, Ferro L, Figueiredo C, Frank J, Freire K, García D, Gené J, Gêsiorska A, Gibertoni T, Gondra R, Gouliamova D, Gramaje D, Guard F, Gusmão L, Haitook S, Hirooka Y, Houbraken J, Hubka V, Inamdar A, Iturriaga T, Iturrieta-González I, Jadan M, Jiang N, Justo A, Kachalkin A, Kapitonov V, Karadelev M, Karakehian J, Kasuya T, Kautmanová I, Kruse J, Kušan I, Kuznetsova T, Landell M, Larsson KH, Lee H, Lima D, Lira C, Machado A, Madrid H, Magalhães O, Majerova H, Malysheva E, Mapperson R, Marbach P, Martín M, Martín-Sanz A, Matočec N, McTaggart A, Mello J, Melo R, Mešić A, Michereff S, Miller A, Minoshima A, Molinero-Ruiz L, Morozova O, Mosoh D, Nabe M, Naik R, Nara K, Nascimento S, Neves R, Olariaga I, Oliveira R, Oliveira T, Ono T, Ordoñez M, Ottoni ADM, Paiva L, Pancorbo F, Pant B, Pawłowska J, Peterson S, Raudabaugh D, Rodríguez-Andrade E, Rubio E, Rusevska K, Santiago A, Santos A, Santos C, Sazanova N, Shah S, Sharma J, Silva B, Siquier J, Sonawane M, Stchigel A, Svetasheva T, Tamakeaw N, Telleria M, Tiago P, Tian C, Tkalčec Z, Tomashevskaya M, Truong H, Vecherskii M, Visagie C, Vizzini A, Yilmaz N, Zmitrovich I, Zvyagina E, Boekhout T, Kehlet T, Læssøe T, Groenewald J. Fungal Planet description sheets: 868-950. PERSOONIA 2019; 42:291-473. [PMID: 31551622 PMCID: PMC6712538 DOI: 10.3767/persoonia.2019.42.11] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - A.J. Carnegie
- Forest Health & Biosecurity, NSW Department of Primary Industries, Forestry, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Australia
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - R. Sharma
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - G. Mughini
- Research Center for Forestry and Wood - C.R.E.A., Via Valle della Quistione 27, 00166 Rome, Italy
| | - M.E. Noordeloos
- Naturalis Biodiversity Center, section Botany, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - A. Santini
- Institute for Sustainable Plant Protection - C.N.R., Via Madonna del Piano 10, 50019 Sesto fiorentino (FI), Italy
| | - Y.S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - J.D.P. Bezerra
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - B. Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - V. Guarnaccia
- DiSAFA, University of Torino, Largo Paolo Braccini, 2, 10095 Grugliasco, TO, Italy
| | - I. Imrefi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - D.G. Knapp
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - G.M. Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary
| | - D. Magistà
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - G. Perrone
- Institute of Sciences of Food Production, CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - T. Rämä
- Marbio, Norwegian College of Fishery Science, University of Tromsø - The Arctic University of Norway
| | - Y.A. Rebriev
- South Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - S.M. Singh
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
- Banaras Hindu University (BHU), Uttar Pradesh, India
| | - C.M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - N.N. Adhapure
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - A.V. Alexandrova
- Lomonosov Moscow State University (MSU), Faculty of Biology, 119234, 1, 12 Leninskie Gory Str., Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
| | - A.C. Alfenas
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil
| | - R.F. Alfenas
- Departamento de Engenharia Florestal, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - P. Alvarado
- ALVALAB, Avda. de Bruselas 2-3B, 33011 Oviedo, Spain
| | - A.L. Alves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D.A. Andrade
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - J.P. Andrade
- Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - R.N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Barili
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - C.W. Barnes
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - I.G. Baseia
- Departamento Botânica e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil
| | - J.-M. Bellanger
- CEFE – CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE – IRD – INSERM, Campus CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - C. Berlanas
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | | | - A.Yu. Biketova
- Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - F.S. Bomfim
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T.E. Brandrud
- Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - K. Bransgrove
- Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - A.C.Q. Brito
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.F. Cano-Lira
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - A.D. Cavalcanti
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R. Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - R.S. Chikowski
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Conforto
- Instituto de Patología Vegetal, Instituto Nacional de Tecnología Agropecuaria, Córdoba, Argentina
| | - T.R.L. Cordeiro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - J.D. Craine
- 5320 N. Peachtree Road, Dunwoody, GA 30338, USA
| | - R. Cruz
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - R.J.V. de Oliveira
- Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC)/CEPEC, Itabuna, Bahia, Brazil
| | | | - H.G. de Souza
- Recôncavo da Bahia Federal University, Bahia, Brazil
| | - J.D.W. Dearnaley
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - R.A. Dimitrov
- National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov blvd, Sofia 1504, Bulgaria
| | - F. Dovana
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - A. Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - F. Esteve-Raventós
- Departamento de Ciencias de la Vida (Area de Botánica), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - C.R. Félix
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - G. Ferisin
- Via A. Vespucci 7, 1537, 33052 Cervignano del Friuli (UD), Italy
| | - R.A. Fernandes
- Departamento de Fitopatologia, Universidade Federal de Brasilia, Brasilia, Brazil
| | - R.J. Ferreira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.O. Ferro
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - J.L. Frank
- Department of Biology, Southern Oregon University, Ashland OR 97520, USA
| | - K.T.L.S. Freire
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - D. García
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - J. Gené
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - A. Gêsiorska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - T.B. Gibertoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.A.G. Gondra
- University Utrecht, P.O. Box 80125, 3508 TC Utrecht, The Netherlands
| | - D.E. Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev, Sofia 1113, Bulgaria
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (Gobierno de La Rioja-CSIC-Universidad de La Rioja), Ctra. LO-20, Salida 13, 26007 Logroño, La Rioja, Spain
| | | | - L.F.P. Gusmão
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, 44036-900 Feira de Santana, BA, Brazil
| | - S. Haitook
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeòská 1083, 142 20 Prague 4, Czech Republic
| | - A. Inamdar
- Department of Biotechnology and Microbiology, Vivekanand Arts, Sardar Dalipsingh Commerce and Science College, Aurangabad 431001, Maharashtra, India
| | - T. Iturriaga
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
- Plant Pathology Herbarium, 334 Plant Science Building, Cornell University, Ithaca, NY 14853 USA
| | - I. Iturrieta-González
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - M. Jadan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - A. Justo
- Department of Biology, Clark University, 950 Main St, Worcester, 01610, MA, USA
| | - A.V. Kachalkin
- Lomonosov Moscow State University, Moscow, Russia
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - V.I. Kapitonov
- Tobolsk Complex Scientific Station of the Ural Branch of the Russian Academy of Sciences, 626152 Tobolsk, Russia
| | - M. Karadelev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - J. Karakehian
- Farlow Herbarium, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - T. Kasuya
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japan
| | - I. Kautmanová
- Slovak National Museum-Natural History Museum, vjanaskeho nab. 2, P.O. Box 13, 81006 Bratislava, Slovakia
| | - J. Kruse
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | - I. Kušan
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - T.A. Kuznetsova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - M.F. Landell
- Instituto de Ciências Biológicas e da Saúde – ICBS, Universidade Federal de Alagoas, Maceió, Brazil
| | - K.-H. Larsson
- Natural History Museum, P.O. Box 1172 Blindern 0318, University of Oslo, Norway
| | - H.B. Lee
- Environmental Microbiology Lab, Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Korea
| | - D.X. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.R.S. Lira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.R. Machado
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Madrid
