151
|
Wu T, Rabi SA, Michaud WA, Becerra D, Gilpin SE, Mino-Kenudson M, Ott HC. Protease inhibitor Camostat Mesyalte blocks wild type SARS-CoV-2 and D614G viral entry in human engineered miniature lungs. Biomaterials 2022; 285:121509. [PMID: 35533440 PMCID: PMC8999341 DOI: 10.1016/j.biomaterials.2022.121509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
The catastrophic global effects of the SARS-CoV-2 pandemic highlight the need to develop novel therapeutics strategies to prevent and treat viral infections of the respiratory tract. To enable this work, we need scalable, affordable, and physiologically relevant models of the human lung, the primary organ involved in the pathogenesis of COVID-19. To date, most COVID-19 in vitro models rely on platforms such as cell lines and organoids. While 2D and 3D models have provided important insights, human distal lung models that can model epithelial viral uptake have yet to be established. We hypothesized that by leveraging techniques of whole organ engineering and directed differentiation of induced pluripotent stem cells (iPSC) we could model human distal lung epithelium, examine viral infection at the tissue level in real time, and establish a platform for COVID-19 related research ex vivo. In the present study, we used type 2 alveolar epithelial cells (AT2) derived from human iPSCs to repopulate whole rat lung acellular scaffolds and maintained them in extended biomimetic organ culture for 30 days to induce the maturation of distal lung epithelium. We observed emergence of a mixed type 1 and type 2 alveolar epithelial phenotype during tissue formation. When exposing our system to a pseudotyped lentivirus containing the spike of wildtype SARS-CoV-2 and the more virulent D614G, we observed progression of the infection in real time. We then found that the protease inhibitor Camostat Mesyalte significantly reduced viral transfection in distal lung epithelium. In summary, our data show that a mature human distal lung epithelium can serve as a novel moderate throughput research platform to examine viral infection and to evaluate novel therapeutics ex vivo.
Collapse
Affiliation(s)
- Tong Wu
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Seyed A. Rabi
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Cardiovascular Surgery, Boston, MA, USA
| | - William A. Michaud
- Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Massachusetts General Hospital, Division of Surgical Oncology, Boston, MA, USA
| | - David Becerra
- Duke University Medical Center, Department of General Surgery, USA
| | - Sarah E. Gilpin
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Pathology, Boston, MA, USA
| | - Harald C. Ott
- Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Massachusetts General Hospital, Department of Surgery, Boston, MA, USA,Corresponding author. Massachusetts General Hospital, Center for Regenerative Medicine, Boston, MA, USA
| |
Collapse
|
152
|
Fernandez RJ, Gardner ZJG, Slovik KJ, Liberti DC, Estep KN, Yang W, Chen Q, Santini GT, Perez JV, Root S, Bhatia R, Tobias JW, Babu A, Morley MP, Frank DB, Morrisey EE, Lengner CJ, Johnson FB. GSK3 inhibition rescues growth and telomere dysfunction in dyskeratosis congenita iPSC-derived type II alveolar epithelial cells. eLife 2022; 11:64430. [PMID: 35559731 PMCID: PMC9200405 DOI: 10.7554/elife.64430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.
Collapse
Affiliation(s)
- Rafael Jesus Fernandez
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Zachary J G Gardner
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, United States
| | - Katherine J Slovik
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Derek C Liberti
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Katrina N Estep
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, United States
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Qijun Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Garrett T Santini
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Javier V Perez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sarah Root
- College of Arts and Sciences and Vagelos Scholars Program, University of Pennsylvania, Philadelphia, United States
| | - Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, United States
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, United States
| | - David B Frank
- Penn-CHOP Lung Biology Institute, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Edward E Morrisey
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States
| | - Christopher J Lengner
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
153
|
Mohgan R, Candasamy M, Mayuren J, Singh SK, Gupta G, Dua K, Chellappan DK. Emerging Paradigms in Bioengineering the Lungs. Bioengineering (Basel) 2022; 9:bioengineering9050195. [PMID: 35621473 PMCID: PMC9137616 DOI: 10.3390/bioengineering9050195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
In end-stage lung diseases, the shortage of donor lungs for transplantation and long waiting lists are the main culprits in the significantly increasing number of patient deaths. New strategies to curb this issue are being developed with the help of recent advancements in bioengineering technology, with the generation of lung scaffolds as a steppingstone. There are various types of lung scaffolds, namely, acellular scaffolds that are developed via decellularization and recellularization techniques, artificial scaffolds that are synthesized using synthetic, biodegradable, and low immunogenic materials, and hybrid scaffolds which combine the advantageous properties of materials in the development of a desirable lung scaffold. There have also been advances in the design of bioreactors in terms of providing an optimal regenerative environment for the maturation of functional lung tissue over time. In this review, the emerging paradigms in the field of lung tissue bioengineering will be discussed.
Collapse
Affiliation(s)
- Raxshanaa Mohgan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India;
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia;
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| |
Collapse
|
154
|
Chan JK, Chadwick EA, Taniguchi D, Ahmadipour M, Suzuki T, Romero D, Amon C, Waddell TK, Karoubi G, Bazylak A. Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization. Front Bioeng Biotechnol 2022; 10:891407. [PMID: 35573256 PMCID: PMC9092599 DOI: 10.3389/fbioe.2022.891407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/05/2022] Open
Abstract
We created a transient computational fluid dynamics model featuring a particle deposition probability function that incorporates inertia to quantify the transport and deposition of cells in mouse lung vasculature for the re-endothelialization of the acellular organ. Our novel inertial algorithm demonstrated a 73% reduction in cell seeding efficiency error compared to two established particle deposition algorithms when validated with experiments based on common clinical practices. We enhanced the uniformity of cell distributions in the lung vasculature by increasing the injection flow rate from 3.81 ml/min to 9.40 ml/min. As a result, the cell seeding efficiency increased in both the numerical and experimental results by 42 and 66%, respectively.
Collapse
Affiliation(s)
- Jason K.D. Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eric A. Chadwick
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Mohammadali Ahmadipour
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - David Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Cristina Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- *Correspondence: Aimy Bazylak,
| |
Collapse
|
155
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
156
|
Basil MC, Cardenas-Diaz FL, Kathiriya JJ, Morley MP, Carl J, Brumwell AN, Katzen J, Slovik KJ, Babu A, Zhou S, Kremp MM, McCauley KB, Li S, Planer JD, Hussain SS, Liu X, Windmueller R, Ying Y, Stewart KM, Oyster M, Christie JD, Diamond JM, Engelhardt JF, Cantu E, Rowe SM, Kotton DN, Chapman HA, Morrisey EE. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 2022; 604:120-126. [PMID: 35355013 PMCID: PMC9297319 DOI: 10.1038/s41586-022-04552-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
The human lung differs substantially from its mouse counterpart, resulting in a distinct distal airway architecture affected by disease pathology in chronic obstructive pulmonary disease. In humans, the distal branches of the airway interweave with the alveolar gas-exchange niche, forming an anatomical structure known as the respiratory bronchioles. Owing to the lack of a counterpart in mouse, the cellular and molecular mechanisms that govern respiratory bronchioles in the human lung remain uncharacterized. Here we show that human respiratory bronchioles contain a unique secretory cell population that is distinct from cells in larger proximal airways. Organoid modelling reveals that these respiratory airway secretory (RAS) cells act as unidirectional progenitors for alveolar type 2 cells, which are essential for maintaining and regenerating the alveolar niche. RAS cell lineage differentiation into alveolar type 2 cells is regulated by Notch and Wnt signalling. In chronic obstructive pulmonary disease, RAS cells are altered transcriptionally, corresponding to abnormal alveolar type 2 cell states, which are associated with smoking exposure in both humans and ferrets. These data identify a distinct progenitor in a region of the human lung that is not found in mouse that has a critical role in maintaining the gas-exchange compartment and is altered in chronic lung disease.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaymin J Kathiriya
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Justine Carl
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis N Brumwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy Katzen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine J Slovik
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison M Kremp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine B McCauley
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shah S Hussain
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rebecca Windmueller
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ying
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen M Stewart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Oyster
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Christie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Edward Cantu
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Rowe
- Department of Medicine and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Harold A Chapman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
157
|
Wambach JA, Nogee LM, Cole FS. First Steps toward Personalized Therapies for ABCA3 Deficiency. Am J Respir Cell Mol Biol 2022; 66:349-350. [PMID: 35077664 PMCID: PMC8990116 DOI: 10.1165/rcmb.2021-0405ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatric Washington University School of Medicine St. Louis, Missouri
| | - Lawrence M Nogee
- Department of Pediatrics Johns Hopkins University School of Medicine Baltimore, Maryland
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatric Washington University School of Medicine St. Louis, Missouri
| |
Collapse
|
158
|
Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, Alysandratos KD, Richards A, Garcia-de-Alba C, Huang J, Hix OT, Werder RB, Bullitt E, Hinds A, Falconer I, Villacorta-Martin C, Jaenisch R, Kim CF, Kotton DN, Wilson AA. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022; 7:155589. [PMID: 35315362 PMCID: PMC8986076 DOI: 10.1172/jci.insight.155589] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 alveolar epithelial cells (AT2s), facultative progenitor cells of the lung alveolus, play a vital role in the biology of the distal lung. In vitro model systems that incorporate human cells, recapitulate the biology of primary AT2s, and interface with the outside environment could serve as useful tools to elucidate functional characteristics of AT2s in homeostasis and disease. We and others recently adapted human induced pluripotent stem cell–derived AT2s (iAT2s) for air-liquid interface (ALI) culture. Here, we comprehensively characterize the effects of ALI culture on iAT2s and benchmark their transcriptional profile relative to both freshly sorted and cultured primary human fetal and adult AT2s. We find that iAT2s cultured at ALI maintain an AT2 phenotype while upregulating expression of transcripts associated with AT2 maturation. We then leverage this platform to assay the effects of exposure to clinically significant, inhaled toxicants including cigarette smoke and electronic cigarette vapor.
