151
|
Hossain S, Chow CWK, Cook D, Sawade E, Hewa GA. Review of Nitrification Monitoring and Control Strategies in Drinking Water System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074003. [PMID: 35409686 PMCID: PMC8997939 DOI: 10.3390/ijerph19074003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Nitrification is a major challenge in chloraminated drinking water systems, resulting in undesirable loss of disinfectant residual. Consequently, heterotrophic bacteria growth is increased, which adversely affects the water quality, causing taste, odour, and health issues. Regular monitoring of various water quality parameters at susceptible areas of the water distribution system (WDS) helps to detect nitrification at an earlier stage and allows sufficient time to take corrective actions to control it. Strategies to monitor nitrification in a WDS require conducting various microbiological tests or assessing surrogate parameters that are affected by microbiological activities. Additionally, microbial decay factor (Fm) is used by water utilities to monitor the status of nitrification. In contrast, approaches to manage nitrification in a WDS include controlling various factors that affect monochloramine decay rate and ammonium substrate availability, and that can inhibit nitrification. However, some of these control strategies may increase the regulated disinfection-by-products level, which may be a potential health concern. In this paper, various strategies to monitor and control nitrification in a WDS are critically examined. The key findings are: (i) the applicability of some methods require further validation using real WDS, as the original studies were conducted on laboratory or pilot systems; (ii) there is no linkage/formula found to relate the surrogate parameters to the concentration of nitrifying bacteria, which possibly improve nitrification monitoring performance; (iii) improved methods/monitoring tools are required to detect nitrification at an earlier stage; (iv) further studies are required to understand the effect of soluble microbial products on the change of surrogate parameters. Based on the current review, we recommend that the successful outcome using many of these methods is often site-specific, hence, water utilities should decide based on their regular experiences when considering economic and sustainability aspects.
Collapse
Affiliation(s)
- Sharif Hossain
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
- Correspondence:
| | - Christopher W. K. Chow
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - David Cook
- South Australian Water Corporation, Adelaide, SA 5000, Australia; (D.C.); (E.S.)
| | - Emma Sawade
- South Australian Water Corporation, Adelaide, SA 5000, Australia; (D.C.); (E.S.)
| | - Guna A. Hewa
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
| |
Collapse
|
152
|
Vilardi KJ, Cotto I, Rivera MS, Dai Z, Anderson CL, Pinto A. Comammox Nitrospira bacteria outnumber canonical nitrifiers irrespective of electron donor mode and availability in biofiltration systems. FEMS Microbiol Ecol 2022; 98:6553816. [PMID: 35325104 DOI: 10.1093/femsec/fiac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
Complete ammonia oxidizing bacteria coexist with canonical ammonia and nitrite oxidizing bacteria in a wide range of environments. Whether this is due to competitive or cooperative interactions, or a result of niche separation is not yet clear. Understanding the factors driving coexistence of nitrifiers is critical to manage nitrification processes occurring in engineered and natural ecosystems. In this study, microcosm-based experiments were used to investigate the impact of nitrogen source and loading on the population dynamics of nitrifiers in drinking water biofilter media. Shotgun sequencing of DNA followed by co-assembly and reconstruction of metagenome assembled genomes revealed clade A2 comammox bacteria were likely the primary nitrifiers within microcosms and increased in abundance over Nitrsomonas-like ammonia and Nitrospira-like nitrite oxidizing bacteria irrespective of nitrogen source type or loading. Changes in comammox bacterial abundance did not correlate with either ammonia or nitrite oxidizing bacterial abundance in urea amended systems where metabolic reconstruction indicated potential for cross feeding between ammonia and nitrite oxidizing bacteria. In contrast, comammox bacterial abundance demonstrated a negative correlation with nitrite oxidizers in ammonia amended systems. This suggests potentially weaker synergistic relationships between ammonia and nitrite oxidizers might enable comammox bacteria to displace nitrite oxidizers from complex nitrifying communities.
Collapse
Affiliation(s)
- Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, MA, MA, USA
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, MA, MA, USA
| | | | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
153
|
Rawat VS, Kaur J, Bhagwat S, Pandit MA, Rawat CD. Deploying Microbes as Drivers and Indicators in Ecological Restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jasleen Kaur
- Department of Botany, Dyal Singh College University of Delhi New Delhi 110003 India
| | - Sakshi Bhagwat
- Department of Biosciences Faculty of Natural Sciences, Jamia Millia Islamia New Delhi 110025 India
| | - Manisha Arora Pandit
- Department of Zoology, Kalindi College University of Delhi New Delhi 110008 India
| | - Charu Dogra Rawat
- Molecular Biology and Genomics Research Laboratory, Ramjas College University of Delhi Delhi 110007 India
- Department of Zoology, Ramjas College University of Delhi Delhi 110007 India
| |
Collapse
|
154
|
Deng J, Huang Z, Wang J, Shan X, Shi W, Ruan W. Wild Heterotrophic Nitrifying Strain Pseudomonas BT1 Isolated from Kitchen Waste Sludge Restores Ammonia Nitrogen Removal in a Sewage Treatment Plant Shocked by Thiourea. Appl Biochem Biotechnol 2022; 194:2901-2918. [PMID: 35294734 PMCID: PMC9205789 DOI: 10.1007/s12010-022-03850-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Thiourea is used in agriculture and industry as a metal scavenger, synthetic intermediate, and nitrification inhibitor. However, in wastewater, it can inhibit the nitrification process and induce the collapse of the nitrification system. In such a case, ammonia-oxidizing bacteria (AOB) lose their ability to remove ammonia. We investigated the nitrification system of a 60,000-t/d municipal sewage treatment plant in Nanjing, which collapsed after receiving 5–15 ppm (5–15 mg/L) thiourea. Ammonia nitrogen removal quickly recovered to more than 95% after inoculation with 10 t high-efficiency nitrification sludge, which was collected from a kitchen waste treatment plant. A heterotrophic nitrification strain was isolated from the inoculated sludge and identified as wild Pseudomonas by 16S rDNA sequencing and named “BT1.” Based on thiourea tolerance tests, BT1 can tolerate a thiourea content of more than 500 ppm. For comparison, the in situ process was imitated by the simulation system, and the wastewater shocked by 10 ppm thiourea could still meet the emission standard after adding 1% (V/V) BT1. High-throughput sequencing analysis was applied to study microbial succession during thiourea shock loading. The results showed that Hydrogenophaga and Thiobacillus grew with the growth of BT1. Pseudomonas BT1 was used for a 6,000-t/d printed circuit board (PCB) wastewater treatment system, the nitrification system returned to normal in 15 days, and the degradation rate stabilized at more than 95%.
