151
|
Nissim S, Weeks O, Talbot JC, Hedgepeth JW, Wucherpfennig J, Schatzman-Bone S, Swinburne I, Cortes M, Alexa K, Megason S, North TE, Amacher SL, Goessling W. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development. Dev Biol 2016; 418:108-123. [PMID: 27474396 DOI: 10.1016/j.ydbio.2016.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/22/2022]
Abstract
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease.
Collapse
Affiliation(s)
- Sahar Nissim
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia Weeks
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA
| | - John W Hedgepeth
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Wucherpfennig
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ian Swinburne
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sean Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA
| | - Wolfram Goessling
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
152
|
Beer NL, Gloyn AL. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology. F1000Res 2016; 5:F1000 Faculty Rev-1711. [PMID: 27508066 PMCID: PMC4955023 DOI: 10.12688/f1000research.8682.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding 'islet regulome' for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.
Collapse
Affiliation(s)
- Nicola L. Beer
- Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, Oxford, UK,
| | - Anna L. Gloyn
- Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, Oxford, UK,Wellcome Trust Centre for Human Genetics, Oxford, UK,Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|
153
|
Li Y, Huang S. Chromatin rules. Stem Cell Investig 2016; 3:4. [PMID: 27358896 DOI: 10.3978/j.issn.2306-9759.2016.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 11/14/2022]
Affiliation(s)
- Ying Li
- 1 Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA ; 2 Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau ; 3 UF Health Cancer Center, 4 The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Suming Huang
- 1 Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA ; 2 Macau Institute for Applied Research in Medicine and Health, State Key laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau ; 3 UF Health Cancer Center, 4 The Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
154
|
Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM. A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification. Cell Rep 2016; 16:66-78. [PMID: 27320915 PMCID: PMC5314425 DOI: 10.1016/j.celrep.2016.05.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA), and hedgehog (Hh), but how these pathways interact in a gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then it promotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.
Collapse
Affiliation(s)
- Scott A Rankin
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lu Han
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Alan P Kenny
- Division of Neonatology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Christopher T Anglin
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Emily A Grigg
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Calyn M Crawford
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - John M Shannon
- Division of Pulmonary Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Perinatal Institute and Cincinnati Children's Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
155
|
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR. LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2016; 2:648-662.e8. [PMID: 28078320 PMCID: PMC5042889 DOI: 10.1016/j.jcmgh.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Collapse
Key Words
- CDX2, caudal type homeobox2
- ChIPseq, chromatin immunoprecipitation sequencing
- Ct, cycle threshold
- DE, definitive endoderm
- E, embryonic day
- Endoderm
- GFP, green fluorescent protein
- Intestine
- LGR5
- Organoid
- Pluripotent Stem Cells
- Rspo, R-spondin protein
- WNT
- creER, cre recombinase protein fused to estrogen receptor
- hESC, human embryonic stem cell
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - David R. Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Namit Kumar
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alana M. Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Briana R. Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Melinda S. Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan,Correspondence Address correspondence to: Jason R. Spence, PhD, Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109. fax: (734) 763-4686.Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan 48109
| |
Collapse
|
156
|
Yong JS, Intriago-Baldeón DP, Lam EWF. FOXD3 controls pluripotency through modulating enhancer activity. Stem Cell Investig 2016; 3:17. [PMID: 27488581 DOI: 10.21037/sci.2016.05.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Jay-Sze Yong
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
157
|
van de Bunt M, Lako M, Barrett A, Gloyn AL, Hansson M, McCarthy MI, Beer NL, Honoré C. Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model. Islets 2016; 8:83-95. [PMID: 27246810 PMCID: PMC4987020 DOI: 10.1080/19382014.2016.1182276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2, p-value = 4.9 × 10(-5)) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1, p-value = 8.6 × 10(-5)), showed transcriptional variation consistent with their known developmental roles. However, these analyses highlighted many other genes with stage-specific expression patterns, some of which may be novel drivers or markers of islet development. For example, the leptin receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5, p-value = 2.0 × 10(-12)), suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and enrichment of relevant GO-terms (e.g. "insulin secretion"; odds ratio = 4.2, p-value = 1.9 × 10(-3)): however, principal component analysis indicated that in vitro-differentiated cells were more immature than adult islets. Integration of the stage-specific expression information with genetic data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor genes present in at least one developmental stage, facilitating refinement of potential effector transcripts. Together, these data show that expression profiling in an iPSC islet development model can further understanding of islet biology and T2D pathogenesis.
