151
|
Mirabello L, Yu K, Kraft P, De Vivo I, Hunter DJ, Prescott J, Wong JYY, Chatterjee N, Hayes RB, Savage SA. The association of telomere length and genetic variation in telomere biology genes. Hum Mutat 2010; 31:1050-8. [PMID: 20597107 DOI: 10.1002/humu.21314] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Telomeres cap chromosome ends and are critical for genomic stability. Many telomere-associated proteins are important for telomere length maintenance. Recent genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in genes encoding telomere-associated proteins (RTEL1 and TERT-CLPTM1) as markers of cancer risk. We conducted an association study of telomere length and 743 SNPs in 43 telomere biology genes. Telomere length in peripheral blood DNA was determined by Q-PCR in 3,646 participants from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial and Nurses' Health Study. We investigated associations by SNP, gene, and pathway (functional group). We found no associations between telomere length and SNPs in TERT-CLPTM1L or RTEL1. Telomere length was not significantly associated with specific functional groups. Thirteen SNPs from four genes (MEN1, MRE11A, RECQL5, and TNKS) were significantly associated with telomere length. The strongest findings were in MEN1 (gene-based P=0.006), menin, which associates with the telomerase promoter and may negatively regulate telomerase. This large association study did not find strong associations with telomere length. The combination of limited diversity and evolutionary conservation suggest that these genes may be under selective pressure. More work is needed to explore the role of genetic variants in telomere length regulation.
Collapse
Affiliation(s)
- Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
The adenovirus E1b55K/E4orf6 complex induces degradation of the Bloom helicase during infection. J Virol 2010; 85:1887-92. [PMID: 21123383 DOI: 10.1128/jvi.02134-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The adenovirus (Ad) E1b55K and E4orf6 gene products assemble an E3 ubiquitin ligase complex that promotes degradation of cellular proteins. Among the known substrates are p53 and the Mre11-Rad50-Nbs1 (MRN) complex. Since members of the RecQ helicase family function together with MRN in genome maintenance, we investigated whether adenovirus affects RecQ proteins. We show that Bloom helicase (BLM) is degraded during adenovirus type 5 (Ad5) infection. BLM degradation is mediated by E1b55K/E4orf6 but is independent of MRN. We detected BLM localized at discrete foci around viral replication centers. These studies identify BLM as a new substrate for degradation by the adenovirus E1b55K/E4orf6 complex.
Collapse
|
153
|
Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E, Nowicki MO, Blasiak J, Skorski T. BCR/ABL stimulates WRN to promote survival and genomic instability. Cancer Res 2010; 71:842-51. [PMID: 21123451 DOI: 10.1158/0008-5472.can-10-1066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BCR/ABL-transformed chronic myeloid leukemia (CML) cells accumulate numerous DNA double-strand breaks (DSB) induced by reactive oxygen species (ROS) and genotoxic agents. To repair these lesions BCR/ABL stimulate unfaithful DSB repair pathways, homologous recombination repair (HRR), nonhomologous end-joining (NHEJ), and single-strand annealing (SSA). Here, we show that BCR/ABL enhances the expression and increase nuclear localization of WRN (mutated in Werner syndrome), which is required for processing DSB ends during the repair. Other fusion tyrosine kinases (FTK), such as TEL/ABL, TEL/JAK2, TEL/PDGFβR, and NPM/ALK also elevate WRN. BCR/ABL induces WRN mRNA and protein expression in part by c-MYC-mediated activation of transcription and Bcl-xL-dependent inhibition of caspase-dependent cleavage, respectively. WRN is in complex with BCR/ABL resulting in WRN tyrosine phosphorylation and stimulation of its helicase and exonuclease activities. Activated WRN protects BCR/ABL-positive cells from the lethal effect of oxidative and genotoxic stresses, which causes DSBs. In addition, WRN promotes unfaithful recombination-dependent repair mechanisms HRR and SSA, and enhances the loss of DNA bases during NHEJ in leukemia cells. In summary, we postulate that BCR/ABL-mediated stimulation of WRN modulates the efficiency and fidelity of major DSB repair mechanisms to protect leukemia cells from apoptosis and to facilitate genomic instability.
Collapse
Affiliation(s)
- Artur Slupianek
- Department of Microbiology and Immunology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Lucic B, Zhang Y, King O, Mendoza-Maldonado R, Berti M, Niesen FH, Burgess-Brown NA, Pike ACW, Cooper CDO, Gileadi O, Vindigni A. A prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation. Nucleic Acids Res 2010; 39:1703-17. [PMID: 21059676 PMCID: PMC3061051 DOI: 10.1093/nar/gkq1031] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RecQ helicases have attracted considerable interest in recent years due to their role in the suppression of genome instability and human diseases. These atypical helicases exert their function by resolving a number of highly specific DNA structures. The crystal structure of a truncated catalytic core of the human RECQ1 helicase (RECQ149–616) shows a prominent β-hairpin, with an aromatic residue (Y564) at the tip, located in the C-terminal winged-helix domain. Here, we show that the β-hairpin is required for the DNA unwinding and Holliday junction (HJ) resolution activity of full-length RECQ1, confirming that it represents an important determinant for the distinct substrate specificity of the five human RecQ helicases. In addition, we found that the β-hairpin is required for dimer formation in RECQ149–616 and tetramer formation in full-length RECQ1. We confirmed the presence of stable RECQ149–616 dimers in solution and demonstrated that dimer formation favours DNA unwinding; even though RECQ1 monomers are still active. Tetramers are instead necessary for more specialized activities such as HJ resolution and strand annealing. Interestingly, two independent protein–protein contacts are required for tetramer formation, one involves the β-hairpin and the other the N-terminus of RECQ1, suggesting a non-hierarchical mechanism of tetramer assembly.
Collapse
Affiliation(s)
- Bojana Lucic
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Su Y, Meador JA, Calaf GM, Proietti De-Santis L, Zhao Y, Bohr VA, Balajee AS. Human RecQL4 helicase plays critical roles in prostate carcinogenesis. Cancer Res 2010; 70:9207-17. [PMID: 21045146 DOI: 10.1158/0008-5472.can-10-1743] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the second leading cause of cancer-associated deaths among men in the western countries. Here, we report that human RecQL4 helicase, which is implicated in the pathogenesis of a subset of cancer-prone Rothmund-Thomson syndrome, is highly elevated in metastatic prostate cancer cell lines. Increased RecQL4 expression was also detected in human prostate tumor tissues as a function of tumor grade with the highest expression level in metastatic tumor samples, suggesting that RecQL4 may be a potential prognostic factor for advanced stage of prostate cancer. Transient and stable suppression of RecQL4 by small interfering RNA and short hairpin RNA vectors drastically reduced the growth and survival of metastatic prostate cancer cells, indicating that RecQL4 is a prosurvival factor for prostate cancer cells. RecQL4 suppression led to increased poly(ADP-ribose) polymerase (PARP) synthesis and RecQL4-suppressed prostate cancer cells underwent an extensive apoptotic death in a PARP-1-dependent manner. Most notably, RecQL4 knockdown in metastatic prostate cancer cells drastically reduced their cell invasiveness in vitro and tumorigenicity in vivo, showing that RecQL4 is essential for prostate cancer promotion. Observation of a direct interaction of retinoblastoma (Rb) and E2F1 proteins with RecQL4 promoter suggests that Rb-E2F1 pathway may regulate RecQL4 expression. Collectively, our study shows that RecQL4 is an essential factor for prostate carcinogenesis.