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - O.M.C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - H. Majerova
- Faculty of Chemical and Food Technology, Biochemistry and Microbiology Department, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - E.F. Malysheva
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - R.R. Mapperson
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Australia
| | | | - M.P. Martín
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - A. Martín-Sanz
- Pioneer Hi-Bred International, Inc., Campus Dupont – Pioneer, Ctra. Sevilla-Cazalla km 4.6, 41309 La Rinconada, Spain
| | - N. Matočec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - A.R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4069, Australia
| | - J.F. Mello
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.F.R. Melo
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A. Mešić
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - S.J. Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Ceará, Brazil
| | - A.N. Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A. Minoshima
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - L. Molinero-Ruiz
- Department of Crop Protection, Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - D. Mosoh
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - M. Nabe
- 2-2-1, Sakuragaoka-nakamachi, Nishi-ku, Kobe, Hyogo 651-2226, Japan
| | - R. Naik
- National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama-403 804, Goa, India
| | - K. Nara
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - S.S. Nascimento
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - R.P. Neves
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - I. Olariaga
- Biology, Geology and Inorganic Chemistry department, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - R.L. Oliveira
- Programa de Pós-Graduação em Sistemática e Evolução, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. Senador Salgado Filho, 3000, 59072-970, Natal, RN, Brazil
| | - T.G.L. Oliveira
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - T. Ono
- Ogasawara Subtropical Branch of Tokyo Metropolitan Agriculture and Forestry Research Center, Komagari, Chichijima, Ogasawara, Tokyo, Japan
| | - M.E. Ordoñez
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - A. de M. Ottoni
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - L.M. Paiva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - F. Pancorbo
- Pintores de El Paular 25, 28740 Rascafría, Madrid, Spain
| | - B. Pant
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Pawłowska
- Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - S.W. Peterson
- Mycotoxin Prevention and Applied Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - D.B. Raudabaugh
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - E. Rodríguez-Andrade
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - E. Rubio
- C/ José Cueto 3 – 5ºB, 33401 Avilés, Asturias, Spain
| | - K. Rusevska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| | - A.L.C.M.A. Santiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - A.C.S. Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C. Santos
- Departamento de Ciencias Químicas y Recursos Naturales, BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - N.A. Sazanova
- Institute of Biological Problems of the North, Far East Branch of the Russian Academy of Sciences, Magadan, Russia
| | - S. Shah
- Central Department of Botany, Tribhuvan University, Nepal
| | - J. Sharma
- Department of Plant and Soil Science, Texas Tech. University, USA
| | - B.D.B. Silva
- Universidade Federal da Bahia, Instituto de Biologia, Departamento de Botânica, 40170115 Ondina, Salvador, BA, Brazil
| | - J.L. Siquier
- Carrer Major, 19, E-07300 Inca (Islas Baleares), Spain
| | - M.S. Sonawane
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science, S.P. Pune University, Ganeshkhind, Pune 411 007, Maharashtra, India
| | - A.M. Stchigel
- Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, 43201 Reus, Tarragona, Spain
| | - T. Svetasheva
- Biology and Technologies of Living Systems Department, Tula State Lev Tolstoy Pedagogical University, 125 Lenin av., 300026 Tula, Russia
| | - N. Tamakeaw
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - M.T. Telleria
- Departamento de Micología, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P.V. Tiago
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Z. Tkalčec
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - M.A. Tomashevskaya
- All-Russian Collection of Microorganisms, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, Russia
| | - H.H. Truong
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, Japan
| | - M.V. Vecherskii
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Biosystematics Division, Agricultural Research Council – Plant Health and Protection, P. Bag X134, Queenswood, Pretoria 0121, South Africa
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - I.V. Zmitrovich
- Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - T. Kehlet
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - T. Læssøe
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
166
|
Inactivation of ascospores of Talaromyces macrosporus and Neosartorya spinosa by UV-C, UHPH and their combination in clarified apple juice. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
167
|
Bioactive oxaphenalenone dimers from the fungus Talaromyces macrosporus KKU-1NK8. Fitoterapia 2019; 134:429-434. [DOI: 10.1016/j.fitote.2019.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/18/2022]
|
168
|
Heo I, Hong K, Yang H, Lee HB, Choi YJ, Hong SB. Diversity of Aspergillus, Penicillium, and Talaromyces Species Isolated from Freshwater Environments in Korea. MYCOBIOLOGY 2019; 47:12-19. [PMID: 30988987 PMCID: PMC6450604 DOI: 10.1080/12298093.2019.1572262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
In order to elucidate the fungal diversity and community structure in freshwater environments, numerous fungal strains were isolated from freshwater, submerged soils, twigs, dead insects, etc. Among them, the present study has focused specifically on Aspergillus, Penicillium, and Talaromyces species, which produce diverse useful metabolites in general. Twelve strains of Aspergillus isolated were identified as A. japonicus (n = 5), A. tubingensis (3), A. niger (2), and A. flavus (2), 10 strains of which belong to Aspergillus section Nigri, named black Aspergillus. Eight strains of Penicillium were identified as P. brasilianim (n = 3), P. oxalicum (2), P. crustosum (1), P. expansum (1), and P. piscarium (1). Two different strains of Talaromyces were identified as T. pinophilus and T. versatilis. Thus far, Penicillium piscarium and Talaromyces versatilis have been unrecorded in Korea, for which we provide detailed morphological and molecular characteristics.
Collapse
Affiliation(s)
- Inbeom Heo
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Kyeongyeon Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Hyejin Yang
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University, Gwangju, Korea
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan, Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Science, RDA, Jeonju, Korea
| |
Collapse
|
169
|
In vitro biodegradation potential of airborne Aspergilli and Penicillia. Naturwissenschaften 2019; 106:8. [DOI: 10.1007/s00114-019-1603-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 01/29/2019] [Indexed: 01/11/2023]
|
170
|
Talaromyces trachyspermus, an endophyte from Withania somnifera with plant growth promoting attributes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00045-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
171
|
Rajeshkumar KC, Yilmaz N, Marathe SD, Keith A Seifert. Morphology and multigene phylogeny of Talaromycesamyrossmaniae, a new synnematous species belonging to the section Trachyspermi from India. MycoKeys 2019:41-56. [PMID: 30728745 PMCID: PMC6361871 DOI: 10.3897/mycokeys.45.32549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022] Open
Abstract
A new Talaromyces species, T.amyrossmaniae, isolated from decaying fruit and litter of Terminalia bellerica, is described and illustrated. On the natural substrate, the new species produces determinate synnemata, with a well-defined, vivid orange red to orange red cylindrical stipe, and a greyish green capitulum. Conidiophores are typically biverticillate, or sometimes have subterminal branches, with acerose phialides that produce globose to subglobose, smooth to slightly roughened conidia. Multigene phylogenetic analyses based on the internal transcribed spacer region (ITS), and partial sequences of β-tubulin (BenA), calmodulin (CaM), and DNA directed RNA polymerase second large subunit (RPB2) genes, along with morphological characterization, revealed that these isolates are distinct and form a unique lineage of Talaromyces in section Trachyspermi, closely allied to T.aerius, T.albobiverticillius, T.heiheensis, T.erythromellis, and T.solicola. The new species T.amyrossmaniae is the first species in section Trachyspermi with determinate synnemata.
