151
|
Gilmore BF, Flynn PB, O'Brien S, Hickok N, Freeman T, Bourke P. Cold Plasmas for Biofilm Control: Opportunities and Challenges. Trends Biotechnol 2018; 36:627-638. [PMID: 29729997 DOI: 10.1016/j.tibtech.2018.03.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Bacterial biofilm infections account for a major proportion of chronic and medical device associated infections in humans, yet our ability to control them is compromised by their inherent tolerance to antimicrobial agents. Cold atmospheric plasma (CAP) represents a promising therapeutic option. CAP treatment of microbial biofilms represents the convergence of two complex phenomena: the production of a chemically diverse mixture of reactive species and intermediates, and their interaction with a heterogeneous 3D interface created by the biofilm extracellular polymeric matrix. Therefore, understanding these interactions and physiological responses to CAP exposure are central to effective management of infectious biofilms. We review the unique opportunities and challenges for translating CAP to the management of biofilms.
Collapse
Affiliation(s)
- Brendan F Gilmore
- Biofilm and Pharmaceutical Microbiology Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK. http://twitter.com/@BrendanFGilmore
| | - Padrig B Flynn
- Biofilm and Pharmaceutical Microbiology Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Séamus O'Brien
- Biofilm and Pharmaceutical Microbiology Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Noreen Hickok
- Department of Orthopaedic Research, Sidney Kimmel Medical College of Thomas Jefferson University, Jefferson Medical College, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Theresa Freeman
- Department of Orthopaedic Research, Sidney Kimmel Medical College of Thomas Jefferson University, Jefferson Medical College, 1015 Walnut Street, Suite 501, Philadelphia, PA 19107, USA
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Marlborough Street, Dublin 1, Ireland
| |
Collapse
|
152
|
Kim JS, Chowdhury N, Yamasaki R, Wood TK. Viable but non-culturable and persistence describe the same bacterial stress state. Environ Microbiol 2018; 20:2038-2048. [PMID: 29457686 DOI: 10.1111/1462-2920.14075] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 11/30/2022]
Abstract
Bacteria are often thought of as having two dormant phenotypes: the viable but non-culturable (VBNC) state and the persister state. Here we investigate the relatedness of the two stress-induced phenotypes at the single-cell level and examine cell morphology and quantify cell resuscitation. Using the classic starvation conditions to create VBNC cells, we found that the majority of the remaining Escherichia coli population are spherical, have empty cytosol and fail to resuscitate; however, some of the spherical cells resuscitate immediately (most probably those with dense cytosol). Critically, all the culturable cells in this starved population became persister cells within 14 days of starvation. We found that the persister cells initially are rod-like, have clear but limited membrane damage, can resuscitate immediately and gradually become spherical by aging. After 24 h, only rod-shaped persister cells survive, and all the spherical cells lyse. Both cell populations formed under the VBNC-inducing conditions and the persister conditions are metabolically inactive. Therefore, the bacterial population consists of dead cells and persister cells in the VBNC-inducing conditions; that is, the non-lysed particles that do not resuscitate are dead, and the dormant cells that resuscitate are persister cells. Hence, 'VBNC' and 'persister' describe the same dormant phenotype.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Nityananda Chowdhury
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Ryota Yamasaki
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Thomas K Wood
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
153
|
Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol Res 2018; 209:33-42. [DOI: 10.1016/j.micres.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 11/21/2022]
|
154
|
Kim JS, Yamasaki R, Song S, Zhang W, Wood TK. Single cell observations show persister cells wake based on ribosome content. Environ Microbiol 2018. [PMID: 29528544 DOI: 10.1111/1462-2920.14093] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since persister cells survive antibiotic treatments through dormancy and resuscitate to reconstitute infections, it is imperative to determine the rate at which these cells revive. Using two sets of Escherichia coli persister cells, those arising after antibiotic treatment at low levels and those generated at high levels by ceasing transcription via rifampicin pretreatment (shown to be bona fide persisters through eight sets of experiments), we used microscopy of single cells to determine that the resuscitation of dormant persisters is heterogeneous and includes cells that grow immediately. In all, five phenotypes were found during the observation of persister cells when fresh nutrients were added: (i) immediate division, (ii) immediate elongation followed by division, (iii) immediate elongation but no division, (iv) delayed elongation/division and (v) no growth. In addition, once cell division begins, the growth rate is that of exponential cells. Critically, the greater the ribosome content, the faster the persister cells resuscitate.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Ryota Yamasaki
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Weiwei Zhang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
155
|
Su X, Bamba A, Zhang S, Zhang Y, Hashmi M, Lin H, Ding L. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol 2018; 66:277-283. [DOI: 10.1111/lam.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- X.M. Su
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - A.M. Bamba
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - S. Zhang