Collapse
Affiliation(s)
- Jingxuan Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinbo Wang
- JiangNing Water Group Co., Ltd, Nanjing, 211100, China
| | - Xiaohong Shan
- Wuxi MaSun Environmental Energy Technology Co., Ltd, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
155
|
Determination of 15N/ 14N of Ammonium, Nitrite, Nitrate, Hydroxylamine, and Hydrazine Using Colorimetric Reagents and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Appl Environ Microbiol 2022; 88:e0241621. [PMID: 35285242 DOI: 10.1128/aem.02416-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the nitrogen (N) cycle, nitrogenous compounds are chemically and biologically converted to various aqueous and gaseous N species. The 15N-labeling approach is a powerful culture-dependent technique to obtain insights into the complex nitrogen transformation reactions that occur in cultures. In the 15N-labeling approach, the fates of supplemented 15N- and/or unlabeled gaseous and aqueous compounds are tracked by mass spectrometry (MS) analysis, whereas MS analysis of aqueous N species requires laborious sample preparation steps and is performed using isotope-ratio mass spectrometry, which requires an expensive mass spectrometer. We developed a simple and high-throughput MS method for determining the 15N atoms percent of NH4+, NO2-, NO3-, NH2OH, and N2H4, where liquid samples (<0.5 mL) were mixed with colorimetric reagents (naphthylethylenediamine for NO2-, indophenol for NH4+, and p-aminobenzaldehyde for N2H4), and the mass spectra of the formed N complex dyes were obtained by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) MS. NH2OH and NO3- were chemically converted to NO2- by iodine oxidation and copper/hydrazine reduction reaction, respectively, prior to the above colorimetric reaction. The intensity of the isotope peak (M + 1 or M + 2) increased when the N complex dye was formed by coupling with a 15N-labeled compound, and a linear relationship was found between the determined 15N/14N peak ratio and 15N atom% for the tested N species. The developed method was applied to bacterial cultures to examine their N-transformation reactions, enabling us to observe the occurrence of NO2- oxidation and NO3- reduction in a hypoxic Nitrobacter winogradskyi culture. IMPORTANCE 15N/14N analysis for aqueous N species is a powerful tool for obtaining insights into the global N cycle, but the procedure is cumbersome and laborious. The combined use of colorimetric reagents and MALDI-TOF MS, designated color MALDI-TOF MS, enabled us to determine the 15N atom% of common aqueous N species without laborious sample preparation and chromatographic separation steps; for instance, the 15N atom% of NO2- can be determined from >1,000 liquid samples daily at <$1 (U.S.) per 384 samples for routine analysis. This convenient MS method is a powerful tool that will advance our ability to explore the N-transformation reactions that occur in various environments and biological samples.
Collapse
|
156
|
Keuter S, Koch H, Sass K, Wegen S, Lee N, Lücker S, Spieck E. Some like it cold: The cellular organization and physiological limits of cold-tolerant nitrite-oxidizing Nitrotoga. Environ Microbiol 2022; 24:2059-2077. [PMID: 35229435 DOI: 10.1111/1462-2920.15958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus was. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g., a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sabine Keuter
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Katharina Sass
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Simone Wegen
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science and Research Infrastructure Fluorescence in situ Hybridization (FISH), Chemical Biological Centre, Umeå University, Umeå, Sweden.,Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
157
|
Costa DPD, Araujo ASF, Pereira APDA, Mendes LW, França RFD, Silva TDGED, Oliveira JBD, Araujo JS, Duda GP, Menezes RSC, Medeiros EVD. Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151943. [PMID: 34864020 DOI: 10.1016/j.scitotenv.2021.151943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/21/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community. Thus, the soil bacterial community was assessed using the 16S rRNA gene sequencing into the Illumina MiSeq platform. Then, we analyzed ecological patterns and correlated the bacterial community with environmental parameters in forest, and two distinct pastures areas, one less productive and another more productive. The variation in soil properties in pastures and forest influenced the structure and diversity of the bacterial community. Thus, the more productive pasture positively influenced the proportion of specialists and the co-occurrence network compared to the less productive pasture. Also, Proteobacteria, Acidobacteria, and Verrucomicrobia were abundant under forest, while Actinobacteria, Firmicutes, and Chloroflexi were abundant under pastures. Also, the more productive pasture presented a higher bacterial diversity, which is important since that a more stable and connected bacterial community could benefit the agricultural environment and enhance plant performance, as can be observed by the highest network complexity in this pasture. Together, our findings elucidate a significant shift in soil bacterial communities as a consequence of forest-to-pasture conversion and bring important information for the development of preservation strategies.
Collapse
Affiliation(s)
- Diogo Paes da Costa
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | | | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, 13400-970 Piracicaba, SP, Brazil.
| | - Rafaela Felix da França
- Department of Soils, Federal Rural University of Rio de Janeiro, 23890-000 Seropédica, RJ, Brazil.
| | | | - Julyana Braga de Oliveira
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Jenifer Sthephanie Araujo
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | - Gustavo Pereira Duda
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| | | | - Erika Valente de Medeiros
- Microbiology and Enzimology Lab., Federal University of Agreste Pernambuco, 55292-270 Garanhuns, PE, Brazil.
| |
Collapse
|
158
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
159
|
De La Fuente MJ, Gallardo-Bustos C, De la Iglesia R, Vargas IT. Microbial Electrochemical Technologies for Sustainable Nitrogen Removal in Marine and Coastal Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2411. [PMID: 35206599 PMCID: PMC8875524 DOI: 10.3390/ijerph19042411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023]
Abstract
For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.
Collapse
Affiliation(s)
- María José De La Fuente
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
| | - Carlos Gallardo-Bustos
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| | - Rodrigo De la Iglesia
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Ignacio T. Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (M.J.D.L.F.); (C.G.B.)