Collapse
Affiliation(s)
- Martijn van de Bunt
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Amy Barrett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Anna L. Gloyn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Center, Churchill Hospital, Oxford, United Kingdom
| | - Mattias Hansson
- Department of Diabetes Research, Novo Nordisk A/S, Maaloev, Denmark
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Center, Churchill Hospital, Oxford, United Kingdom
| | - Nicola L. Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- CONTACT Dr Nicola L Beer Oxford Center for Diabetes Endocrinology & Metabolism, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Christian Honoré
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Maaloev, Denmark
| |
Collapse
|
158
|
Goode DK, Obier N, Vijayabaskar MS, Lie-A-Ling M, Lilly AJ, Hannah R, Lichtinger M, Batta K, Florkowska M, Patel R, Challinor M, Wallace K, Gilmour J, Assi SA, Cauchy P, Hoogenkamp M, Westhead DR, Lacaud G, Kouskoff V, Göttgens B, Bonifer C. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Dev Cell 2016; 36:572-87. [PMID: 26923725 PMCID: PMC4780867 DOI: 10.1016/j.devcel.2016.01.024] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 12/04/2015] [Accepted: 01/26/2016] [Indexed: 12/22/2022]
Abstract
Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.
Collapse
Affiliation(s)
- Debbie K Goode
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Nadine Obier
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - M S Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Lie-A-Ling
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Andrew J Lilly
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Rebecca Hannah
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Monika Lichtinger
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Kiran Batta
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | | | - Rahima Patel
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Mairi Challinor
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Kirstie Wallace
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Jane Gilmour
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Salam A Assi
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Pierre Cauchy
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK
| | - David R Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Georges Lacaud
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- CRUK Manchester Institute, University of Manchester, Manchester M20 4BX, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Constanze Bonifer
- Institute of Cancer end Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK.
| |
Collapse
|
159
|
Abstract
During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
160
|
Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev 2016; 37:76-81. [PMID: 26826681 DOI: 10.1016/j.gde.2015.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 11/21/2022]
Abstract
Among the diverse transcription factors that are necessary to elicit changes in cell fate, both in embryonic development and in cellular reprogramming, a subset of factors are capable of binding to their target sequences on nucleosomal DNA and initiating regulatory events in silent chromatin. Such 'pioneer transcription factors' initiate cooperative interactions with other regulatory proteins to elicit changes in local chromatin structure. As a consequence of pioneer factor binding, the local chromatin can either become open and competent for activation, closed and repressed, or transcriptionally active. Understanding how pioneer factors initiate chromatin dynamics and how such can be blocked at heterochromatic sites provides insights into controlling cell fate transitions at will.
Collapse
|
161
|
Zaret KS. From Endoderm to Liver Bud: Paradigms of Cell Type Specification and Tissue Morphogenesis. Curr Top Dev Biol 2016; 117:647-69. [PMID: 26970006 DOI: 10.1016/bs.ctdb.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The early specification, rapid growth and morphogenesis, and conserved functions of the embryonic liver across diverse model organisms have made the system an experimentally facile paradigm for understanding basic regulatory mechanisms that govern cell differentiation and organogenesis. This essay highlights concepts that have emerged from studies of the discrete steps of foregut endoderm development into the liver bud, as well as from modeling the steps via embryonic stem cell differentiation. Such concepts include understanding the chromatin basis for the competence of progenitor cells to develop into specific lineages; the importance of combinatorial signaling from different sources to induce cell fates; the impact of inductive signaling on preexisting chromatin states; the ability of separately specified domains of cells to merge into a common tissue; and the marked cell biological dynamics, including interactions with the developing vasculature, which establish the initial morphogenesis and patterning of a tissue. The principles gleaned from these studies, focusing on the 2 days it takes for the endoderm to develop into a liver bud, should be instructive for many other organogenic systems and for manipulating tissues in regenerative contexts for biomedical purposes.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
162
|
Abstract
While studies of organ development have traditionally relied on model organisms, recent advances in embryonic stem cell (ESC) culture allow investigation of organogenesis in human cells. Wang et al. (2015) employ this system to map the dynamic enhancer landscape during ESC differentiation to the endoderm derivatives pancreas and liver.