Collapse
Affiliation(s)
- Yanrong Su
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Mannuss A, Dukowic-Schulze S, Suer S, Hartung F, Pacher M, Puchta H. RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3318-30. [PMID: 20971895 PMCID: PMC2990144 DOI: 10.1105/tpc.110.078568] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 05/17/2023]
Abstract
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of these factors in Arabidopsis. rad5A recq4A and rad5A mus81 double mutants are more sensitive to cross-linking and methylating agents, showing that RAD5A is required for damage-induced DNA repair, independent of MUS81 and RECQ4A. The lethality of the recq4A mus81 double mutant indicates that MUS81 and RECQ4A also define parallel DNA repair pathways. The recq4A/mus81 lethality is suppressed by blocking homologous recombination (HR) through disruption of RAD51C, showing that RECQ4A and MUS81 are required for processing recombination-induced aberrant intermediates during replication. Thus, plants possess at least three different pathways to process DNA repair intermediates. We also examined HR-mediated double-strand break (DSB) repair using recombination substrates with inducible site-specific DSBs: MUS81 and RECQ4A are required for efficient synthesis-dependent strand annealing (SDSA) but only to a small extent for single-strand annealing (SSA). Interestingly, RAD5A plays a significant role in SDSA but not in SSA.
Collapse
|
157
|
Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J 2010; 29:3156-69. [PMID: 20802463 DOI: 10.1038/emboj.2010.205] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/29/2010] [Indexed: 01/04/2023] Open
Abstract
Accurate response to replication arrest is crucial to preserve genome stability and requires both the ATR and ATM functions. The Werner syndrome protein (WRN) is implicated in the recovery of stalled replication forks, and although an ATR/ATM-dependent phosphorylation of WRN was observed after replication arrest, the function of such modifications during the response to perturbed replication is not yet appreciated. Here, we report that WRN is directly phosphorylated by ATR at multiple C-terminal S/TQ residues. Suppression of ATR-mediated phosphorylation of WRN prevents proper accumulation of WRN in nuclear foci, co-localisation with RPA and causes breakage of stalled forks. On the other hand, inhibition of ATM kinase activity or expression of an ATM-unphosphorylable WRN allele leads to retention of WRN in nuclear foci and impaired recruitment of RAD51 recombinase resulting in reduced viability after fork collapse. Altogether, our findings indicate that ATR and ATM promote recovery from perturbed replication by differently regulating WRN at defined moments of the response to replication fork arrest.
Collapse
Affiliation(s)
- Francesca Ammazzalorso
- Department of Environment and Primary Prevention, Section of Experimental and Computational Carcinogenesis and Section of Molecular Epidemiology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
158
|
Abstract
Recent work has greatly contributed to the understanding of the biology and biochemistry of RecQ4. It plays an essential non-enzymatic role in the formation of the CMG complex, and thus replication initiation, by means of its Sld2 homologous domain. The helicase domain of RecQ4 has now been demonstrated to possess 3'-5' DNA helicase activity, like the other members of the RecQ family. The biological purpose of this activity is still unclear, but helicase-dead mutants are unable to restore viability in the absence of wildtype RecQ4. This indicates that RecQ4 performs a second role, which requires helicase activity and is implicated in replication and DNA repair. Thus, it is clear that two helicases, RecQ4 and Mcm2-7, are integral to replication. The nature of the simultaneous involvement of these two helicases remains to be determined, and possible models will be proposed.
Collapse
Affiliation(s)
- Christopher Capp
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | | | | |
Collapse
|
159
|
Abstract
One of the many debated topics in ageing research is whether progeroid syndromes are really accelerated forms of human ageing. The answer requires a better understanding of the normal ageing process and the molecular pathology underlying these rare diseases. Exciting recent findings regarding a severe human progeria, Hutchinson-Gilford progeria syndrome, have implicated molecular changes that are also linked to normal ageing, such as genome instability, telomere attrition, premature senescence and defective stem cell homeostasis in disease development. These observations, coupled with genetic studies of longevity, lead to a hypothesis whereby progeria syndromes accelerate a subset of the pathological changes that together drive the normal ageing process.
Collapse
|
160
|
Rahn JJ, Lowery MP, Della-Coletta L, Adair GM, Nairn RS. Depletion of Werner helicase results in mitotic hyperrecombination and pleiotropic homologous and nonhomologous recombination phenotypes. Mech Ageing Dev 2010; 131:562-73. [PMID: 20708636 DOI: 10.1016/j.mad.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 08/03/2010] [Indexed: 11/30/2022]
Abstract
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.
Collapse
Affiliation(s)
- Jennifer J Rahn
- University of Texas M.D. Anderson Cancer Center, Department of Carcinogenesis, Science Park Research Division, P.O. Box 389, Smithville, TX 78597, United States
| | | | | | | | | |
Collapse
|
161
|
Smith JA, Ndoye AMN, Geary K, Lisanti MP, Igoucheva O, Daniel R. A role for the Werner syndrome protein in epigenetic inactivation of the pluripotency factor Oct4. Aging Cell 2010; 9:580-91. [PMID: 20477760 PMCID: PMC2910250 DOI: 10.1111/j.1474-9726.2010.00585.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disorder, the hallmarks of which are premature aging and early onset of neoplastic diseases (Orren, 2006; Bohr, 2008). The gene, whose mutation underlies the WS phenotype, is called WRN. The protein encoded by the WRN gene, WRNp, has DNA helicase activity (Gray et al., 1997; Orren, 2006; Bohr, 2008; Opresko, 2008). Extensive evidence suggests that WRNp plays a role in DNA replication and DNA repair (Chen et al., 2003; Hickson, 2003; Orren, 2006; Turaga et al., 2007; Bohr, 2008). However, WRNp function is not yet fully understood. In this study, we show that WRNp is involved in de novo DNA methylation of the promoter of the Oct4 gene, which encodes a crucial stem cell transcription factor. We demonstrate that WRNp localizes to the Oct4 promoter during retinoic acid-induced differentiation of human pluripotent cells and associates with the de novo methyltransferase Dnmt3b in the chromatin of differentiating pluripotent cells. Depletion of WRNp does not affect demethylation of lysine 4 of the histone H3 at the Oct4 promoter, nor methylation of lysine 9 of H3, but it blocks the recruitment of Dnmt3b to the promoter and results in the reduced methylation of CpG sites within the Oct4 promoter. The lack of DNA methylation was associated with continued, albeit greatly reduced, Oct4 expression in WRN-deficient, retinoic acid-treated cells, which resulted in attenuated differentiation. The presented results reveal a novel function of WRNp and demonstrate that WRNp controls a key step in pluripotent stem cell differentiation.