Collapse
Affiliation(s)
- Kunhiraman C Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004, Maharashtra, India National Fungal Culture Collection of India Pune India
| | - Neriman Yilmaz
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada.,Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa University of Pretoria Pretoria South Africa
| | - Sayali D Marathe
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Gr., Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004, Maharashtra, India National Fungal Culture Collection of India Pune India
| | - Keith A Seifert
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada Agriculture and Agri-Food Canada Ottawa Canada
| |
Collapse
|
172
|
Pangging M, Nguyen TTT, Lee HB. New Records of Four Species Belonging to Eurotiales from Soil and Freshwater in Korea. MYCOBIOLOGY 2019; 47:154-164. [PMID: 31448135 PMCID: PMC6691828 DOI: 10.1080/12298093.2018.1554777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Four strains of Penicillium and Talaromyces species are described and illustrated in an inventory of fungal species belonging to Eurotiales. The strains, CNUFC-DDS17-1, CNUFC-DDS27-1, CNUFC-PTM72-1, and CNUFC-YJW3-31, were isolated from soil and freshwater samples from South Korea. Based on their morphological characteristics and sequence analyses by the combined β-tubulin and calmodulin gene, the CNUFC-DDS17-1, CNUFC-DDS27-1, CNUFC-PTM72-1, and CNUFC-YJW3-31 isolates were identified as Penicillium pasqualense, Penicillium sanguifluum, Talaromyces apiculatus, and Talaromyces liani, respectively. The designated strains were found to represent a previously undescribed species of Korean fungal biota. In this study, detailed morphological descriptions and phylogenetic relationships of these species are provided.
Collapse
Affiliation(s)
- Monmi Pangging
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thuong T. T. Nguyen
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
- CONTACT Hyang Burm Lee
| |
Collapse
|
173
|
Ortega‐Acosta S, Reyes‐García G, Vargas‐Álvarez D, Gámez‐Vázquez A, Ávila‐Perches M, Espinosa‐Trujillo E, Bello‐Martínez J, Damián‐Nava A, Palemón‐Alberto F. First report of
Talaromyces verruculosus
causing storage rot of groundnut in Mexico. ACTA ACUST UNITED AC 2018. [DOI: 10.5197/j.2044-0588.2018.038.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S.A. Ortega‐Acosta
- Departamento de AgronomíaFacultad de Ciencias Agropecuarias y Ambientales de la Universidad Autónoma de GuerreroPeriférico Poniente s/n. Colonia Villa de GuadalupeC.P. 40020Iguala de la IndependenciaGuerreroMéxico
| | - G. Reyes‐García
- Departamento de AgronomíaFacultad de Ciencias Agropecuarias y Ambientales de la Universidad Autónoma de GuerreroPeriférico Poniente s/n. Colonia Villa de GuadalupeC.P. 40020Iguala de la IndependenciaGuerreroMéxico
| | - D. Vargas‐Álvarez
- Facultad de Ciencias Químico Biológicas de la Universidad Autónoma de GuerreroAvenida Lázaro Cárdenas s/nC.P. 39090ChilpancingoGuerreroMéxico
| | - A.J. Gámez‐Vázquez
- Campo Experimental BajíoInstituto Nacional de Investigaciones ForestalesAgrícolas y Pecuarias (INIFAP)km 6.5 Carretera Celaya‐San Miguel de AllendeC. P. 38010CelayaGuanajuatoMéxico
| | - M.A. Ávila‐Perches
- Campo Experimental BajíoInstituto Nacional de Investigaciones ForestalesAgrícolas y Pecuarias (INIFAP)km 6.5 Carretera Celaya‐San Miguel de AllendeC. P. 38010CelayaGuanajuatoMéxico
| | - E. Espinosa‐Trujillo
- Facultad de AgronomíaUniversidad de GuanajuatoKm 9 Carretera Irapuato‐SilaC.P. 36500IrapuatoGuanajuatoMéxico
| | - J. Bello‐Martínez
- Facultad de Ciencias Químico Biológicas de la Universidad Autónoma de GuerreroAvenida Lázaro Cárdenas s/nC.P. 39090ChilpancingoGuerreroMéxico
| | - A. Damián‐Nava
- Departamento de AgronomíaFacultad de Ciencias Agropecuarias y Ambientales de la Universidad Autónoma de GuerreroPeriférico Poniente s/n. Colonia Villa de GuadalupeC.P. 40020Iguala de la IndependenciaGuerreroMéxico
| | - F. Palemón‐Alberto
- Departamento de AgronomíaFacultad de Ciencias Agropecuarias y Ambientales de la Universidad Autónoma de GuerreroPeriférico Poniente s/n. Colonia Villa de GuadalupeC.P. 40020Iguala de la IndependenciaGuerreroMéxico
| |
Collapse
|
174
|
|
175
|
Silva LF, Freire KTLS, Araújo-Magalhães GR, Agamez-Montalvo GS, Sousa MA, Costa-Silva TA, Paiva LM, Pessoa-Junior A, Bezerra JDP, Souza-Motta CM. Penicillium and Talaromyces endophytes from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest, and their potential for L-asparaginase production. World J Microbiol Biotechnol 2018; 34:162. [PMID: 30368630 DOI: 10.1007/s11274-018-2547-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022]
Abstract
This study was conducted to report the richness of endophytic Penicillium and Talaromyces species isolated from Tillandsia catimbauensis, a bromeliad endemic in the Brazilian tropical dry forest (Caatinga), to verify their ability to produce the enzyme L-asparaginase and to partially optimise the production of biomass and L-asparaginase of the best enzyme producer. A total of 184 endophytes were isolated, of which 52 (29%) were identified through morphological and phylogenetic analysis using β-tubulin sequences into nine putative species, four in Penicillium and five in Talaromyces. Talaromyces diversus and T. cf. cecidicola were the most frequent taxa. Among the 20 endophytic isolates selected for L-asparaginase production, 10 had the potential to produce the enzyme (0.50-2.30 U/g), especially T. cf. cecidicola URM 7826 (2.30 U/g) and Penicillium sp. 4 URM 7827 (1.28 U/g). As T. cf. cecidicola URM 7826 exhibited significant ability to produce the enzyme, it was selected for the partial optimisation of biomass and L-asparaginase production. Results of the 23 factorial experimental design showed that the highest dry biomass (0.66 g) was obtained under pH 6.0, inoculum concentration of 1 × 108 and 1% L-proline. However, the inoculum concentration was found to be statistically significant, the pH was marginally significant and the concentration of L-proline was not statistically significant. L-Asparaginase production varied between 0.58 and 1.02 U/g and did not reach the optimal point for enzyme production. This study demonstrates that T. catimbauensis is colonised by different Penicillium and Talaromyces species, which are indicated for enzyme production studies.
Collapse
Affiliation(s)
- Leticia F Silva
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Karla T L S Freire
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Gianne R Araújo-Magalhães
- Programa de Pós Graduação em Biociência Animal, Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900, Brazil
| | - Gualberto S Agamez-Montalvo
- Departamento de Estatística e Matemática Aplicada, Universidade Federal do Ceará, Av. Mister Hull, s/n, Pici, Fortaleza, Ceará, CEP: 60455-760, Brazil
| | - Minelli A Sousa
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Tales A Costa-Silva
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
| | - Laura M Paiva
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil
| | - Adalberto Pessoa-Junior
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, B16, Cidade Universitária, São Paulo, SP, CEP: 05508-000, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil.