Collapse
Affiliation(s)
- Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Julio Sainz de Aja
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Olivia T Hix
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University, Boston, Massachusetts, USA
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Isaac Falconer
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary & Respiratory Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, USA.,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
159
|
Choi S, Choi J, Cheon S, Song J, Kim SY, Kim JE, Nam DH, Manzar G, Kim SM, Kang HS, Kim KK, Jeong SH, Lee JH, Park EK, Lee M, Lee HA, Kim KS, Park HJ, Oh WK, Park C, Lee CH, Kim EM. Pulmonary fibrosis model using micro-CT analyzable human PSC-derived alveolar organoids containing alveolar macrophage-like cells. Cell Biol Toxicol 2022; 38:557-575. [PMID: 35267148 PMCID: PMC8907399 DOI: 10.1007/s10565-022-09698-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Human lung organoids (hLOs) are useful for disease modelling and drug screening. However, a lack of immune cells in hLOs limits the recapitulation of in vivo cellular physiology. Here, we generated hLOs containing alveolar macrophage (AMφ)–like cells derived from pluripotent stem cells (PSC). To bridge hLOs with advanced human lung high-resolution X-ray computed tomography (CT), we acquired quantitative micro-CT images. Three hLO types were observed during differentiation. Among them, alveolar hLOs highly expressed not only lung epithelial cell markers but also AMφ-specific markers. Furthermore, CD68+ AMφ-like cells were spatially organized on the luminal epithelial surface of alveolar hLOs. Bleomycin-treated alveolar hLOs showed upregulated expression of fibrosis-related markers and extracellular matrix deposits in the alveolar sacs. Alveolar hLOs also showed structural alterations such as excessive tissue fraction under bleomycin treatment. Therefore, we suggest that micro-CT analyzable PSC-derived alveolar hLOs are a promising in vitro model to predict lung toxicity manifestations, including fibrosis.
Collapse
Affiliation(s)
- Seri Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.,Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jihong Song
- Department of Internal Medicine, Santa Clara Valley Medical Center, San Jose, CA, 95128, USA
| | - Seung-Yeon Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.,Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Eun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dae-Hwan Nam
- Immune Research Institute, Seegene Medical Foundation, Seoul, 04805, Republic of Korea
| | - Gohar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77025, USA
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi, 15355, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Minseob Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ki-Suk Kim
- R&D Center for Advanced Pharmaceuticals and Evaluation, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
160
|
He Y, Rofaani E, Huang X, Huang B, Liang F, Wang L, Shi J, Peng J, Chen Y. Generation of Alveolar Epithelium Using Reconstituted Basement Membrane and hiPSC-Derived Organoids. Adv Healthc Mater 2022; 11:e2101972. [PMID: 34935309 DOI: 10.1002/adhm.202101972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Indexed: 12/11/2022]
Abstract
In vitro modeling of alveolar epithelium needs to recapitulate features of both cellular and noncellular components of the lung tissues. Herein, a method is presented to generate alveolar epithelium by using human induced pluripotent stem cells (hiPSCs) and reconstituted or artificial basement membrane (ABM). The ABM is obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers as backbone and a patterned honeycomb microframe for handling. Alveolar organoids are obtained from hiPSCs and then dissociated into single cells. After replating the alveolar cells on the ABM and a short-period incubation under submerged and air-liquid interface culture conditions, an alveolar epithelium is achieved, showing high-level expressions of both alveolar cell-specific proteins and characteristic tight junctions. Besides, endothelial cells derived from the same hiPSCs are cocultured on the backside of the epithelium, forming an air-blood barrier. The method is generic and can potentially be applied to other types of artificial epithelium and endothelium.
Collapse
Affiliation(s)
- Yong He
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Elrade Rofaani
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Xiaochen Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Boxin Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Feng Liang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Li Wang
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Jian Shi
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Juan Peng
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Yong Chen
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| |
Collapse
|
161
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Huang SXL, Vunjak-Novakovic G, Kim J. Imaging-guided bioreactor for de-epithelialization and long-term cultivation of ex vivo rat trachea. LAB ON A CHIP 2022; 22:1018-1031. [PMID: 35166739 PMCID: PMC8942046 DOI: 10.1039/d1lc01105g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent synergistic advances in organ-on-chip and tissue engineering technologies offer opportunities to create in vitro-grown tissue or organ constructs that can faithfully recapitulate their in vivo counterparts. Such in vitro tissue or organ constructs can be utilized in multiple applications, including rapid drug screening, high-fidelity disease modeling, and precision medicine. Here, we report an imaging-guided bioreactor that allows in situ monitoring of the lumen of ex vivo airway tissues during controlled in vitro tissue manipulation and cultivation of isolated rat trachea. Using this platform, we demonstrated partial removal of the rat tracheal epithelium (i.e., de-epithelialization) without disrupting the underlying subepithelial cells and extracellular matrix. Through different tissue evaluation assays, such as immunofluorescent staining, DNA/protein quantification, and electron beam microscopy, we showed that the epithelium of the tracheal lumen can be effectively removed with negligible disruption in the underlying tissue layers, such as cartilage and blood vessel. Notably, using a custom-built micro-optical imaging device integrated with the bioreactor, the trachea lumen was visualized at the cellular level, and removal of the endogenous epithelium and distribution of locally delivered exogenous cells were demonstrated in situ. Moreover, the de-epithelialized trachea supported on the bioreactor allowed attachment and growth of exogenous cells seeded topically on its denuded tissue surface. Collectively, the results suggest that our imaging-enabled rat trachea bioreactor and localized cell replacement method can facilitate creation of bioengineered in vitro airway tissue that can be used in different biomedical applications.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
162
|
Wang R, Hume AJ, Beermann ML, Simone-Roach C, Lindstrom-Vautrin J, Le Suer J, Huang J, Olejnik J, Villacorta-Martin C, Bullitt E, Hinds A, Ghaedi M, Rollins S, Werder RB, Abo KM, Wilson AA, Mühlberger E, Kotton DN, Hawkins FJ. Human airway lineages derived from pluripotent stem cells reveal the epithelial responses to SARS-CoV-2 infection. Am J Physiol Lung Cell Mol Physiol 2022; 322:L462-L478. [PMID: 35020534 PMCID: PMC8917936 DOI: 10.1152/ajplung.00397.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
There is an urgent need to understand how SARS-CoV-2 infects the airway epithelium and in a subset of individuals leads to severe illness or death. Induced pluripotent stem cells (iPSCs) provide a near limitless supply of human cells that can be differentiated into cell types of interest, including airway epithelium, for disease modeling. We present a human iPSC-derived airway epithelial platform, composed of the major airway epithelial cell types, that is permissive to SARS-CoV-2 infection. Subsets of iPSC-airway cells express the SARS-CoV-2 entry factors angiotensin-converting enzyme 2 (ACE2), and transmembrane protease serine 2 (TMPRSS2). Multiciliated cells are the primary initial target of SARS-CoV-2 infection. On infection with SARS-CoV-2, iPSC-airway cells generate robust interferon and inflammatory responses, and treatment with remdesivir or camostat mesylate causes a decrease in viral propagation and entry, respectively. In conclusion, iPSC-derived airway cells provide a physiologically relevant in vitro model system to interrogate the pathogenesis of, and develop treatment strategies for, COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ruobing Wang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts
| | - Mary Lou Beermann