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - Y.G. Zhang
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - M.Z. Hashmi
- Department of Meteorology; COMSATS Institute of Information Technology; Islamabad Pakistan
| | - H.J. Lin
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| | - L.X. Ding
- College of Geography and Environmental Science; Zhejiang Normal University; Jinhua China
| |
Collapse
|
156
|
Li Y, Zhang L, Zhou Y, Zhang Z, Zhang X. Survival of bactericidal antibiotic treatment by tolerant persister cells of Klebsiella pneumoniae. J Med Microbiol 2018; 67:273-281. [PMID: 29458540 DOI: 10.1099/jmm.0.000680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Persister cells, a subpopulation of tolerant cells within the bacterial culture, are commonly thought to be responsible for antibiotic therapy failure and infection recurrence. Klebsiella pneumoniae is a notorious human pathogen for its increasing resistance to antibiotics and wide involvement in severe infections. In this study, we aimed to investigate the persister subpopulation of K. pneumoniae. METHODOLOGY The presence of persisters in K. pneumoniae was determined by treatment with high concentrations of antibiotics, used alone or in combination. The effect of low level of antibiotics on persister formation was investigated by pre-exposure of cells to antibiotics with low concentrations followed by higher doses. The dependence of persister levels on growth phase was determined by measuring the survival ability of cells along the growth stages upon exposure to a high concentration of antibiotic. Analysis on persister type was carried out by persister elimination assays.Results/Key findings. We show that K. pneumoniae produces high levels of tolerant persister cells to survive treatment by a variety of high concentrations of bactericidal antibiotics and persister formation is prevalent among K. pneumoniae clinical strains. Besides, we find that persister cells can be induced by low concentrations of antibiotics. Finally, we provide evidence that persister formation is growth phase-dependent and Type II persisters dominate the persister subpopulation during the entire exponential phase of K. pneumoniae. CONCLUSION Our study describes the formation of tolerant persister cells that allow survival of treatment by high concentrations of antibiotics in K. pneumoniae.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Luhua Zhang
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yingshun Zhou
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhikun Zhang
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Xinzhuo Zhang
- Department of Pathogenic Biology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| |
Collapse
|
157
|
The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. ISME JOURNAL 2018; 12:1199-1209. [PMID: 29335635 DOI: 10.1038/s41396-017-0036-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/08/2022]
Abstract
Microorganisms adapt to frequent environmental changes through population diversification. Previous studies demonstrated phenotypic diversity in a clonal population and its important effects on microbial ecology. However, the dynamic changes of phenotypic composition have rarely been characterized. Also, cellular variations and environmental factors responsible for phenotypic diversity remain poorly understood. Here, we studied phenotypic diversity driven by metabolic heterogeneity. We characterized metabolic activities and growth kinetics of starved Escherichia coli cells subject to nutrient upshift at single-cell resolution. We observed three subpopulations with distinct metabolic activities and growth phenotypes. One subpopulation was metabolically active and immediately grew upon nutrient upshift. One subpopulation was metabolically inactive and non-viable. The other subpopulation was metabolically partially active, and did not grow upon nutrient upshift. The ratio of these subpopulations changed dynamically during starvation. A long-term observation of cells with partial metabolic activities indicated that their metabolism was later spontaneously restored, leading to growth recovery. Further investigations showed that oxidative stress can induce the emergence of a subpopulation with partial metabolic activities. Our findings reveal the emergence of metabolic heterogeneity and associated dynamic changes in phenotypic composition. In addition, the results shed new light on microbial dormancy, which has important implications in microbial ecology and biomedicine.
Collapse
|
158
|
Wasai S, Kanno N, Matsuura K, Haruta S. Increase of Salt Tolerance in Carbon-Starved Cells of Rhodopseudomonas palustris Depending on Photosynthesis or Respiration. Microorganisms 2018; 6:microorganisms6010004. [PMID: 29316629 PMCID: PMC5874618 DOI: 10.3390/microorganisms6010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022] Open
Abstract
Bacteria in natural environments are frequently exposed to nutrient starvation and survive against environmental stresses under non-growing conditions. In order to determine the energetic influence on survivability during starvation, changes in salt tolerance were investigated using the purple photosynthetic bacterium Rhodopseudomonas palustris after carbon starvation under photosynthetic conditions in comparison with anaerobic and aerobic dark conditions. Tolerance to a treatment with high concentration of salt (2.5 M NaCl for 1 h) was largely increased after starvation under anaerobically light and aerobically dark conditions. The starved cells under the conditions of photosynthesis or aerobic respiration contained high levels of cellular ATP, but starvation under the anaerobic dark conditions resulted in a decrease of cellular ATP contents. To observe the large increase of the salt tolerance, incubation of starved cells for more than 18 h under illumination was needed. These results suggest that the ATP-dependent rearrangement of cells induced salt tolerance.