- Marine Energy Research & Innovation Center (MERIC), Santiago 7550268, Chile;
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 7820436, Chile
| |
Collapse
|
160
|
Koike K, Smith GJ, Yamamoto-Ikemoto R, Lücker S, Matsuura N. Distinct comammox Nitrospira catalyze ammonia oxidation in a full-scale groundwater treatment bioreactor under copper limited conditions. WATER RESEARCH 2022; 210:117986. [PMID: 34974343 DOI: 10.1016/j.watres.2021.117986] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Microbial ammonia oxidation is the initial nitrification step used in biological nitrogen-removal during water treatment processes, and the discovery of complete ammonia-oxidizing (comammox) bacteria added a novel member to this functional group. It is important to identify and understand the predominant microorganisms responsible for ammonium removal in biotechnological process design and optimization. In this study, we used a full-scale bioreactor to treat ammonium in groundwater (9.3 ± 0.5 mg NH4+-N/L) and investigated the key ammonia-oxidizing prokaryotes present. The groundwater ammonium was stably and efficiently oxidized throughout ∼700 days of bioreactor operation. 16S rRNA gene amplicon sequencing of the bioreactor community showed a high abundance of Nitrospira (12.5-45.9%), with the dominant sequence variant (3.5-37.8%) most closely related to Candidatus Nitrospira nitrosa. Furthermore, analyses of amoA, the marker gene for ammonia oxidation, indicated the presence of two distinct comammox Nitrospira populations, however, the relative abundance of only one of these populations was strongly correlated to ammonia oxidation rates and was robustly expressed. After 380 days of operation copper wires were immersed into the reactor at 0.04-0.06 m2/m3 tank, which caused a gradual abundance increase of one discrete comammox Nitrospira population. However, further increase of the copper dosing (0.08 m2/m3 tank) inverted the most abundant ammonia-oxidizing population to Nitrosomonas sp. These results indicate that comammox Nitrospira were capable of efficient ammonium removal in groundwater without exogenous nutrients, but copper addition can stimulate comammox Nitrospira or lead to dominance of Nitrosomonas depending on dosage.
Collapse
Affiliation(s)
- Kazuyoshi Koike
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Garrett J Smith
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, the Netherlands
| | - Ryoko Yamamoto-Ikemoto
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, the Netherlands
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
161
|
Murakami C, Machida K, Nakao Y, Kindaichi T, Ohashi A, Aoi Y. Mutualistic relationship between Nitrospira and concomitant heterotrophs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:130-137. [PMID: 34862743 PMCID: PMC9300095 DOI: 10.1111/1758-2229.13030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Nitrifying chemoautotrophs support the growth of diverse concomitant heterotrophs in natural or engineered environments by supplying organic compounds. In this study, we aimed to investigate this microbial association, especially (i) to distinguish whether the relationship between nitrifying chemoautotrophs and heterotrophs is commensal or mutualistic, and (ii) to clarify how heterotrophs promote the growth of autotrophic nitrite-oxidizing bacteria (Nitrospira). Pure cultured Nitrospira (Nitrospira sp. ND1) was employed in this study. Heterotrophs growing with metabolic by-products of Nitrospira as a sole carbon source were isolated from several environmental samples and used to test the growth-promoting activity of Nitrospira. Furthermore, liquid chromatography-mass spectrometry analysis was conducted to evaluate how heterotrophs consumed chemical compounds produced by Nitrospira and newly produced during co-cultivation. Notably, Nitrospira growth was stimulated by co-cultivation with some heterotrophs and the addition of spent media of some strains, suggesting that not only heterotrophs but also Nitrospira received benefits from their mutual co-existence. Furthermore, the data suggested that some of the growth-promoting heterotrophs provided as-yet-unidentified growth-promoting factors to Nitrospira. Overall, Nitrospira and heterotrophs thus appear to exhibit a mutualistic relationship. Such mutualistic relationships between autotrophs and heterotrophs would contribute to the stability and diversity of microbial ecosystems.
Collapse
Affiliation(s)
- Chiho Murakami
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
- Unit of Biotechnology, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Institute for Sustainable Science and DevelopmentHiroshima UniversityHiroshimaJapan
| | - Koshi Machida
- Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Yoichi Nakao
- Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Tomonori Kindaichi
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental EngineeringGraduate School of Engineering Hiroshima UniversityHiroshimaJapan
| | - Yoshiteru Aoi
- Unit of Biotechnology, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Institute for Sustainable Science and DevelopmentHiroshima UniversityHiroshimaJapan
| |
Collapse
|
162
|
Martinez‐Rabert E, Smith CJ, Sloan WT, González‐Cabaleiro R. Biochemistry shapes growth kinetics of nitrifiers and defines their activity under specific environmental conditions. Biotechnol Bioeng 2022; 119:1290-1300. [PMID: 35092010 PMCID: PMC9303882 DOI: 10.1002/bit.28045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/14/2022]
Abstract
Is it possible to find trends between the parameters that define microbial growth to help us explain the vast microbial diversity? Through an extensive database of kinetic parameters of nitrifiers, we analyzed if the dominance of specific populations of nitrifiers could be predicted and explained. We concluded that, in general, higher growth yield (YXS) and ammonia affinity (a0NH3) and lower growth rate (µmax) are observed for ammonia‐oxidizing archaea (AOA) than bacteria (AOB), which would explain their considered dominance in oligotrophic environments. However, comammox (CMX), with the maximum energy harvest per mole of ammonia, and some AOB, have higher a0NH3 and lower µmax than some AOA. Although we were able to correlate the presence of specific terminal oxidases with observed oxygen affinities (a0O2) for nitrite‐oxidizing bacteria (NOB), that correlation was not observed for AOB. Moreover, the presumed dominance of AOB over NOB in O2‐limiting environments is discussed. Additionally, lower statistical variance of a0O2 values than for ammonia and nitrite affinities was observed, suggesting nitrogen limitation as a stronger selective pressure. Overall, specific growth strategies within nitrifying groups were not identified through the reported kinetic parameters, which might suggest that mostly, fundamental differences in biochemistry are responsible for underlying kinetic parameters.