Collapse
Affiliation(s)
- Johanna A. Smith
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Abibatou M. N. Ndoye
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Kyla Geary
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Michael P. Lisanti
- Department of Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, U.S.A
| | - René Daniel
- Division of Infectious Diseases - Center for Human Virology, and Jefferson Center for Stem Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, U.S.A
| |
Collapse
|
162
|
Mao FJ, Sidorova JM, Lauper JM, Emond MJ, Monnat RJ. The human WRN and BLM RecQ helicases differentially regulate cell proliferation and survival after chemotherapeutic DNA damage. Cancer Res 2010; 70:6548-55. [PMID: 20663905 DOI: 10.1158/0008-5472.can-10-0475] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss-of-function mutations in the human RecQ helicase genes WRN and BLM respectively cause the genetic instability/cancer predisposition syndromes Werner syndrome and Bloom syndrome. To identify common and unique functions of WRN and BLM, we systematically analyzed cell proliferation, cell survival, and genomic damage in isogenic cell lines depleted of WRN, BLM, or both proteins. Cell proliferation and survival were assessed before and after treatment with camptothecin, cis-diamminedichloroplatinum(II), hydroxyurea, or 5-fluorouracil. Genomic damage was assessed, before and after replication arrest, by gamma-H2AX staining, which was quantified at the single-cell level by flow cytometry. Cell proliferation was affected strongly by the extent of WRN and/or BLM depletion, and more strongly by BLM than by WRN depletion (P = 0.005). The proliferation of WRN/BLM-codepleted cells, in contrast, did not differ from BLM-depleted cells (P = 0.34). BLM-depleted and WRN/BLM-codepleted cells had comparably impaired survival after DNA damage, whereas WRN-depleted cells displayed a distinct pattern of sensitivity to DNA damage. BLM-depleted and WRN/BLM-codepleted cells had similar, significantly higher gamma-H2AX induction levels than did WRN-depleted cells. Our results provide new information on the role of WRN and BLM in determining cell proliferation, cell survival, and genomic damage after chemotherapeutic DNA damage or replication arrest. We also provide new information on functional redundancy between WRN and BLM. These results provide a strong rationale for further developing WRN and BLM as biomarkers of tumor chemotherapeutic responsiveness.
Collapse
Affiliation(s)
- Frances J Mao
- Department of Pathology, University of Washington, Seattle, Washington 98195-7705, USA
| | | | | | | | | |
Collapse
|
163
|
Singh DK, Karmakar P, Aamann M, Schurman SH, May A, Croteau DL, Burks L, Plon SE, Bohr VA. The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 2010; 9:358-71. [PMID: 20222902 DOI: 10.1111/j.1474-9726.2010.00562.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rothmund-Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double-strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately sensitive to gamma-irradiation and accumulate more gammaH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB's in the RECQL4-deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser-induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with gammaH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino acids 363-492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser-induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser-induced DSB and that it might play important roles in efficient repair of DSB's.
Collapse
Affiliation(s)
- Dharmendra Kumar Singh
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Svejstrup JQ. The interface between transcription and mechanisms maintaining genome integrity. Trends Biochem Sci 2010; 35:333-8. [PMID: 20194025 DOI: 10.1016/j.tibs.2010.02.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/03/2010] [Accepted: 02/05/2010] [Indexed: 12/27/2022]
Abstract
Maintaining genome integrity is crucial for correctly regulated gene expression. Conversely, the process of transcription fundamentally impinges on genome stability, necessitating cellular mechanisms that lessen the genome destabilizing effect of reading genes. This review provides an overview of our present knowledge of how eukaryotic RNA polymerase II transcription affects, and is affected by, other DNA-related processes such as chromatin remodeling, DNA repair, recombination and replication.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, EN6 3LD, UK.
| |
Collapse
|
165
|
Mitochondrial helicases and mitochondrial genome maintenance. Mech Ageing Dev 2010; 131:503-10. [PMID: 20576512 DOI: 10.1016/j.mad.2010.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 12/28/2022]
Abstract
Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus.
Collapse
|
166
|
Kitano K, Kim SY, Hakoshima T. Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 2010; 18:177-87. [PMID: 20159463 DOI: 10.1016/j.str.2009.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
Abstract
The RecQ family of DNA helicases including WRN (Werner syndrome protein) and BLM (Bloom syndrome protein) protects the genome against deleterious changes. Here we report the cocrystal structure of the RecQ C-terminal (RQC) domain of human WRN bound to a DNA duplex. In the complex, the RQC domain specifically interacted with a blunt end of the duplex and, surprisingly, unpaired a Watson-Crick base pair in the absence of an ATPase domain. The beta wing, an extended hairpin motif that is characteristic of winged-helix motifs, was used as a "separating knife" to wedge between the first and second base pairs, whereas the recognition helix, a principal component of helix-turn-helix motifs that are usually embedded within DNA grooves, was unprecedentedly excluded from the interaction. Our results demonstrate a function of the winged-helix motif central to the helicase reaction, establishing the first structural paradigm concerning the DNA structure-specific activities of the RecQ helicases.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | |
Collapse
|
167
|
Abstract
Geneticists estimate that 5% to 10% of all cancers diagnosed in the pediatric age range occur in children born with a genetic mutation that directly increases their lifetime risk for neoplasia. However, despite the fact that only a fraction of cancers in children occur as a result of an identified inherited predisposition, characterizing genetic mutations responsible for increased cancer risk in such syndromes has resulted in a profound understanding of relevant molecular pathways involved in carcinogenesis and/or resistance to neoplasia. Importantly, because most cancer predisposition syndromes result in an increased risk of a small number of defined malignancies, personalized prophylactic surveillance and preventive measures can be implemented in affected patients. Lastly, many of the same genetic targets identified from cancer-prone families are mechanistically involved in the majority of sporadic cancers in adults and children, thereby underscoring the clinical relevance of knowledge gained from these defined syndromes and introducing novel therapeutic opportunities to the broader oncologic community. This review highlights the clinical and genetic features of many of the known constitutional genetic syndromes that predispose to malignancy in children and young adults.
Collapse
|
168
|
Popuri V, Croteau DL, Bohr VA. Substrate specific stimulation of NEIL1 by WRN but not the other human RecQ helicases. DNA Repair (Amst) 2010; 9:636-42. [PMID: 20346739 DOI: 10.1016/j.dnarep.2010.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 12/26/2022]
Abstract
NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine, etc. Previous studies from our laboratory have shown that Werner Syndrome protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction between NEIL1 and all five human RecQ helicases. The DNA substrate specificity of the interaction between WRN and NEIL1 was also analyzed. The results indicate that WRN is the only human RecQ helicase that stimulates NEIL1 DNA glycosylase activity, and that this stimulation requires a double-stranded DNA substrate.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
169
|
Vindigni A, Marino F, Gileadi O. Probing the structural basis of RecQ helicase function. Biophys Chem 2010; 149:67-77. [PMID: 20392558 DOI: 10.1016/j.bpc.2010.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 01/10/2023]
Abstract
RecQ helicases are a ubiquitous family of DNA unwinding enzymes required to preserve genome integrity, thus preventing premature aging and cancer formation. The five human representatives of this family play non-redundant roles in the suppression of genome instability using a combination of enzymatic activities that specifically characterize each member of the family. These enzymes are in fact not only able to catalyze the transient opening of DNA duplexes, as any other conventional helicase, but can also promote annealing of complementary strands, branch migration of Holliday junctions and, in some cases, excision of ssDNA tails. Remarkably, the balance between these different activities seems to be regulated by protein oligomerization. This review illustrates the recent progress made in the definition of the structural determinants that control the different enzymatic activities of RecQ helicases and speculates on the possible mechanisms that RecQ proteins might use to promote their multiple functions.