Collapse
|
163
|
Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Yamaoka S, Tanabe M. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis. PLoS One 2016; 11:e0146564. [PMID: 26764906 PMCID: PMC4713149 DOI: 10.1371/journal.pone.0146564] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 01/25/2023] Open
Abstract
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.
Collapse
Affiliation(s)
- Hiromitsu Ito
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rama Adikrisna
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Matsumura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Arihiro Aihara
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Mitsunori
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Ban
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Ochiai
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kudo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
164
|
|
165
|
Kofent J, Zhang J, Spagnoli FM. The histone methyltransferase Setd7 promotes pancreatic progenitor identity. Development 2016; 143:3573-3581. [DOI: 10.1242/dev.136226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022]
Abstract
Cell fate specification depends on transcriptional activation driven by lineage-specific transcription factors as well as changes in chromatin organization. To date, the interplay between transcription factors and chromatin modifiers during development is not well understood. We focus here on the initiation of the pancreatic program from multipotent endodermal progenitors. Transcription factors that play key roles in regulating pancreatic progenitor state have been identified, but the chromatin regulators that help establishing and maintaining pancreatic fate are less well known. Using a comparative approach, we identify a critical role for the histone methyltransferase Setd7 in establishing pancreatic cell identity. We show that Setd7 is expressed in the prospective pancreatic endoderm of Xenopus and mouse embryos prior to Pdx1 induction. Importantly, we demonstrate that setd7 is sufficient and required for pancreatic cell fate specification in Xenopus. Functional and biochemical approaches in Xenopus and mouse endoderm support that Setd7 modulates methylation marks at pancreatic regulatory regions, possibly through interaction with the transcription factor Foxa2. Together, these results demonstrate that Setd7 acts as a central component of the transcription complex initiating the pancreatic program.
Collapse
Affiliation(s)
- Julia Kofent
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| | - Juan Zhang
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| | - Francesca M. Spagnoli
- Lab. of Molecular and Cellular Basis of Embryonic Development, Max-Delbrück Center for Molecular Medicine, Robert-Roessle strasse 10, Berlin 13125, Germany
| |
Collapse
|
166
|
Abstract
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Evans Quilichini
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France
| | - Cécile Haumaitre
- Centre National de la Recherche Scientifique (CNRS), UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France; Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France; Institut National de la Santé et de la Recherche Médicale (INSERM), France.
| |
Collapse
|
167
|
Genetic Regulation of Sinoatrial Node Development and Pacemaker Program in the Venous Pole. J Cardiovasc Dev Dis 2015; 2:282-298. [PMID: 26682210 PMCID: PMC4679406 DOI: 10.3390/jcdd2040282] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The definitive sinoatrial node (SAN), the primary pacemaker of the mammalian heart, develops from part of pro-pacemaking embryonic venous pole that expresses both Hcn4 and the transcriptional factor Shox2. It is noted that ectopic pacemaking activities originated from the myocardial sleeves of the pulmonary vein and systemic venous return, both derived from the Shox2+ pro-pacemaking cells in the venous pole, cause atrial fibrillation. However, the developmental link between the pacemaker properties in the embryonic venous pole cells and the SAN remains largely uncharacterized. Furthermore, the genetic program for the development of heterogeneous populations of the SAN is also under-appreciated. Here, we review the literature for a better understanding of the heterogeneous development of the SAN in relation to that of the sinus venosus myocardium and pulmonary vein myocardium. We also attempt to revisit genetic models pertinent to the development of pacemaker activities in the perspective of a Shox2-Nkx2-5 epistatic antagonism. Finally, we describe recent efforts in deciphering the regulatory networks for pacemaker development by genome-wide approaches.