Collapse
Affiliation(s)
- Sawa Wasai
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Nanako Kanno
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
159
|
Bamford RA, Smith A, Metz J, Glover G, Titball RW, Pagliara S. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy. BMC Biol 2017; 15:121. [PMID: 29262826 PMCID: PMC5738893 DOI: 10.1186/s12915-017-0465-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background Clonal microbial populations often harbor rare phenotypic variants that are typically hidden within the majority of the remaining cells, but are crucial for the population’s resilience to external perturbations. Persister and viable but non-culturable (VBNC) cells are two important clonal bacterial subpopulations that can survive antibiotic treatment. Both persister and VBNC cells pose a serious threat to human health. However, unlike persister cells, which quickly resume growth following drug removal, VBNC cells can remain non-growing for prolonged periods of time, thus eluding detection via traditional microbiological assays. Therefore, understanding the molecular mechanisms underlying the formation of VBNC cells requires the characterization of the clonal population with single-cell resolution. A combination of microfluidics, time-lapse microscopy, and fluorescent reporter strains offers the perfect platform for investigating individual cells while manipulating their environment. Methods Here, we report a novel single-cell approach to investigate VBNC cells. We perform drug treatment, bacterial culturing, and live/dead staining in series by using transcriptional reporter strains and novel adaptations to the mother machine technology. Since we track each cell throughout the experiment, we are able to quantify the size, morphology and fluorescence that each VBNC cell displayed before, during and after drug treatment. Results We show that VBNC cells are not dead or dying cells but share similar phenotypic features with persister cells, suggesting a link between these two subpopulations, at least in the Escherichia coli strain under investigation. We strengthen this link by demonstrating that, before drug treatment, both persister and VBNC cells can be distinguished from the remainder of the population by their lower fluorescence when using a reporter strain for tnaC, encoding the leader peptide of the tnaCAB operon responsible for tryptophan metabolism. Conclusion Our data demonstrates the suitability of our approach for studying the physiology of non-growing cells in response to external perturbations. Our approach will allow the identification of novel biomarkers for the isolation of VBNC and persister cells and will open new opportunities to map the detailed biochemical makeup of these clonal subpopulations. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0465-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosemary A Bamford
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.,Living Systems Institute, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Ashley Smith
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.,Living Systems Institute, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Jeremy Metz
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.,Living Systems Institute, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | - Georgina Glover
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK.,Living Systems Institute, University of Exeter, Exeter, Devon, EX4 4QD, UK
| | | | - Stefano Pagliara
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, UK. .,Living Systems Institute, University of Exeter, Exeter, Devon, EX4 4QD, UK.
| |
Collapse
|
160
|
Aguilar-Ayala DA, Tilleman L, Van Nieuwerburgh F, Deforce D, Palomino JC, Vandamme P, Gonzalez-Y-Merchand JA, Martin A. The transcriptome of Mycobacterium tuberculosis in a lipid-rich dormancy model through RNAseq analysis. Sci Rep 2017; 7:17665. [PMID: 29247215 PMCID: PMC5732278 DOI: 10.1038/s41598-017-17751-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is currently the number one killer among infectious diseases worldwide. Lipids are abundant molecules during the infectious cycle of Mycobacterium tuberculosis (Mtb) and studies better mimicking its actual metabolic state during pathogenesis are needed. Though most studies have focused on the mycobacterial lipid metabolism under standard culture conditions, little is known about the transcriptome of Mtb in a lipid environment. Here we determined the transcriptome of Mtb H37Rv in a lipid-rich environment (cholesterol and fatty acid) under aerobic and hypoxic conditions, using RNAseq. Lipids significantly induced the expression of 368 genes. A main core lipid response was observed involving efflux systems, iron caption and sulfur reduction. In co-expression with ncRNAs and other genes discussed below, may act coordinately to prepare the machinery conferring drug tolerance and increasing a persistent population. Our findings could be useful to tag relevant pathways for the development of new drugs, vaccines and new strategies to control TB.
Collapse
Affiliation(s)
- Diana A Aguilar-Ayala
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium.
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Gent, Belgium
| | | | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Jorge A Gonzalez-Y-Merchand
- Laboratory of Molecular Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anandi Martin
- Laboratory of Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Pôle of Medical Microbiology, Institute of Experimental and Clinical Research, Université Catholique de, Louvain, Brussels, Belgium
| |
Collapse
|
161
|
Zhang F, Wang Z, Lei F, Wang B, Jiang S, Peng Q, Zhang J, Shao Y. Bacterial diversity in goat milk from the Guanzhong area of China. J Dairy Sci 2017; 100:7812-7824. [DOI: 10.3168/jds.2017-13244] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
|
162
|
He GQ, Liu TJ, Sadiq FA, Gu JS, Zhang GH. Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches. J Zhejiang Univ Sci B 2017; 18:289-302. [PMID: 28378567 DOI: 10.1631/jzus.b1600148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chinese traditional fermented foods have a very long history dating back thousands of years and have become an indispensable part of Chinese dietary culture. A plethora of research has been conducted to unravel the composition and dynamics of microbial consortia associated with Chinese traditional fermented foods using culture-dependent as well as culture-independent methods, like different high-throughput sequencing (HTS) techniques. These HTS techniques enable us to understand the relationship between a food product and its microbes to a greater extent than ever before. Considering the importance of Chinese traditional fermented products, the objective of this paper is to review the diversity and dynamics of microbiota in Chinese traditional fermented foods revealed by HTS approaches.