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chantelle Simone-Roach
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Jake Le Suer
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University, Boston, Massachusetts
| | - Anne Hinds
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mahboobe Ghaedi
- Research and Early Development Respiratory & Inflammation (R&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Finn J Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
163
|
Liu H, Liu S, Jiang J, Zhang Y, Luo Y, Zhao J, Xu J, Xie Y, Liao W, Wang W, Nie Y, Li S, Deng W. CoQ10 enhances the efficacy of airway basal stem cell transplantation on bleomycin-induced idiopathic pulmonary fibrosis in mice. Respir Res 2022; 23:39. [PMID: 35219329 PMCID: PMC8882301 DOI: 10.1186/s12931-022-01964-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Background Recent studies have demonstrated that airway basal stem cells (BCs) transplantation can ameliorate bleomycin-induced idiopathic pulmonary fibrosis (IPF) through lung regeneration promotion. However, BCs under oxidative stress in the alveolar microenvironment are poor in survival, causing unsatisfied efficacy of BCs transplantation. In this study, we investigated whether Coenzyme Q10(CoQ10) counteracts oxidative stress in the alveolar microenvironment, thus improved the efficacy of BCs transplantation for IPF treatment. Methods The protective effects of CoQ10 on H2O2-induced BCs apoptosis and cytoplasmic reactive oxygen species (ROS) level were tested by flow cytometry in vitro. The therapeutic effects of BCs combined with CoQ10 were compared to a single BCs transplantation protocol in IPF treatment after 2 weeks and were evaluated by parameters including changes of body weight and survival rate, as well as various levels of pulmonary inflammation, α-SMA expression and hydroxyproline (HYP) in IPF mouse lung tissues. Results CoQ10 preincubation with BCs (10 mM, 24 h) significantly reduced the late apoptosis of BCs and the number of oxidative stressful BCs as a result of H2O2 stimulation (1 mM, 6 h) in vitro. IPF mouse model was constructed through bleomycin (5 mg/kg) intratracheal instillation. Bleomycin-induced IPF mice showed weight loss continuously and mortality increased progressively during modeling. Serious pulmonary inflammatory cell infiltration, collagen fiber proliferation, and collagen protein deposition were observed in lung tissues of IPF mice. Though BCs transplantation alone improved indicators above in bleomycin-induced IPF mice to some extent, the combination with CoQ10 improved the transplantation efficacy and obtained better therapeutic effects. Conclusion CoQ10 blocked H2O2-induced apoptosis of BCs and ROS production in vitro, and enhanced the efficacy of BCs transplantation against bleomycin-induced IPF in mice.
Collapse
|
164
|
Zhao F, Wang J, Wang Q, Hou Z, Zhang Y, Li X, Wu Q, Chen H. Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration. Exp Anim 2022; 71:316-328. [PMID: 35197405 PMCID: PMC9388344 DOI: 10.1538/expanim.21-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to COVID-19 patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Zhilli Hou
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases
| | - Yingchao Zhang
- Department of Pulmonary and Critical Care Medicine, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Tianjin Key Laboratory of Lung Regenerative Medicine
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University.,Department of Basic Medicine, Haihe Hospital, Tianjin University.,Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases.,Tianjin Key Laboratory of Lung Regenerative Medicine
| |
Collapse
|
165
|
Tran E, Shi T, Li X, Chowdhury AY, Jiang D, Liu Y, Wang H, Yan C, Wallace WD, Lu R, Ryan AL, Marconett CN, Zhou B, Borok Z, Offringa IA. Development of human alveolar epithelial cell models to study distal lung biology and disease. iScience 2022; 25:103780. [PMID: 35169685 PMCID: PMC8829779 DOI: 10.1016/j.isci.2022.103780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Many acute and chronic diseases affect the distal lung alveoli. Alveolar epithelial cell (AEC) lines are needed to better model these diseases. We used de-identified human remnant transplant lungs to develop a method to establish AEC lines. The lines grow well in 2-dimensional (2D) culture as epithelial monolayers expressing lung progenitor markers. In 3-dimensional (3D) culture with fibroblasts, Matrigel, and specific media conditions, the cells form alveolar-like organoids expressing mature AEC markers including aquaporin 5 (AQP5), G-protein-coupled receptor class C group 5 member A (GPRC5A), and surface marker HTII280. Single-cell RNA sequencing of an AEC line in 2D versus 3D culture revealed increased cellular heterogeneity and induction of cytokine and lipoprotein signaling in 3D organoids. Our approach yields lung progenitor lines that retain the ability to differentiate along the alveolar cell lineage despite long-term expansion and provides a valuable system to model and study the distal lung in vitro.
Collapse
Affiliation(s)
- Evelyn Tran
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Tuo Shi
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Xiuwen Li
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Translational Genomics, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Adnan Y. Chowdhury
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Du Jiang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Yixin Liu
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Hongjun Wang
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Chunli Yan
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - William D. Wallace
- Department of Pathology, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Amy L. Ryan
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Crystal N. Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Beiyun Zhou
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| | - Zea Borok
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ite A. Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
166
|
Leibel SL, Tseu I, Zhou A, Hodges A, Yin J, Bilodeau C, Goltsis O, Post M. Metabolomic profiling of human pluripotent stem cell differentiation into lung progenitors. iScience 2022; 25:103797. [PMID: 35198866 PMCID: PMC8850758 DOI: 10.1016/j.isci.2022.103797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.
Collapse
Affiliation(s)
- Sandra L Leibel
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irene Tseu
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Anson Zhou
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
167
|
van Riet S, van Schadewijk A, Khedoe PPSJ, Limpens RWAL, Bárcena M, Stolk J, Hiemstra PS, van der Does AM. Organoid-based Expansion of Patient-Derived Primary Alveolar Type-2 Cells for Establishment of Alveolus Epithelial Lung-Chip Cultures. Am J Physiol Lung Cell Mol Physiol 2022; 322:L526-L538. [PMID: 35137633 PMCID: PMC8957343 DOI: 10.1152/ajplung.00153.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of effective treatment strategies for lung tissue destruction as seen in emphysema would greatly benefit from representative human in vitro models of the alveolar compartment. Studying how cellular cross-talk and/or (altered) biomechanical cues affect alveolar epithelial function could provide new insight for tissue repair strategies. Preclinical models of the alveolus ideally combine human primary patient-derived lung cells with advanced cell culture applications such as breathing-related stretch, to reliably represent the alveolar microenvironment. To test the feasibility of such a model, we isolated primary alveolar type-2 cells (AEC2) from patient-derived lung tissues including those from patients with severe emphysema, using magnetic bead-based selection of cells expressing the AEC2 marker HTII-280. We obtained pure alveolar feeder-free organoid cultures using a minimally modified commercial medium. This was confirmed by known AEC2 markers as well as by detection of lamellar bodies using electron microscopy. Following (organoid-based) expansion, cells were seeded on both cell culture inserts and the Chip-S1® Organ-Chip that has a flexible PDMS membrane enabling the application of dynamic stretch. AEC2 cultured for 7 days on inserts or the chip maintained expression of HTII-280, pro-surfactant protein C (SP-C), SP-A and SP-B and zonula occludens-1 (ZO-1) also in the presence of stretch. AEC2 cultured on the chip showed lower expression levels of epithelial-mesenchymal transition-related vimentin expression compared to static cultures on inserts. The combination of a straightforward culture method of patient-derived AEC2 and their application in microfluidic chip cultures, supports successful development of more representative human preclinical models of the (diseased) alveolar compartment.