Collapse
Affiliation(s)
- Alessandro Vindigni
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | | | |
Collapse
|
170
|
Gyimesi M, Sarlós K, Kovács M. Processive translocation mechanism of the human Bloom's syndrome helicase along single-stranded DNA. Nucleic Acids Res 2010; 38:4404-14. [PMID: 20211839 PMCID: PMC2910040 DOI: 10.1093/nar/gkq145] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BLM, one of the human RecQ helicases, plays a fundamental role in homologous recombination-based error-free DNA repair pathways, which require its translocation and DNA unwinding activities. Although translocation is essential in vivo during DNA repair processes and it provides a framework for more complex activities of helicases, including strand separation and nucleoprotein displacement, its mechanism has not been resolved for any human DNA helicase. Here, we present a quantitative model for the translocation of a monomeric form of BLM along ssDNA. We show that BLM performs translocation at a low adenosine triphosphate (ATP) coupling ratio (1 ATP consumed/1 nucleotide traveled) and moderate processivity (with a mean number of 50 nucleotides traveled in a single run). We also show that the rate-limiting step of the translocation cycle is a transition between two ADP-bound enzyme states. Via opening of the helicase core, this structural change may drive the stepping of BLM along the DNA track by a directed inchworm mechanism. The data also support the conclusion that BLM performs double-stranded DNA unwinding by fully active duplex destabilization.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, Eötvös University, Pázmány P. s. 1/c, H-1117 Budapest, Hungary
| | | | | |
Collapse
|
171
|
Aygün O, Svejstrup JQ. RECQL5 helicase: connections to DNA recombination and RNA polymerase II transcription. DNA Repair (Amst) 2010; 9:345-53. [PMID: 20080450 DOI: 10.1016/j.dnarep.2009.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The RecQ family of helicases are traditionally viewed as recombination factors, important for maintaining genome stability. RECQL5 is unique among these proteins in being associated with RNA polymerase II, the enzyme responsible for transcribing all protein-encoding genes in eukaryotes. Here, we describe the possible implications of recent studies and discuss models for RECQL5 function.
Collapse
Affiliation(s)
- Ozan Aygün
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | |
Collapse
|
172
|
Thangavel S, Mendoza-Maldonado R, Tissino E, Sidorova JM, Yin J, Wang W, Monnat RJ, Falaschi A, Vindigni A. Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Mol Cell Biol 2010; 30:1382-96. [PMID: 20065033 PMCID: PMC2832491 DOI: 10.1128/mcb.01290-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/26/2009] [Accepted: 12/29/2009] [Indexed: 11/20/2022] Open
Abstract
Cellular and biochemical studies support a role for all five human RecQ helicases in DNA replication; however, their specific functions during this process are unclear. Here we investigate the in vivo association of the five human RecQ helicases with three well-characterized human replication origins. We show that only RECQ1 (also called RECQL or RECQL1) and RECQ4 (also called RECQL4) associate with replication origins in a cell cycle-regulated fashion in unperturbed cells. RECQ4 is recruited to origins at late G(1), after ORC and MCM complex assembly, while RECQ1 and additional RECQ4 are loaded at origins at the onset of S phase, when licensed origins begin firing. Both proteins are lost from origins after DNA replication initiation, indicating either disassembly or tracking with the newly formed replisome. Nascent-origin DNA synthesis and the frequency of origin firing are reduced after RECQ1 depletion and, to a greater extent, after RECQ4 depletion. Depletion of RECQ1, though not that of RECQ4, also suppresses replication fork rates in otherwise unperturbed cells. These results indicate that RECQ1 and RECQ4 are integral components of the human replication complex and play distinct roles in DNA replication initiation and replication fork progression in vivo.
Collapse
Affiliation(s)
- Saravanabhavan Thangavel
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Ramiro Mendoza-Maldonado
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Erika Tissino
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Julia M. Sidorova
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Jinhu Yin
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Weidong Wang
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Raymond J. Monnat
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Arturo Falaschi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | - Alessandro Vindigni
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy, Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Via Moruzzi 1, Pisa I-56124, Italy, Departments of Pathology, Genome Sciences, University of Washington, Seattle, Washington 98195-7705, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224, Istituto di Fisiologia Clinica, CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| |
Collapse
|
173
|
Martin SA, Hewish M, Lord CJ, Ashworth A. Genomic instability and the selection of treatments for cancer. J Pathol 2010; 220:281-9. [PMID: 19890832 DOI: 10.1002/path.2631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A critical link exists between DNA mutation and chromosomal rearrangements (genomic instability) and cancer development. This genomic instability can manifest itself as small changes at the nucleotide level or as gross chromosomal alterations. Mutations in the genes that encode DNA damage response proteins are responsible for a variety of genomic instability syndromes including hereditary non-polyposis colorectal carcinoma, Bloom's syndrome, ataxia-telangiectasia, BRCA-associated breast and ovarian cancers and Fanconi anaemia. Similarly, epigenetic silencing of genes associated with the maintenance of genomic stability have also been implicated in the pathogenesis of cancer. Here, we discuss how different tumours may be classified not only by tumour site but also by the type of underlying genetic instability. This type of classification may assist in the optimization of existing treatment regimens as well as informing the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Sarah A Martin
- CRUK Gene Function Laboratory, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
174
|
Balakrishnan L, Gloor JW, Bambara RA. Reconstitution of eukaryotic lagging strand DNA replication. Methods 2010; 51:347-57. [PMID: 20178844 DOI: 10.1016/j.ymeth.2010.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/15/2010] [Accepted: 02/17/2010] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic DNA replication is a complex process requiring the proper functioning of a multitude of proteins to create error-free daughter DNA strands and maintain genome integrity. Even though synthesis and joining of Okazaki fragments on the lagging strand involves only half the DNA in the nucleus, the complexity associated with processing these fragments is about twice that needed for leading strand synthesis. Flap endonuclease 1 (FEN1) is the central component of the Okazaki fragment maturation pathway. FEN1 cleaves flaps that are displaced by DNA polymerase delta (pol delta), to create a nick that is effectively joined by DNA ligase I. The Pif1 helicase and Dna2 helicase/nuclease contribute to the maturation process by elongating the flap displaced by pol delta. Though the reason for generating long flaps is still a matter of debate, genetic studies have shown that Dna2 and Pif1 are both important components of DNA replication. Our current knowledge of the exact enzymatic steps that govern Okazaki fragment maturation has heavily derived from reconstitution reactions in vitro, which have augmented genetic information, to yield current mechanistic models. In this review, we describe both the design of specific DNA substrates that simulate intermediates of fragment maturation and protocols for reconstituting partial and complete lagging strand replication.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
175
|
Hsu JJ, Kamath-Loeb AS, Glick E, Wallden B, Swisshelm K, Rubin BP, Loeb LA. Werner syndrome gene variants in human sarcomas. Mol Carcinog 2010; 49:166-74. [PMID: 19824023 DOI: 10.1002/mc.20586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Werner syndrome is an autosomal inherited disease that is characterized by premature aging. The gene mutated in Werner syndrome (WS), WRN, encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Among the WS phenotypes is an exceptionally high incidence of sarcomas. We asked whether spontaneous sarcomas, not known to be associated with WS, also harbor mutations or unreported single nucleotide polymorphisms (SNPs) in WRN. We analyzed RNA or DNA sequences within the helicase and exonuclease domains from 51 and 69 matched sarcoma and adjacent normal tissues, respectively. Among a total of 13 nucleotide variants detected, we identified three novel nonsynonymous substitutions: c.611C>T, c.809_810insT, and c.1882C>G. We further characterized one, c.611C>T, which results in substitution of an evolutionarily conserved proline at amino acid 204 in the exonuclease domain with leucine. We show that P204L WRN exhibits a reduction of WRN exonuclease activity; the specific activity is approximately 10-fold lower than that of wild-type WRN. In contrast, the helicase activity of P204L WRN is reduced less than twofold.