Collapse
Affiliation(s)
- Eloi Martinez‐Rabert
- James Watt School of Engineering, Infrastructure and Environment, University of Glasgow, Rankine Building Glasgow G12 8LT UK
| | - Cindy J. Smith
- James Watt School of Engineering, Infrastructure and Environment, University of Glasgow, Rankine Building Glasgow G12 8LT UK
| | - William T. Sloan
- James Watt School of Engineering, Infrastructure and Environment, University of Glasgow, Rankine Building Glasgow G12 8LT UK
| | - Rebeca González‐Cabaleiro
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft The Netherlands
| |
Collapse
|
163
|
Genome-Resolved Metagenomic Insights into Massive Seasonal Ammonia-Oxidizing Archaea Blooms in San Francisco Bay. mSystems 2022; 7:e0127021. [PMID: 35076275 PMCID: PMC8788347 DOI: 10.1128/msystems.01270-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are key for the transformation of ammonia to oxidized forms of nitrogen in aquatic environments around the globe, including nutrient-rich coastal and estuarine waters such as San Francisco Bay (SFB). Using metagenomics and 16S rRNA gene amplicon libraries, we found that AOA are more abundant than ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), except in the freshwater stations in SFB. In South SFB, we observed recurrent AOA blooms of “Candidatus Nitrosomarinus catalina” SPOT01-like organisms, which account for over 20% of 16S rRNA gene amplicons in both surface and bottom waters and co-occur with weeks of high nitrite concentrations (>10 μM) in the oxic water column. We observed pronounced nitrite peaks occurring in the autumn for 7 of the last 9 years (2012 to 2020), suggesting that seasonal AOA blooms are common in South SFB. We recovered two high-quality AOA metagenome-assembled genomes (MAGs), including a Nitrosomarinus-like genome from the South SFB bloom and another Nitrosopumilus genome originating from Suisun Bay in North SFB. Both MAGs cluster with genomes from other estuarine/coastal sites. Analysis of Nitrosomarinus-like genomes show that they are streamlined, with low GC content and high coding density, and harbor urease genes. Our findings support the unique niche of Nitrosomarinus-like organisms which dominate coastal/estuarine waters and provide insights into recurring AOA blooms in SFB. IMPORTANCE Ammonia-oxidizing archaea (AOA) carry out key transformations of ammonia in estuarine systems such as San Francisco Bay (SFB)—the largest estuary on the west coast of North America—and play a significant role in both local and global nitrogen cycling. Using metagenomics and 16S rRNA gene amplicon libraries, we document a massive, recurrent AOA bloom in South SFB that co-occurs with months of high nitrite concentrations in the oxic water column. Our study is the first to generate metagenome-assembled genomes (MAGs) from SFB, and through this process we recovered two high-quality AOA MAGs, one of which originated from bloom samples. These AOA MAGs yield new insight into the Nitrosopumilus and Nitrosomarinus-like lineages and their potential niches in coastal and estuarine systems. Nitrosomarinus-like AOA are abundant in coastal regions around the globe, and we highlight the common occurrence of urease genes, low GC content, and range of salinity tolerances within this lineage.
Collapse
|
164
|
Xi H, Zhou X, Arslan M, Luo Z, Wei J, Wu Z, Gamal El-Din M. Heterotrophic nitrification and aerobic denitrification process: Promising but a long way to go in the wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150212. [PMID: 34536867 DOI: 10.1016/j.scitotenv.2021.150212] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 05/27/2023]
Abstract
The traditional biological nitrogen removal (BNR) follows the conventional scheme of sequential nitrification and denitrification. In recent years, novel processes such as anaerobic ammonia oxidation (anammox), complete oxidation of ammonia to nitrate in one organism (comammox), heterotrophic nitrification and aerobic denitrification (HN-AD), and dissimilatory nitrate reduction to ammonium (DNRA) are gaining tremendous attention after the discovery of metabolically versatile bacteria. Among them, HN-AD offers several advantages because individual bacteria could achieve one-stage nitrogen removal under aerobic conditions in the presence of organic carbon. In this review, besides classical BNR processes, we summarized the existing literature on HN-AD bacteria which have been isolated from diverse habitats. A particular focus was given on the diversity and physiology of HN-AD bacteria, influences of physiological and biochemical factors on their growth, nitrogen removal performances, as well as limitations and strategies in unraveling HN-AD metabolic pathways. We also presented case studies of HN-AD application in wastewater treatment facilities, pointed out forthcoming challenges of HN-AD in these systems, and presented modulation strategies for HN-AD application in engineering. This review may help improve the existing design of wastewater treatment plants by harnessing HN-AD bacteria for effective nitrogen removal.
Collapse
Affiliation(s)
- Haipeng Xi
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhijun Luo
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
165
|
Jiang M, Ye F, Liu F, Brestic M, Li X. Rhizosphere melatonin application reprograms nitrogen-cycling related microorganisms to modulate low temperature response in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:998861. [PMID: 36275608 PMCID: PMC9583915 DOI: 10.3389/fpls.2022.998861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/15/2022] [Indexed: 05/09/2023]
Abstract
Rhizospheric melatonin application has a positive effect on the tolerance of plants to low temperature; however, it remains unknown whether the rhizosphere microorganisms are involved in this process. The aim of this study was to investigate the effect of exogenous melatonin on the diversity and functioning of fungi and bacteria in rhizosphere of barley under low temperature. The results showed that rhizospheric melatonin application positively regulated the photosynthetic carbon assimilation and redox homeostasis in barley in response to low temperature. These effects might be associated with an altered diversity of microbial community in rhizosphere, especially the species and relative abundance of nitrogen cycling related microorganisms, as exemplified by the changes in rhizosphere metabolites in the pathways of amino acid synthesis and metabolism. Collectively, it was suggested that the altered rhizospheric microbial status upon melatonin application was associated with the response of barley to low temperature. This suggested that the melatonin induced microbial changes should be considered for its application in the crop cold-resistant cultivation.