Collapse
Affiliation(s)
- Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - P Padmini S J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald W A L Limpens
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, the Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
168
|
Hume AJ, Heiden B, Olejnik J, Suder EL, Ross S, Scoon WA, Bullitt E, Ericsson M, White MR, Turcinovic J, Thao TTN, Hekman RM, Kaserman JE, Huang J, Alysandratos KD, Toth GE, Jakab F, Kotton DN, Wilson AA, Emili A, Thiel V, Connor JH, Kemenesi G, Cifuentes D, Mühlberger E. Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathog 2022; 18:e1010268. [PMID: 35120176 PMCID: PMC8849519 DOI: 10.1371/journal.ppat.1010268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/16/2022] [Accepted: 01/11/2022] [Indexed: 01/06/2023] Open
Abstract
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness. Due to increasing utilization of high-throughput sequencing technologies, RNA sequences of many unknown viruses have been discovered in bats and other animal species. Research on the pathogenic potential of these viruses is hampered by incomplete viral genome sequences and difficulties in isolating infectious virus from the animal hosts. One example of these potentially zoonotic pathogens is Lloviu virus (LLOV), a filovirus which is closely related to Ebola virus. Here we applied molecular virological approaches, including minigenome assays, to complement the incomplete LLOV genome ends with sequences from related viruses and identify cis-acting elements required for LLOV replication and transcription that were missing in the published LLOV sequence. The resulting full-length clones were used to generate infectious recombinant LLOV. We used this virus for electron microscopic analyses, infection studies in human cells, host response analysis, and antiviral drug testing. Our results provide new insights into the pathogenic potential of LLOV and delineate a roadmap for studying uncultured viruses.
Collapse
Affiliation(s)
- Adam J. Hume
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- * E-mail: (AJH); (EM)
| | - Baylee Heiden
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Judith Olejnik
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Ellen L. Suder
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Stephen Ross
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Whitney A. Scoon
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Mitchell R. White
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Jacquelyn Turcinovic
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- Program in Bioinformatics, Boston University; Boston, Massachusetts, United States of America
| | - Tran T. N. Thao
- Institute of Virology and Immunology (IVI); Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern; Bern, Switzerland
| | - Ryan M. Hekman
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Center for Network Systems Biology, Boston University; Boston, Massachusetts, United States of America
| | - Joseph E. Kaserman
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Gabor E. Toth
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Ferenc Jakab
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston Medical Center; Boston, Massachusetts, United States of America
| | - Andrew A. Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center; Boston, Massachusetts, United States of America
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Andrew Emili
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
- Center for Network Systems Biology, Boston University; Boston, Massachusetts, United States of America
- Department of Biology, Boston University; Boston, Massachusetts, United States of America
| | - Volker Thiel
- Institute of Virology and Immunology (IVI); Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern; Bern, Switzerland
| | - John H. Connor
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
| | - Gabor Kemenesi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs; Pécs, Hungary
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine; Boston, Massachusetts, United States of America
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine; Boston, Massachusetts, United States of America
- National Emerging Infectious Diseases Laboratories, Boston University; Boston, Massachusetts, United States of America
- * E-mail: (AJH); (EM)
| |
Collapse
|
169
|
Hurskainen M, Cyr-Depauw C, Thébaud B. Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies. Semin Fetal Neonatal Med 2022; 27:101243. [PMID: 33962890 DOI: 10.1016/j.siny.2021.101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.
Collapse
Affiliation(s)
- Maria Hurskainen
- Division of Pediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Chanèle Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
170
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
171
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
172
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
173
|
David C, Frémond ML. Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells 2022; 11:318. [PMID: 35159128 PMCID: PMC8834229 DOI: 10.3390/cells11030318] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
STING-associated vasculopathy with onset in infancy (SAVI) is a type I interferonopathy caused by gain-of-function mutations in STING1 encoding stimulator of interferon genes (STING) protein. SAVI is characterized by severe inflammatory lung disease, a feature not observed in previously described type I interferonopathies i.e., Mendelian autoinflammatory disorders defined by constitutive activation of the type I interferon (IFN) pathway. Molecular defects in nucleic acid metabolism or sensing are central to the pathophysiology of these diseases, with such defects occurring at any step of the tightly regulated pathway of type I IFN production and signaling (e.g., exonuclease loss of function, RNA-DNA hybrid accumulation, constitutive activation of adaptor proteins such as STING). Among over 30 genotypes, SAVI and COPA syndrome, whose pathophysiology was recently linked to a constitutive activation of STING signaling, are the only type I interferonopathies presenting with predominant lung involvement. Lung disease is the leading cause of morbidity and mortality in these two disorders which do not respond to conventional immunosuppressive therapies and only partially to JAK1/2 inhibitors. In human silicosis, STING-dependent sensing of self-DNA following cell death triggered by silica exposure has been found to drive lung inflammation in mice and human models. These recent findings support a key role for STING and nucleic acid sensing in the homeostasis of intrinsic pulmonary inflammation. However, mechanisms by which monogenic defects in the STING pathway lead to pulmonary damages are not yet fully elucidated, and an improved understanding of such mechanisms is fundamental to improved future patient management. Here, we review the recent insights into the pathophysiology of SAVI and outline our current understanding of self-nucleic acid-mediated lung inflammation in humans.
Collapse
Affiliation(s)
- Clémence David
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Marie-Louise Frémond
- Université de Paris, Imagine Institute, Laboratory of Neurogenetics and Neuroinflammation, 24 Boulevard du Montparnasse, 75015 Paris, France
- Paediatric Immunology-Hematology and Rheumatology Department, Hôpital Necker-Enfants Malades, APHP.Centre-Université de Paris, 24 Boulevard du Montparnasse, 75015 Paris, France
| |
Collapse
|
174
|
Cooney AL, Wambach JA, Sinn PL, McCray PB. Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Front Genome Ed 2022; 3:785829. [PMID: 35098209 PMCID: PMC8798122 DOI: 10.3389/fgeed.2021.785829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
Pulmonary surfactant is critically important to prevent atelectasis by lowering the surface tension of the alveolar lining liquid. While respiratory distress syndrome (RDS) is common in premature infants, severe RDS in term and late preterm infants suggests an underlying genetic etiology. Pathogenic variants in the genes encoding key components of pulmonary surfactant including surfactant protein B (SP-B, SFTPB gene), surfactant protein C (SP-C, SFTPC gene), and the ATP-Binding Cassette transporter A3 (ABCA3, ABCA3 gene) result in severe neonatal RDS or childhood interstitial lung disease (chILD). These proteins play essential roles in pulmonary surfactant biogenesis and are expressed in alveolar epithelial type II cells (AEC2), the progenitor cell of the alveolar epithelium. SP-B deficiency most commonly presents in the neonatal period with severe RDS and requires lung transplantation for survival. SFTPC mutations act in an autosomal dominant fashion and more commonly presents with chILD or idiopathic pulmonary fibrosis than neonatal RDS. ABCA3 deficiency often presents as neonatal RDS or chILD. Gene therapy is a promising option to treat monogenic lung diseases. Successes and challenges in developing gene therapies for genetic disorders of surfactant dysfunction include viral vector design and tropism for target cell types. In this review, we explore adeno-associated virus (AAV), lentiviral, and adenoviral (Ad)-based vectors as delivery vehicles. Both gene addition and gene editing strategies are compared to best design treatments for lung diseases resulting from pathogenic variants in the SFTPB, SFTPC, and ABCA3 genes.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Ashley L. Cooney,
| | - Jennifer A. Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Patrick L. Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| | - Paul B. McCray
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
175
|
Ngan SY, Quach HT, Laselva O, Huang EN, Mangos M, Xia S, Bear CE, Wong AP. Stage-Specific Generation of Human Pluripotent Stem Cell Derived Lung Models to Measure CFTR Function. Curr Protoc 2022; 2:e341. [PMID: 35025140 DOI: 10.1002/cpz1.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (ES) and induced pluripotent stem cells (iPSC) are powerful tools that have the potential to generate in vitro human lung epithelial cells. However, challenges in efficiency and reproducibility remain in utilizing the cells for therapy discovery platforms. Here, we optimize our previously published protocols to efficiently generate three developmental stages of the lung model (fetal lung epithelial progenitors, fLEP; immature airway epithelial spheroid, AES; air-liquid interface culture, ALI), and demonstrate its potential for cystic fibrosis (CF) drug discovery platforms. The stepwise approach directs differentiation from hPSC to definitive endoderm, anterior ventral foregut endoderm, and fetal lung progenitor cells. The article also describes the generation of immature airway epithelial spheroids in Matrigel with epithelial cells sorted by a magnetic-activated cell sorting system, and the generation of adult-like airway epithelia through air-liquid interface conditions. We demonstrate that this optimized procedure generates remarkably higher cystic fibrosis transmembrane conductance regulator (CFTR) expression and function than our previous method, and thus is uniquely suitable for CF research applications. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: hESC/hiPSC differentiation to fetal lung progenitors Basic Protocol 2: Formation of airway epithelial spheroids Alternate Protocol 1: Cryopreservation of airway epithelial spheroids Basic Protocol 3: Differentiation and maturation in air-liquid interface culture Alternate Protocol 2: Differentiation and maturation of epithelial progenitors from airway epithelial spheroids in ALI culture.
