151
|
D’Agnelli S, Arendt-Nielsen L, Gerra MC, Zatorri K, Boggiani L, Baciarello M, Bignami E. Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Mol Pain 2019; 15:1744806918819944. [PMID: 30486733 PMCID: PMC6322092 DOI: 10.1177/1744806918819944] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/21/2018] [Indexed: 12/26/2022] Open
Abstract
Fibromyalgia is a disease characterized by chronic widespread pain with additional symptoms, such as joint stiffness, fatigue, sleep disturbance, cognitive dysfunction, and depression. Currently, fibromyalgia diagnosis is based exclusively on a comprehensive clinical assessment, according to 2016 ACR criteria, but validated biological biomarkers associated with fibromyalgia have not yet been identified. Genome-wide association studies investigated genes potentially involved in fibromyalgia pathogenesis highlighting that genetic factors are possibly responsible for up to 50% of the disease susceptibility. Potential candidate genes found associated to fibromyalgia are SLC64A4, TRPV2, MYT1L, and NRXN3. Furthermore, a gene-environmental interaction has been proposed as triggering mechanism, through epigenetic alterations: In particular, fibromyalgia appears to be characterized by a hypomethylated DNA pattern, in genes implicated in stress response, DNA repair, autonomic system response, and subcortical neuronal abnormalities. Differences in the genome-wide expression profile of microRNAs were found among multiple tissues, indicating the involvement of distinct processes in fibromyalgia pathogenesis. Further studies should be dedicated to strength these preliminary findings, in larger multicenter cohorts, to identify reliable directions for biomarker research and clinical practice.
Collapse
Affiliation(s)
- Simona D’Agnelli
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Maria C Gerra
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Katia Zatorri
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lorenzo Boggiani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Baciarello
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
152
|
Shen C, Wen L, Ko R, Gao J, Shen X, Zuo X, Sun L, Hsu YH, Zhang X, Cui Y, Wang M, Zhou F. DNA methylation age is not affected in psoriatic skin tissue. Clin Epigenetics 2018; 10:160. [PMID: 30587242 PMCID: PMC6307188 DOI: 10.1186/s13148-018-0584-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Psoriasis (Ps) is a common chronic inflammatory skin disease. The keratinocytes of psoriatic skin defy normal apoptosis and exhibit active cell proliferation. Aberrant DNA methylation (DNAm) has been suggested relevant through regulating the expression of Ps susceptibility genes. However, it is unclear whether the biological age inferred from DNA methylome is affected. Results To address the above issue, we applied a recently developed methylation clock model to our Chinese Han population dataset, which includes DNAm data of 114 involved psoriatic skin tissues (PP) and 41 uninvolved psoriatic skin tissues (PN) from Ps patients, and 62 normal skin tissues (NN) from health controls. We first confirmed the applicability of the clock in PN and NN. We then showed that PP samples have largely unchanged DNAm age, and that no association was observed between available clinical features and DNAm age acceleration. Examination of genome-wide CpGs yielded age-associated CpGs with concordant age-association coefficients among the three groups, which was also supported by an external dataset. We also interestingly observed two clock CpGs differentially methylated between PP and PN. Conclusions Overall, our results suggest no significant alteration in DNAm age in PN and PP. Therefore, the increase in keratinocyte proliferation and alteration in DNAm caused by Ps may not affect the biological age of psoriatic skin tissue. Electronic supplementary material The online version of this article (10.1186/s13148-018-0584-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Leilei Wen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xue Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xianbo Zuo
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA, 02131, USA.,Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.,Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230601, Anhui, China.,Institute and Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China. .,Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Meng Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
153
|
Kishimoto S, Uno M, Nishida E. Molecular mechanisms regulating lifespan and environmental stress responses. Inflamm Regen 2018; 38:22. [PMID: 30555601 PMCID: PMC6287349 DOI: 10.1186/s41232-018-0080-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
Throughout life, organisms are subjected to a variety of environmental perturbations, including temperature, nutrient conditions, and chemical agents. Exposure to external signals induces diverse changes in the physiological conditions of organisms. Genetically identical individuals exhibit highly phenotypic variations, which suggest that environmental variations among individuals can affect their phenotypes in a cumulative and inhomogeneous manner. The organismal phenotypes mediated by environmental conditions involve development, metabolic pathways, fertility, pathological processes, and even lifespan. It is clear that genetic factors influence the lifespan of organisms. Likewise, it is now increasingly recognized that environmental factors also have a large impact on the regulation of aging. Multiple studies have reported on the contribution of epigenetic signatures to the long-lasting phenotypic effects induced by environmental signals. Nevertheless, the mechanism of how environmental stimuli induce epigenetic changes at specific loci, which ultimately elicit phenotypic variations, is still largely unknown. Intriguingly, in some cases, the altered phenotypes associated with epigenetic changes could be stably passed on to the next generations. In this review, we discuss the environmental regulation of organismal viability, that is, longevity and stress resistance, and the relationship between this regulation and epigenetic factors, focusing on studies in the nematode C. elegans.
Collapse
Affiliation(s)
- Saya Kishimoto
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masaharu Uno
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Eisuke Nishida
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, 650-0047 Japan.,2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
154
|
Role of Endogenous Glucocorticoids in Cancer in the Elderly. Int J Mol Sci 2018; 19:ijms19123774. [PMID: 30486460 PMCID: PMC6321146 DOI: 10.3390/ijms19123774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Although not a disease itself, aging represents a risk factor for many aging-related illnesses, including cancer. Numerous causes underlie the increased incidence of malignancies in the elderly, for example, genomic instability and epigenetic alterations that occur at cellular level, which also involve the immune cells. The progressive decline of the immune system functions that occurs in aging defines immunosenescence, and includes both innate and adaptive immunity; the latter undergoes major alterations. Aging and chronic stress share the abnormal hypothalamic–pituitary–adrenal axis activation, where altered peripheral glucocorticoids (GC) levels and chronic stress have been associated with accelerated cellular aging, premature immunosenescence, and aging-related diseases. Consequently, changes in GC levels and sensitivity contribute to the signs of immunosenescence, namely fewer naïve T cells, poor immune response to new antigens, decreased cell-mediated immunity, and thymic involution. GC signaling alterations also involve epigenetic alterations in DNA methylation, with transcription modifications that may contribute to immunosenescence. Immune cell aging leads to decreased levels of immunosurveillance, thereby providing tumor cells one more route for immune system escape. Here, the contribution of GC secretion and signaling dysregulation to the increased incidence of tumorigenesis in the elderly is reviewed.
Collapse
|
155
|
Silva LAD, Jaluul O, Teixeira MJ, Siqueira JTTD, Jacob Filho W, Siqueira SRDTD. Quantitative sensory testing in elderly: longitudinal study. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:743-750. [DOI: 10.1590/0004-282x20180129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective: To evaluate elderly patients in a geriatric service, along with their sensory characteristics and their association with clinical aspects. Methods: This was a descriptive longitudinal study. We enrolled 36 healthy participants of both sexes in this study. The following instruments were used and evaluations performed: clinical evaluation, Mini-Mental State Exam, and quantitative sensory testing. Results: During the follow-up, there was reduction of mean corpuscular volume at each evaluation (p < 0.001) and significant increase in mean corpuscular hemoglobin concentration (p < 0.001). There was an increase of the olfactory (p < 0.001), salty (p = 0.024), sour (p = 0.020), bitter (p = 0.001), facial cold (p = 0.019), hand cold (p = 0.004), facial tactile (p < 0.001), hand tactile (p = 0.012) and facial vibration (p = 0.018) thresholds. Previous existing morbidities were associated with sensitivity changes in the individuals in this sample. Conclusion: This longitudinal study suggests that the loss of sensitivity with aging may be associated with the presence of morbidities in elders.