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, CB, Universidade Federal de Pernambuco, Av. Professor Nelson Chaves, s/n, Cidade Universitária, Recife, Pernambuco, CEP: 50670-901, Brazil.
| |
Collapse
|
176
|
Zaccarim BR, de Oliveira F, Passarini MRZ, Duarte AWF, Sette LD, Jozala AF, Teixeira MFS, de Carvalho Santos-Ebinuma V. Sequencing and phylogenetic analyses oftalaromyces amestolkiaefrom amazon: A producer of natural colorants. Biotechnol Prog 2018; 35:e2684. [DOI: 10.1002/btpr.2684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/27/2018] [Accepted: 06/11/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Bruna R. Zaccarim
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| | - Fernanda de Oliveira
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| | - Michel R. Z. Passarini
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas; Universidade Estadual de Campinas; Paulínia São Paulo Brazil
| | - Alysson W. F. Duarte
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas; Universidade Estadual de Campinas; Paulínia São Paulo Brazil
| | - Lara D. Sette
- Dept. of Biochemistry and Microbiology; Inst. of Biosciences, Universidade Estadual Paulista - UNESP; Rio Claro São Paulo Brazil
| | - Angela F. Jozala
- Dept. of Technological and Environmental Processes; Universidade de Sorocaba - UNISO; Sorocaba Brazil
| | - Maria F. S. Teixeira
- Culture Collection DPUA/UFAM; Universidade Federal do Amazonas; 077-000, Manaus Amazonas Brazil
| | - Valéria de Carvalho Santos-Ebinuma
- Dept. of Bioprocess and Biotechnology, School of Pharmaceutical Sciences; Universidade Estadual Paulista - UNESP; Araraquara São Paulo Brazil
| |
Collapse
|
177
|
Barbosa RN, Bezerra JDP, Souza-Motta CM, Frisvad JC, Samson RA, Oliveira NT, Houbraken J. New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie Van Leeuwenhoek 2018; 111:1883-1912. [PMID: 29654567 PMCID: PMC6153986 DOI: 10.1007/s10482-018-1081-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/31/2018] [Indexed: 01/05/2023]
Abstract
Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and β-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.
Collapse
Affiliation(s)
- Renan N Barbosa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jadson D P Bezerra
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Cristina M Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Neiva T Oliveira
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Centro de Biociências, Cidade Universitária, CEP: 50670-901, Recife, PE, Brazil
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
178
|
Wang Q, Du M, Wang S, Liu L, Xiao L, Wang L, Li T, Zhuang H, Yang E. MADS-Box Transcription Factor MadsA Regulates Dimorphic Transition, Conidiation, and Germination of Talaromyces marneffei. Front Microbiol 2018; 9:1781. [PMID: 30131782 PMCID: PMC6090077 DOI: 10.3389/fmicb.2018.01781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
The opportunistic human pathogen Talaromyces marneffei exhibits a temperature-dependent dimorphic transition, which is closely related with its pathogenicity. This species grows as multinucleate mycelia that produce infectious conidia at 25°C, while undergoes a dimorphic transition to generate uninucleate yeast form cells at 37°C. The mechanisms of phenotype switching are not fully understood. The transcription factor madsA gene is a member of the MADS-box gene family. Previously, it was found that overexpression of madsA gene resulted in mycelial growth instead of yeast form at 37°C. In the current study, the madsA deletion mutant (ΔmadsA) and complemented strain (CMA) were constructed by genetic manipulation. We compared the phenotypes, growth, conidiation, conidial germination and susceptibility to stresses (including osmotic and oxidative) of the ΔmadsA with the wild-type (WT) and CMA strains. The results showed that the ΔmadsA displayed a faster process of the yeast-to-mycelium transition than the WT and CMA. In addition, the deletion of madsA led to a delay in conidia production and conidial germination. The tolerance of ΔmadsA conidia to hydrogen peroxide was better than that of the WT and CMA strains. Then, RNA-seq was performed to identify differences in gene expression between the ΔmadsA mutant and WT strain during the yeast phase, mycelium phase, yeast-to-mycelium transition and mycelium-to-yeast transition, respectively. Gene ontology functional enrichment analyses indicated that some important processes such as transmembrane transport, oxidation-reduction process, protein catabolic process and response to oxidative stress were affected by the madsA deletion. Together, our results suggest that madsA functions as a global regulator involved in the conidiation and germination, especially in the dimorphic transition of T. marneffei. Its roles in the survival, pathogenicity and transmission of T. marneffei require further investigation.
Collapse
Affiliation(s)
- Qiangyi Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Linxia Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Liming Xiao
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tong Li
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
179
|
Abdel-Rahim IR, Abo-Elyousr KA. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol Res 2018; 212-213:1-9. [DOI: 10.1016/j.micres.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
180
|
Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius : New resources for natural red-colored metabolites. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
181
|
Tsang CC, Tang JY, Lau SK, Woo PC. Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era - Past, present and future. Comput Struct Biotechnol J 2018; 16:197-210. [PMID: 30002790 PMCID: PMC6039702 DOI: 10.1016/j.csbj.2018.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/12/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species important to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxonomic studies on these fungi are essential since they could provide invaluable information on their evolutionary relationships and define criteria for species recognition. With the advancement of various biological, biochemical and computational technologies, different approaches have been adopted for the taxonomy of Aspergillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different taxonomic approaches focus on different sets of characters of the organisms, various classification and identification schemes would result. In view of this, the consolidated species concept, which takes into account different types of characters, is recently accepted for taxonomic purposes and, together with the lately implemented 'One Fungus - One Name' policy, is expected to bring a more stable taxonomy for Aspergillus, Penicillium and Talaromyces, which could facilitate their evolutionary studies. The most significant taxonomic change for the three genera was the transfer of Penicillium subgenus Biverticillium to Talaromyces (e.g. the medically important thermally dimorphic 'P. marneffei' endemic in Southeast Asia is now named T. marneffei), leaving both Penicillium and Talaromyces as monophyletic genera. Several distantly related Aspergillus-like fungi were also segregated from Aspergillus, making this genus, containing members of both sexual and asexual morphs, monophyletic as well. In the current omics era, application of various state-of-the-art omics technologies is likely to provide comprehensive information on the evolution of Aspergillus, Penicillium and Talaromyces and a stable taxonomy will hopefully be achieved.
Collapse
Affiliation(s)
- Chi-Ching Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - James Y.M. Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
182
|
Varriale S, Houbraken J, Granchi Z, Pepe O, Cerullo G, Ventorino V, Chin-A-Woeng T, Meijer M, Riley R, Grigoriev IV, Henrissat B, de Vries RP, Faraco V. Talaromyces borbonicus, sp. nov., a novel fungus from biodegraded Arundo donax with potential abilities in lignocellulose conversion. Mycologia 2018; 110:316-324. [PMID: 29843575 DOI: 10.1080/00275514.2018.1456835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel fungal species able to synthesize enzymes with potential synergistic actions in lignocellulose conversion was isolated from the biomass of Arundo donax during biodegradation under natural conditions in the Gussone Park of the Royal Palace of Portici (Naples, Italy). In this work, this species was subjected to morphological and phylogenetic analyses. Sequencing of its genome was performed, resulting in 28 scaffolds that were assembled into 27.05 Mb containing 9744 predicted genes, among which 396 belong to carbohydrate-active enzyme (CAZyme)-encoding genes. Here we describe and illustrate this previously unknown species, which was named Talaromyces borbonicus, by a polyphasic approach combining phenotypic, physiological, and sequence data.