Collapse
Affiliation(s)
- Shuk Yee Ngan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Henry T Quach
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Onofrio Laselva
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical and Surgical Sciences, University of Foggia, Foggia, Puglia, Italy
| | - Elena N Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Mangos
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunny Xia
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
176
|
Ng WH, Johnston EK, Tan JJ, Bliley JM, Feinberg AW, Stolz DB, Sun M, Wijesekara P, Hawkins F, Kotton DN, Ren X. Recapitulating human cardio-pulmonary co-development using simultaneous multilineage differentiation of pluripotent stem cells. eLife 2022; 11:67872. [PMID: 35018887 PMCID: PMC8846595 DOI: 10.7554/elife.67872] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human-induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (μTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage μT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis. Organs begin developing during the first few months of pregnancy, while the baby is still an embryo. These early stages of development are known as embryogenesis – a tightly organized process, during which the embryo forms different layers of stem cells. These cells can be activated to turn into a particular type of cell, such as a heart or a lung cell. The heart and lungs develop from different layers within the embryo, which must communicate with each other for the organs to form correctly. For example, chemical signals can be released from and travel between layers of the embryo, activating processes inside cells located in the different areas. In mouse models, chemical signals and cells travel between developing heart and lung, which helps both organs to form into the correct structure. But it is unclear how well the observations from mouse models translate to heart and lung development in humans. To find out more, Ng et al. developed a human model of heart and lung co-development during embryogenesis using human pluripotent stem cells. The laboratory-grown stem cells were treated with chemical signals, causing them to form different layers that developed into early forms of heart and lung cells. The cells were then transferred into a specific growing condition, where they arranged into three-dimensional structures termed microtissues. Ng et al. found that lung cells developed faster when grown in microtissues with accompanying developing heart cells compared to microtissues containing only developing lung cells. In addition, Ng et al. revealed that the co-developing heart and lung tissues automatically separate from each other during later stage, without the need for chemical signals. This human cell-based model of early forms of co-developing heart and lung cells may help provide researchers with new strategies to probe the underlying mechanisms of human heart and lung interaction during embryogenesis.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Elizabeth K Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Jacqueline M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Ming Sun
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, United States
| | - Piyumi Wijesekara
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| | - Finn Hawkins
- Center for Regenerative Medicine, Boston University, Boston, United States
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University, Boston, MA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
177
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 838] [Impact Index Per Article: 279.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
178
|
Rea M, John T, Chen YW, Ryan A. Lung organoid models. 3D LUNG MODELS FOR REGENERATING LUNG TISSUE 2022:73-89. [DOI: 10.1016/b978-0-323-90871-9.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
179
|
Masui A, Hirai T, Gotoh S. Perspectives of future lung toxicology studies using human pluripotent stem cells. Arch Toxicol 2022; 96:389-402. [PMID: 34973109 PMCID: PMC8720162 DOI: 10.1007/s00204-021-03188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
The absence of in vitro platforms for human pulmonary toxicology studies is becoming an increasingly serious concern. The respiratory system has a dynamic mechanical structure that extends from the airways to the alveolar region. In addition, the epithelial, endothelial, stromal, and immune cells are highly organized in each region and interact with each other to function synergistically. These cells of varied lineage, particularly epithelial cells, have been difficult to use for long-term culture in vitro, thus limiting the development of useful experimental tools. This limitation has set a large distance between the bench and the bedside for analyzing the pathogenic mechanisms, the efficacy of candidate therapeutic agents, and the toxicity of compounds. Several researchers have proposed solutions to these problems by reporting on methods for generating human lung epithelial cells derived from pluripotent stem cells (PSCs). Moreover, the use of organoid culture, organ-on-a-chip, and material-based techniques have enabled the maintenance of functional PSC-derived lung epithelial cells as well as primary cells. The aforementioned technological advances have facilitated the in vitro recapitulation of genetic lung diseases and the detection of ameliorating or worsening effects of genetic and chemical interventions, thus indicating the future possibility of more sophisticated preclinical compound assessments in vitro. In this review, we will update the recent advances in lung cell culture methods, principally focusing on human PSC-derived lung epithelial organoid culture systems with the hope of their future application in toxicology studies.
Collapse
Affiliation(s)
- Atsushi Masui
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Watarase Research Center, Kyorin Pharmaceutical Co. Ltd., Shimotsuga-gun, Nogi, Tochigi, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
180
|
Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5 + basal cells. Nat Cell Biol 2021; 24:10-23. [PMID: 34969962 PMCID: PMC8761168 DOI: 10.1038/s41556-021-00809-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
Abstract
Loss of alveolar type 2 cells (AEC2s) and ectopic appearance of basal cells in the alveoli characterize severe lung injuries such as idiopathic pulmonary fibrosis (IPF). Here we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, transdifferentiate into basal cells in response to fibrotic signaling in the lung mesenchyme in vitro and in vivo. Single cell analysis of normal hAEC2s and mesenchymal cells in organoid co-cultures revealed the emergence of pathologic fibroblasts and basloid cells previously described in IPF. TGFβ1 and anti-BMP signaling in the organoids promoted transdifferentiation. Trajectory and histologic analyses of both hAEC2-derived organoids and IPF epithelium indicated hAEC2s transdifferentiate into basal cells through alveolar-basal intermediates (ABIs) that accumulate in proximity to pathologic CTHRC1high/TGFB1high fibroblasts. Our study indicates that hAEC2-loss and expansion of alveolar metaplastic basal cells in severe human lung injuries are causally connected through a hAEC2-basal cell lineage trajectory driven by aberrant mesenchyme.
Collapse
|
181
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
182
|
Forstner M, Lin S, Yang X, Kinting S, Rothenaigner I, Schorpp K, Li Y, Hadian K, Griese M. High-content Screen Identifies Cyclosporin A as a Novel ABCA3-specific Molecular Corrector. Am J Respir Cell Mol Biol 2021; 66:382-390. [PMID: 34936540 DOI: 10.1165/rcmb.2021-0223oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ATP-binding cassette (ABC) subfamily A member 3 (ABCA3) is a lipid transporter expressed in alveolar type II cells and localized in the limiting membrane of lamellar bodies. It is crucial for pulmonary surfactant storage and homeostasis. Mutations in the ABCA3 gene are the most common genetic cause of respiratory distress syndrome in mature newborns and interstitial lung disease in children. Apart from lung transplantation, there is no cure available. To address the lack of causal therapeutic options for ABCA3 deficiency, a rapid and reliable approach is needed to investigate variant-specific molecular mechanisms and to identify pharmacological modulators for mono- or combination therapies. To this end, we developed a phenotypic cell-based assay to autonomously identify ABCA3 wild-type-like or mutant-like cells by using machine-learning algorithms aimed at identifying morphological differences in WT and mutant cells. The assay was subsequently used to identify new drug candidates for ABCA3 specific molecular correction by high-content screening of 1,280 food and drug administration-approved small molecules. Cyclosporin A (CsA) was identified as a potent corrector, specific for some, but not all ABCA3 variants. Results were validated by our previously established functional small format assays. Hence, CsA may be selected for orphan drug evaluation in controlled repurposing trials in patients.