Collapse
|
156
|
Wang J, Bai X, Wang M, Zhou Z, Bian X, Qiu C, Li C, Yang Z, Chen G, Ji F, Tao J. Applicability and accuracy of Demirjian and Willems methods in a population of Eastern Chinese subadults. Forensic Sci Int 2018; 292:90-96. [DOI: 10.1016/j.forsciint.2018.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022]
|
157
|
Namkoong J, Kern D, Knaggs HE. Assessment of Human Skin Gene Expression by Different Blends of Plant Extracts with Implications to Periorbital Skin Aging. Int J Mol Sci 2018; 19:E3349. [PMID: 30373163 PMCID: PMC6274848 DOI: 10.3390/ijms19113349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Since the skin is the major protective barrier of the body, it is affected by intrinsic and extrinsic factors. Environmental influences such as ultraviolet (UV) irradiation, pollution or dry/cold air are involved in the generation of radical oxygen species (ROS) and impact skin aging and dermal health. Assessment of human skin gene expression and other biomarkers including epigenetic factors are used to evaluate the biological/molecular activities of key compounds in cosmetic formulas. The objective of this study was to quantify human gene expression when epidermal full-thickness skin equivalents were exposed to: (a) a mixture of betaine, pentylene glycol, Saccharomyces cerevisiae and Rhodiola rosea root extract (BlendE) for antioxidant, skin barrier function and oxidative stress (with hydrogen peroxide challenge); and (b) a mixture of Narcissus tazetta bulb extract and Schisandra chinensis fruit extract (BlendIP) for various biomarkers and microRNA analysis. For BlendE, several antioxidants, protective oxidative stress biomarkers and many skin barrier function parameters were significantly increased. When BlendE was evaluated, the negative impact of the hydrogen peroxide was significantly reduced for the matrix metalloproteinases (MMP 3 and MMP 12), the skin aging and oxidative stress biomarkers, namely FBN2, ANXA1 and HGF. When BlendIP was tested for cell proliferation and dermal structural components to enhance the integrity of the skin around the eyes: 8 growth factors, 7 signaling, 7 structural/barrier function and 7 oxidative stress biomarkers were significantly increased. Finally, when BlendIP was tested via real-time RT-PCR for microRNA expression: miR-146a, miR-22, miR155, miR16 and miR21 were all significantly increased over control levels. Therefore, human skin gene expression studies are important tools to assess active ingredient compounds such as plant extract blends to advance dermal hypotheses toward validating cosmetic formulations with botanical molecules.
Collapse
Affiliation(s)
- Jin Namkoong
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| | - Dale Kern
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| | - Helen E Knaggs
- Nu Skin Enterprises, Inc., 75 West Center Street, Provo, UT 84601, USA.
| |
Collapse
|
158
|
Abstract
Clinical research in neuro-oncology frequently classifies patients over 60-70 years of age as 'elderly', a designation intended to identify patients with the disease characteristics, psychosocial changes, and susceptibility to treatment toxicities associated with advancing age. The elderly account for a large proportion of patients diagnosed with glioblastoma (GBM), and this population is projected to increase. Their prognosis is inferior to that of GBM patients as a whole, and concerns over treatment toxicity may limit the aggressiveness with which they are treated. Recent clinical studies have assisted with therapeutic decision making in this cohort. Hypofractionated radiation with concurrent and adjuvant temozolomide has been shown to increase survival without worsened quality of life in elderly patients with good functional status. Single modality radiation therapy or temozolomide therapy are frequently used in this population, and while neither has demonstrated superiority, O6-methylguanine-DNA methyltransferase (MGMT) methylation status is predictive of improved survival with temozolomide over radiation therapy. Despite these advances, ambiguity as to how to best define, assess, and treat this population remains. The specific response of elderly patients to emerging therapies, such as immunotherapies, is unclear. Advancing outcomes for elderly patients with GBM requires persistent efforts to include them in translational and clinical research endeavors, and concurrent dedication to the preservation of function and quality of life in this population.
Collapse
Affiliation(s)
- Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX, 77030, USA.
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX, 77030, USA
| |
Collapse
|
159
|
Ihara K, Fuchikami M, Hashizume M, Okada S, Kawai H, Obuchi S, Hirano H, Fujiwara Y, Hachisu M, Hongyong K, Morinobu S. The influence of aging on the methylation status of brain-derived neurotrophic factor gene in blood. Int J Geriatr Psychiatry 2018; 33:1312-1318. [PMID: 29953671 DOI: 10.1002/gps.4927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/08/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) is involved in the pathophysiology of psychiatric disorders in adults and elderly individuals, and as a result, the DNA methylation (DNAm) of the BDNF gene in peripheral tissues including blood has been extensively examined to develop a useful biomarker for psychiatric disorders. However, studies to date have not previously investigated the effect of age on DNAm of the BDNF gene in blood. In this context, we measured DNAm of 39 CpG units in the CpG island at the promoter of exon I of the BDNF gene. METHODS We analyzed genomic DNA from peripheral blood of 105 health Japanese women 20 to 80 years of age to identify aging-associated change in DNAm of the BDNF gene. In addition, we examined the relationship between total MMSE scores, numbers of stressful life events, and serum BDNF levels on DNAm of the BDNF gene. The DNAm rate at each CpG unit was measured using a MassArray® system (Agena Bioscience), and serum BDNF levels were measured by ELISA. RESULTS There was a significant correlation between DNAm and age in 13 CpGs. However, there was no significant correlation between DNAm and total MMSE scores, numbers of life events, or serum BDNF levels. CONCLUSION Despite the small number of subjects and the inclusion of only female subjects, our results suggest that DNAm of 13 CpGs of the BDNF gene may be an appropriate biomarker for aging and useful for predicting increased susceptibility to age-related psychiatric disorders.
Collapse
Affiliation(s)
- Kazushige Ihara
- Hirosaki University Graduate School of Medicine, Department of Social Medicine, Aomori, Japan
| | | | - Masahiro Hashizume
- Toho University Faculty of Medicine, Department of Psychosomatic Medicine, Tokyo, Japan
| | - Satoshi Okada
- Hiroshima University, Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Hisashi Kawai
- Tokyo Metropolitan Institute of Gerontology, Human Care Research Team, Tokyo, Japan
| | - Shuichi Obuchi
- Tokyo Metropolitan Institute of Gerontology, Human Care Research Team, Tokyo, Japan
| | - Hirohiko Hirano
- Tokyo Metropolitan Geriatric Hospital, Department of Dentistry, Tokyo, Japan
| | - Yoshinori Fujiwara
- Tokyo Metropolitan Institute of Gerontology, Research Team for Social Participation and Community Health, Tokyo, Japan
| | - Mitsugu Hachisu
- Showa University, Department of Pharmaceutical therapeutics, Division of Clinical Pharmacy, Pharmacy School, Tokyo, Japan
| | - Kim Hongyong
- Tokyo Metropolitan Institute of Gerontology, Research Team for Promoting Independence of the Elderly, Tokyo, Japan
| | - Shigeru Morinobu
- Kochi University, Department of Neuropsychiatry, Kochi Medical School, Nankoku, Japan.,Kibi International University, Department of Occupational Therapy, School of Health Science and Social Welfare, Takahashi, Japan
| |
Collapse
|
160
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
161
|
Bayramov B, Gunes S, Buyukalpelli R, Aydın O, Henkel R. Promoter methylation analysis of CDH1 and p14ARF genes in patients with urothelial bladder cancer. Onco Targets Ther 2018; 11:4189-4196. [PMID: 30050310 PMCID: PMC6056157 DOI: 10.2147/ott.s158259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND/AIM Urothelial bladder cancer arises from the accumulation of multiple epigenetic and genetic changes. We aimed to investigate the specificity and sensitivity of gene-specific promoter methylation of CDH1 and p14ARF genes in the early diagnosis of bladder cancer and compare those with other diagnostic tests in our population. PATIENTS AND METHODS In the current study, 65 patients with urothelial bladder cancer and 35 controls without any history of cancer were recruited. Methylation profiles of CDH1 and p14ARF genes from tumor and urine samples were determined by methylation-specific polymerase chain reaction method. RESULTS Methylation of CDH1 and p14ARF genes in tumor samples was 95.4% and 78.5%, respectively. The methylation frequencies were found to be 68.8% for CDH1 gene and 72.9% for p14ARF gene in urine samples. Sensitivities of CDH1, p14ARF and urine cytology were found to be 67.4%, 72.1% and 34.9%, respectively, while their specificities were 93.9%, 63.6% and 93.9%, respectively. CONCLUSION Aberrant promoter methylation of CDH1 and p14ARF genes can be used to detect urothelial bladder cancer. In low-grade tumors, when compared with urine cytology, combined methylation analysis of CDH1 and p14ARF genes may not increase the sensitivity to identify malignant cells in urine samples.