Collapse
Affiliation(s)
- Miao Jiang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education of China, Northwest A & F University, Yangling, China
| | - Fan Ye
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fulai Liu
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Tåstrup, Denmark
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Nitra, Slovakia
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Xiangnan Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Science (CAS) Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Science, Changchun, China
- *Correspondence: Xiangnan Li,
| |
Collapse
|
166
|
Xu S, Chai W, Xiao R, Smets BF, Palomo A, Lu H. Survival strategy of comammox bacteria in a wastewater nutrient removal system with sludge fermentation liquid as additional carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149862. [PMID: 34461473 DOI: 10.1016/j.scitotenv.2021.149862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Complete ammonia oxidizing (comammox) bacteria are frequently detected in wastewater biological nutrient removal (BNR) systems. This study identified "Candidatus Nitrospira nitrosa"-like comammox bacteria as the predominant ammonia oxidizers (97.5-99.4%) in a lab-scale BNR system with acetate and sludge fermentation liquid as external carbon sources. The total nitrogen and phosphorus removals of the system were 75.9% and 86.9% with minimal N2O emission (0.27%). Low ammonia concentration, mixotrophic growth potentials and metabolic interactions with diverse heterotrophs collectively contributed to the survival of comammox bacteria in the system. The recovered draft genomes of comammox bacteria indicated their potentials in using acetate and propionate but not butyrate. Acetate and propionate indeed stimulated the transcription of comammox amoA genes (up-regulated by 4.1 folds compared with no organic addition), which was positively correlated with the ammonia oxidation rate of the community (r = 0.75, p < 0.05). Comammox bacteria could provide vitamins/cofactors (e.g., cobalamin and biotin) to heterotrophs (e.g., Burkholderiaceae), and in return receive amino acids (e.g., phenylalanine and tyrosine) from heterotrophs, which they cannot synthesize. Compared with comammox bacteria, ammonia oxidizing bacteria (AOB) exhibited lower metabolic versatility, and lacked more pathways for the synthesis of amino acids and vitamin/cofactors, leading to their washout in the studied system. BNRs with comammox bacteria as the major nitrifiers hold great potentials in achieving superior performance at low aeration cost and low N2O emission and at full-scale plants.
Collapse
Affiliation(s)
- Shaoyi Xu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, Denmark; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
167
|
Abstract
Analysis of nitrogen isotope fractionation effects is useful for tracing biogeochemical nitrogen cycle processes. Nitrification can cause large nitrogen isotope effects through the enzymatic oxidation of ammonia (NH3) via nitrite (NO2−) to nitrate (NO3−) (15εNH4+→NO2- and 15εNO2-→NO3-). The isotope effects of ammonia-oxidizing bacteria (AOB) and archaea (AOA) and of nitrite-oxidizing bacteria (NOB) have been analyzed previously. Here, we studied the nitrogen isotope effects of the complete ammonia oxidizer (comammox) Nitrospira inopinata that oxidizes NH3 to NO3−. At high ammonium (NH4+) availability (1 mM) and pH between 6.5 and 8.5, its 15εNH4+→NO2- ranged from −33.1 to −27.1‰ based on substrate consumption (residual substrate isotopic composition) and −35.5 to −31.2‰ based on product formation (cumulative product isotopic composition), while the 15εNO2-→NO3- ranged from 6.5 to 11.1‰ based on substrate consumption. These values resemble isotope effects of AOB and AOA and of NOB in the genus Nitrospira, suggesting the absence of fundamental mechanistic differences between key enzymes for ammonia and nitrite oxidation in comammox and canonical nitrifiers. However, ambient pH and initial NH4+ concentrations influenced the isotope effects in N. inopinata. The 15εNH4+→NO2- based on product formation was smaller at pH 6.5 (−31.2‰) compared to pH 7.5 (−35.5‰) and pH 8.5 (−34.9‰), while 15εNO2-→NO3- was smaller at pH 8.5 (6.5‰) compared to pH 7.5 (8.8‰) and pH 6.5 (11.1‰). Isotopic fractionation via 15εNH4+→NO2- and 15εNO2-→NO3- was smaller at 0.1 mM NH4+ compared to 0.5 to 1.0 mM NH4+. Environmental factors, such as pH and NH4+ availability, therefore need to be considered when using isotope effects in 15N isotope fractionation models of nitrification. IMPORTANCE Nitrification is an important nitrogen cycle process in terrestrial and aquatic environments. The discovery of comammox has changed the view that canonical AOA, AOB, and NOB are the only chemolithoautotrophic organisms catalyzing nitrification. However, the contribution of comammox to nitrification in environmental and technical systems is far from being completely understood. This study revealed that, despite a phylogenetically distinct enzymatic repertoire for ammonia oxidation, nitrogen isotope effects of 15εNH4+→NO2- and 15εNO2-→NO3- in comammox do not differ significantly from those of canonical nitrifiers. Thus, nitrogen isotope effects are not suitable indicators to decipher the contribution of comammox to nitrification in environmental samples. Moreover, this is the first systematic study showing that the ambient pH and NH4+ concentration influence the isotope effects of nitrifiers. Hence, these key parameters should be considered in comparative analyses of isotope effects of nitrifiers across different growth conditions and environmental samples.
Collapse
|
168
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
169
|
Pan H, Feng H, Liu Y, Lai CY, Zhuge Y, Zhang Q, Tang C, Di H, Jia Z, Gubry-Rangin C, Li Y, Xu J. Grazing weakens competitive interactions between active methanotrophs and nitrifiers modulating greenhouse-gas emissions in grassland soils. ISME COMMUNICATIONS 2021; 1:74. [PMID: 36765259 PMCID: PMC9723554 DOI: 10.1038/s43705-021-00068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Grassland soils serve as a biological sink and source of the potent greenhouse gases (GHG) methane (CH4) and nitrous oxide (N2O). The underlying mechanisms responsible for those GHG emissions, specifically, the relationships between methane- and ammonia-oxidizing microorganisms in grazed grassland soils are still poorly understood. Here, we characterized the effects of grazing on in situ GHG emissions and elucidated the putative relations between the active microbes involving in methane oxidation and nitrification activity in grassland soils. Grazing significantly decreases CH4 uptake while it increases N2O emissions basing on 14-month in situ measurement. DNA-based stable isotope probing (SIP) incubation experiment shows that grazing decreases both methane oxidation and nitrification processes and decreases the diversity of active methanotrophs and nitrifiers, and subsequently weakens the putative competition between active methanotrophs and nitrifiers in grassland soils. These results constitute a major advance in our understanding of putative relationships between methane- and ammonia-oxidizing microorganisms and subsequent effects on nitrification and methane oxidation, which contribute to a better prediction and modeling of future balance of GHG emissions and active microbial communities in grazed grassland ecosystems.