Collapse
|
168
|
Kumar N, Richter J, Cutts J, Bush KT, Trujillo C, Nigam SK, Gaasterland T, Brafman D, Willert K. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. eLife 2015; 4. [PMID: 26554899 PMCID: PMC4631902 DOI: 10.7554/elife.08413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI:http://dx.doi.org/10.7554/eLife.08413.001 The development of ‘human pluripotent stem cells’ has the potential to revolutionize the future of medicine. This is because these cells can both replicate themselves indefinitely (i.e., they can self-renew) and develop into any of the cell types found in the human body (a process that is referred to as differentiation). These abilities mean that the cells could in theory be used to replace any tissues or organs that have been damaged by disease or injury. Unfortunately, transplanting stem cells that are capable of developing into any type of cell comes with the significant risk that these cells will form into a tumor. Once a cell has started to differentiate it can typically only go on to generate a restricted number of cell types. However, these differentiating cells also generally lose their ability to self-renew. Kumar et al. set out to challenge this fundamental property of differentiating cells. A high throughput-screening approach was used to test thousands of combinations of bioactive molecules (i.e., molecules that are known to affect living cells in different ways) to identify some that could promote the self-renewal of cells with a restricted potential to differentiate. Kumar et al. found specific conditions that could cause a population of cells, which they referred to as ‘intermediate mesodermal progenitor cells’ (or IMP cells for short), to self renew. These cells resemble those found in the middle layer of a very early human embryo, which typically go on to develop into only a subset of tissue types in the body—for example, muscle, kidneys and blood vessels, but not brain or lungs. Yet, when Kumar et al. stimulated the self-renewing IMP cells, these cells only differentiated into the cell types that make up the kidney and not any other types of cell. This tight restriction on the differentiation potential of these cells is highly important, because it means that these cells could greatly advance methods to generate kidney cells or even whole kidneys in the laboratory that are suitable for transplantation. DOI:http://dx.doi.org/10.7554/eLife.08413.002
Collapse
Affiliation(s)
- Nathan Kumar
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Jenna Richter
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| | - Kevin T Bush
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Cleber Trujillo
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Sanjay K Nigam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Terry Gaasterland
- Scripps Institution of Oceanography, Scripps Genome Center, University of California, San Diego, San Diego, United States
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
169
|
A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 2015; 13:326-36. [PMID: 26440894 DOI: 10.1016/j.celrep.2015.08.082] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/10/2015] [Accepted: 08/29/2015] [Indexed: 01/05/2023] Open
Abstract
The generation of pancreas, liver, and intestine from a common pool of progenitors in the foregut endoderm requires the establishment of organ boundaries. How dorsal foregut progenitors activate pancreatic genes and evade the intestinal lineage choice remains unclear. Here, we identify Pdx1 and Sox9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors.
Collapse
|
170
|
Ober EA, Grapin-Botton A. At new heights - endodermal lineages in development and disease. Development 2015; 142:1912-7. [PMID: 26015535 DOI: 10.1242/dev.121095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoderm gives rise to diverse tissues and organs that are essential for the homeostasis and metabolism of the organism: the thymus, thyroid, lungs, liver and pancreas, and the functionally diverse domains of the digestive tract. Classically, the endoderm, the 'innermost germ layer', was in the shadow of the ectoderm and mesoderm. However, at a recent Keystone meeting it took center stage, revealing astonishing progress in dissecting the mechanisms underlying the development and malfunction of the endodermal organs. In vitro cultures of stem and progenitor cells have become widespread, with remarkable success in differentiating three-dimensional organoids, which - in a new turn for the field - can be used as disease models.
Collapse
Affiliation(s)
- Elke A Ober
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- Danish Stem Cell Center (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
171
|
Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes (Basel) 2015; 6:641-61. [PMID: 26193323 PMCID: PMC4584322 DOI: 10.3390/genes6030641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.
Collapse
|
172
|
Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. J Mol Biol 2015; 428:1409-22. [PMID: 26119455 DOI: 10.1016/j.jmb.2015.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023]
Abstract
Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation.
Collapse
|