Collapse
Affiliation(s)
- Bayram Bayramov
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
| | - Sezgin Gunes
- Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey,
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
| | - Recep Buyukalpelli
- Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey,
- Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun
| | - Oğuz Aydın
- Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
162
|
Jung SE, Shin KJ, Lee HY. DNA methylation-based age prediction from various tissues and body fluids. BMB Rep 2018; 50:546-553. [PMID: 28946940 PMCID: PMC5720467 DOI: 10.5483/bmbrep.2017.50.11.175] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is a natural and gradual process in human life. It is influenced by heredity, environment, lifestyle, and disease. DNA methylation varies with age, and the ability to predict the age of donor using DNA from evidence materials at a crime scene is of considerable value in forensic investigations. Recently, many studies have reported age prediction models based on DNA methylation from various tissues and body fluids. Those models seem to be very promising because of their high prediction accuracies. In this review, the changes of age-associated DNA methylation and the age prediction models for various tissues and body fluids were examined, and then the applicability of the DNA methylation-based age prediction method to the forensic investigations was discussed. This will improve the understandings about DNA methylation markers and their potential to be used as biomarkers in the forensic field, as well as the clinical field.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Kyoung-Jin Shin
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
163
|
Kennedy EM, Goehring GN, Nichols MH, Robins C, Mehta D, Klengel T, Eskin E, Smith AK, Conneely KN. An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells. BMC Genomics 2018; 19:476. [PMID: 29914364 PMCID: PMC6006777 DOI: 10.1186/s12864-018-4842-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-4842-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth M Kennedy
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - George N Goehring
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael H Nichols
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Biology, Emory University, Atlanta, GA, USA
| | - Chloe Robins
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.,Population Biology, Ecology and Evolution Program, Emory University, Atlanta, GA, USA
| | - Divya Mehta
- School of Psychology and Counseling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Torsten Klengel
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, CA, USA
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen N Conneely
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
164
|
Decreased H3K9ac level of StAR mediated testicular dysplasia induced by prenatal dexamethasone exposure in male offspring rats. Toxicology 2018; 408:1-10. [PMID: 29902490 DOI: 10.1016/j.tox.2018.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/05/2018] [Accepted: 06/10/2018] [Indexed: 01/27/2023]
Abstract
Prenatal dexamethasone exposure (PDE) could induce testicular developmental toxicity in adults. The present study aims to confirm its intrauterine origination, and to explore its potential intrauterine programming mechanism. The pregnant rats were respectively injected subcutaneously with 0.2 and 0.8 mg/kg d dexamethasone during gestational days (GD) 9 to 20. The testes and serum of offspring rats were collected on GD20 and postnatal week (PW) 12. In vivo, PDE significantly induced the abnormal testicular morphology in offspring from GD20 to PW12. Moreover, the serum and intratesticular testosterone levels and the expression of testicular steroidogenic acute regulatory protein (StAR) were reduced by PDE. The expression levels of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) were increased in fetal testes. Furthermore, the histone 3 lysine 9 acetylation (H3K9ac) level in the StAR promoter was decreased by PDE from GD20 to PW12. In vitro, mouse Leydig tumour cell line (MLTC-1) cells were treated with dexamethasone (20, 100 and 500 nM), and the testosterone production and StAR expression were reduced. Moreover, dexamethasone increased the expression of HDAC7 by activating GR, which decreased the H3K9ac level in the StAR promoter. Taken together, PDE caused testicular dysplasia before and after birth in male offspring rats, and its mechanism was related to the low-expressional programming of StAR mediated by decreasing H3K9ac level.
Collapse
|
165
|
Aging-Induced Biological Changes and Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7156435. [PMID: 29984246 PMCID: PMC6015721 DOI: 10.1155/2018/7156435] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Aging is characterized by functional decline in homeostatic regulation and vital cellular events. This process can be linked with the development of cardiovascular diseases (CVDs). In this review, we discussed aging-induced biological alterations that are associated with CVDs through the following aspects: (i) structural, biochemical, and functional modifications; (ii) autonomic nervous system (ANS) dysregulation; (iii) epigenetic alterations; and (iv) atherosclerosis and stroke development. Aging-mediated structural and biochemical modifications coupled with gradual loss of ANS regulation, vascular stiffening, and deposition of collagen and calcium often disrupt cardiovascular system homeostasis. The structural and biochemical adjustments have been consistently implicated in the progressive increase in mechanical burden and functional breakdown of the heart and vessels. In addition, cardiomyocyte loss in this process often reduces adaptive capacity and cardiovascular function. The accumulation of epigenetic changes also plays important roles in the development of CVDs. In summary, the understanding of the aging-mediated changes remains promising towards effective diagnosis, discovery of new drug targets, and development of new therapies for the treatment of CVDs.
Collapse
|
166
|
Sun H, Zhou H, Zhang Y, Chen J, Han X, Huang D, Ren X, Jia Y, Fan Q, Tian W, Zhao Y. Aberrant methylation of FAT4 and SOX11 in peripheral blood leukocytes and their association with gastric cancer risk. J Cancer 2018; 9:2275-2283. [PMID: 30026822 PMCID: PMC6036714 DOI: 10.7150/jca.24797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/31/2018] [Indexed: 01/12/2023] Open
Abstract
Background: Aberrant DNA methylation, especially tumor suppressor gene hypermethylation, is a well-recognized biomarker of initial tumorogenesis stages. FAT4 and SOX11 are putative tumor suppressor genes and can be down-regulated by hypermethylation in various cancers tissues. However, in peripheral blood leukocytes, the association between these two genes methylation status, as well as the effects of gene-environment interactions, and gastric cancer (GC) risk remain unclear. Methods: A hospital-based case-control study including 375 cases and 394 controls was conducted. Peripheral blood leukocytes DNA methylation status were detected by methylation-sensitive high-resolution melting (MS-HRM) assay. Logistic regression was adopted to analyze the relationship of FAT4 and SOX11 methylation with GC susceptibility. Results: Positive methylation (Pm) and total positive methylation (Tpm) of FAT4 were significantly increased the risk of GC (OR = 2.204, 95% CI: 1.168-4.159, P = 0.015; OR = 1.583, 95% CI: 1.031-2.430, P = 0.036, respectively). Compared with controls, cases exhibited higher SOX11 Pm frequencies with OR of 2.530 (95% CI: 1.289-4.969, P = 0.007). Nonetheless, no statistically significant association between SOX11 Tpm and GC risk was observed. Additionally, interactions between FAT4 Tpm and increased consumption of freshwater fish (≥1 times/week) displayed an antagonistic effect on GC (OR = 0.328, 95% CI: 0.142-0.762, P = 0.009), and high salt intake interacted with SOX11 Tpm also showed statistically significant (OR = 0.490, 95% CI: 0.242-0.995, P = 0.048). Conclusions:FAT4 aberrant methylation in peripheral blood leukocytes and gene-environment interactions were associated with the risk of GC, while SOX11 was controversial and needed to be more investigated.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yan Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Qing Fan
- Xiangfang Center for Disease Control and Prevention, Harbin 150081, Heilongjiang Province, P. R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
167
|
Pérez RF, Tejedor JR, Bayón GF, Fernández AF, Fraga MF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell 2018; 17:e12744. [PMID: 29504244 PMCID: PMC5946083 DOI: 10.1111/acel.12744] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer is an aging‐associated disease, but the underlying molecular links between these processes are still largely unknown. Gene promoters that become hypermethylated in aging and cancer share a common chromatin signature in ES cells. In addition, there is also global DNA hypomethylation in both processes. However, the similarity of the regions where this loss of DNA methylation occurs is currently not well characterized, and it is unknown if such regions also share a common chromatin signature in aging and cancer. To address this issue, we analyzed TCGA DNA methylation data from a total of 2,311 samples, including control and cancer cases from patients with breast, kidney, thyroid, skin, brain, and lung tumors and healthy blood, and integrated the results with histone, chromatin state, and transcription factor binding site data from the NIH Roadmap Epigenomics and ENCODE projects. We identified 98,857 CpG sites differentially methylated in aging and 286,746 in cancer. Hyper‐ and hypomethylated changes in both processes each had a similar genomic distribution across tissues and displayed tissue‐independent alterations. The identified hypermethylated regions in aging and cancer shared a similar bivalent chromatin signature. In contrast, hypomethylated DNA sequences occurred in very different chromatin contexts. DNA hypomethylated sequences were enriched at genomic regions marked with the activating histone posttranslational modification H3K4me1 in aging, while in cancer, loss of DNA methylation was primarily associated with the repressive H3K9me3 mark. Our results suggest that the role of DNA methylation as a molecular link between aging and cancer is more complex than previously thought.