Collapse
Affiliation(s)
- Guo-Qing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Tong-Jie Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Faizan A Sadiq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Jing-Si Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| | - Guo-Hua Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
163
|
Shao Y, Wang Z, Bao Q, Zhang H. Differential enumeration of subpopulations in concentrated frozen and lyophilized cultures of Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 2017; 100:8776-8782. [PMID: 28865863 DOI: 10.3168/jds.2017-12892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/14/2017] [Indexed: 01/27/2023]
Abstract
Differential enumeration of subpopulations in concentrated frozen and lyophilized cultures of Lactobacillus delbrueckii ssp. bulgaricus ND02 derived from 2 propagation procedures was determined. The subpopulations consisted of 3 categories (physiological states): viable cells capable of forming colonies on agar plates (VC+), viable cells incapable of forming colonies on agar plates (VC-), widely referred to as viable but nonculturable (VBNC) cells, and nonviable or dead cells (NVC). Counts of VC+ were recorded using a conventional plate count procedure. A fluorescent vital staining procedure that discriminates between viable (VC+ and VC-) and NVC cells was used to determine the number of viable and nonviable cells. Both propagation procedures had 2 variables: in procedure (P)1, the propagation medium was rich in yeast extract (4.0%) and the pH was maintained at 5.7; in P2, the medium was devoid of yeast extract and the pH was maintained at 5.1. The results showed that post-propagation operations-concentration of cells by centrifugation and subsequent freezing or lyophilization of cell concentrate-induced different degrees of transience from VC+ to VC- states in cells derived from P1 and P2. Compared with cells derived from P2, cells from P1 were more labile to stress associated with centrifugation, freezing, and lyophilization, as revealed by differential counting.
Collapse
Affiliation(s)
- Yuyu Shao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China, 710119
| | - Zhaoxia Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 010018
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 010018
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 010018.
| |
Collapse
|
164
|
Shidore T, Triplett LR. Toxin-Antitoxin Systems: Implications for Plant Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:161-179. [PMID: 28525308 DOI: 10.1146/annurev-phyto-080516-035559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Toxin-antitoxin (TA) systems are gene modules that are ubiquitous in free-living prokaryotes. Diverse in structure, cellular function, and fitness roles, TA systems are defined by the presence of a toxin gene that suppresses bacterial growth and a toxin-neutralizing antitoxin gene, usually encoded in a single operon. Originally viewed as DNA maintenance modules, TA systems are now thought to function in many roles, including bacterial stress tolerance, virulence, phage defense, and biofilm formation. However, very few studies have investigated the significance of TA systems in the context of plant-microbe interactions. This review discusses the potential impact and application of TA systems in plant-associated bacteria, guided by insights gained from animal-pathogenic model systems.
Collapse
Affiliation(s)
- T Shidore
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511:
| | - L R Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511:
| |
Collapse
|
165
|
Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli. PLoS One 2017; 12:e0182122. [PMID: 28750057 PMCID: PMC5531548 DOI: 10.1371/journal.pone.0182122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, parasites, and even cancerous human cell populations, leading to recurrent infections and relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the exponential phase. Considering the heterogeneous nature of persisters, multiple types of persisters were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp-overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) were induced. Chemical induction by carbonyl cyanide m-chlorophenylhydrazone (CCCP) led to the formation of more than 10% persister to Amp and Cip in the entire population, and Br-CA still completely eradicated them. In addition, the cells in the stationary phase, which are usually highly recalcitrant to antibiotics treatment, were also completely eradicated by 400 μg/ml of Br-CA. Further studies showed that neither thiourea (hydroxyl-radical scavenger) nor DPTA (Fe3+ chelator to block the hydroxyl-radical) affected the bactericidal efficiency of the Br-CA to kill E. coli, indicating a ROS-independent bactericidal mechanism. Taken together, we concluded that Br-CA compound has a novel bactericidal mechanism and the potential to mitigate antibiotics resistance crisis.
Collapse
|
166
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
167
|
A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus. J Bacteriol 2017; 199:JB.00206-17. [PMID: 28484042 DOI: 10.1128/jb.00206-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dormancy is a protective state in which diverse bacteria, including Mycobacterium tuberculosis, Staphylococcus aureus, Treponema pallidum (syphilis), and Borrelia burgdorferi (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation. Previous studies indicate that the protein mechanisms regulating persistence and VBNC states are not well understood. We have queried the VBNC state of Micrococcus luteus NCTC 2665 (MI-2665) by quantitative proteomics combining gel electrophoresis, high-performance liquid chromatography, and tandem mass spectrometry to elucidate some of these mechanisms. MI-2665 is a nonpathogenic actinobacterium containing a small (2.5-Mb), high-GC-content genome which exhibits a well-defined VBNC state induced by nutrient deprivation. The MI-2665 VBNC state demonstrated a loss of protein diversity accompanied by increased levels of 18 proteins that are conserved across actinobacteria, 14 of which have not been previously identified in VNBC. These proteins implicate an anaplerotic strategy in the transition to VBNC, including changes in the glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes. Our data suggest that MI-2665 is a viable model for dissecting the protein mechanisms underlying the VBNC stress response and provide the first protein-level signature of this state. We expect that this protein signature will enable future studies deciphering the protein mechanisms of dormancy and identify novel therapeutic strategies effective against antibiotic-tolerant bacterial infections.IMPORTANCE Dormancy is a protective state enabling bacteria to survive antibiotics, starvation, and the immune system. Dormancy is comprised of different states, including persistent and viable but nonculturable (VBNC) states that contribute to the spread of bacterial infections. Therefore, it is imperative to identify how bacteria utilize these different dormancy states to survive antibiotic treatment. The objective of our research is to eliminate dormancy as a route to antibiotic tolerance by understanding the proteins that control dormancy in Micrococcus luteus NCTC 2665. This bacterium has unique advantages for studying dormancy, including a small genome and a well-defined and reproducible VBNC state. Our experiments implicate four previously identified and 14 novel proteins upregulated in VBNC that may regulate this critical survival mechanism.