Collapse
Affiliation(s)
- Maria Forstner
- Ludwig Maximilians University Munich Faculty of Medicine, 54187, Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Munchen, Germany.,German Center for Lung Research, 542891, Munich, Germany
| | - Sean Lin
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 9150, Assay Development and Screening Platform, Neuherberg, Germany
| | - Xiaohua Yang
- Ludwig Maximilians University Munich Faculty of Medicine, 54187, Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Munchen, Germany
| | - Susanna Kinting
- Ludwig Maximilians University Munich Faculty of Medicine, 54187, Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Munchen, Germany
| | - Ina Rothenaigner
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 9150, Assay Development and Screening Platform, Neuherberg, Germany
| | - Kenji Schorpp
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 9150, Assay Development and Screening Platform, Neuherberg, Germany
| | - Yang Li
- Ludwig Maximilians University Munich Faculty of Medicine, 54187, Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Munchen, Germany
| | - Kamyar Hadian
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, 9150, Assay Development and Screening Platform, Neuherberg, Germany
| | - Matthias Griese
- Ludwig Maximilians University Munich Faculty of Medicine, 54187, Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Munchen, Germany.,German Center for Lung Research, 542891, Munich, Germany;
| |
Collapse
|
183
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
184
|
Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells Int 2021; 2021:8130828. [PMID: 34887928 PMCID: PMC8651378 DOI: 10.1155/2021/8130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
With the rapid rise in gene-editing technology, pluripotent stem cells (PSCs) and their derived organoids have increasingly broader and practical applications in regenerative medicine. Gene-editing technologies, from large-scale nucleic acid endonucleases to CRISPR, have ignited a global research and development boom with significant implications in regenerative medicine. The development of regenerative medicine technologies, regardless of whether it is PSCs or gene editing, is consistently met with controversy. Are the tools for rewriting the code of life a boon to humanity or a Pandora's box? These technologies raise concerns regarding ethical issues, unexpected mutations, viral infection, etc. These concerns remain even as new treatments emerge. However, the potential negatives cannot obscure the virtues of PSC gene editing, which have, and will continue to, benefit mankind at an unprecedented rate. Here, we briefly introduce current gene-editing technology and its application in PSCs and their derived organoids, while addressing ethical concerns and safety risks and discussing the latest progress in PSC gene editing. Gene editing in PSCs creates visualized in vitro models, providing opportunities for examining mechanisms of known and unknown mutations and offering new possibilities for the treatment of cancer, genetic diseases, and other serious or refractory disorders. From model construction to treatment exploration, the important role of PSCs combined with gene editing in basic and clinical medicine studies is illustrated. The applications, characteristics, and existing challenges are summarized in combination with our lab experiences in this field in an effort to help gene-editing technology better serve humans in a regulated manner. Current preclinical and clinical trials have demonstrated initial safety and efficacy of PSC gene editing; however, for better application in clinical settings, additional investigation is warranted.
Collapse
|
185
|
Ding J, Lugo-Martinez J, Yuan Y, Huang J, Hume AJ, Suder EL, Mühlberger E, Kotton DN, Bar-Joseph Z. Reconstructed signaling and regulatory networks identify potential drugs for SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.06.01.127589. [PMID: 33083801 PMCID: PMC7574259 DOI: 10.1101/2020.06.01.127589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several molecular datasets have been recently compiled to characterize the activity of SARS-CoV-2 within human cells. Here we extend computational methods to integrate several different types of sequence, functional and interaction data to reconstruct networks and pathways activated by the virus in host cells. We identify key proteins in these networks and further intersect them with genes differentially expressed at conditions that are known to impact viral activity. Several of the top ranked genes do not directly interact with virus proteins. We experimentally tested treatments for a number of the predicted targets. We show that blocking one of the predicted indirect targets significantly reduces viral loads in stem cell-derived alveolar epithelial type II cells (iAT2s).
Collapse
Affiliation(s)
- Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, Quebec, H4A 3J1, Canada
| | - Jose Lugo-Martinez
- Department of Computer Science, University of Puerto Rico, San Juan, Puerto Rico, 00925, USA
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Adam J. Hume
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ellen L. Suder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratory (NEIDL), Boston University, Boston, MA 02118, USA
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
186
|
Biological Models of the Lower Human Airways-Challenges and Special Requirements of Human 3D Barrier Models for Biomedical Research. Pharmaceutics 2021; 13:pharmaceutics13122115. [PMID: 34959396 PMCID: PMC8707984 DOI: 10.3390/pharmaceutics13122115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/27/2022] Open
Abstract
In our review, we want to summarize the current status of the development of airway models and their application in biomedical research. We start with the very well characterized models composed of cell lines and end with the use of organoids. An important aspect is the function of the mucus as a component of the barrier, especially for infection research. Finally, we will explain the need for a nondestructive characterization of the barrier models using TEER measurements and live cell imaging. Here, organ-on-a-chip technology offers a great opportunity for the culture of complex airway models.
Collapse
|
187
|
Geusz RJ, Wang A, Lam DK, Vinckier NK, Alysandratos KD, Roberts DA, Wang J, Kefalopoulou S, Ramirez A, Qiu Y, Chiou J, Gaulton KJ, Ren B, Kotton DN, Sander M. Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors. Nat Commun 2021; 12:6636. [PMID: 34789735 PMCID: PMC8599738 DOI: 10.1038/s41467-021-26950-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
FOXA pioneer transcription factors (TFs) associate with primed enhancers in endodermal organ precursors. Using a human stem cell model of pancreas differentiation, we here discover that only a subset of pancreatic enhancers is FOXA-primed, whereas the majority is unprimed and engages FOXA upon lineage induction. Primed enhancers are enriched for signal-dependent TF motifs and harbor abundant and strong FOXA motifs. Unprimed enhancers harbor fewer, more degenerate FOXA motifs, and FOXA recruitment to unprimed but not primed enhancers requires pancreatic TFs. Strengthening FOXA motifs at an unprimed enhancer near NKX6.1 renders FOXA recruitment pancreatic TF-independent, induces priming, and broadens the NKX6.1 expression domain. We make analogous observations about FOXA binding during hepatic and lung development. Our findings suggest a dual role for FOXA in endodermal organ development: first, FOXA facilitates signal-dependent lineage initiation via enhancer priming, and second, FOXA enforces organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs.
Collapse
Affiliation(s)
- Ryan J. Geusz
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Biomedical Graduate Studies Program, University of California San Diego, La Jolla, San Diego, CA 92037 USA
| | - Allen Wang
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Dieter K. Lam
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Nicholas K. Vinckier
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Konstantinos-Dionysios Alysandratos
- grid.239424.a0000 0001 2183 6745Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - David A. Roberts
- grid.239424.a0000 0001 2183 6745Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118 USA
| | - Jinzhao Wang
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Samy Kefalopoulou
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Araceli Ramirez
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.468218.10000 0004 5913 3393Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA 92093 USA
| | - Yunjiang Qiu
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA
| | - Joshua Chiou
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA ,grid.266100.30000 0001 2107 4242Biomedical Graduate Studies Program, University of California San Diego, La Jolla, San Diego, CA 92037 USA
| | - Kyle J. Gaulton
- grid.266100.30000 0001 2107 4242Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA 92093 USA
| | - Bing Ren
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA 92093 USA ,grid.1052.60000000097371625Ludwig Institute for Cancer Research, La Jolla, San Diego, CA 92093-0653 USA
| | - Darrell N. Kotton
- grid.239424.a0000 0001 2183 6745Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - Maike Sander
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA, 92093, USA. .,Department of Cellular & Molecular Medicine, University of California, La Jolla, San Diego, CA, 92093, USA. .,Sanford Consortium for Regenerative Medicine, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
188
|
Becerra D, Wu T, Jeffs S, Ott HC. High-Throughput Culture Method of Induced Pluripotent Stem Cell Derived Alveolar Epithelial Cells. Tissue Eng Part C Methods 2021; 27:639-648. [PMID: 34751582 DOI: 10.1089/ten.tec.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lung regeneration is dependent on the availability of progenitor lung cells. Large numbers of self-renewing, patient-specific induced pluripotent stem cell derived alveolar epithelial cells (iPSC-AECs) are needed to adequately recellularize whole organ constructs. Prior methods to generated functional iPSC-AECs are not feasible for large-scale cell production. We present a novel protocol to produce iPSC-AECs which is scalable for whole organ regeneration. Differentiation of iPSCs was performed with genetically modified iPSCs with fluorescent reporters which underwent differentiation in a stepwise protocol mimicking lung development. Cells were purified, sorted, and embedded in a liquid Matrigel precursor to form either adherent droplets or to form cell-laden Matrigel spheroids which were subsequently transferred to spinner flasks with media as floating droplets. After culture, monolayer spheres of iPSC-AECs were isolated to form single cell suspensions. Equal numbers of iPSC-AECs from the two culture conditions were seeded into decellularized lung scaffolds. IPSC-AECs cultured in floating droplets were significantly more proliferative than those in adherent droplets, with significantly higher total cell counts and Ki67 expression. Equivalent expression of the distal lung markers was observed for both culture conditions. Lungs recellularized from both culture groups had similar histologic appearance. Media changes took significantly less time with the floating droplet method and was more cost effective. The floating droplet culture method demonstrated enhanced proliferative capacity, stable distal lung epithelial phenotype, and reduced resources compared to prior culture methods. Here we provide a means for iPSC-AEC production for regeneration of whole lung constructs.