Collapse
Affiliation(s)
- Hong Pan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, China
| | - Haojie Feng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, China
| | - Yaowei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Yuping Zhuge
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, China
| | - Qichun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Hongjie Di
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
170
|
Beman JM, Vargas SM, Wilson JM, Perez-Coronel E, Karolewski JS, Vazquez S, Yu A, Cairo AE, White ME, Koester I, Aluwihare LI, Wankel SD. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones. Nat Commun 2021; 12:7043. [PMID: 34857761 PMCID: PMC8639706 DOI: 10.1038/s41467-021-27381-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.
Collapse
Affiliation(s)
- J. M. Beman
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - S. M. Vargas
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. M. Wilson
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - E. Perez-Coronel
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. S. Karolewski
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - S. Vazquez
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. Yu
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. E. Cairo
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - M. E. White
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - I. Koester
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - L. I. Aluwihare
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - S. D. Wankel
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| |
Collapse
|
171
|
Gu X, Huang Y, Hu Y, Gao J, Zhang M. Inhibition of nitrite-oxidizing bacteria in automatic recycling PN/ANAMMOX under mainstream conditions. BIORESOURCE TECHNOLOGY 2021; 342:125935. [PMID: 34571329 DOI: 10.1016/j.biortech.2021.125935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
At present, sustainable and stable partial nitrification has not been widely achieved in the mainstream PN/ANAMMOX process. Here, the feasibility of sustainable and stable partial nitrification was demonstrated in automatic recycling PN/ANAMMOX reactor under mainstream conditions using both simulation and experimental methods. Stable nitrite accumulation in the aerobic zone could be achieved via regulating dissolved oxygen (DO) concentrations and sludge retention time (SRT). The DO concentrations required for the repression of nitrite-oxidizing bacteria (NOB) were lower at longer SRTs. The DO concentrations and SRTs required for NOB repression were lower at lower temperatures. However, NOB repression was diminished by a persistent low DO and short SRT under mainstream conditions. With the introduction of automatic recycling, sustainable and stable partial nitrification was achieved. Effluent recycling could limit the nitrite-nitrogen required for NOB growth. Collectively, effluent recycling may serve as a feasible and useful strategy for NOB inhibition during the PN/ANAMMOX process.
Collapse
Affiliation(s)
- Xiaodan Gu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Yuting Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Jiaqi Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
172
|
Van Tendeloo M, Xie Y, Van Beeck W, Zhu W, Lebeer S, Vlaeminck SE. Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2021; 342:125996. [PMID: 34598074 DOI: 10.1016/j.biortech.2021.125996] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.
Collapse
Affiliation(s)
- Michiel Van Tendeloo
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Yankai Xie
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Wannes Van Beeck
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Weiqiang Zhu
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium.
| |
Collapse
|
173
|
Lu J, Hong Y, Wei Y, Gu JD, Wu J, Wang Y, Ye F, Lin JG. Nitrification mainly driven by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in an anammox-inoculated wastewater treatment system. AMB Express 2021; 11:158. [PMID: 34837527 PMCID: PMC8627542 DOI: 10.1186/s13568-021-01321-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) process has been acknowledged as an environmentally friendly and time-saving technique capable of achieving efficient nitrogen removal. However, the community of nitrification process in anammox-inoculated wastewater treatment plants (WWTPs) has not been elucidated. In this study, ammonia oxidation (AO) and nitrite oxidation (NO) rates were analyzed with the incubation of activated sludge from Xinfeng WWTPs (Taiwan, China), and the community composition of nitrification communities were investigated by high-throughput sequencing. Results showed that both AO and NO had strong activity in the activated sludge. The average rates of AO and NO in sample A were 6.51 µmol L−1 h−1 and 6.52 µmol L−1 h−1, respectively, while the rates in sample B were 14.48 µmol L−1 h−1 and 14.59 µmol L−1 h−1, respectively. The abundance of the nitrite-oxidizing bacteria (NOB) Nitrospira was 0.89–4.95 × 1011 copies/g in both samples A and B, the abundance of ammonia-oxidizing bacteria (AOB) was 1.01–9.74 × 109 copies/g. In contrast, the abundance of ammonia-oxidizing archaea (AOA) was much lower than AOB, only with 1.28–1.53 × 105 copies/g in samples A and B. The AOA community was dominated by Nitrosotenuis, Nitrosocosmicus, and Nitrososphaera, while the AOB community mainly consisted of Nitrosomonas and Nitrosococcus. The dominant species of Nitrospira were Candidatus Nitrospira defluvii, Candidatus Nitrospira Ecomare2 and Nitrospira inopinata. In summary, the strong nitrification activity was mainly catalyzed by AOB and Nitrospira, maintaining high efficiency in nitrogen removal in the anammox-inoculated WWTPs by providing the substrates required for denitrification and anammox processes.