Collapse
Affiliation(s)
- Jessica J Hsu
- Department of Pathology, The Gottstein Memorial Cancer Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Fonville NC, Blankschien MD, Magner DB, Rosenberg SM. RecQ-dependent death-by-recombination in cells lacking RecG and UvrD. DNA Repair (Amst) 2010; 9:403-13. [PMID: 20138014 DOI: 10.1016/j.dnarep.2009.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/11/2009] [Accepted: 12/21/2009] [Indexed: 12/24/2022]
Abstract
Maintenance of genomic stability is critical for all cells. Homologous recombination (HR) pathways promote genome stability using evolutionarily conserved proteins such as RecA, SSB, and RecQ, the Escherichia coli homologue of five human proteins at least three of which suppress genome instability and cancer. A previous report indicated that RecQ promotes the net accumulation in cells of intermolecular HR intermediates (IRIs), a net effect opposite that of the yeast and two human RecQ homologues. Here we extend those conclusions. We demonstrate that cells that lack both UvrD, an inhibitor of RecA-mediated strand exchange, and RecG, a DNA helicase implicated in IRI resolution, are inviable. We show that the uvrD recG cells die a "death-by-recombination" in which IRIs accumulate blocking chromosome segregation. First, their death requires RecA HR protein. Second, the death is accompanied by cytogenetically visible failure to segregate chromosomes. Third, FISH analyses show that the unsegregated chromosomes have completed replication, supporting the hypothesis that unresolved IRIs prevented the segregation. Fourth, we show that RecQ and induction of the SOS response are required for the accumulation of replicated, unsegregated chromosomes and death, as are RecF, RecO, and RecJ. ExoI exonuclease and MutL mismatch-repair protein are partially required. This set of genes is similar but not identical to those that promote death-by-recombination of DeltauvrD Deltaruv cells. The data support models in which RecQ promotes the net accumulation in cells of IRIs and RecG promotes resolution of IRIs that form via pathways not wholly identical to those that produce the IRIs resolved by RuvABC. This implies that RecG resolves intermediates other than or in addition to standard Holliday junctions resolved by RuvABC. The role of RecQ in net accumulation of IRIs may be shared by one or more of its human homologues.
Collapse
|
177
|
Perry J, Shin D, Getzoff E, Tainer J. The structural biochemistry of the superoxide dismutases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:245-62. [PMID: 19914407 PMCID: PMC3098211 DOI: 10.1016/j.bbapap.2009.11.004] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/11/2023]
Abstract
The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.
Collapse
Affiliation(s)
- J.J.P. Perry
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | - D.S. Shin
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - E.D. Getzoff
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J.A. Tainer
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
178
|
Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging--an update. Exp Gerontol 2010; 45:478-88. [PMID: 20096766 DOI: 10.1016/j.exger.2010.01.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 01/07/2023]
Abstract
Mitochondrial DNA is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to play a critical role in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system comparable to that in the nuclear compartment. However, it is now well established that DNA repair actively takes place in mitochondria. Oxidative DNA damage processing, base excision repair mechanisms were the first to be described in these organelles, and consequently the best understood. However, new proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center for Molecular Gerontology, Department of Molecular Biology, Aarhus University, C.F. Moellers allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
179
|
Abstract
HGPS (Hutchinson–Gilford progeria syndrome) is a severe childhood disorder that appears to mimic an accelerated aging process. The disease is most commonly caused by gene mutations that disrupt the normal post-translational processing of lamin A, a structural component of the nuclear envelope. Impaired processing results in aberrant retention of a farnesyl group at the C-terminus of lamin A, leading to altered membrane dynamics. It has been widely proposed that persistence of the farnesyl moiety is the major factor responsible for the disease, prompting clinical trials of farnesyltransferase inhibitors to prevent lamin A farnesylation in children afflicted with HGPS. Although there is evidence implicating farnesylation in causing some of the cellular defects of HGPS, results of several recent studies suggest that aberrant lamin A farnesylation is not the only determinant of the disease. These findings have important implications for the design of treatments for this devastating disease.
Collapse
|
180
|
Abstract
Mutations in the highly conserved RecQ helicase, BLM, cause the rare cancer predisposition disorder, Bloom's syndrome. The orthologues of BLM in Saccharomyces cerevisiae and Schizosaccharomyces pombe are SGS1 and rqh1(+), respectively. Studies in these yeast species have revealed a plethora of roles for the Sgs1 and Rqh1 proteins in repair of double strand breaks, restart of stalled replication forks, processing of aberrant intermediates that arise during meiotic recombination, and maintenance of telomeres. In this review, we focus on the known roles of Sgs1 and Rqh1 and how studies in yeast species have improved our knowledge of how BLM suppresses neoplastic transformation.
Collapse
Affiliation(s)
- Thomas M Ashton
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
181
|
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9:331-44. [PMID: 20075015 DOI: 10.1016/j.dnarep.2009.12.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner syndrome (WS). WRN is one of the best characterized of the RecQ helicases and is known to have roles in DNA replication and repair, transcription, and telomere maintenance. Studies both in vitro and in vivo indicate that the roles of WRN in a variety of DNA processes are mediated by post-translational modifications, as well as several important protein-protein interactions. In this work, we will summarize some of the early studies on the cellular roles of WRN and highlight the recent findings that shed some light on the link between the protein with its cellular functions and the disease pathology.
Collapse
Affiliation(s)
- Marie L Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
182
|
Fisher EMC, Lana-Elola E, Watson SD, Vassiliou G, Tybulewicz VLJ. New approaches for modelling sporadic genetic disease in the mouse. Dis Model Mech 2010; 2:446-53. [PMID: 19726804 DOI: 10.1242/dmm.001644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sporadic diseases, which occur as single, scattered cases, are among the commonest causes of human morbidity and death. They result in a variety of diseases, including many cancers, premature aging, neurodegeneration and skeletal defects. They are often pathogenetically complex, involving a mosaic distribution of affected cells, and are difficult to model in the mouse. Faithful models of sporadic diseases require innovative forms of genetic manipulation to accurately recreate their initiation and pathogenesis. Such modelling is crucial to understanding these diseases and, by extension, to the development of therapeutic approaches to treat them. This article focuses on sporadic diseases with a genetic aetiology, the challenges they pose to biomedical researchers, and the different current and developing approaches used to model such disorders in the mouse.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3BG, UK.
| | | | | | | | | |
Collapse
|
183
|
The Caenorhabditis elegans Werner syndrome protein functions upstream of ATR and ATM in response to DNA replication inhibition and double-strand DNA breaks. PLoS Genet 2010; 6:e1000801. [PMID: 20062519 PMCID: PMC2791846 DOI: 10.1371/journal.pgen.1000801] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 12/07/2009] [Indexed: 11/19/2022] Open
Abstract
WRN-1 is the Caenorhabditis elegans homolog of the human Werner syndrome protein, a RecQ helicase, mutations of which are associated with premature aging and increased genome instability. Relatively little is known as to how WRN-1 functions in DNA repair and DNA damage signaling. Here, we take advantage of the genetic and cytological approaches in C. elegans to dissect the epistatic relationship of WRN-1 in various DNA damage checkpoint pathways. We found that WRN-1 is required for CHK1 phosphorylation induced by DNA replication inhibition, but not by UV radiation. Furthermore, WRN-1 influences the RPA-1 focus formation, suggesting that WRN-1 functions in the same step or upstream of RPA-1 in the DNA replication checkpoint pathway. In response to ionizing radiation, RPA-1 focus formation and nuclear localization of ATM depend on WRN-1 and MRE-11. We conclude that C. elegans WRN-1 participates in the initial stages of checkpoint activation induced by DNA replication inhibition and ionizing radiation. These functions of WRN-1 in upstream DNA damage signaling are likely to be conserved, but might be cryptic in human systems due to functional redundancy. Werner syndrome is a premature aging syndrome associated with genomic instability. The protein linked to Werner syndrome, WRN, has both helicase and exonuclease activities and is thought to be involved in DNA repair, including the resolution of replication fork arrest as well as in telomere maintenance. However, no definite and detailed role of the protein has been elucidated in vivo. We take advantage of the Caenorhabditis elegans germ cell system to explore DNA damage response defects associated with WRN, and we focus particularly on the role of wrn in the cell cycle checkpoint in response to DNA replication blockage and ionizing radiation (IR). We show that WRN functions together with RPA upstream of C. elegans ATR in the intra S-phase checkpoint pathway, and upstream of C. elegans ATM and RPA in the cell cycle arrest pathway triggered by IR–induced double-strand DNA breaks. These functions of WRN in upstream DNA damage signaling are likely to be conserved, but not obvious in human systems due to functional redundancy.