Collapse
Affiliation(s)
- Raúl F. Pérez
- Nanomedicine Group; Nanomaterials and Nanotechnology Research Center (CINN-CSIC); Universidad de Oviedo; El Entrego, Asturias Spain
- Cancer Epigenetics Laboratory; Institute of Oncology of Asturias (IUOPA); Hospital Universitario Central de Asturias (HUCA); Universidad de Oviedo; Oviedo, Asturias Spain
| | - Juan Ramón Tejedor
- Cancer Epigenetics Laboratory; Institute of Oncology of Asturias (IUOPA); Hospital Universitario Central de Asturias (HUCA); Universidad de Oviedo; Oviedo, Asturias Spain
- Cáncer Epigenetics Laboratory; Fundación para la Investigación Biosanitaria de Asturias (FINBA); Instituto de Investigación Sanitaria del Principado de Asturias (ISPA); Oviedo, Asturias Spain
| | - Gustavo F. Bayón
- Cancer Epigenetics Laboratory; Institute of Oncology of Asturias (IUOPA); Hospital Universitario Central de Asturias (HUCA); Universidad de Oviedo; Oviedo, Asturias Spain
| | - Agustín F. Fernández
- Cancer Epigenetics Laboratory; Institute of Oncology of Asturias (IUOPA); Hospital Universitario Central de Asturias (HUCA); Universidad de Oviedo; Oviedo, Asturias Spain
- Cáncer Epigenetics Laboratory; Fundación para la Investigación Biosanitaria de Asturias (FINBA); Instituto de Investigación Sanitaria del Principado de Asturias (ISPA); Oviedo, Asturias Spain
| | - Mario F. Fraga
- Nanomedicine Group; Nanomaterials and Nanotechnology Research Center (CINN-CSIC); Universidad de Oviedo; El Entrego, Asturias Spain
| |
Collapse
|
168
|
Larsen K, Kristensen KK, Callesen H. DNA methyltransferases and tRNA methyltransferase DNMT2 in developing pig brain - expression and promoter methylation. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
169
|
Li J, Zhu X, Yu K, Jiang H, Zhang Y, Wang B, Liu X, Deng S, Hu J, Deng Q, Sun H, Guo H, Zhang X, Chen W, Yuan J, He M, Bai Y, Han X, Liu B, Liu C, Guo Y, Zhang B, Zhang Z, Hu FB, Gao W, Li L, Lathrop M, Laprise C, Liang L, Wu T. Exposure to Polycyclic Aromatic Hydrocarbons and Accelerated DNA Methylation Aging. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067005. [PMID: 29906262 PMCID: PMC6108582 DOI: 10.1289/ehp2773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aging is related to an increased risk of morbidity and mortality and is affected by environmental factors. Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health outcomes; but the association of such exposure with DNA methylation aging, a novel aging marker, is unclear. OBJECTIVES Our aim was to investigate the association of PAH exposure with methylation aging. METHODS We trained and validated a methylation age predictor suitable for Chinese populations using whole blood methylation data in 989 Chinese and 160 Caucasians. We defined two aging indicators: δage, as methylation age minus chronological age; and aging rate, the ratio of methylation to chronological age. The association of PAH exposure with aging indicators was evaluated using linear regressions in three panels of healthy Chinese participants (N=539, among the aforementioned 989 Chinese participants) whose exposure levels were assessed by 10 urinary monohydroxy-PAH metabolites. RESULTS We developed a methylation age predictor providing accurate predictions in both Chinese individuals and Caucasian persons (R=0.94-0.96, RMSE=3.8-4.3). Among the 10 urinary metabolites that we measured, 1-hydroxypyrene and 9-hydroxyphenanthrene were associated with methylation aging independently of other OH-PAHs and risk factors; 1-unit increase in 1-hydroxypyrene was associated with a 0.53-y increase in Δage [95% confidence interval (CI): 0.18, 0.88; false discovery rate (FDR) FDR=0.004] and 1.17% increase in aging rate (95% CI: 0.36, 1.98; FDR=0.02), whereas for 9-hydroxyphenanthrene, the increase was 0.54-y for Δage (95% CI: 0.17, 0.91; FDR=0.004), and 1.15% for aging rate (95% CI: 0.31, 1.99; FDR=0.02). The association direction was consistent across the three Chinese panels with the association magnitude correlating with the panels' exposure levels; the association was validated by methylation data of purified leukocytes. Several cytosine-phosphoguanines, including those located on FHL2 and ELOVL2, were found associated with both aging indicators and monohydroxy-PAH levels. CONCLUSIONS We developed a methylation age predictor specific for Chinese populations but also accurate for Caucasian populations. Our findings suggest that exposure to PAHs may be associated with an adverse impact on human aging and epigenetic alterations in Chinese populations. https://doi.org/10.1289/EHP2773.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xiaoyan Zhu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Suzhou Center for Disease Prevention and Control, Suzhou, Jiangshu, China
| | - Kuai Yu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haijing Jiang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yizhi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqi Wang
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Xuezhen Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Siyun Deng
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Hu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifei Deng
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huizhen Sun
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yansen Bai
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Han
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chuanyao Liu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjun Guo
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhihong Zhang
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Mark Lathrop
- Department of Human Genetics, McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Catherine Laprise
- Department of Fundamental Sciences, Université du Québec, Chicoutimi, Québec, Canada
- Centre intégré universitaire de santé et services sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tangchun Wu
- Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
170
|
Ding S, Chen J, Zeng Q, Lu J, Tan L, Guo A, Kang J, Yang S, Xiang Y, Zuo C, Huang J. Chronic sun exposure is associated with distinct histone acetylation changes in human skin. Br J Dermatol 2018; 179:110-117. [PMID: 29150847 DOI: 10.1111/bjd.16129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Photoageing is attributed to continuous sunlight or artificial ultraviolet exposure and manifests as clinical and histological changes in skin. Epigenetic changes have been found to be involved in the pathogenesis of photoageing. However, the underlying mechanisms are unclear. OBJECTIVES To analyse histone modification patterns in sun-exposed and nonexposed skin, and to identify the abnormally histone-modified genes related to photoageing. METHODS Skin biopsies were collected from both the outer forearm (sun-exposed area) and the buttock (sun-protected area) in 20 healthy middle-aged female volunteers. Global histone H3/H4 acetylation and H3K4/H3K9 methylation statuses were assessed by enzyme-linked immunosorbent assay. Expression levels of histone acetyltransferases and histone deacetylases were measured by reverse-transcriptase quantitative polymerase chain reaction (qPCR) and Western blot. Chromatin immunoprecipitation combined with DNA microarray (ChIP-chip) assay with anti-acetyl-histone H3 antibody in a sun-exposed pool (combining six sun-exposed skin samples) and a nonexposed pool (combining six nonexposed skin samples) was conducted to explore the abnormally acetylated histone H3 genes related to photoageing; ChIP-qPCR was then used to verify the results of ChIP-chip. RESULTS We observed higher global histone H3 acetylation levels increased EP300 and decreased HDAC1 and SIRT1 expression in sun-exposed skin compared with matched nonexposed skin. Furthermore, the ChIP-chip assay showed that 227 genes displayed significant hyperacetylation of histone H3, and 81 genes displayed significant hypoacetylation of histone H3 between the two groups. Histone H3 acetylation levels on the promoters of PDCD5, ITIH5, MMP1 and AHR were positively correlated with the mRNA expression of the corresponding gene. CONCLUSIONS Chronic sun exposure-induced histone H3 hyperacetylation may play a critical role in the pathogenesis of skin photoageing.