Collapse
Affiliation(s)
- David Becerra
- Duke University Medical Center, 22957, Surgery, Durham, North Carolina, United States;
| | - Tong Wu
- Massachusetts General Hospital , Center for Regenerative Medicine, Boston, Massachusetts, United States.,Harvard Medical School, 1811, Boston, Massachusetts, United States;
| | - Sydney Jeffs
- Duke University School of Medicine, 12277, Durham, North Carolina, United States;
| | - Harald C Ott
- Harvard Medical School, 1811, Thoracic Surgery, 55 Fruit Street, Founders 7, Boston, Massachusetts, United States, 02115;
| |
Collapse
|
189
|
Dumas MP, Xia S, Bear CE, Ratjen F. Perspectives on the translation of in-vitro studies to precision medicine in Cystic Fibrosis. EBioMedicine 2021; 73:103660. [PMID: 34740114 PMCID: PMC8577330 DOI: 10.1016/j.ebiom.2021.103660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Recent strides towards precision medicine in Cystic Fibrosis (CF) have been made possible by patient-derived in-vitro assays with the potential to predict clinical response to small molecule-based therapies. Here, we discuss the status of primary and stem-cell derived tissues used to evaluate the preclinical efficacy of CFTR modulators highlighting both their potential and limitations. Validation of these assays requires correlation of in-vitro responses to in-vivo measures of clinical biomarkers of disease outcomes. While initial efforts have shown some success, this translation requires methodologies that are sensitive enough to capture treatment responses in a CF population that now predominantly has mild lung disease. Future development of in-vitro and in-vivo biomarkers will facilitate the generation of new therapeutics particularly for those patients with rare mutations where clinical trials are not feasible so that in the future every CF patient will have access to effective targeted therapies.
Collapse
Affiliation(s)
- Marie-Pier Dumas
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Sunny Xia
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada
| | - Christine E Bear
- Molecular Medicine, Hospital for Sick Children, Toronto, Canada.; Department of Physiology, University of Toronto, Toronto, Canada; Department of Biochemistry University of Toronto, Toronto, Canada
| | - Felix Ratjen
- Respiratory Medicine, Hospital for Sick Children, Toronto, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
190
|
Varma R, Marin‐Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Short-Term Preclinical Application of Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Patches. Adv Healthc Mater 2021; 10:e2100957. [PMID: 34569180 DOI: 10.1002/adhm.202100957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Indexed: 12/17/2022]
Abstract
Airway pathologies including cancer, trauma, and stenosis lack effective treatments, meanwhile airway transplantation and available tissue engineering approaches fail due to epithelial dysfunction. Autologous progenitors do not meet the clinical need for regeneration due to their insufficient expansion and differentiation, for which human induced pluripotent stem cells (hiPSCs) are promising alternatives. Airway epithelial patches are engineered by differentiating hiPSC-derived airway progenitors into physiological proportions of ciliated (73.9 ± 5.5%) and goblet (2.1 ± 1.4%) cells on a silk fibroin-collagen vitrigel membrane (SF-CVM) composite biomaterial for transplantation in porcine tracheal defects ex vivo and in vivo. Evaluation of ex vivo tracheal repair using hiPSC-derived SF-CVM patches demonstrate native-like tracheal epithelial metabolism and maintenance of mucociliary epithelium to day 3. In vivo studies demonstrate SF-CVM integration and maintenance of airway patency, showing 80.8 ± 3.6% graft coverage with an hiPSC-derived pseudostratified epithelium and 70.7 ± 2.3% coverage with viable cells, 3 days postoperatively. The utility of bioengineered, hiPSC-derived epithelial patches for airway repair is demonstrated in a short-term preclinical survival model, providing a significant leap for airway reconstruction approaches.
Collapse
Affiliation(s)
- Ratna Varma
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
| | - Alba E. Marin‐Araujo
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Biomedical Engineering (BME) University of Toronto 164 College St Toronto ON M5S 3G9 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Department of Mechanical and Industrial Engineering University of Toronto 5 King's College Circle Toronto ON M5S 3G8 Canada
- Department of Laboratory Medicine and Pathobiology University of Toronto 1 King's College Circle Toronto ON M5S 1A8 Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories Toronto General Hospital Research Institute University Health Network Toronto General Hospital University of Toronto 101 College St Toronto ON M5G 0A3 Canada
- Institute of Medical Sciences University of Toronto 27 King's College Cir Toronto ON M5S 1A8 Canada
- Division of Plastic and Reconstructive Surgery Department of Surgery University of Toronto 200 Elizabeth Street 8N‐869 Toronto ON M5G2P7 Canada
| |
Collapse
|
191
|
Liberti DC, Morrisey EE. Organoid models: assessing lung cell fate decisions and disease responses. Trends Mol Med 2021; 27:1159-1174. [PMID: 34674972 DOI: 10.1016/j.molmed.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Organoids can be derived from various cell types in the lung, and they provide a reproducible and tractable model for understanding the complex signals driving cell fate decisions in a regenerative context. In this review, we provide a retrospective account of organoid methodologies and outline new opportunities for optimizing these methods to further explore emerging concepts in lung biology. Moreover, we examine the benefits of integrating organoid assays with in vivo modeling to explore how the various niches and compartments in the respiratory system respond to both acute and chronic lung disease. The strategic implementation and improvement of organoid techniques will provide exciting new opportunities to understand and identify new therapeutic approaches to ameliorate lung disease states.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
192
|
Gokey JJ, Patel SD, Kropski JA. The Role of Hippo/YAP Signaling in Alveolar Repair and Pulmonary Fibrosis. Front Med (Lausanne) 2021; 8:752316. [PMID: 34671628 PMCID: PMC8520933 DOI: 10.3389/fmed.2021.752316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
Pulmonary fibrosis is characterized by loss of normal alveoli, accumulation of pathologic activated fibroblasts, and exuberant extracellular matrix deposition that over time can lead to progressive loss of respiratory function and death. This loss of respiratory function is associated with the loss of alveolar type 1 cells (AT1) that play a crucial role in gas exchange and the depletion of the alveolar type 2 cells (AT2) that act as progenitor cells to regenerate the AT1 and AT2 cell populations during repair. Understanding the mechanisms that regulate normal alveolar repair and those associated with pathologic repair is essential to identify potential therapeutic targets to treat or delay progression of fibrotic diseases. The Hippo/YAP developmental signaling pathway has been implicated as a regulator of normal alveolar development and repair. In idiopathic pulmonary fibrosis, aberrant activation of YAP/TAZ has been demonstrated in both the alveolar epithelium and activated fibroblasts associated with increased fibrotic remodeling, and there is emerging interest in this pathway as a target for antifibrotic therapies. In this review, we summarize current evidence as to the role of the Hippo-YAP/TAZ pathway in alveolar development, homeostasis, and repair, and highlight key questions that must be resolved to determine effective strategies to modulate YAP/TAZ signaling to prevent progressive pulmonary fibrosis and enhance adaptive alveolar repair.
Collapse
Affiliation(s)
- Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Saawan D Patel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Nashville, TN, United States
| |
Collapse
|
193
|
Harman N, Lazio M, Hayward R. Exercise training-induced adaptations in lung cancer patients who have undergone a lobectomy. Exp Gerontol 2021; 155:111587. [PMID: 34637950 DOI: 10.1016/j.exger.2021.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the safety and effectiveness of a prescribed, individualized, 12-week exercise intervention on cardiorespiratory function, muscular strength, and quality of life in lung cancer patients who have undergone a lobectomy. In addition, we sought to compare the exercise training response of lung cancer patients who have undergone a lobectomy to a population of cancer patients with all other cancers in order to examine the specific effects of a lobectomy when compared to cancer patients at large. METHODS Participants were referred by a physician, and upon entry, completed an exercise-based assessment and surveys to assess various quality of life measures. Participants were divided into two groups: lung cancer patients having undergone a lobectomy (LOB, n = 9) or those diagnosed with all other cancers (AOC, n = 201). Participants underwent 12 weeks of supervised exercise based on an individualized exercise prescription. Measures of cardiorespiratory function, muscular strength, and quality of life were collected prior to the intervention and after 12 weeks of exercise training. RESULTS Significant improvements to VO2peak (p < 0.05) were seen in both groups. Significant improvements to muscular strength (p < 0.05) were seen in both groups for all measures aside from shoulder press in the LOB group. Both groups showed significant improvements to aspects of fatigue and quality of life (p < 0.05), but only the AOC group significantly improved in measures of depression (p < 0.05). CONCLUSION Exercise-based rehabilitation is a safe and effective intervention for lung cancer survivors who have undergone a lobectomy. These individuals saw significant improvements in cardiorespiratory fitness, muscular strength, and quality of life. Although there were similarities in the pattern of these training-induced improvements for these groups, lung cancer patients undergoing a lobectomy consistently demonstrated lower absolute values when compared to patients with all other cancer diagnoses.