Collapse
|
168
|
Liang K, Richardson JJ, Doonan CJ, Mulet X, Ju Y, Cui J, Caruso F, Falcaro P. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kang Liang
- School of Chemical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
| | - Joseph J. Richardson
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Christian J. Doonan
- School of Chemistry and Physics; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Xavier Mulet
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, and the; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry; Graz University of Technology; Stremayrgasse 9 Graz 8010 Austria
| |
Collapse
|
169
|
Liang K, Richardson JJ, Doonan CJ, Mulet X, Ju Y, Cui J, Caruso F, Falcaro P. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival. Angew Chem Int Ed Engl 2017; 56:8510-8515. [DOI: 10.1002/anie.201704120] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Kang Liang
- School of Chemical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering; The University of New South Wales; Sydney NSW 2052 Australia
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
| | - Joseph J. Richardson
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Christian J. Doonan
- School of Chemistry and Physics; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Xavier Mulet
- CSIRO Manufacturing, CSIRO; Private Bag 10 Clayton South Victoria 3169 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, and the; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry; Graz University of Technology; Stremayrgasse 9 Graz 8010 Austria
| |
Collapse
|
170
|
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2017; 14:563-75. [PMID: 27510863 DOI: 10.1038/nrmicro.2016.94] [Citation(s) in RCA: 2876] [Impact Index Per Article: 410.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Ulrich Szewzyk
- Technical University of Berlin, Department of Environmental Microbiology, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany
| | - Peter Steinberg
- The School of Biological, Earth and Environmental Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Staffan Kjelleberg
- The Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
171
|
Pando JM, Pfeltz RF, Cuaron JA, Nagarajan V, Mishra MN, Torres NJ, Elasri MO, Wilkinson BJ, Gustafson JE. Ethanol-induced stress response of Staphylococcus aureus. Can J Microbiol 2017; 63:745-757. [PMID: 28521110 DOI: 10.1139/cjm-2017-0221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcriptional profiles of 2 unrelated clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates were analyzed following 10% (v/v) ethanol challenge (15 min), which arrested growth but did not reduce viability. Ethanol-induced stress (EIS) resulted in differential gene expression of 1091 genes, 600 common to both strains, of which 291 were upregulated. With the exception of the downregulation of genes involved with osmotic stress functions, EIS resulted in the upregulation of genes that contribute to stress response networks, notably those altered by oxidative stress, protein quality control in general, and heat shock in particular. In addition, genes involved with transcription, translation, and nucleotide biosynthesis were downregulated. relP, which encodes a small alarmone synthetase (RelP), was highly upregulated in both MRSA strains following ethanol challenge, and relP inactivation experiments indicated that this gene contributed to EIS growth arrest. A number of persistence-associated genes were also upregulated during EIS, including those that encode toxin-antitoxin systems. Overall, transcriptional profiling indicated that the MRSA investigated responded to EIS by entering a state of dormancy and by altering the expression of elements from cross protective stress response systems in an effort to protect preexisting proteins.
Collapse
Affiliation(s)
- Jasmine M Pando
- a Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Richard F Pfeltz
- b BD Diagnostic Systems, Microbiology R&D Department, Sparks, MD 21152, USA
| | - Jesus A Cuaron
- a Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Vijayaraj Nagarajan
- c Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Mukti N Mishra
- d Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nathanial J Torres
- d Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mohamed O Elasri
- c Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Brian J Wilkinson
- e Microbiology Group, School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - John E Gustafson
- a Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.,d Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
172
|
Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol 2017; 25:820-832. [PMID: 28526548 DOI: 10.1016/j.tim.2017.04.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
173
|
Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens. Front Microbiol 2017; 8:580. [PMID: 28421064 PMCID: PMC5378802 DOI: 10.3389/fmicb.2017.00580] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Junliang Zhong
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Caijiao Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| |
Collapse
|
174
|
Lin NJ. Biofilm over teeth and restorations: What do we need to know? Dent Mater 2017; 33:667-680. [PMID: 28372810 DOI: 10.1016/j.dental.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The goal of this manuscript is to provide an overview of biofilm attributes and measurement approaches in the context of studying biofilms on tooth and dental material surfaces to improve oral health. METHODS A historical perspective and terminology are presented, followed by a general description of the complexity of oral biofilms. Then, an approach to grouping measurable biofilm properties is presented and considered in relation to biofilm-material interactions and material design strategies to alter biofilms. Finally, the need for measurement assurance in biofilm and biofilm-materials research is discussed. RESULTS Biofilms are highly heterogeneous communities that are challenging to quantify. Their characteristics can be broadly categorized into constituents (identity), quantity, structure, and function. These attributes can be measured over time and in response to substrates and external stimuli. Selecting the biofilm attribute(s) of interest and appropriate measurement methods will depend on the application and, in the case of antimicrobial therapies, the strategic approach and expected mechanism of action. To provide measurement assurance, community accepted protocols and guidelines for minimum data and metadata should be established and broadly applied. Consensus standards may help to streamline testing and demonstration of product claims. SIGNIFICANCE Understanding oral biofilms and their interactions with tooth and dental material surfaces holds great promise for enabling improvements in oral and overall human health. Both substrate and biofilm properties should be considered to develop a more thorough understanding of the system.