Collapse
Affiliation(s)
- S Ding
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Chen
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Q Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Lu
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - L Tan
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - A Guo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Kang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - S Yang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - Y Xiang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - C Zuo
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| | - J Huang
- Department of Dermatology, The Third Xiangya Hospital of Central South University, 138 Tong Zipo Road, Changsha, 410013, Hunan, China
| |
Collapse
|
171
|
Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front Endocrinol (Lausanne) 2018; 9:258. [PMID: 29887832 PMCID: PMC5980968 DOI: 10.3389/fendo.2018.00258] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
World population has been continuously increasing and progressively aging. Aging is characterized by a complex and intraindividual process associated with nine major cellular and molecular hallmarks, namely, genomic instability, telomere attrition, epigenetic alterations, a loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. This review exposes the positive antiaging impact of physical exercise at the cellular level, highlighting its specific role in attenuating the aging effects of each hallmark. Exercise should be seen as a polypill, which improves the health-related quality of life and functional capabilities while mitigating physiological changes and comorbidities associated with aging. To achieve a framework of effective physical exercise interventions on aging, further research on its benefits and the most effective strategies is encouraged.
Collapse
Affiliation(s)
- Alexandre Rebelo-Marques
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
| | - Adriana De Sousa Lages
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- Faculty of Sports, University of Porto, Porto, Portugal
| | | | | | - Francisco Carrilho
- Endocrinology, Diabetes and Metabolism Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre – FIFA Medical Centre of Excellence, Porto, Portugal
- Dom Henrique Research Centre, Porto, Portugal
- 3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Guimarães, Braga, Portugal
- Orthopaedics Department of Minho University, Minho, Portugal
| |
Collapse
|
172
|
Abstract
Purpose of Review Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. Recent Findings For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. Summary Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.
Collapse
|
173
|
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018; 10:573-591. [PMID: 29676998 PMCID: PMC5940111 DOI: 10.18632/aging.101414] [Citation(s) in RCA: 1840] [Impact Index Per Article: 262.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/08/2018] [Indexed: 04/08/2023]
Abstract
Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm PhenoAge, that strongly outperforms previous measures in regards to predictions for a variety of aging outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease. While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic, relative to chronological age, is associated with increased activation of pro-inflammatory and interferon pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging.
Collapse
Affiliation(s)
- Morgan E. Levine
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Brian H. Chen
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, USA. Baltimore, MD 21224, USA
| | | | | | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yun Li
- Department of Genetics, Department of Biostatistics, Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Kurt Lohman
- Center of Human Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forrest School of Medicine, Winston-Salem, NC 27157, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, USA. Baltimore, MD 21224, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
174
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
175
|
Brown CJ, Kaufman T, Trinidad JC, Clemmer DE. Proteome changes in the aging Drosophila melanogaster head. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 425:36-46. [PMID: 30906200 PMCID: PMC6426325 DOI: 10.1016/j.ijms.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and database searching techniques were used to characterize the proteomes of four biological replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An estimate of the abundance of each protein, based on the three most intense peptide ions, shows that the quantified species vary in concentration over a factor of ~103. Compared to initial studies in the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in the abundance of different proteins, including: an increase in abundance of proteins involved in oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For younger flies, proteomes are relatively similar within their age group. For older flies, proteome similarity decreases within their age group. These combined results illustrate a correlation between increasing age and decreasing proteostasis.
Collapse
Affiliation(s)
- Christopher J. Brown
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
176
|
Fernandez-Rebollo E, Eipel M, Seefried L, Hoffmann P, Strathmann K, Jakob F, Wagner W. Primary Osteoporosis Is Not Reflected by Disease-Specific DNA Methylation or Accelerated Epigenetic Age in Blood. J Bone Miner Res 2018; 33:356-361. [PMID: 28926142 DOI: 10.1002/jbmr.3298] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Osteoporosis is an age-related metabolic bone disease. Hence, osteoporotic patients might suffer from molecular features of accelerated aging, which is generally reflected by specific age-associated DNA methylation (DNAm) changes. In this study, we analyzed genomewide DNAm profiles of peripheral blood from patients with manifest primary osteoporosis and non-osteoporotic controls. Statistical analysis did not reveal any individual CG dinucleotides (CpG sites) with significant aberrant DNAm in osteoporosis. Subsequently, we analyzed if age-associated DNAm patterns are increased in primary osteoporosis (OP). Using three independent age-predictors we did not find any evidence for accelerated epigenetic age in blood of osteoporotic patients. Taken together, osteoporosis is not reflected by characteristic DNAm patterns of peripheral blood that might be used as biomarker for the disease. The prevalence of osteoporosis is age-associated-but it is not associated with premature epigenetic aging in peripheral blood. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eduardo Fernandez-Rebollo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Technology-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Monika Eipel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Technology-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Lothar Seefried
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Per Hoffmann
- Department of Genomics, Institute of Human Genetics, University of Bonn, Bonn, Germany.,Human Genomics Research Group, Department of Biomedicine, University of Basel, Switzerland
| | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Würzburg, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Technology-Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
177
|
Laubach ZM, Perng W, Dolinoy DC, Faulk CD, Holekamp KE, Getty T. Epigenetics and the maintenance of developmental plasticity: extending the signalling theory framework. Biol Rev Camb Philos Soc 2018; 93:1323-1338. [PMID: 29356358 DOI: 10.1111/brv.12396] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Developmental plasticity, a phenomenon of importance in both evolutionary biology and human studies of the developmental origins of health and disease (DOHaD), enables organisms to respond to their environment based on previous experience without changes to the underlying nucleotide sequence. Although such phenotypic responses should theoretically improve an organism's fitness and performance in its future environment, this is not always the case. Herein, we first discuss epigenetics as an adaptive mechanism of developmental plasticity and use signaling theory to provide an evolutionary context for DOHaD phenomena within a generation. Next, we utilize signalling theory to identify determinants of adaptive developmental plasticity, detect sources of random variability - also known as process errors that affect maintenance of an epigenetic signal (DNA methylation) over time, and discuss implications of these errors for an organism's health and fitness. Finally, we apply life-course epidemiology conceptual models to inform study design and analytical strategies that are capable of parsing out the potential effects of process errors in the relationships among an organism's early environment, DNA methylation, and phenotype in a future environment. Ultimately, we hope to foster cross-talk and interdisciplinary collaboration between evolutionary biology and DOHaD epidemiology, which have historically remained separate despite a shared interest in developmental plasticity.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A.,Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A.,Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A
| | - Christopher D Faulk
- Department of Animal Sciences, University of Minnesota, 495B AnSc/VetMed, 1988 Fitch Avenue, St. Paul, MN, 55108, U.S.A
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| | - Thomas Getty
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| |
Collapse
|
178
|
Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu Rev Public Health 2018; 39:309-333. [PMID: 29328878 DOI: 10.1146/annurev-publhealth-040617-014629] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B1, air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.
Collapse
Affiliation(s)
- Elizabeth M Martin
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, and Curriculum in Toxicology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA; ,
| |
Collapse
|
179
|
Abstract
As the popular adage goes, all diseases run into old age and almost all physiological changes are associated with alterations in gene expression, irrespective of whether they are causal or consequential. Therefore, the quest for mechanisms that delay ageing and decrease age-associated diseases has propelled researchers to unravel regulatory factors that lead to changes in chromatin structure and function, which ultimately results in deregulated gene expression. It is therefore essential to bring together literature, which until recently has investigated gene expression and chromatin independently. With advances in biomedical research and the emergence of epigenetic regulators as potential therapeutic targets, enhancing our understanding of mechanisms that 'derail' transcription and identification of causal genes/pathways during ageing will have a significant impact. In this context, this chapter aims to not only summarize the key features of age-associated changes in epigenetics and transcription, but also identifies gaps in the field and proposes aspects that need to be investigated in the future.