Collapse
Affiliation(s)
- Simona Varriale
- a Department of Chemical Sciences , University of Naples Federico II, Complesso Universitario Monte S. Angelo , via Cintia, 4 80126 Naples , Italy
| | - Jos Houbraken
- b Department of Applied and Industrial Mycology , Westerdijk Fungal Biodiversity Institute , Uppsalalaan 8, 3584 CT Utrecht , The Netherlands
| | - Zoraide Granchi
- c GenomeScan B.V., Plesmanlaan 1/D, 2333 BZ Leiden , The Netherlands
| | - Olimpia Pepe
- d Department of Agricultural Sciences , University of Naples Federico II , Via Università 100, 80055 Portici (NA) , Italy
| | - Gabriella Cerullo
- a Department of Chemical Sciences , University of Naples Federico II, Complesso Universitario Monte S. Angelo , via Cintia, 4 80126 Naples , Italy
| | - Valeria Ventorino
- d Department of Agricultural Sciences , University of Naples Federico II , Via Università 100, 80055 Portici (NA) , Italy
| | | | - Martin Meijer
- b Department of Applied and Industrial Mycology , Westerdijk Fungal Biodiversity Institute , Uppsalalaan 8, 3584 CT Utrecht , The Netherlands
| | - Robert Riley
- f US Department of Energy Joint Genome Institute , 2800 Mitchell Drive, Walnut Creek , California 94598
| | - Igor V Grigoriev
- f US Department of Energy Joint Genome Institute , 2800 Mitchell Drive, Walnut Creek , California 94598
| | - Bernard Henrissat
- g Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS , Université Aix-Marseille , 163 Avenue de Luminy, 13288 , Marseille , France.,h INRA, USC 1408 AFMB, 13288 , Marseille , France.,i Department of Biological Sciences , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ronald P de Vries
- j Department of Fungal Physiology , Westerdijk Fungal Biodiversity Institute , Uppsalalaan 8, 3584 CT Utrecht , The Netherlands.,k Department of Fungal Molecular Physiology , Utrecht University , Uppsalalaan 8, 3584 CT Utrecht , The Netherlands
| | - Vincenza Faraco
- a Department of Chemical Sciences , University of Naples Federico II, Complesso Universitario Monte S. Angelo , via Cintia, 4 80126 Naples , Italy
| |
Collapse
|
183
|
The heterologous expression potential of an acid-tolerant Talaromyces pinophilus β-glucosidase in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2018; 63:725-734. [DOI: 10.1007/s12223-018-0613-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|
184
|
Su L, Niu YC. Multilocus phylogenetic analysis of Talaromyces species isolated from cucurbit plants in China and description of two new species, T. cucurbitiradicus and T. endophyticus. Mycologia 2018; 110:375-386. [PMID: 29737936 DOI: 10.1080/00275514.2018.1432221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During a survey of endophytic fungi from cucurbit plants in China, 21 Talaromyces strains were isolated from ten symptomless plants. Phylogenetic analysis of the partial RNA polymerase II largest subunit gene (RPB2) showed that the strains belong to Talaromyces sections Talaromyces and Islandici. Based on morphological characters and multilocus phylogenetic analysis of the nuc rDNA internal transcribed spacer region (ITS1-5.8S-ITS2 = ITS), calmodulin (CaM), and β-tubulin (TUB) genes, the strains were identified as four known species, T. cnidii, T. pinophilus, T. radicus, and T. wortmannii, and two new species. Two new species, T. cucurbitiradicus from pumpkin roots and T. endophyticus from cucumber stems, are described in this study. Talaromyces cucurbitiradicus is morphologically similar to T. funiculosus but differs in the number of phialides per metula and by the production of chlamydospores. Talaromyces endophyticus is morphologically similar to T. cerinus and T. chlamydosporus but differs by producing yellowish colonies and by lacking chlamydospores. Further analyses of polymorphisms in ITS and TUB sequences supported the distinctions among T. cucurbitiradicus, T. endophyticus, and similar species.
Collapse
Affiliation(s)
- Lei Su
- a Key Laboratory of Microbial Resources, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yong-Chun Niu
- a Key Laboratory of Microbial Resources, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
185
|
Rico-Munoz E, Samson RA, Houbraken J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol 2018; 81:51-62. [PMID: 30910088 DOI: 10.1016/j.fm.2018.03.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage of products manufactured by the food and beverage industry imposes significant annual global revenue losses. Mould spoilage can also be a food safety issue due to the production of mycotoxins by these moulds. To prevent mould spoilage, it is essential that the associated mycobiota be adequately isolated and accurately identified. The main fungal groups associated with spoilage are the xerophilic, heat-resistant, preservative-resistant, anaerobic and psychrophilic fungi. To assess mould spoilage, the appropriate methodology and media must be used. While classic mycological detection methods can detect a broad range of fungi using well validated protocols, they are time consuming and results can take days or even weeks. New molecular detection methods are faster but require good DNA isolation techniques, expensive equipment and may detect viable and non-viable fungi that probably will not spoil a specific product. Although there is no complete and easy method for the detection of fungi in food it is important to be aware of the limitation of the methodology. More research is needed on the development of methods of detection and identification that are both faster and highly sensitive.
Collapse
Affiliation(s)
- Emilia Rico-Munoz
- BCN Research Laboratories, Inc., 2491 Stock Creek Blvd., Rockford, TN 37853, USA.
| | - Robert A Samson
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Dept. Applied and Industrial Mycology, Uppsalalaan 8, Utrecht, CT 3584, The Netherlands
| |
Collapse
|
186
|
Three new species of Talaromyces sect. Talaromyces discovered from soil in China. Sci Rep 2018; 8:4932. [PMID: 29563618 PMCID: PMC5862941 DOI: 10.1038/s41598-018-23370-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/08/2018] [Indexed: 11/21/2022] Open
Abstract
Three new Talaromyces species isolated from soil are reported here, namely T. dimorphus (ex-type strain AS3.15692 T), T. lentulus (ex-type strain AS3.15689 T) and T. mae (ex-type strain AS3.15690 T). T. dimorphus is characterized by biverticillate and monoverticillate penicilli, ampulliform phialides, slimy texture with sparse mycelial funicles and absent conidiogenesis on MEA. T. lentulus is featured by vivid yellow mycelium on Cz and MEA, absent conidiogenesis on CYA, and globose smooth-walled conidia. T. mae presents sparse conidia on CYA and YES, funiculous and floccose texture on MEA, and ovoid smooth-walled conidia. Both morphological and molecular characters show that T. dimorphus is unique and has no close relatives. Although T. lentulus and T. mae resembles T. adpressus and T. pinophilus very much, phylogenetic analyses of CaM, BenA, ITS and Rpb2 sequences all support their status as novel species.
Collapse
|
187
|
Jayawardena RS, Purahong W, Zhang W, Wubet T, Li X, Liu M, Zhao W, Hyde KD, Liu J, Yan J. Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0398-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
188
|
Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0685-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
189
|
Huang YT, Kolařík M, Kasson MT, Hulcr J. Two new Geosmithia species in G. pallida species complex from bark beetles in eastern USA. Mycologia 2018; 109:790-803. [PMID: 29388883 DOI: 10.1080/00275514.2017.1410422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Species of Geosmithia are cosmopolitan but understudied fungi, and most are associated with phloem-feeding bark beetles on various woody hosts. We surveyed 207 bark and ambrosia beetles from 37 species in the eastern USA for associated fungi. The community is dominated by species in the G. pallida species complex (GPSC) and included several Geosmithia isolates that appear to be new to science. The new Geosmithia isolates exhibited the characteristic brownish-colored colonies typical for the G. pallida species complex and were phylogenetically resolved as two genealogically exclusive lineages based on a concatenated multilocus data set based on the internal transcribed spacers (ITS) of the nuc rDNA (ITS1-5.8S-ITS2 = ITS), and the translation elongation factor 1-α (TEF1-α), β-tubulin (TUB2), and RNA polymerase II second largest subunit (RPB2) genes. Two new Geosmithia species, G. brunnea and G. proliferans, are proposed, and their morphological traits and phylogenetic placements are presented.