Collapse
Affiliation(s)
- Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8543, USA.
| |
Collapse
|
175
|
Udomsil N, Chen S, Rodtong S, Yongsawatdigul J. Improvement of fish sauce quality by combined inoculation of Tetragenococcus halophilus MS33 and Virgibacillus sp. SK37. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
176
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
177
|
Kibbee RJ, Örmeci B. Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. J Microbiol Methods 2017; 132:139-147. [DOI: 10.1016/j.mimet.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 11/29/2022]
|
178
|
Hassard F, Gwyther CL, Farkas K, Andrews A, Jones V, Cox B, Brett H, Jones DL, McDonald JE, Malham SK. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments-a Review. Front Microbiol 2016; 7:1692. [PMID: 27847499 PMCID: PMC5088438 DOI: 10.3389/fmicb.2016.01692] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022] Open
Abstract
The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments.
Collapse
Affiliation(s)
| | - Ceri L. Gwyther
- Department of Engineering and Innovation, Open UniversityMilton Keynes, UK
| | - Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | | | | | | - Davey L. Jones
- School of Environment, Natural Resources and Geography, Bangor UniversityBangor, UK
| | | | | |
Collapse
|
179
|
Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach. Food Microbiol 2016; 59:196-204. [DOI: 10.1016/j.fm.2016.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 11/23/2022]
|
180
|
Wu YT, Tam C, Zhu LS, Evans DJ, Fleiszig SMJ. Human Tear Fluid Reduces Culturability of Contact Lens-Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence-Associated Type III Secretion System. Ocul Surf 2016; 15:88-96. [PMID: 27670247 DOI: 10.1016/j.jtos.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/11/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. METHODS P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. RESULTS With or without tear fluid, biofilms grew to ∼108 CFU viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ∼180-fold (P<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (P=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (P=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (P=.04) and 1.89 ± 0.26-fold (P<.001), respectively. CONCLUSIONS Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Yvonne T Wu
- School of Optometry, University of California, Berkeley, CA, USA
| | - Connie Tam
- School of Optometry, University of California, Berkeley, CA, USA
| | - Lucia S Zhu
- School of Optometry, University of California, Berkeley, CA, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| |
Collapse
|
181
|
Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 2016; 14:549-62. [PMID: 27510862 PMCID: PMC10069271 DOI: 10.1038/nrmicro.2016.107] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most bacteria spend the majority of their time in prolonged states of very low metabolic activity and little or no growth, in which electron donors, electron acceptors and/or nutrients are limited, but cells are poised to undergo rapid division cycles when resources become available. These non-growing states are far less studied than other growth states, which leaves many questions regarding basic bacterial physiology unanswered. In this Review, we discuss findings from a small but diverse set of systems that have been used to investigate how growth-arrested bacteria adjust metabolism, regulate transcription and translation, and maintain their chromosomes. We highlight major questions that remain to be addressed, and suggest that progress in answering them will be aided by recent methodological advances and by dialectic between environmental and molecular microbiology perspectives.
Collapse
|
182
|
Govers SK, Gayan E, Aertsen A. Intracellular movement of protein aggregates reveals heterogeneous inactivation and resuscitation dynamics in stressed populations ofEscherichia coli. Environ Microbiol 2016; 19:511-523. [DOI: 10.1111/1462-2920.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sander K. Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Elisa Gayan
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| |
Collapse
|
183
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
184
|
New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging. Antimicrob Agents Chemother 2016; 60:4983-90. [PMID: 27297479 DOI: 10.1128/aac.00735-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is one of the most frequent pathogens responsible for biofilm-associated infections (BAI), and the choice of antibiotics to treat these infections remains a challenge for the medical community. In particular, daptomycin has been reported to fail against implant-associated S. aureus infections in clinical practice, while its association with rifampin remains a good candidate for BAI treatment. To improve our understanding of such resistance/tolerance toward daptomycin, we took advantage of the dynamic fluorescence imaging tools (time-lapse imaging and fluorescence recovery after photobleaching [FRAP]) to locally and accurately assess the antibiotic diffusion reaction in methicillin-susceptible and methicillin-resistant S. aureus biofilms. To provide a realistic representation of daptomycin action, we optimized an in vitro model built on the basis of our recently published in vivo mouse model of prosthetic vascular graft infections. We demonstrated that at therapeutic concentrations, daptomycin was inefficient in eradicating biofilms, while the matrix was not a shield to antibiotic diffusion and to its interaction with its bacterial target. In the presence of rifampin, daptomycin was still present in the vicinity of the bacterial cells, allowing prevention of the emergence of rifampin-resistant mutants. Conclusions derived from this study strongly suggest that S. aureus biofilm resistance/tolerance toward daptomycin may be more likely to be related to a physiological change involving structural modifications of the membrane, which is a strain-dependent process.