Collapse
|
184
|
Postow L, Woo EM, Chait BT, Funabiki H. Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 2010; 284:35951-61. [PMID: 19841479 DOI: 10.1074/jbc.m109.048330] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SMARCAL1 (also known as HARP) is a SWI/SNF family protein with an ATPase activity stimulated by DNA containing both single-stranded and double-stranded regions. Mutations in SMARCAL1 are associated with the disease Schimke immuno-osseous dysplasia, a multisystem autosomal recessive disorder characterized by T cell immunodeficiency, growth inhibition, and renal dysfunction. The cellular function of SMARCAL1, however, is unknown. Here, using Xenopus egg extracts and mass spectrometry, we identify SMARCAL1 as a protein recruited to double-stranded DNA breaks. SMARCAL1 binds to double-stranded breaks and stalled replication forks in both egg extract and human cells, specifically colocalizing with the single-stranded DNA binding factor RPA. In addition, SMARCAL1 interacts physically with RPA independently of DNA. SMARCAL1 is phosphorylated in a caffeine-sensitive manner in response to double-stranded breaks and stalled replication forks. It has been suggested that stalled forks can be stabilized by a mechanism involving caffeine-sensitive kinases, or they collapse and subsequently recruit Rad51 to promote homologous recombination repair. We show that depletion of SMARCAL1 from U2OS cells leads to increased frequency of RAD51 foci upon generation of stalled replication forks, indicating that fork breakdown is more prevalent in the absence of SMARCAL1. We propose that SMARCAL1 is a novel DNA damage-binding protein involved in replication fork stabilization.
Collapse
Affiliation(s)
- Lisa Postow
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | |
Collapse
|
185
|
Shah SN, Opresko PL, Meng X, Lee MYWT, Eckert KA. DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res 2009; 38:1149-62. [PMID: 19969545 PMCID: PMC2831333 DOI: 10.1093/nar/gkp1131] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Common fragile sites (CFS) are chromosomal regions that exhibit instability during DNA replication stress. Although the mechanism of CFS expression has not been fully elucidated, one known feature is a severely delayed S-phase. We used an in vitro primer extension assay to examine the progression of DNA synthesis through various sequences within FRA16D by the replicative human DNA polymerases δ and α, and with human cell-free extracts. We found that specific cis-acting sequence elements perturb DNA elongation, causing inconsistent DNA synthesis rates between regions on the same strand and complementary strands. Pol δ was significantly inhibited in regions containing hairpins and microsatellites, [AT/TA]24 and [A/T]19–28, compared with a control region with minimal secondary structure. Pol δ processivity was enhanced by full length Werner Syndrome protein (WRN) and by WRN fragments containing either the helicase domain or DNA-binding C-terminal domain. In cell-free extracts, stalling was eliminated at smaller hairpins, but persisted in larger hairpins and microsatellites. Our data support a model whereby CFS expression during cellular stress is due to a combination of factors—density of specific DNA secondary-structures within a genomic region and asymmetric rates of strand synthesis.
Collapse
Affiliation(s)
- Sandeep N Shah
- Department of Pathology, Gittlen Cancer Research Foundation and the Intercollege Graduate Degree Program in Genetics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
186
|
Divergent cellular phenotypes of human and mouse cells lacking the Werner syndrome RecQ helicase. DNA Repair (Amst) 2009; 9:11-22. [PMID: 19896421 DOI: 10.1016/j.dnarep.2009.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/13/2009] [Accepted: 09/25/2009] [Indexed: 01/06/2023]
Abstract
Werner syndrome (WS) is a human autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several genetically determined mouse models of WS have been generated, however, none develops features of premature aging or an elevated risk of neoplasia unless additional genetic perturbations are introduced. In order to determine whether differences in cellular phenotype could explain the discrepant phenotypes of Wrn-/- mice and WRN-deficient humans, we compared the cellular phenotype of newly derived Wrn-/- mouse primary fibroblasts with previous analyses of primary and transformed fibroblasts from WS patients and with newly derived, WRN-depleted human primary fibroblasts. These analyses confirmed previously reported cellular phenotypes of WRN-mutant and WRN-deficient human fibroblasts, and demonstrated that the human WRN-deficient cellular phenotype can be detected in cells grown in 5% or in 20% oxygen. In contrast, we did not identify prominent cellular phenotypes present in WRN-deficient human cells in Wrn-/- mouse fibroblasts. Our results indicate that human and mouse fibroblasts have different functional requirements for WRN protein, and that the absence of a strong cellular phenotype may in part explain the failure of Wrn-/- mice to develop an organismal phenotype resembling Werner syndrome.
Collapse
|
187
|
Huen MSY, Chen J. Assembly of checkpoint and repair machineries at DNA damage sites. Trends Biochem Sci 2009; 35:101-8. [PMID: 19875294 DOI: 10.1016/j.tibs.2009.09.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 12/31/2022]
Abstract
The remarkably coordinated nature of the DNA damage response pathway relies on numerous mechanisms that facilitate the assembly of checkpoint and repair factors at DNA breaks. Post-translational modifications on and around chromatin have critical roles in allowing the timely and sequential assembly of DNA damage responsive elements at the vicinity of DNA breaks. Notably, recent advances in forward genetics and proteomics-based approaches have enabled the identification of novel components within the DNA damage response pathway, providing a more comprehensive picture of the molecular network that assists in the detection and propagation of DNA damage signals.