Collapse
|
180
|
Abstract
Aging is characterized by progressive deterioration of physiological integrity, decline in homeostasis, and degeneration of the tissues that occurs after the reproductive phase of life is complete, leading to impaired function. This deterioration is an important risk factor for chronic lung pathologies such as chronic obstructive pulmonary disease (COPD). COPD is a disease that develops gradually. Emphysematous changes in the lung take years to develop after exposure to cigarette smoke; hence, the vast majority of patients are elderly. There has been a dramatic increase in the life expectancy of the general population, resulting in an increased burden of chronic lung diseases. There is growing evidence that molecular mechanisms involved in aging may also play a role in COPD pathogenesis. Recently, the nine hallmarks of aging were identified. In this article, we will review the nine hallmarks of aging and how each hallmark contributes to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Shweta P Kukrety
- Department of Internal Medicine, Creighton University, Omaha, NE, USA
| | - Jai D Parekh
- Department of Internal Medicine, Creighton University, Omaha, NE, USA
| | - Kristina L Bailey
- Department of Internal Medicine, University of Nebraska Medical Center; Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
181
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
182
|
Identification of human age-associated gene co-expressions in functional modules using liquid association. Oncotarget 2017; 9:1063-1074. [PMID: 29416677 PMCID: PMC5787419 DOI: 10.18632/oncotarget.23148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
Aging is a major risk factor for age-related diseases such as certain cancers. In this study, we developed Age Associated Gene Co-expression Identifier (AAGCI), a liquid association based method to infer age-associated gene co-expressions at thousands of biological processes and pathways across 9 human tissues. Several hundred to thousands of gene pairs were inferred to be age co-expressed across different tissues, the genes involved in which are significantly enriched in functions like immunity, ATP binding, DNA damage, and many cancer pathways. The age co-expressed genes are significantly overlapped with aging genes curated in the GenAge database across all 9 tissues, suggesting a tissue-wide correlation between age-associated genes and co-expressions. Interestingly, age-associated gene co-expressions are significantly different from gene co-expressions identified through correlation analysis, indicating that aging might only contribute to a small portion of gene co-expressions. Moreover, the key driver analysis identified biologically meaningful genes in important function modules. For example, IGF1, ERBB2, TP53 and STAT5A were inferred to be key genes driving age co-expressed genes in the network module associated with function “T cell proliferation”. Finally, we prioritized a few anti-aging drugs such as metformin based on an enrichment analysis between age co-expressed genes and drug signatures from a recent study. The predicted drugs were partially validated by literature mining and can be readily used to generate hypothesis for further experimental validations.
Collapse
|
183
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
184
|
Shi L, Jiang F, Ouyang F, Zhang J, Wang Z, Shen X. DNA methylation markers in combination with skeletal and dental ages to improve age estimation in children. Forensic Sci Int Genet 2017; 33:1-9. [PMID: 29172065 DOI: 10.1016/j.fsigen.2017.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/15/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
Age estimation is critical in forensic science, in competitive sports and games and in other age-related fields, but the current methods are suboptimal. The combination of age-associated DNA methylation markers with skeletal age (SA) and dental age (DA) may improve the accuracy and precision of age estimation, but no study has examined this topic. In the current study, we measured SA (GP, TW3-RUS, and TW3-Carpal methods) and DA (Demirjian and Willems methods) by X-ray examination in 124 Chinese children (78 boys and 46 girls) aged 6-15 years. To identify age-associated CpG sites, we analyzed methylome-wide DNA methylation profiling by using the Illumina HumanMethylation450 BeadChip system in 48 randomly selected children. Five CpG sites were identified as associated with chronologic age (CA), with an absolute value of Pearson's correlation coefficient (r)>0.5 (p<0.01) and a false discovery rate<0.01. The validation of age-associated CpG sites was performed using droplet digital PCR techniques in all 124 children. After validation, four CpG sites for boys and five CpG sites for girls were further adopted to build the age estimation model with SA and DA using multivariate linear stepwise regressions. These CpG sites were located at 4 known genes: DDO, PRPH2, DHX8, and ITGA2B and at one unknown gene with the Illumina ID number of 22398226. The accuracy of age estimation methods was compared according to the mean absolute error (MAE) and root mean square error (RMSE). The best single measure for SA was the TW3-RUS method (MAE=0.69years, RMSE=0.95years) in boys, and the GP method (MAE=0.74years, RMSE=0.94years) in girls. For DA, the Willems method was the best single measure for both boys (MAE=0.63years, RMSE=0.78years) and girls (MAE=0.54years, RMSE=0.68years). The models that incorporated SA and DA with the methylation levels of age-associated CpG sites provided the highest accuracy of age estimation in both boys (MAE=0.47years, R2=0.886) and girls (MAE=0.33years, R2=0.941). Cross validation of the results confirmed the reliability and validity of the models. In conclusion, age-associated DNA methylation markers in combination with SA and DA greatly improve the accuracy of age estimation in Chinese children. This method may be applied in forensic science, in competitive sports and games and in other age-related fields.
Collapse
Affiliation(s)
- Lei Shi
- XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China; Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Jiang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Fengxiu Ouyang
- XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Jun Zhang
- XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China
| | - Zhimin Wang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center and Shanghai Academy of Science & Technology, Shanghai, China
| | - Xiaoming Shen
- XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, China.
| |
Collapse
|
185
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
186
|
Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, Vivanco-Hidalgo RM, Ois A, Rodríguez-Campello A, Cuadrado-Godia E, Sayols-Baixeras S, Elosua R, Roquer J, Jiménez-Conde J. Ischemic stroke patients are biologically older than their chronological age. Aging (Albany NY) 2017; 8:2655-2666. [PMID: 27922817 PMCID: PMC5191861 DOI: 10.18632/aging.101028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/16/2016] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is associated with aging. It is possible to predict chronological age by measuring age-related changes in DNA methylation from multiple CpG sites across the genome, known as biological age. The difference between biological age and actual chronological age would indicate an individual's level of aging. Our aim was to determine the biological age of ischemic stroke patients and compare their aging with controls of the same chronological age. A total of 123 individuals, 41 controls and 82 patients with ischemic stroke were paired by chronological age, ranging from 39 to 82 years. Illumina HumanMethylation450 BeadChip array was used to measure DNA methylation in CpG sites in both groups, and biological age was estimated using methylation values of specific CpGs. Ischemic stroke patients were biologically an average 2.5 years older than healthy controls (p-value=0.010). Stratified by age tertiles, younger stroke patients (≤57 years old) were biologically older than controls (OR=1.19; 95%CI 1.00-1.41, p-value=0.046). The older groups showed no biological age differences between cases and controls, but were close to reaching the significance level. Ischemic stroke patients are biologically older than controls. Biological age should be considered as a potential new biomarker of stroke risk.
Collapse
Affiliation(s)
- Carolina Soriano-Tárraga
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Giralt-Steinhauer
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Marina Mola-Caminal
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Rosa M Vivanco-Hidalgo
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Angel Ois
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Rodríguez-Campello
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisa Cuadrado-Godia
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, IMIM, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain.,Co-senior authorship
| | - Jordi Jiménez-Conde
- Department of Neurology, Hospital del Mar; Neurovascular Research Group, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain.,Co-senior authorship
| |
Collapse
|
187
|
Geurts YM, Dugué PA, Joo JE, Makalic E, Jung CH, Guan W, Nguyen S, Grove ML, Wong EM, Hodge AM, Bassett JK, FitzGerald LM, Tsimiklis H, Baglietto L, Severi G, Schmidt DF, Buchanan DD, MacInnis RJ, Hopper JL, Pankow JS, Demerath EW, Southey MC, Giles GG, English DR, Milne RL. Novel associations between blood DNA methylation and body mass index in middle-aged and older adults. Int J Obes (Lond) 2017; 42:887-896. [PMID: 29278407 DOI: 10.1038/ijo.2017.269] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 09/30/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVES There is increasing evidence of a relationship between blood DNA methylation and body mass index (BMI). We aimed to assess associations of BMI with individual methylation measures (CpGs) through a cross-sectional genome-wide DNA methylation association study and a longitudinal analysis of repeated measurements over time. SUBJECTS/METHODS Using the Illumina Infinium HumanMethylation450 BeadChip, DNA methylation measures were determined in baseline peripheral blood samples from 5361 adults recruited to the Melbourne Collaborative Cohort Study (MCCS) and selected for nested case-control studies, 2586 because they were subsequently diagnosed with cancer (cases) and 2775 as controls. For a subset of 1088 controls, these measures were repeated using blood samples collected at wave 2 follow-up, a median of 11 years later; weight was measured at both time points. Associations between BMI and blood DNA methylation were assessed using linear mixed-effects regression models adjusted for batch effects and potential confounders. These were applied to cases and controls separately, with results combined through fixed-effects meta-analysis. RESULTS Cross-sectional analysis identified 310 CpGs associated with BMI with P<1.0 × 10-7, 225 of which had not been reported previously. Of these 225 novel associations, 172 were replicated (P<0.05) using the Atherosclerosis Risk in Communities (ARIC) study. We also replicated using MCCS data (P<0.05) 335 of 392 associations previously reported with P<1.0 × 10-7, including 60 that had not been replicated before. Associations between change in BMI and change in methylation were observed for 34 of the 310 strongest signals in our cross-sectional analysis, including 7 that had not been replicated using the ARIC study. CONCLUSIONS Together, these findings suggest that BMI is associated with blood DNA methylation at a large number of CpGs across the genome, several of which are located in or near genes involved in ATP-binding cassette transportation, tumour necrosis factor signalling, insulin resistance and lipid metabolism.