Collapse
|
185
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
186
|
Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The Chromosomal parDE2 Toxin-Antitoxin System of Mycobacterium tuberculosis H37Rv: Genetic and Functional Characterization. Front Microbiol 2016; 7:886. [PMID: 27379032 PMCID: PMC4906023 DOI: 10.3389/fmicb.2016.00886] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis H37Rv escapes host-generated stresses by entering a dormant persistent state. Activation of toxin-antitoxin modules is one of the mechanisms known to trigger such a state with low metabolic activity. M. tuberculosis harbors a large number of TA systems mostly located within discernible genomic islands. We have investigated the parDE2 operon of M. tuberculosis H37Rv encoding MParE2 toxin and MParD2 antitoxin proteins. The parDE2 locus was transcriptionally active from growth phase till late stationary phase in M. tuberculosis. A functional promoter located upstream of parD2 GTG start-site was identified by 5'-RACE and lacZ reporter assay. The MParD2 protein transcriptionally regulated the P parDE2 promoter by interacting through Arg16 and Ser15 residues located in the N-terminus. In Escherichia coli, ectopic expression of MParE2 inhibited growth in early stages, with a drastic reduction in colony forming units. Live-dead analysis revealed that the reduction was not due to cell death alone but due to formation of viable but non-culturable cells (VBNCs) also. The toxic activity of the protein, identified in the C-terminal residues Glu98 and Arg102, was neutralized by the antitoxin MParD2, both in vivo and in vitro. MParE2 inhibited mycobacterial DNA gyrase and interacted with the GyrB subunit without affecting its ATPase activity. Introduction of parE2 gene in the heterologous M. smegmatis host prevented growth and colony formation by the transformed cells. An M. smegmatis strain containing the parDE2 operon also switched to a non-culturable phenotype in response to oxidative stress. Loss in colony-forming ability of a major part of the MParE2 expressing cells suggests its potential role in dormancy, a cellular strategy for adaptation to environmental stresses. Our study has laid the foundation for future investigations to explore the physiological significance of parDE2 operon in mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Biotechnology, TERI University, NewDelhi, India; Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru UniversityNew Delhi, India
| | - Nishtha Nayyar
- Institute of Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences Bangalore, India
| | - Meenakshi Chawla
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | | | - Rakesh Bhatnagar
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| | - Nirupama Banerjee
- Molecular and Cell Biology Laboratory, School of Biotechnology, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
187
|
Merfa MV, Niza B, Takita MA, De Souza AA. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation. Front Microbiol 2016; 7:904. [PMID: 27375608 PMCID: PMC4901048 DOI: 10.3389/fmicb.2016.00904] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/26/2016] [Indexed: 01/01/2023] Open
Abstract
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Bárbara Niza
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de CampinasCampinas, Brazil
| | - Marco A. Takita
- Instituto Agronômico, Centro de Citricultura Sylvio MoreiraCordeirópolis, Brazil
| | | |
Collapse
|
188
|
Kaldalu N, Hauryliuk V, Tenson T. Persisters-as elusive as ever. Appl Microbiol Biotechnol 2016; 100:6545-6553. [PMID: 27262568 PMCID: PMC4939303 DOI: 10.1007/s00253-016-7648-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 12/27/2022]
Abstract
Persisters—a drug-tolerant sub-population in an isogenic bacterial culture—have been featured throughout the last decade due to their important role in recurrent bacterial infections. Numerous investigations detail the mechanisms responsible for the formation of persisters and suggest exciting strategies for their eradication. In this review, we argue that the very term “persistence” is currently used to describe a large and heterogeneous set of physiological phenomena that are functions of bacterial species, strains, growth conditions, and antibiotics used in the experiments. We caution against the oversimplification of the mechanisms of persistence and urge for a more rigorous validation of the applicability of these mechanisms in each case.
Collapse
Affiliation(s)
- Niilo Kaldalu
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia
- Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87, Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411, Tartu, Estonia.
| |
Collapse
|
189
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
190
|
Martins PMM, Machado MA, Silva NV, Takita MA, de Souza AA. Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri. Front Microbiol 2016; 7:652. [PMID: 27242687 PMCID: PMC4861877 DOI: 10.3389/fmicb.2016.00652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
Prokaryotic toxin-antitoxin (TA) systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of 10 Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB, and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB) was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes.
Collapse
Affiliation(s)
- Paula M M Martins
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico Cordeirópolis, Brazil
| | - Marcos A Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico Cordeirópolis, Brazil
| | - Nicholas V Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico Cordeirópolis, Brazil
| | - Marco A Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico Cordeirópolis, Brazil
| | | |
Collapse
|
191
|
Ayrapetyan M, Oliver JD. The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
192
|
Gonçalves FDA, de Carvalho CCCR. Phenotypic Modifications in Staphylococcus aureus Cells Exposed to High Concentrations of Vancomycin and Teicoplanin. Front Microbiol 2016; 7:13. [PMID: 26834731 PMCID: PMC4724715 DOI: 10.3389/fmicb.2016.00013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/08/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial cells are known to change the fatty acid (FA) composition of the phospholipids as a phenotypic response to environmental conditions and to the presence of toxic compounds such as antibiotics. In the present study, Staphylococcus aureus cells collected during the exponential growth phase were challenged with 50 and 100 mg/L of vancomycin and teicoplanin, which are concentrations high enough to kill the large majority of the cell population. Colony-forming unit counts showed biphasic killing kinetics, typical for persister cell enrichment, in both antibiotics and concentrations tested. However, fluorescence microscopy showed the existence of viable but non-culturable (VBNC) cells in a larger number than that of possible persister cells. The analysis of the FA composition of the cells showed that, following antibiotic exposure up to 6 h, the survivor cells have an increased percentage of saturated FAs, a significant reduced percentage of branched FAs and an increased iso/anteiso branched FA ratio when compared to cells exhibiting a regular phenotype. This should result in lower membrane fluidity. However, cells exposed for 8-24 h presented an increased branched/saturated and lower iso/anteiso branched FA ratios, and thus increased membrane fluidity. Furthermore, the phenotypic changes were transmitted to daughter cells grown in drug-free media. The fact that VBNC cells presented nearly the same FA composition as those obtained after cell growth in drug-free media, which could only be the result of growth of persister cells, suggest that VBNC and persister phenotypes share the same type of response to antibiotics at the lipid level.