Collapse
Affiliation(s)
- Nicholas Harman
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO, USA; University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO, USA
| | - Michael Lazio
- University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO, USA
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO, USA; University of Northern Colorado Cancer Rehabilitation Institute, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
194
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
195
|
Chakrabarty K, Shetty R, Argulwar S, Das D, Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy 2021; 24:235-248. [PMID: 34656419 PMCID: PMC8437760 DOI: 10.1016/j.jcyt.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 11/30/2022]
Abstract
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Shubham Argulwar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
196
|
Tsuji K, Yamada S, Hirai K, Asakura H, Kanda Y. Development of alveolar and airway cells from human iPS cells: toward SARS-CoV-2 research and drug toxicity testing. J Toxicol Sci 2021; 46:425-435. [PMID: 34470994 DOI: 10.2131/jts.46.425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.
Collapse
Affiliation(s)
- Kayoko Tsuji
- Division of Pharmacology, National Institute of Health Sciences (NIHS)
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences (NIHS).,Pharmacological Evaluation Institute of Japan (PEIJ)
| | - Kazuya Hirai
- Division of Biomedical Food Research, National Institute of Health Sciences (NIHS)
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences (NIHS)
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences (NIHS)
| |
Collapse
|
197
|
Alysandratos KD, Russo SJ, Petcherski A, Taddeo EP, Acín-Pérez R, Villacorta-Martin C, Jean JC, Mulugeta S, Rodriguez LR, Blum BC, Hekman RM, Hix OT, Minakin K, Vedaie M, Kook S, Tilston-Lunel AM, Varelas X, Wambach JA, Cole FS, Hamvas A, Young LR, Liesa M, Emili A, Guttentag SH, Shirihai OS, Beers MF, Kotton DN. Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep 2021; 36:109636. [PMID: 34469722 PMCID: PMC8432578 DOI: 10.1016/j.celrep.2021.109636] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/28/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anton Petcherski
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Evan P Taddeo
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rebeca Acín-Pérez
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - J C Jean
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luis R Rodriguez
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin C Blum
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ryan M Hekman
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Olivia T Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seunghyi Kook
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew M Tilston-Lunel
- Departments of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xaralabos Varelas
- Departments of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - F Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - Aaron Hamvas
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marc Liesa
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Andrew Emili
- Departments of Biology and Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Susan H Guttentag
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University, Nashville, TN 37232, USA
| | - Orian S Shirihai
- Departments of Medicine, Endocrinology and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
198
|
Bluhmki T, Traub S, Müller AK, Bitzer S, Schruf E, Bammert MT, Leist M, Gantner F, Garnett JP, Heilker R. Functional human iPSC-derived alveolar-like cells cultured in a miniaturized 96‑Transwell air-liquid interface model. Sci Rep 2021; 11:17028. [PMID: 34426605 PMCID: PMC8382767 DOI: 10.1038/s41598-021-96565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
In order to circumvent the limited access and donor variability of human primary alveolar cells, directed differentiation of human pluripotent stem cells (hiPSCs) into alveolar-like cells, provides a promising tool for respiratory disease modeling and drug discovery assays. In this work, a unique, miniaturized 96-Transwell microplate system is described where hiPSC-derived alveolar-like cells were cultured at an air-liquid interface (ALI). To this end, hiPSCs were differentiated into lung epithelial progenitor cells (LPCs) and subsequently matured into a functional alveolar type 2 (AT2)-like epithelium with monolayer-like morphology. AT2-like cells cultured at the physiological ALI conditions displayed characteristics of AT2 cells with classical alveolar surfactant protein expressions and lamellar-body like structures. The integrity of the epithelial barriers between the AT2-like cells was confirmed by applying a custom-made device for 96-parallelized transepithelial electric resistance (TEER) measurements. In order to generate an IPF disease-like phenotype in vitro, the functional AT2-like cells were stimulated with cytokines and growth factors present in the alveolar tissue of IPF patients. The cytokines stimulated the secretion of pro-fibrotic biomarker proteins both on the mRNA (messenger ribonucleic acid) and protein level. Thus, the hiPSC-derived and cellular model system enables the recapitulation of certain IPF hallmarks, while paving the route towards a miniaturized medium throughput approach of pharmaceutical drug discovery.
Collapse
Affiliation(s)
- Teresa Bluhmki
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany.
| | - Stefanie Traub
- Trenzyme GmbH, Byk-Gulden-Str. 2, 78467, Constance, Germany
| | | | - Sarah Bitzer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Eva Schruf
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Marie-Therese Bammert
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Marcel Leist
- In-vitro Toxicology and Biomedicine, University of Konstanz, 78457, Constance, Germany
| | - Florian Gantner
- Department of Translational Medicine and Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, 88397, Biberach an der Riss, Germany
| | - James P Garnett
- Department of Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| | - Ralf Heilker
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach an der Riss, Germany
| |
Collapse
|
199
|
Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci 2021; 22:ijms22168906. [PMID: 34445609 PMCID: PMC8396271 DOI: 10.3390/ijms22168906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Respiratory disease is the leading cause of death in children under the age of 5 years old. Currently available treatments for paediatric respiratory diseases including bronchopulmonary dysplasia, asthma, cystic fibrosis and interstitial lung disease may ameliorate symptoms but do not offer a cure. Cellular therapy may offer a potential cure for these diseases, preventing disease progression into adulthood. Induced pluripotent stem cells, mesenchymal stromal cells and their secretome have shown great potential in preclinical models of lung disease, targeting the major pathological features of the disease. Current research and clinical trials are focused on the adult population. For cellular therapies to progress from preclinical studies to use in the clinic, optimal cell type dosage and delivery methods need to be established and confirmed. Direct delivery of these therapies to the lung as aerosols would allow for lower doses with a higher target efficiency whilst avoiding potential effect of systemic delivery. There is a clear need for research to progress into the clinic for the treatment of paediatric respiratory disease. Whilst research in the adult population forms a basis for the paediatric population, varying disease pathology and anatomical differences in paediatric patients means a paediatric-centric approach must be taken.
Collapse
Affiliation(s)
- Laura C. Brennan
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Correspondence:
| |
Collapse
|
200
|
Tindle C, Fuller M, Fonseca A, Taheri S, Ibeawuchi SR, Beutler N, Katkar GD, Claire A, Castillo V, Hernandez M, Russo H, Duran J, Crotty Alexander LE, Tipps A, Lin G, Thistlethwaite PA, Chattopadhyay R, Rogers TF, Sahoo D, Ghosh P, Das S. Adult stem cell-derived complete lung organoid models emulate lung disease in COVID-19. eLife 2021; 10:e66417. [PMID: 34463615 PMCID: PMC8463074 DOI: 10.7554/elife.66417] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).
Collapse
Affiliation(s)
- Courtney Tindle
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - MacKenzie Fuller
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Ayden Fonseca
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, San Diego, United States
| | - Stella-Rita Ibeawuchi
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
| | - Gajanan Dattatray Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
| | - Amanraj Claire
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
| | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
| | - Moises Hernandez
- Division of Cardiothoracic Surgery, University of California San Diego, San Diego, United States
| | - Hana Russo
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Jason Duran
- Division of Cardiology, Department of Internal Medicine, UC San Diego Medical Center, San Diego, United States
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ann Tipps
- Department of Pathology, University of California San Diego, San Diego, United States
| | - Grace Lin
- Department of Pathology, University of California San Diego, San Diego, United States
| | | | - Ranajoy Chattopadhyay
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Cell Applications Inc., La Jolla, CA, United States
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacobs School of Engineering, University of California San Diego, San Diego, United States
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, United States
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Soumita Das
- HUMANOID CoRE, University of California San Diego, San Diego, United States
- Department of Pathology, University of California San Diego, San Diego, United States
| |
Collapse
|