Collapse
Affiliation(s)
- Y M Geurts
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - P-A Dugué
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - J E Joo
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - E Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - C-H Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - W Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - S Nguyen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - M L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E M Wong
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - A M Hodge
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - J K Bassett
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - L M FitzGerald
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - H Tsimiklis
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - L Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - G Severi
- Human Genetics Foundation (HuGeF), Torino, Italy.,CESP (U1018 INSERM, Équipe Générations et Santé), Facultés de médecine Université Paris-Sud, UVSQ, Université Paris-Saclay, Villejuif, France
| | - D F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - D D Buchanan
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia.,Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, Australia.,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia.,Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - R J MacInnis
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - J L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - J S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - E W Demerath
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - M C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - G G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - D R English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - R L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
188
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
189
|
Testing Two Evolutionary Theories of Human Aging with DNA Methylation Data. Genetics 2017; 207:1547-1560. [PMID: 28855307 DOI: 10.1534/genetics.117.300217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 02/01/2023] Open
Abstract
The evolutionary theories of mutation accumulation (MA) and disposable soma (DS) provide possible explanations for the existence of human aging. To better understand the relative importance of these theories, we devised a test to identify MA- and DS-consistent sites across the genome using familial DNA methylation data. Two key characteristics of DNA methylation allowed us to do so. First, DNA methylation exhibits distinct and widespread changes with age, with numerous age-differentially-methylated sites observed across the genome. Second, many sites show heritable DNA methylation patterns within families. We extended heritability predictions of MA and DS to DNA methylation, predicting that MA-consistent age-differentially-methylated sites will show increasing heritability with age, while DS-consistent sites will show the opposite. Variance components models were used to test for changing heritability of methylation with age at 48,601 age-differentially-methylated sites across the genome in 610 individuals from 176 families. Of these, 102 sites showed significant MA-consistent increases in heritability with age, while 2266 showed significant DS-consistent decreases in heritability. These results suggest that both MA and DS play a role in explaining aging and aging-related changes, and that while the majority of DNA methylation changes observed in aging are consistent with epigenetic drift, targeted changes exist and may mediate effects of aging-related genes.
Collapse
|
190
|
López V, Fernández A, Fraga M. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Res Rev 2017; 37:28-38. [PMID: 28499883 DOI: 10.1016/j.arr.2017.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022]
Abstract
DNA methylation at the fifth position of cytosines (5mC) represents a major epigenetic modification in mammals. The recent discovery of 5-hydroxymethylcytosine (5hmC), resulting from 5mC oxidation, is redefining our view of the epigenome, as multiple studies indicate that 5hmC is not simply an intermediate of DNA demethylation, but a genuine epigenetic mark that may play an important functional role in gene regulation. Currently, the availability of platforms that discriminates between the presence of 5mC and 5hmC at single-base resolution is starting to shed light on the functions of 5hmC. In this review, we provide an overview of the genomic distribution of 5hmC, and examine recent findings on the role of this mark and the potential consequences of its misregulation during three fundamental biological processes: cell differentiation, cancer and aging.
Collapse
|
191
|
Emmett RA, Davidson KL, Gould NJ, Arasaradnam RP. DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review. Epigenomics 2017; 9:1029-1042. [PMID: 28621161 DOI: 10.2217/epi-2017-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Evidence points to the role of DNA methylation in ulcerative colitis (UC)-associated cancer (UCC), the most serious complication of ulcerative colitis. A better understanding of the etiology of UCC may facilitate the development of new therapeutic targets and help to identify biomarkers of the disease risk. METHODS A search was performed in three databases following PRISMA protocol. DNA methylation in UCC was compared with sporadic colorectal cancer (SCRC), and individual genes differently methylated in UCC identified. RESULTS While there were some similarities in the methylation patterns of UCC compared with SCRC, generally lower levels of hypermethylation in promoter regions of individual genes was evident in UCC. Certain individual genes are, however, highly methylated in colitis-associated cancer: RUNX3, MINT1, MYOD and p16 exon1 and the promoter regions of EYA4 and ESR. CONCLUSION Patterns of DNA methylation differ between UCC and SCRC. Seven genes appear to be promising putative biomarkers.
Collapse
Affiliation(s)
- Ruth A Emmett
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
192
|
Wu BC, Patel ED, Ortega-Loayza AG. Drug-induced pyoderma gangrenosum: a model to understand the pathogenesis of pyoderma gangrenosum. Br J Dermatol 2017; 177:72-83. [PMID: 27864925 DOI: 10.1111/bjd.15193] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2016] [Indexed: 12/14/2022]
Abstract
Pyoderma gangrenosum (PG) is a rare autoinflammatory condition in which the alteration of neutrophil function and the innate immune response play key roles in its pathogenesis. Cases of PG have been reported in patients being treated with certain medications, which may help us to understand some of the possible pathways involved in the aetiology of PG. The aim of this review is to review the cases of PG triggered by certain drugs and try to thoroughly understand the pathogenesis of the disease. To accomplish this, a PubMed search was completed using the following words: pyoderma gangrenosum, neutrophilic dermatosis, pathophysiology, drug-induced pyoderma gangrenosum. In total, we found 43 cases of drug-induced PG. Most of them were caused by colony-stimulating factors and small-molecule tyrosine kinase inhibitors. We propose that drugs induce PG through various mechanisms such as dysfunctional neutrophil migration and function, dysregulated inflammatory response, promotion of keratinocyte apoptosis and alteration of epigenetic mechanisms. PG is a rare condition with complex pathophysiology and drug-induced cases are even more scarce; this is the main limitation of this review. Understanding the possible mechanisms of drug-induced PG, via abnormal neutrophil migration and function, abnormal inflammation, keratinocyte apoptosis and alteration of epigenetic mechanisms would help to better understand the pathogenesis of PG and ultimately to optimize targeted therapy.
Collapse
Affiliation(s)
- B C Wu
- Department of Medicine, Drexel University College of Medicine/Hahnemann University Hospital, Philadelphia, PA, U.S.A
| | - E D Patel
- Virginia Commonwealth University School of Medicine, Richmond, VA, U.S.A
| | - A G Ortega-Loayza
- Center for Wound and Healing, Department of Dermatology, Oregon Health & Science University, 3303 SW Bond Avenue, CHD 16D, Portland, OR, 97034, U.S.A
| |
Collapse
|
193
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
194
|
Guénard F, Tchernof A, Deshaies Y, Biron S, Lescelleur O, Biertho L, Marceau S, Pérusse L, Vohl MC. Genetic regulation of differentially methylated genes in visceral adipose tissue of severely obese men discordant for the metabolic syndrome. Transl Res 2017; 184:1-11.e2. [PMID: 28219716 DOI: 10.1016/j.trsl.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/19/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023]
Abstract
A genetic influence on methylation levels has been reported and methylation quantitative trait loci (meQTL) have been identified in various tissues. The contribution of genetic and epigenetic factors in the development of the metabolic syndrome (MetS) has also been noted. To pinpoint candidate genes for testing the association of SNPs with MetS and its components, we aimed to evaluate the contribution of genetic variations to differentially methylated CpG sites in severely obese men discordant for MetS. A genome-wide differential methylation analysis was conducted in visceral adipose tissue (VAT) of 31 severely obese men discordant for MetS (16 with and 15 without MetS) and identified ∼17,800 variable CpG sites. The genome-wide association study conducted to identify the SNPs (meQTL) associated with methylation levels at variable CpG sites revealed 2292 significant associations (P < 2.22 × 10-11) involving 2182 unique meQTLs regulating the methylation levels of 174 variable CpG sites. Two meQTLs disrupting CpG sites located within the collagen-encoding COL11A2 gene were tested for associations with MetS and its components in a cohort of 3021 obese individuals. Rare alleles of these meQTLs showed association with plasma fasting glucose levels. Further analysis conducted on these meQTL suggested a biological impact mediated through the disruption of transcription factor (TF)-binding sites based on the prediction of TF-binding affinities. The current study identified meQTL in the VAT of severely obese men and revealed associations of two COL11A2 meQTL with fasting glucose levels.