Collapse
Affiliation(s)
- Fábio D A Gonçalves
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
193
|
Abstract
The practice of medicine was profoundly transformed by the introduction of the antibiotics (compounds isolated from Nature) and the antibacterials (compounds prepared by synthesis) for the control of bacterial infection. As a result of the extraordinary success of these compounds over decades of time, a timeless biological activity for these compounds has been presumed. This presumption is no longer. The inexorable acquisition of resistance mechanisms by bacteria is retransforming medical practice. Credible answers to this dilemma are far better recognized than they are being implemented. In this perspective we examine (and in key respects, reiterate) the chemical and biological strategies being used to address the challenge of bacterial resistance.
Collapse
Affiliation(s)
- Jed F. Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46556–5670, USA
| |
Collapse
|
194
|
Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS One 2015; 10:e0138209. [PMID: 26390435 PMCID: PMC4577073 DOI: 10.1371/journal.pone.0138209] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition of QS and mechanisms by which this may occur.
Collapse
Affiliation(s)
- Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - Sonal Patil
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
| | - P. J. Cullen
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland
- * E-mail:
| |
Collapse
|
195
|
Wood TK. Combatting bacterial persister cells. Biotechnol Bioeng 2015; 113:476-83. [DOI: 10.1002/bit.25721] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvania
- Department Biochemistry, Molecular BiologyPennsylvania State UniversityUniversity ParkPennsylvania16802‐4400
| |
Collapse
|
196
|
Viable but Nonculturable and Persister Cells Coexist Stochastically and Are Induced by Human Serum. Infect Immun 2015; 83:4194-203. [PMID: 26283335 DOI: 10.1128/iai.00404-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023] Open
Abstract
Dormancy holds a vital role in the ecological dynamics of microorganisms. Specifically, entry into dormancy allows cells to withstand times of stress while maintaining the potential for reentry into an active existence. The viable but nonculturable (VBNC) state and antibiotic persistence are two well-recognized conditions of dormancy demonstrated to contribute to bacterial stress tolerance and, as a consequence, yield populations that are tolerant to high-dose antibiotics. Aside from this commonality, more evidence is being presented that indicates the relatedness of these two states. Here, we demonstrate that VBNC cells are present during persister isolation experiments, further indicating that these cells coexist and are induced by the same conditions. Interestingly, we reveal that VBNC cells can exist stochastically in unstressed growing cultures, a finding that is characteristic of persisters. Furthermore, human serum induces the formation of both VBNC cells and persisters, a finding not previously described for either dormancy state. Lastly, we describe the role of toxin-antitoxin systems (TAS) in the induction of the VBNC state and report that these TAS, which are classically implicated in persister cell formation, are also induced during incubation in human serum. This study provides evidence for the recently proposed "dormancy continuum hypothesis" and substantiates the physical and molecular relatedness of VBNC and persister cells in a standardized model organism. Notably, these results provide new evidence for the clinical significance of VBNC and persister cells.
Collapse
|
197
|
Kwan BW, Chowdhury N, Wood TK. Combatting bacterial infections by killing persister cells with mitomycin C. Environ Microbiol 2015; 17:4406-14. [PMID: 25858802 DOI: 10.1111/1462-2920.12873] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 11/29/2022]
Abstract
Persister cells are a multi-drug tolerant subpopulation of bacteria that contribute to chronic and recalcitrant clinical infections such as cystic fibrosis and tuberculosis. Persisters are metabolically dormant, so they are highly tolerant to all traditional antibiotics which are mainly effective against actively growing cells. Here, we show that the FDA-approved anti-cancer drug mitomycin C (MMC) eradicates persister cells through a growth-independent mechanism. MMC is passively transported and bioreductively activated, leading to spontaneous cross-linking of DNA, which we verify in both active and dormant cells. We find MMC effectively eradicates cells grown in numerous different growth states (e.g. planktonic cultures and highly robust biofilm cultures) in both rich and minimal media. Additionally, MMC is a potent bactericide for a broad range of bacterial persisters, including commensal Escherichia coli K-12 as well as pathogenic species of E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. We also demonstrate the efficacy of MMC in an animal model and a wound model, substantiating the clinical applicability of MMC against bacterial infections. Therefore, MMC is the first broad-spectrum compound capable of eliminating persister cells, meriting investigation as a new approach for the treatment of recalcitrant infections.
Collapse
Affiliation(s)
- Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Nityananda Chowdhury
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|