Collapse
|
174
|
Evaluating acute toxicity in enriched nitrifying cultures: Lessons learned. J Microbiol Methods 2021; 192:106377. [PMID: 34798174 DOI: 10.1016/j.mimet.2021.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Toxicological batch assays are essential to assess a compound's acute effect on microorganisms. This methodology is frequently employed to evaluate the effect of contaminants in sensitive microbial communities from wastewater treatment plants (WWTPs), such as autotrophic nitrifying populations. However, despite nitrifying batch assays being commonly mentioned in the literature, their experimental design criteria are rarely reported or overlooked. Here, we found that slight deviations in culture preparations and conditions impacted bacterial community performance and could skew assay results. From pre-experimental trials and experience, we determined how mishandling and treatment of cultures could affect nitrification activity. While media and biomass preparations are needed to establish baseline conditions (e.g., biomass washing), we found extensive centrifugation selectively destabilised nitrification activities. Further, it is paramount that the air supply is adjusted to minimise nitrite build-up in the culture and maintain suitable aeration levels without sparging ammonia. DMSO and acetone up to 0.03% (v/v) were suitable organic solvents with minimal impact on nitrification activity. In the nitrification assays with allylthiourea (ATU), dilute cultures exhibited more significant inhibition than concentrated cultures. So there were biomass-related effects; however, these differences minimally impacted the EC50 values. Using different nutrient-media compositions had a minimal effect; however, switching mineral media for the toxicity test from the original cultivation media is not recommended because it reduced the original biomass nitrification capacity. Our results demonstrated that these factors substantially impact the performance of the nitrifying inoculum used in acute bioassays, and consequently, affect the response of AOB-NOB populations during the toxicant exposure. These are not highlighted in operation standards, and unfortunately, they can have significant consequential impacts on the determinations of toxicological endpoints. Moreover, the practical procedures tested here could support other authors in developing testing methodologies, adding quality checks in the experimental framework with minimal waste of time and resources.
Collapse
|
175
|
Zhao M, Tang X, Sun D, Hou L, Liu M, Zhao Q, Klümper U, Quan Z, Gu JD, Han P. Salinity gradients shape the nitrifier community composition in Nanliu River Estuary sediments and the ecophysiology of comammox Nitrospira inopinata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148768. [PMID: 34247082 DOI: 10.1016/j.scitotenv.2021.148768] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidizers (comammox), which convert ammonia to nitrate in a single organism, revolutionized the conventional understanding that two types of nitrifying microorganisms have to be involved in the nitrification process for more than 100 years. However, how different types of nitrifiers in response to salinity change remains largely unclear. This study not only investigated nitrifier community (including ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), comammox and nitrite-oxidizing Nitrospira) in the Nanliu estuary to find the ecological relationship between salinity and functional communities and also studied the physiology of a typical comammox Nitrospira inopinata in response to a salinity gradient. Based on sequences retrieved with four sets of functional gene primes, comammox Nitrospira was in general, mainly composed of clade A, with a clear separation of clade A1 subgroup in all samples and clade A2 subgroup in low salinity ones. As expected, group I.1b and group I.1a AOA dominated the AOA community in low- and high-salinity samples, respectively. Nitrosomonas-AOB were detected in all samples while Nitrosospira-AOB were mainly found in relatively high-salinity samples. Regarding general Nitrospira, lineages II and IV were the major groups in most of the samples, while lineage I Nitrospira was only detected in low-salinity samples. Furthermore, the comammox pure culture of N. inopinata showed an optimal salinity at 0.5‰ and ceased to grow at 12.8‰ for ammonia oxidation, but remained active for nitrite oxidation. These results show new evidence regarding niche specificity of different nitrifying microorganisms modulated mainly by salinity, and also a clear response by comammox N. inopinata to a wide range of simulated salinity levels.
Collapse
Affiliation(s)
- Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qiang Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhexue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
176
|
Mehrani MJ, Lu X, Kowal P, Sobotka D, Mąkinia J. Incorporation of the complete ammonia oxidation (comammox) process for modeling nitrification in suspended growth wastewater treatment systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113223. [PMID: 34274771 DOI: 10.1016/j.jenvman.2021.113223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The newly discovered process complete ammonia oxidation (comammox) has changed the traditional understanding of nitrification. In this study, three possible concepts of comammox were developed and incorporated as part of an extended two-step nitrification model. For model calibration and validation, two series of long-term biomass washout experiments were carried out at 12 °C and 20 °C in a laboratory sequencing batch reactor. The inoculum biomass was withdrawn from a large biological nutrient removal wastewater treatment plant. The efficiency of the examined models was compared based on the behaviors of ammonia, nitrite, and nitrate in the studied reactor. Predictions of the conventional approach to comammox, assuming the direct oxidation of ammonia to nitrate, were slightly better than the two other approaches. Simulation results revealed that comammox could be responsible for the conversion of >20% of the influent ammonia load. Therefore, the role of commamox in the nitrogen mass balance in activated sludge systems should not be neglected and requires further investigation. Furthermore, sensitivity and correlation analysis revealed that the maximum growth rates (μ), oxygen half-saturation (KO), and decay rates (b) of the canonical nitrifiers and comammox were the most sensitive factors, and the highest correlation was found between μ and b among all considered kinetic parameters. The estimated μ values by the best model were 0.57, 0.11, and 0.15 d-1 for AOB, NOB, and comammox bacteria, respectively.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Xi Lu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
177
|
Zhang Y, Ye X, Fang Y, Zhang H. Treatment of municipal wastewater by employing membrane bioreactors combined with efficient nitration microbial communities isolated by Isolation Chip with Plate Streaking technology. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2576-2588. [PMID: 34250663 DOI: 10.1002/wer.1608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In this research, we developed a method so-called Isolation Chip with Plate Streaking (ICPS) to selectively enrich nitrifying microbial consortium for treating municipal wastewater. In batch experiment, these bacterial communities were able to remove NH3 -N in 72 h with an efficiency of 96%. Firmicutes, Bacteroidetes, and Proteobacteria species are dominant bacteria in these communities. When the bacterial communities were used in the membrane bioreactor under typical condition, the removal efficiency was 81.0%. In contrast, under the actual wastewater condition, the efficiency could reach 91.2%. All above results showed clearly that the consortium selected by our ICPS method could achieve high-efficient NH3 -N removal, thus offering a reliable technique for screening functional microorganisms in the field of water treatment. PRACTITIONER POINTS: ICPS technology was designed and used for screening specialized NH3 -N-removing isolates. The screening process benefited the growth of the dominant nitrifying bacteria Firmicutes and Bacteroidetes. When the functional bacteria applied into the MBR, the NH3 -N removal efficiency was 91.2% under actual wastewater conditions.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xueping Ye
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yuxin Fang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
178
|
Tian Z, Zhou N, You W, He D, Chang F, Zheng M. Mitigating NO and N 2O emissions from a pilot-scale oxidation ditch using bioaugmentation of immobilized aerobic denitrifying bacteria. BIORESOURCE TECHNOLOGY 2021; 340:125704. [PMID: 34375792 DOI: 10.1016/j.biortech.2021.125704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O) emission from wastewater treatment plants (WWTPs) requires urgent mitigation because of its significant contribution to the greenhouse effect. In this study, bioaugmentation was applied in a pilot-scale oxidation ditch with the aerobic denitrifying bacteria strain PCN-1 immobilized on polyurethane biocarriers, which demonstrated effective N2O mitigation. Microbial community analysis suggested that the bioaugmentation facilitated a symbiotic relationship of the bacterial populations between the activated sludge and the biocarriers. The denitrifying bacteria with well-known N2O reducing capabilities predominated on the biocarriers. Correspondingly, the increases of denitrifying genes and NO and N2O reductase provided evidence for the enhanced genetic potential for NO and N2O reduction. Besides, the enriched comammox Nitrospira on the biocarriers is proposed as another significant driver for N2O mitigation by avoiding nitrite accumulation. In addition, the bioaugmentation enhanced the stability and recovery capability of the system in the ammonia overload and aeration failure shock tests.