Collapse
Affiliation(s)
- Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Québec, Canada; School of Nutrition, Laval University, Québec, Canada
| | - André Tchernof
- School of Nutrition, Laval University, Québec, Canada; Québec Heart and Lung Institute, Québec, Canada
| | - Yves Deshaies
- Québec Heart and Lung Institute, Québec, Canada; Department of Medicine, Laval University, Québec, Canada
| | - Simon Biron
- Department of Surgery, Laval University, Québec, Canada
| | | | | | - Simon Marceau
- Department of Surgery, Laval University, Québec, Canada
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Québec, Canada; Department of Kinesiology, Laval University, Québec, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Québec, Canada; School of Nutrition, Laval University, Québec, Canada.
| |
Collapse
|
195
|
Abstract
The health of an organism is orchestrated by a multitude of molecular and biochemical networks responsible for ensuring homeostasis within cells and tissues. However, upon aging, a progressive failure in the maintenance of this homeostatic balance occurs in response to a variety of endogenous and environmental stresses, allowing the accumulation of damage, the physiological decline of individual tissues, and susceptibility to diseases. What are the molecular and cellular signaling events that control the aging process and how can this knowledge help design therapeutic strategies to combat age-associated diseases? Here we provide a comprehensive overview of the evolutionarily conserved biological processes that alter the rate of aging and discuss their link to disease prevention and the extension of healthy life span.
Collapse
Affiliation(s)
- Celine E Riera
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| | - Carsten Merkwirth
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| | - C Daniel De Magalhaes Filho
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720; .,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815.,Glenn Center for Research on Aging, University of California, Berkeley, California 94720
| |
Collapse
|
196
|
Freytag V, Carrillo-Roa T, Milnik A, Sämann PG, Vukojevic V, Coynel D, Demougin P, Egli T, Gschwind L, Jessen F, Loos E, Maier W, Riedel-Heller SG, Scherer M, Vogler C, Wagner M, Binder EB, de Quervain DJF, Papassotiropoulos A. A peripheral epigenetic signature of immune system genes is linked to neocortical thickness and memory. Nat Commun 2017; 8:15193. [PMID: 28443631 PMCID: PMC5414038 DOI: 10.1038/ncomms15193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Increasing age is tightly linked to decreased thickness of the human neocortex. The biological mechanisms that mediate this effect are hitherto unknown. The DNA methylome, as part of the epigenome, contributes significantly to age-related phenotypic changes. Here, we identify an epigenetic signature that is associated with cortical thickness (P=3.86 × 10−8) and memory performance in 533 healthy young adults. The epigenetic effect on cortical thickness was replicated in a sample comprising 596 participants with major depressive disorder and healthy controls. The epigenetic signature mediates partially the effect of age on cortical thickness (P<0.001). A multilocus genetic score reflecting genetic variability of this signature is associated with memory performance (P=0.0003) in 3,346 young and elderly healthy adults. The genomic location of the contributing methylation sites points to the involvement of specific immune system genes. The decomposition of blood methylome-wide patterns bears considerable potential for the study of brain-related traits. Cortical thickness has high heritability estimates and is known to be influenced by genetic factors. Here, Freytag and colleagues show that DNA methylation patterns of peripheral blood monocytes are also correlated with cortical thickness and memory performance in human.
Collapse
Affiliation(s)
- Virginie Freytag
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland
| | - Tania Carrillo-Roa
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, D-80804 Munich, Germany
| | - Annette Milnik
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland
| | - Philipp G Sämann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, D-80804 Munich, Germany
| | - Vanja Vukojevic
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Department Biozentrum, Life Sciences Training Facility, University of Basel, CH-4056 Basel, Switzerland
| | - David Coynel
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Division of Cognitive Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland
| | - Philippe Demougin
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Department Biozentrum, Life Sciences Training Facility, University of Basel, CH-4056 Basel, Switzerland
| | - Tobias Egli
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland
| | - Leo Gschwind
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Division of Cognitive Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), D-53175 Bonn, Germany.,Department of Psychiatry, University of Cologne, Medical Faculty, D-50924 Cologne, Germany
| | - Eva Loos
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Division of Cognitive Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland
| | - Wolfgang Maier
- German Center for Neurodegenerative Diseases (DZNE), D-53175 Bonn, Germany.,Department of Psychiatry, University of Bonn, D-53105 Bonn, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, D-04103 Leipzig, Germany
| | - Martin Scherer
- Center for Psychosocial Medicine, Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christian Vogler
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), D-53175 Bonn, Germany.,Department of Psychiatry, University of Bonn, D-53105 Bonn, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, D-80804 Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Dominique J-F de Quervain
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland.,Division of Cognitive Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland
| | - Andreas Papassotiropoulos
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, CH-4055 Basel, Switzerland.,Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland.,Department Biozentrum, Life Sciences Training Facility, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
197
|
PIM1 induces cellular senescence through phosphorylation of UHRF1 at Ser311. Oncogene 2017; 36:4828-4842. [PMID: 28394343 DOI: 10.1038/onc.2017.96] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
PIM1 is a proto-oncogene, encoding a serine/threonine protein kinase that regulates cell proliferation, survival, differentiation and apoptosis. Previous reports suggest that overexpression of PIM1 can induce cellular senescence. However, the molecular mechanism underlying this process is not fully understood. Here we report that UHRF1 is a novel substrate of PIM1 kinase, which could be phosphorylated at Ser311 and therefore promoted to degradation. Our data demonstrates that PIM1 destabilizes UHRF1, leading to DNA hypomethylation, which consequently results in genomic instability, increased p16 expression and subsequent induction of cellular senescence. Taken together, our results suggest that down-regulation of UHRF1 is an important mechanism of PIM1-mediated cellular senescence.
Collapse
|
198
|
Johnson ND, Wiener HW, Smith AK, Nishitani S, Absher DM, Arnett DK, Aslibekyan S, Conneely KN. Non-linear patterns in age-related DNA methylation may reflect CD4 + T cell differentiation. Epigenetics 2017; 12:492-503. [PMID: 28387568 DOI: 10.1080/15592294.2017.1314419] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene expression. While many studies have identified thousands of loci associated with age, few have differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited changing rates of DNAm change with age (P<1.94E-6). For 2 of these CpG sites (cg07955995 and cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a second set of peripheral blood samples. In 8 of 9 additional data sets comprising samples of monocytes, T cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with age at an increasing rate, which was nominally significant in the 3 largest data sets (4.3E-15<P<0.039). cg07955995 and cg22285878 reside in the promoter region of KLF14, which encodes a protein involved in immune cell differentiation via the repression of FOXP3. These findings may suggest a possible role for cg07955995 and cg22285878 in immunosenescence.
Collapse
Affiliation(s)
| | - Howard W Wiener
- b Department of Epidemiology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Alicia K Smith
- c Department of Gynecology and Obstetrics , Emory University , Atlanta , GA , USA.,d Department of Psychiatry and Behavioral Sciences , Emory University , Atlanta , GA , USA
| | - Shota Nishitani
- c Department of Gynecology and Obstetrics , Emory University , Atlanta , GA , USA.,d Department of Psychiatry and Behavioral Sciences , Emory University , Atlanta , GA , USA
| | - Devin M Absher
- e HudsonAlpha Institute for Biotechnology , Huntsville , AL , USA
| | - Donna K Arnett
- f College of Public Health , University of Kentucky , Lexington , KY , USA
| | - Stella Aslibekyan
- b Department of Epidemiology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Karen N Conneely
- a Department of Human Genetics , Emory University , Atlanta , GA , USA
| |
Collapse
|
199
|
Veitia RA, Govindaraju DR, Bottani S, Birchler JA. Aging: Somatic Mutations, Epigenetic Drift and Gene Dosage Imbalance. Trends Cell Biol 2017; 27:299-310. [DOI: 10.1016/j.tcb.2016.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
|
200
|
Mason PH, Maleszka R, Dominguez D. JF. Another stage of development: Biological degeneracy and the study of bodily ageing. Mech Ageing Dev 2017; 163:46-51. [DOI: 10.1016/j.mad.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
|