Collapse
Affiliation(s)
- Y-T Huang
- a School of Forest Resources and Conservation , University of Florida , Gainesville , Florida 32611
| | - M Kolařík
- b Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, 142 20 Prague 4, Czechia
| | - M T Kasson
- c Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506
| | - J Hulcr
- a School of Forest Resources and Conservation , University of Florida , Gainesville , Florida 32611.,d Entomology and Nematology Department , University of Florida , Gainesville , Florida 32611
| |
Collapse
|
190
|
Nilsson RH, Taylor AFS, Adams RI, Baschien C, Johan Bengtsson-Palme, Cangren P, Coleine C, Heide-Marie Daniel, Glassman SI, Hirooka Y, Irinyi L, Reda Iršėnaitė, Pedro M. Martin-Sanchez, Meyer W, Seung-Yoon Oh, Jose Paulo Sampaio, Seifert KA, Sklenář F, Dirk Stubbe, Suh SO, Summerbell R, Svantesson S, Martin Unterseher, Cobus M. Visagie, Weiss M, Woudenberg JHC, Christian Wurzbacher, den Wyngaert SV, Yilmaz N, Andrey Yurkov, Kõljalg U, Abarenkov K. Taxonomic annotation of public fungal ITS sequences from the built environment - a report from an April 10-11, 2017 workshop (Aberdeen, UK). MycoKeys 2018; 28:65-82. [PMID: 29559822 PMCID: PMC5804120 DOI: 10.3897/mycokeys.28.20887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/12/2017] [Indexed: 12/22/2022] Open
Abstract
Recent DNA-based studies have shown that the built environment is surprisingly rich in fungi. These indoor fungi - whether transient visitors or more persistent residents - may hold clues to the rising levels of human allergies and other medical and building-related health problems observed globally. The taxonomic identity of these fungi is crucial in such pursuits. Molecular identification of the built mycobiome is no trivial undertaking, however, given the large number of unidentified, misidentified, and technically compromised fungal sequences in public sequence databases. In addition, the sequence metadata required to make informed taxonomic decisions - such as country and host/substrate of collection - are often lacking even from reference and ex-type sequences. Here we report on a taxonomic annotation workshop (April 10-11, 2017) organized at the James Hutton Institute/University of Aberdeen (UK) to facilitate reproducible studies of the built mycobiome. The 32 participants went through public fungal ITS barcode sequences related to the built mycobiome for taxonomic and nomenclatural correctness, technical quality, and metadata availability. A total of 19,508 changes - including 4,783 name changes, 14,121 metadata annotations, and the removal of 99 technically compromised sequences - were implemented in the UNITE database for molecular identification of fungi (https://unite.ut.ee/) and shared with a range of other databases and downstream resources. Among the genera that saw the largest number of changes were Penicillium, Talaromyces, Cladosporium, Acremonium, and Alternaria, all of them of significant importance in both culture-based and culture-independent surveys of the built environment.
Collapse
Affiliation(s)
- R. Henrik Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
| | - Andy F. S. Taylor
- The James Hutton Institute and University of Aberdeen, Aberdeen, United Kingdom
| | - Rachel I. Adams
- Plant and Microbial Biology, University of California, 94720 Berkeley, California, USA
| | - Christiane Baschien
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
- Department of Plant Pathology & Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, Riverside 92501, CA, USA
| | - Heide-Marie Daniel
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, BCCM/MUCL, Louvain-la-Neuve, Belgium
| | - Sydney I. Glassman
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA 92697, USA
| | - Yuuri Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo Japan 184-8584
| | - Laszlo Irinyi
- Sydney Medical School-Westmead Hospital, Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney, Australia
- University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
- Westmead Institute for Medical Research, Westmead, Australia
| | - Reda Iršėnaitė
- Institute of Botany, Nature Research Centre, Žaliųjų ežerų Str. 49, 08406 Vilnius, Lithuania
| | - Pedro M. Martin-Sanchez
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department 4. Materials & Environment, Unter den Eichen 87, 12205 Berlin, Germany
| | - Wieland Meyer
- Sydney Medical School-Westmead Hospital, Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Sydney, Australia
- University of Sydney, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
- Westmead Institute for Medical Research, Westmead, Australia
| | - Seung-Yoon Oh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jose Paulo Sampaio
- UCIBIO-REQUIMTE, DCV, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Keith A. Seifert
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
- Department of Biology, University of Ottawa, 30 Marie Curie Ottawa, ON, Canada, K1N 6N5
| | - Frantisek Sklenář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i, Prague, Czech Republic
| | - Dirk Stubbe
- BCCM/IHEM, Scientific Institute of Public Health WIV-ISP, Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Sung-Oui Suh
- ATCC, 10801 University Blvd., Manassas, Virginia 20110, USA
| | - Richard Summerbell
- Sporometrics, 219 Dufferin Street, Suite 20C, Toronto, Ontario Canada, M6K 1Y9
- Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th floor, Toronto, Ontario Canada, M5T 3M7
| | - Sten Svantesson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
| | - Martin Unterseher
- Evangelisches Schulzentrum Martinschule, Max-Planck-Str. 7, 17491 Greifswald, Germany
| | - Cobus M. Visagie
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
- Department of Biology, University of Ottawa, 30 Marie Curie Ottawa, ON, Canada, K1N 6N5
- Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood 0121, Pretoria, South Africa
| | - Michael Weiss
- Steinbeis-Innovationszentrum, Organismische Mykologie und Mikrobiologie, Vor dem Kreuzberg 17, 72070 Tübingen, Germany
| | - Joyce HC Woudenberg
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
| | - Silke Van den Wyngaert
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany
| | - Neriman Yilmaz
- Biodiversity (Mycology), Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, ON, Canada K1A 0C6
- Department of Biology, University of Ottawa, 30 Marie Curie Ottawa, ON, Canada, K1N 6N5
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | | | | |
Collapse
|
191
|
Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Mar Drugs 2018; 16:md16010012. [PMID: 29316607 PMCID: PMC5793060 DOI: 10.3390/md16010012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/02/2023] Open
Abstract
Boosted by the general aim of exploiting the biotechnological potential of the microbial component of biodiversity, research on the secondary metabolite production of endophytic fungi has remarkably increased in the past few decades. Novel compounds and bioactivities have resulted from this work, which has stimulated a more thorough consideration of various natural ecosystems as conducive contexts for the discovery of new drugs. Thriving at the frontier between land and sea, mangrove forests represent one of the most valuable areas in this respect. The present paper offers a review of the research on the characterization and biological activities of secondary metabolites from manglicolous strains of species belonging to the genus Talaromyces. Aspects concerning the opportunity for a more reliable identification of this biological material in the light of recent taxonomic revisions are also discussed.
Collapse
|
192
|
Lima MTNS, Santos LBD, Bastos RW, Nicoli JR, Takahashi JA. Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Braz J Microbiol 2018; 49:169-176. [PMID: 28818332 PMCID: PMC5790575 DOI: 10.1016/j.bjm.2017.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/17/2017] [Indexed: 12/02/2022] Open
Abstract
Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66±5.98% and 15.38±1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62±3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91±3.90% (control) to 92.20±3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.