Collapse
Affiliation(s)
- Michael S Y Huen
- Department of Anatomy, Centre for Cancer Research, University of Hong Kong, L1-59, Laboratory Block, 21 Sassoon Road, Hong Kong SAR
| | | |
Collapse
|
188
|
Robertson HM. The choanoflagellate Monosiga brevicollis karyotype revealed by the genome sequence: telomere-linked helicase genes resemble those of some fungi. Chromosome Res 2009; 17:873-82. [PMID: 19789987 DOI: 10.1007/s10577-009-9078-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/06/2009] [Accepted: 08/13/2009] [Indexed: 12/01/2022]
Abstract
The approximately 42 Mbp assembled genome sequence for the choanoflagellate Monosiga brevicollis reveals that most of the large scaffolds of 300-2,600 kb represent entire chromosomes or chromosome arms. Telomeres are partially assembled at the termini of 37 scaffolds, while another 43 scaffolds end in telomere-associated regions containing distinctive gene sets. Potential centromeric regions were identified on 39 scaffolds. Together, these observations suggest a karyotype of approximately 40 metacentric and submetacentric chromosomes averaging 1 Mbp in size. Genes encoding RecQ family DNA helicases, along with ankyrin-domain proteins and serine/threonine kinases, are associated with most telomeres, a feature shared with some fungi. This telomere-linked helicase gene arrangement might be ancestral to both fungi and choanoflagellates in the super-kingdom Opisthokonta; however, the great lability of telomere architecture suggests that it could also be a convergent feature.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
189
|
Abstract
The six Saccharomyces cerevisiae SLX genes were identified in a screen for factors required for the viability of cells lacking Sgs1, a member of the RecQ helicase family involved in processing stalled replisomes and in the maintenance of genome stability. The six SLX gene products form three distinct heterodimeric complexes, and all three have catalytic activity. Slx3-Slx2 (also known as Mus81-Mms4) and Slx1-Slx4 are both heterodimeric endonucleases with a marked specificity for branched replication fork-like DNA species, whereas Slx5-Slx8 is a SUMO (small ubiquitin-related modifier)-targeted E3 ubiquitin ligase. All three complexes play important, but distinct, roles in different aspects of the cellular response to DNA damage and perturbed DNA replication. Slx4 interacts physically not only with Slx1, but also with Rad1-Rad10 [XPF (xeroderma pigmentosum complementation group F)-ERCC1 (excision repair cross-complementing 1) in humans], another structure-specific endonuclease that participates in the repair of UV-induced DNA damage and in a subpathway of recombinational DNA DSB (double-strand break) repair. Curiously, Slx4 is essential for repair of DSBs by Rad1-Rad10, but is not required for repair of UV damage. Slx4 also promotes cellular resistance to DNA-alkylating agents that block the progression of replisomes during DNA replication, by facilitating the error-free mode of lesion bypass. This does not require Slx1 or Rad1-Rad10, and so Slx4 has several distinct roles in protecting genome stability. In the present article, I provide an overview of our current understanding of the cellular roles of the Slx proteins, paying particular attention to the advances that have been made in understanding the cellular roles of Slx4. In particular, protein-protein interactions and underlying molecular mechanisms are discussed and I draw attention to the many questions that have yet to be answered.
Collapse
|
190
|
Muñoz IM, Hain K, Déclais AC, Gardiner M, Toh GW, Sanchez-Pulido L, Heuckmann JM, Toth R, Macartney T, Eppink B, Kanaar R, Ponting CP, Lilley DMJ, Rouse J. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell 2009; 35:116-27. [PMID: 19595721 DOI: 10.1016/j.molcel.2009.06.020] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/19/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.
Collapse
Affiliation(s)
- Ivan M Muñoz
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
DNA chromosomal DSBs (double-strand breaks) are potentially hazardous DNA lesions, and their accurate repair is essential for the successful maintenance and propagation of genetic information. Two major pathways have evolved to repair DSBs: HR (homologous recombination) and NHEJ (non-homologous end-joining). Depending on the context in which the break is encountered, HR and NHEJ may either compete or co-operate to fix DSBs in eukaryotic cells. Defects in either pathway are strongly associated with human disease, including immunodeficiency and cancer predisposition. Here we review the current knowledge of how NHEJ and HR are controlled in somatic mammalian cells, and discuss the role of the chromatin context in regulating each pathway. We also review evidence for both co-operation and competition between the two pathways.
Collapse
|
192
|
Capp C, Wu J, Hsieh TS. Drosophila RecQ4 has a 3'-5' DNA helicase activity that is essential for viability. J Biol Chem 2009; 284:30845-52. [PMID: 19759018 DOI: 10.1074/jbc.m109.008052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the RecQ family of proteins are highly conserved DNA helicases that have important functions in the maintenance of genomic stability. Deficiencies in RecQ4 have been linked to human diseases including Rothmund-Thomson, RAPADILINO, and Baller-Gerold syndromes, all of which are characterized by developmental defects, tumor propensity, and genetic instability. However, there are conflicting results shown in the literature regarding the DNA helicase activity of RecQ4. We report here the expression of Drosophila melanogaster RecQ4 with a baculoviral vector and its purification to near homogeneity. The purified protein has a DNA-dependent ATPase activity and is a 3'-5' DNA helicase dependent on hydrolysis of ATP. The presence of 5'-adenylyl-beta,gamma-imidodiphosphate (AMPPNP), a nonhydrolyzable ATP analog, promotes stable complex formation between RecQ4 and single-stranded DNA. Drosophila RecQ4 can also anneal complementary single strands; this activity was reduced in the presence of AMPPNP, possibly because of the stable protein-DNA complex formed under such conditions. A point mutation of the highly conserved lysine residue in the helicase domain, although retaining the wild type level of annealing activity, inactivated ATPase and helicase activities and eliminated stable complex formation. These results suggest that the helicase domain alone is responsible for the DNA unwinding action of the Drosophila enzyme. We generated a null recq4 mutant that is homozygous lethal, which we used to test the genetic function of the helicase-dead mutant in flies. Complementation tests showed that the helicase-dead mutant recq4 transgenes are incapable of rescuing the null mutation, demonstrating that the helicase activity has an essential biological function.
Collapse
Affiliation(s)
- Christopher Capp
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
193
|
Lachaud AA, Auclair-Vincent S, Massip L, Audet-Walsh E, Lebel M, Anderson A. Werner's syndrome helicase participates in transcription of phenobarbital-inducible CYP2B genes in rat and mouse liver. Biochem Pharmacol 2009; 79:463-70. [PMID: 19737542 DOI: 10.1016/j.bcp.2009.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/01/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Werner's syndrome (WS) is a rare human autosomal recessive segmental progeroid syndrome clinically characterized by atherosclerosis, cancer, osteoporosis, type 2 diabetes mellitus and ocular cataracts. The WRN gene codes for a RecQ helicase which is present in many tissues. Although the exact functions of the WRN protein remain unclear, accumulating evidence suggests that it participates in DNA repair, replication, recombination and telomere maintenance. It has also been proposed that WRN participates in RNA polymerase II-dependent transcription. However no promoter directly targeted by WRN has yet been identified. In this work, we report mammalian genes that are WRN targets. The rat CYP2B2 gene and its closely related mouse homolog, Cyp2b10, are both strongly induced in liver by phenobarbital. We found that there is phenobarbital-dependent recruitment of WRN to the promoter of the CYP2B2 gene as demonstrated by chromatin immunoprecipitation analysis. Mice homozygous for a Wrn mutation deleting part of the helicase domain showed a decrease in basal and phenobarbital-induced CYP2B10 mRNA levels compared to wild type animals. The phenobarbital-induced level of CYP2B10 protein was also reduced in the mutant mice. Electrophoretic mobility shift assays showed that WRN can participate in the formation of a complex with a specific sequence within the CYP2B2 basal promoter. Hence, there is a WRN binding site in a region of DNA sequence to which WRN is recruited in vivo. Taken together, these results suggest that WRN participates in transcription of CYP2B genes in liver and identifies the first physical interaction between a specific promoter sequence and WRN.