Collapse
Affiliation(s)
| | - Larissa Batista Dos Santos
- Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, MG, Brazil
| | - Rafael Wesley Bastos
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brazil
| | - Jacques Robert Nicoli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Belo Horizonte, MG, Brazil
| | - Jacqueline Aparecida Takahashi
- Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, Belo Horizonte, MG, Brazil.
| |
Collapse
|
193
|
Fungal Planet description sheets: 625-715. Persoonia - Molecular Phylogeny and Evolution of Fungi 2017; 39:270-467. [PMID: 29503478 PMCID: PMC5832955 DOI: 10.3767/persoonia.2017.39.11] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica: Cadophora antarctica from soil. Australia: Alfaria dandenongensis on Cyperaceae, Amphosoma persooniae on Persoonia sp., Anungitea nullicana on Eucalyptus sp., Bagadiella eucalypti on Eucalyptus globulus, Castanediella eucalyptigena on Eucalyptus sp., Cercospora dianellicola on Dianella sp., Cladoriella kinglakensis on Eucalyptus regnans, Cladoriella xanthorrhoeae (incl. Cladoriellaceae fam. nov. and Cladoriellales ord. nov.) on Xanthorrhoea sp., Cochlearomyces eucalypti (incl. Cochlearomyces gen. nov. and Cochlearomycetaceae fam. nov.) on Eucalyptus obliqua, Codinaea lambertiae on Lambertia formosa, Diaporthe obtusifoliae on Acacia obtusifolia, Didymella acaciae on Acacia melanoxylon, Dothidea eucalypti on Eucalyptus dalrympleana, Fitzroyomyces cyperi (incl. Fitzroyomyces gen. nov.) on Cyperaceae, Murramarangomyces corymbiae (incl. Murramarangomyces gen. nov., Murramarangomycetaceae fam. nov. and Murramarangomycetales ord. nov.) on Corymbia maculata, Neoanungitea eucalypti (incl. Neoanungitea gen. nov.) on Eucalyptus obliqua, Neoconiothyrium persooniae (incl. Neoconiothyrium gen. nov.) on Persoonia laurina subsp. laurina, Neocrinula lambertiae (incl. Neocrinulaceae fam. nov.) on Lambertia sp., Ochroconis podocarpi on Podocarpus grayae, Paraphysalospora eucalypti (incl. Paraphysalospora gen. nov.) on Eucalyptus sieberi, Pararamichloridium livistonae (incl. Pararamichloridium gen. nov., Pararamichloridiaceae fam. nov. and Pararamichloridiales ord. nov.) on Livistona sp., Pestalotiopsis dianellae on Dianella sp., Phaeosphaeria gahniae on Gahnia aspera, Phlogicylindrium tereticornis on Eucalyptus tereticornis, Pleopassalora acaciae on Acacia obliquinervia, Pseudodactylaria xanthorrhoeae (incl. Pseudodactylaria gen. nov., Pseudodactylariaceae fam. nov. and Pseudodactylariales ord. nov.) on Xanthorrhoea sp., Pseudosporidesmium lambertiae (incl. Pseudosporidesmiaceae fam. nov.) on Lambertia formosa, Saccharata acaciae on Acacia sp., Saccharata epacridis on Epacris sp., Saccharata hakeigena on Hakea sericea, Seiridium persooniae on Persoonia sp., Semifissispora tooloomensis on Eucalyptus dunnii, Stagonospora lomandrae on Lomandra longifolia, Stagonospora victoriana on Poaceae, Subramaniomyces podocarpi on Podocarpus elatus, Sympoventuria melaleucae on Melaleuca sp., Sympoventuria regnans on Eucalyptus regnans, Trichomerium eucalypti on Eucalyptus tereticornis, Vermiculariopsiella eucalypticola on Eucalyptus dalrympleana, Verrucoconiothyrium acaciae on Acacia falciformis, Xenopassalora petrophiles (incl. Xenopassalora gen. nov.) on Petrophile sp., Zasmidium dasypogonis on Dasypogon sp., Zasmidium gahniicola on Gahnia sieberiana.Brazil: Achaetomium lippiae on Lippia gracilis, Cyathus isometricus on decaying wood, Geastrum caririense on soil, Lycoperdon demoulinii (incl. Lycoperdon subg. Arenicola) on soil, Megatomentella cristata (incl. Megatomentella gen. nov.) on unidentified plant, Mutinus verrucosus on soil, Paraopeba schefflerae (incl. Paraopeba gen. nov.) on Schefflera morototoni, Phyllosticta catimbauensis on Mandevilla catimbauensis, Pseudocercospora angularis on Prunus persica, Pseudophialophora sorghi on Sorghum bicolor, Spumula piptadeniae on Piptadenia paniculata.Bulgaria: Yarrowia parophonii from gut of Parophonus hirsutulus. Croatia: Pyrenopeziza velebitica on Lonicera borbasiana.Cyprus: Peziza halophila on coastal dunes. Czech Republic: Aspergillus contaminans from human fingernail. Ecuador: Cuphophyllus yacurensis on forest soil, Ganoderma podocarpense on fallen tree trunk. England: Pilidium anglicum (incl. Chaetomellales ord. nov.) on Eucalyptus sp. France: Planamyces parisiensis (incl. Planamyces gen. nov.) on wood inside a house. French Guiana: Lactifluus ceraceus on soil. Germany: Talaromyces musae on Musa sp. India: Hyalocladosporiella cannae on Canna indica, Nothophoma raii from soil. Italy: Setophaeosphaeria citri on Citrus reticulata, Yuccamyces citri on Citrus limon.Japan: Glutinomyces brunneus (incl. Glutinomyces gen. nov.) from roots of Quercus sp. Netherlands (all from soil): Collariella hilkhuijsenii, Fusarium petersiae, Gamsia kooimaniorum, Paracremonium binnewijzendii, Phaeoisaria annesophieae, Plectosphaerella niemeijerarum, Striaticonidium deklijnearum, Talaromyces annesophieae, Umbelopsis wiegerinckiae, Vandijckella johannae (incl. Vandijckella gen. nov. and Vandijckellaceae fam. nov.), Verhulstia trisororum (incl. Verhulstia gen. nov.). New Zealand: Lasiosphaeria similisorbina on decorticated wood. Papua New Guinea: Pseudosubramaniomyces gen. nov. (based on Pseudosubramaniomyces fusisaprophyticus comb. nov.). Slovakia: Hemileucoglossum pusillum on soil. South Africa: Tygervalleyomyces podocarpi (incl. Tygervalleyomyces gen. nov.) on Podocarpus falcatus.Spain: Coniella heterospora from herbivorous dung, Hymenochaete macrochloae on Macrochloa tenacissima, Ramaria cistophila on shrubland of Cistus ladanifer.Thailand: Polycephalomyces phaothaiensis on Coleoptera larvae, buried in soil. Uruguay: Penicillium uruguayense from soil. Vietnam: Entoloma nigrovelutinum on forest soil, Volvariella morozovae on wood of unknown tree. Morphological and culture characteristics along with DNA barcodes are provided.