Collapse
Affiliation(s)
- Antoine Amaury Lachaud
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, CHUQ, Québec, Canada
| | | | | | | | | | | |
Collapse
|
194
|
Ghosh A, Rossi ML, Aulds J, Croteau D, Bohr VA. Telomeric D-loops containing 8-oxo-2'-deoxyguanosine are preferred substrates for Werner and Bloom syndrome helicases and are bound by POT1. J Biol Chem 2009; 284:31074-84. [PMID: 19734539 DOI: 10.1074/jbc.m109.027532] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
8-Oxo-2'-deoxyguanosine (8-oxodG) is one of the most important oxidative DNA lesions, and G-rich telomeric DNA is especially susceptible to oxidative DNA damage. RecQ helicases WRN and BLM and telomere-binding protein POT1 are thought to play roles in telomere maintenance. This study examines the ability of WRN, BLM, and RecQ5 to unwind and POT1 to bind telomeric D-loops containing 8-oxodG. The results demonstrate that WRN and BLM preferentially unwind telomeric D-loops containing 8-oxodG and that POT1 binds with higher affinity to telomeric D-loops with 8-oxodG but shows no preference for telomeric single-stranded DNA with 8-oxodG. We speculate that telomeric D-loops with 8-oxodG may have a greater tendency to form G-quadruplex DNA structures than telomeric DNA lacking 8-oxodG.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
195
|
Abstract
Pif1, an evolutionarily conserved helicase, negatively regulates telomere length by removing telomerase from chromosome ends. Pif1 has also been implicated in DNA replication processes such as Okazaki fragment maturation and replication fork pausing. We find that overexpression of Saccharomyces cervisiae PIF1 results in dose-dependent growth inhibition. Strong overexpression causes relocalization of the DNA damage response factors Rfa1 and Mre11 into nuclear foci and activation of the Rad53 DNA damage checkpoint kinase, indicating that the toxicity is caused by accumulation of DNA damage. We screened the complete set of approximately 4800 haploid gene deletion mutants and found that moderate overexpression of PIF1, which is only mildly toxic on its own, causes growth defects in strains with mutations in genes involved in DNA replication and the DNA damage response. Interestingly, we find that telomerase-deficient strains are also sensitive to PIF1 overexpression. Our data are consistent with a model whereby increased levels of Pif1 interfere with DNA replication, causing collapsed replication forks. At chromosome ends, collapsed forks result in truncated telomeres that must be rapidly elongated by telomerase to maintain viability.
Collapse
|
196
|
Cotton RT, Li D, Scherer SE, Muzny DM, Hodges SE, Catania RL, Witkiewicz AK, Brody JR, Kennedy EP, Yeo CJ, Brunicardi FC, Gibbs RA, Gingras MC, Fisher WE. Single nucleotide polymorphism in RECQL and survival in resectable pancreatic adenocarcinoma. HPB (Oxford) 2009; 11:435-44. [PMID: 19768149 PMCID: PMC2742614 DOI: 10.1111/j.1477-2574.2009.00089.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 05/07/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND RECQL is a DNA helicase involved in DNA mismatch repair. The RECQL polymorphism, 3' untranslated region (UTR) A159C, was previously associated with overall survival of patients with resectable pancreatic adenocarcinoma treated with neoadjuvant chemoradiation. In the present study, we examined RECQL for somatic mutations and other polymorphisms and compared these findings with the outcome in patients who received adjuvant or neoadjuvant chemoradiation. We hypothesized that RECQL (i) would be mutated in cancer, (ii) would have polymorphisms linked to the 3'UTR A159C and that either or both events would affect function. We also hypothesized that (iii) these changes would be associated with survival in both cohorts of patients. MATERIAL AND METHODS We sequenced RECQL's 15 exons and surrounding sequences in paired blood and tumour DNA of 39 patients. The 3'UTR A159C genotype was determined in blood DNA samples from 176 patients with resectable pancreatic adenocarcinoma treated with adjuvant (53) or neoadjuvant (123) chemoradiation. Survival was calculated using the Kaplan-Meier method, with log rank comparisons between groups. The relative impact of genotype on time to overall survival was performed using the Cox proportional hazards model. RESULTS Somatic mutations were found in UTRs and intronic regions but not in exonic coding regions of the RECQL gene. Two single nucleotide polymorphisms (SNPs), located in introns 2 and 11, were found to be part of the same haplotype block as the RECQL A159C SNP and showed a similar association with overall survival. No short-term difference in survival between treatment strategies was found. We identified a subgroup of patients responsive to neoadjuvant therapy in which the 159 A allele conferred strikingly improved long-term survival. DISCUSSION The RECQL 3'UTR A159C SNP is not linked with other functional SNPs within RECQL but may function as a site for regulatory molecules. The mechanism of action needs to be clarified further.
Collapse
Affiliation(s)
- Ronald T Cotton
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer CenterHouston, TX
| | - Steven E Scherer
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Sally E Hodges
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Robbi L Catania
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Agnieszka K Witkiewicz
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA,Department of Pathology, Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, PA, USA
| | - Jonathan R Brody
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - Eugene P Kennedy
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - Charles J Yeo
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related CancersPhiladelphia, PA, USA
| | - F Charles Brunicardi
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX
| | - Marie-Claude Gingras
- Department of Molecular and Human Genetics, Human Genome Sequencing CenterHouston, TX,Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| | - William E Fisher
- Michael DeBakey Department of Surgery and Elkins Pancreas Center, Baylor College of MedicineHouston, TX
| |
Collapse
|
197
|
Kyng K, Croteau DL, Bohr VA. Werner syndrome resembles normal aging. Cell Cycle 2009; 8:2323. [PMID: 19633413 PMCID: PMC4172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
|
198
|
Sinclair DA, Oberdoerffer P. The ageing epigenome: damaged beyond repair? Ageing Res Rev 2009; 8:189-98. [PMID: 19439199 DOI: 10.1016/j.arr.2009.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 12/28/2022]
Abstract
Of all the proposed causes of ageing, DNA damage remains a leading, though still debated theory. Unlike most other types of age-related cellular damage, which can hypothetically be reversed, mutations in DNA are permanent. Such errors result in the accumulation of changes to RNA and protein sequences with age, and are tightly linked to cellular senescence and overall organ dysfunction. Over the past few years, an additional, more global role has emerged for the contribution of DNA damage and genomic instability to the ageing process. We, and others have found that DNA damage and the concomitant repair process can induce genome-wide epigenetic changes, which may promote a variety of age-related transcriptional and functional changes. Here, we discuss the link between DNA damage, chromatin alterations and ageing, an interplay that explains how seemingly random DNA damage could manifest in predictable phenotypic changes that define ageing, changes that may ultimately be reversible.
Collapse
|
199
|
Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ. Direct inhibition of RNA polymerase II transcription by RECQL5. J Biol Chem 2009; 284:23197-203. [PMID: 19570979 PMCID: PMC2749093 DOI: 10.1074/jbc.m109.015750] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases of the RECQ family are important for maintaining genome integrity, from bacteria to humans. Although progress has been made in understanding the biochemical role of some human RECQ helicases, that of RECQL5 remains elusive. We recently reported that RECQL5 interacts with RNA polymerase II (RNAPII), pointing to a role for the protein in transcription. Here, we show that RECQL5 inhibits both initiation and elongation in transcription assays reconstituted with highly purified general transcription factors and RNAPII. Such inhibition is not observed with the related, much more active RECQL1 helicase or with a version of RECQL5 that has normal helicase activity but is impaired in its ability to interact with RNAPII. Indeed, RECQL5 helicase activity is not required for inhibition. We discuss our findings in light of the fact that RECQ5−/− mice have elevated levels of DNA recombination and a higher incidence of cancer.
Collapse
Affiliation(s)
- Ozan Aygün
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK, London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Schurman SH, Hedayati M, Wang Z, Singh DK, Speina E, Zhang Y, Becker K, Macris M, Sung P, Wilson DM, Croteau DL, Bohr VA. Direct and indirect roles of RECQL4 in modulating base excision repair capacity. Hum Mol Genet 2009; 18:3470-83. [PMID: 19567405 DOI: 10.1093/hmg/ddp291] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund-Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H(2)O(2)-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H(2)O(2)-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H(2)O(2), RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase beta, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity.
Collapse
Affiliation(s)
- Shepherd H Schurman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|