Collapse
|
194
|
Casquete R, Rodríguez A, Hernández A, Martín A, Bartolomé T, Córdoba JJ, Córdoba MG. Occurrence of Toxigenic Fungi and Mycotoxins during Smoked Paprika Production. J Food Prot 2017; 80:2068-2077. [PMID: 29154716 DOI: 10.4315/0362-028x.jfp-17-164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
'La Vera' smoked paprika is a traditional Spanish product regulated under a protected designation of origin. Mycotoxins are possible contaminants in paprika, yet there is little information about mycotoxin production during the processing of smoked paprika. In this study, samples of dried peppers collected from six traditional dryers from four producers were evaluated for physicochemical parameters, mycotoxins, and mycotoxin-producing fungi. The moisture content and water activity of the peppers ranged from 11.0 to 16.3% and 0.513 to 0.611, respectively, with significant differences among the dryers (P ≤ 0.05). Culture methods revealed fungal counts of 2.6 to 5.7 log CFU/g, with significant differences among the dryers (P ≤ 0.05), and real-time PCR revealed aflatoxin-producing fungi (2.00 to 3.42 log CFU/g) in all dryers. However, mycotoxins were not detected in dried pepper samples. Sixty-seven mold species isolated from dried peppers were identified by sequencing of the ITS1-5.8S rRNA-ITS2 region and characterized by mycotoxigenic ability. Four isolates of Penicillium expansum, four isolates of Penicillium thomii, and one isolate of Aspergillus parasiticus were producers of patulin, penicillic acid, and aflatoxins, respectively. Toxigenic fungi were inoculated onto smoked dried peppers and stored at 84, 91, 94, and 97% relative humidity (RH) at 20°C for 30 days. Patulin was not detected under any of these conditions. Penicillic acid was detected in dried samples stored at 91 to 97% RH, although the optimum condition was isolate dependent. Aflatoxins G2, B1, and B2 were detected at 91 to 97% RH, with the highest concentrations at 94% RH. According to our results, hazard analysis critical control point systems should be used to control the drying and storage conditions of dried peppers until the milling step to avoid rehydration, which encourages fungal growth and mycotoxin production.
Collapse
Affiliation(s)
| | - Alicia Rodríguez
- 3 Department of Vegetable Production, Institute of Agronomics Resources, School of Agronomics Engineering, University of Extremadura, Avenida Adolfo Suárez s/n, 06007-Badajoz, Spain (ORCID: http://orcid.org/0000-0002-2764-3386 [A.H.]); and
| | | | | | - Teresa Bartolomé
- 2 Department of Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de la Universidad s/n, 10003-Cáceres, Spain
| | - Juan José Córdoba
- 3 Department of Vegetable Production, Institute of Agronomics Resources, School of Agronomics Engineering, University of Extremadura, Avenida Adolfo Suárez s/n, 06007-Badajoz, Spain (ORCID: http://orcid.org/0000-0002-2764-3386 [A.H.]); and
| | | |
Collapse
|
195
|
Küppers L, Ebrahim W, El-Neketi M, Özkaya FC, Mándi A, Kurtán T, Orfali RS, Müller WEG, Hartmann R, Lin W, Song W, Liu Z, Proksch P. Lactones from the Sponge-Derived Fungus Talaromyces rugulosus. Mar Drugs 2017; 15:md15110359. [PMID: 29135916 PMCID: PMC5706048 DOI: 10.3390/md15110359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
The marine-derived fungus Talaromyces rugulosus isolated from the Mediterranean sponge Axinella cannabina and cultured on solid rice medium yielded seventeen lactone derivatives including five butenolides (1–5), seven (3S)-resorcylide derivatives (6–12), two butenolide-resorcylide dimers (13 and 14), and three dihydroisocoumarins (15–17). Among them, fourteen compounds (1–3, 6–16) are new natural products. The structures of the isolated compounds were elucidated by 1D and 2D NMR (Nuclear Magnetic Resonance) spectroscopy as well as by ESI-HRMS (ElectroSpray Ionization-High Resolution Mass Spectrometry). TDDFT-ECD (Time-Dependent Density Functional Theory-Electronic Circular Dichroism) calculations were performed to determine the absolute configurations of chiral compounds. The butenolide-resorcylide dimers talarodilactones A and B (13 and 14) exhibited potent cytotoxicity against the L5178Y murine lymphoma cell line with IC50 values of 3.9 and 1.3 µM, respectively.
Collapse
Affiliation(s)
- Lisa Küppers
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Weaam Ebrahim
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mona El-Neketi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ferhat C Özkaya
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raha S Orfali
- Department of Pharmacognosy, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Werner E G Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany.
| | - Rudolf Hartmann
- Institute of Complex Systems: Strukturbiochemie, ForschungszentrumJuelich, 52428 Juelich, Germany.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| | - Weiguo Song
- FukangPharma, North-East of Dongwaihuan Road, Dongcheng Industrial Area, Shouguang City 262700, China.
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
196
|
|
197
|
Peterson SW, Jurjević Ž. New species of Talaromyces isolated from maize, indoor air, and other substrates. Mycologia 2017; 109:537-556. [PMID: 29020573 DOI: 10.1080/00275514.2017.1369339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Talaromyces strains isolated from maize seeds and the built environment were examined taxonomically because they could not be identified as previously described species. Using phenotypic analysis, DNA sequencing, and phylogenetic and concordance analyses, the authors discovered and described 10 new species in sect. Islandici and 1 new species in sect. Subinflati. Taxonomic novelties in sect. Islandici are Talaromyces delawarensis, T. herodensis, T. juglandicola, T. kilbournensis, T. novojersensis, T. ricevillensis, T. rogersiae, T. siglerae, T. subtropicalis, and T. tiftonensis, and the species from sect. Subinflata is T. tzapotlensis. The isolate of T. siglerae is unusual in Talaromyces because it produced a Sagenomella-like anamorph, but phylogenetic analysis placed it in Talaromyces. Talaromyces rotundus is known from a few isolates, but searches with internal transcribed spacer (ITS) sequences in GenBank revealed that it is commonly endolichenous with Lasallia hispanica. Talaromyces wortmannii also has a role as an endophyte of the aquatic plant Persicaria amphibia, based on ITS sequence records from GenBank.
Collapse
Affiliation(s)
- Stephen W Peterson
- a Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture , 1815 North University Street , Peoria , Illinois 61604
| | - Željko Jurjević
- b EMSL Analytical, Inc., 200 Route 130 North , Cinnaminson , New Jersey 08077
| |
Collapse
|
198
|
Rico-Munoz E. Heat resistant molds in foods and beverages: recent advances on assessment and prevention. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
199
|
|
200
|
Abstract
Xerophilic fungi, especially Aspergillus species, are prevalent in the built environment. In this study, we employed a combined culture-independent (454-pyrosequencing) and culture-dependent (dilution-to-extinction) approach to investigate the mycobiota of indoor dust collected from 93 buildings in 12 countries worldwide. High and low water activity (aw) media were used to capture mesophile and xerophile biodiversity, resulting in the isolation of approximately 9 000 strains. Among these, 340 strains representing seven putative species in Aspergillus subgenus Polypaecilum were isolated, mostly from lowered aw media, and tentatively identified based on colony morphology and internal transcribed spacer rDNA region (ITS) barcodes. Further morphological study and phylogenetic analyses using sequences of ITS, β-tubulin (BenA), calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), DNA topoisomerase 1 (TOP1), and a pre-mRNA processing protein homolog (TSR1) confirmed the isolation of seven species of subgenus Polypaecilum, including five novel species: A. baarnensis, A. keratitidis, A. kalimae sp. nov., A. noonimiae sp. nov., A. thailandensis sp. nov., A. waynelawii sp. nov., and A. whitfieldii sp. nov. Pyrosequencing detected six of the seven species isolated from house dust, as well as one additional species absent from the cultures isolated, and three clades representing potentially undescribed species. Species were typically found in house dust from subtropical and tropical climates, often in close proximity to the ocean or sea. The presence of subgenus Polypaecilum, a recently described clade of xerophilic/xerotolerant, halotolerant/halophilic, and potentially zoopathogenic species, within the built environment is noteworthy.
Collapse
Affiliation(s)
- J.B. Tanney
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - C.M. Visagie
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
- Biosystematics Division, ARC-Plant Health and Protection, P/BagX134, Queenswood, 0121 Pretoria, South Africa
| | - N. Yilmaz
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - K.A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|