Collapse
Affiliation(s)
- Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China
| | - Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Technology, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
179
|
Malhautier L, Rocher J, Gouello O, Jobert L, Moura C, Gauthier Y, Bertin A, Després JF, Fanlo JL. Treatment of gaseous emissions from tire manufacturing industry using lab-scale biofiltration pilot units. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126614. [PMID: 34284284 DOI: 10.1016/j.jhazmat.2021.126614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Continuously seeking the improvement of environmental protection, the limitation of exhaust emissions is of significance for the tire manufacturing industry. The aim of this study is to assess the potential of biofiltration for the treatment of such gaseous emissions. This work highlights that biofiltration is able to remove both hydrophilic and hydrophobic compounds within a single pilot unit of biofiltration. Due to Ethanol/Alkanes ratios (95/5 and 80/20), high performance levels were observed for low EBRT (16 and 12 s). After twenty days of stable running, the dynamic of stratification patterns could be explained as a result of species coexistence mechanisms. While its impact on performance has not been observed under stable operating conditions, the use of an adsorbent support such as granular activated carbon (GAC) could be relevant to promote system stability in the face of further perturbations, such as transient regimes, that are problematic in full-scale industrial applications.
Collapse
Affiliation(s)
- Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France.
| | - Janick Rocher
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France
| | - Olivia Gouello
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| | - Luc Jobert
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Claire Moura
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Yann Gauthier
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | - Aline Bertin
- Manufacture Française des Pneumatiques Michelin, 23 Place des Carmes Dechaux, 63000 Clermont-Ferrand, France
| | | | - Jean-Louis Fanlo
- Laboratoire des Sciences des Risques (LSR), IMT Mines Ales, 6 avenue de Clavières, 30319 Alès cedex, France; Olentica SAS, 14 Boulevard Charles Peguy, 30100 Ales, France
| |
Collapse
|
180
|
High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. Appl Environ Microbiol 2021; 87:e0136621. [PMID: 34406835 DOI: 10.1128/aem.01366-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinization is considered a major threat to soil fertility and agricultural productivity throughout the world. Soil microbes play a crucial role in maintaining ecosystem stability and function (e.g., nitrogen cycling). However, the response of bacterial community composition and community-level function to soil salinity remains uncertain. Here, we used multiple statistical analyses to assess the effect of high salinity on bacterial community composition and potential metabolism function in the agricultural ecosystem. Results showed that high salinity significantly altered both bacterial alpha (Shannon-Wiener index and phylogenetic diversity) and beta diversity. Salinity, total nitrogen (TN), and soil organic matter (SOM) were the vital environmental factors shaping bacterial community composition. The relative abundance of Actinobacteria, Chloroflexi, Acidobacteria, and Planctomycetes decreased with salinity, whereas Proteobacteria and Bacteroidetes increased with salinity. The modularity and the ratio of negative to positive links remarkedly decreased, indicating that high salinity destabilized bacterial networks. Variable selection, which belongs to deterministic processes, mediated bacterial community assembly within the saline soils. Function prediction results showed that the key nitrogen metabolism (e.g., ammonification, nitrogen fixation, nitrification, and denitrification processes) was inhibited in high salinity habitats. MiSeq sequencing of 16S rRNA genes revealed that the abundance and composition of the nitrifying community were influenced by high salinity. The consistency of function prediction and experimental verification demonstrated that high salinity inhibited soil bacterial community mediating nitrogen cycling. Our study provides strong evidence for a salinity effect on the bacterial community composition and key metabolism function, which could help us understand how soil microbes respond to ongoing environment perturbation. IMPORTANCE Revealing the response of the soil bacterial community to external environmental disturbances is an important but poorly understood topic in microbial ecology. In this study, we evaluated the effect of high salinity on the bacterial community composition and key biogeochemical processes in salinized agricultural soils (0.22 to 19.98 dS m-1). Our results showed that high salinity significantly decreased bacterial diversity, altered bacterial community composition, and destabilized the bacterial network. Moreover, variable selection (61% to 66%) mediated bacterial community assembly within the saline soils. Functional prediction combined with microbiological verification proved that high salinity inhibited soil bacterial community mediating nitrogen turnover. Understanding the impact of salinity on soil bacterial community is of great significance for managing saline soils and maintaining a healthy ecosystem.
Collapse
|
181
|
Dong H, Fan S, Sun H, Chen C, Wang A, Jiang L, Ma D. Rhizosphere-Associated Microbiomes of Rice ( Oryza sativa L.) Under the Effect of Increased Nitrogen Fertilization. Front Microbiol 2021; 12:730506. [PMID: 34621256 PMCID: PMC8490883 DOI: 10.3389/fmicb.2021.730506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Crops assemble and rely on rhizosphere-associated microbiomes for plant nutrition, which is crucial to their productivity. Historically, excessive nitrogen fertilization did not result in continuously increasing yields but rather caused environmental issues. A comprehensive understanding should be developed regarding the ways in which crops shape rhizosphere-associated microbiomes under conditions of increased nitrogen fertilization. In this study, we applied 16S and 18S ribosomal RNA gene profiling to characterize bacterial and fungal communities in bulk and rhizosphere soil of rice subjected to three levels of nitrogen fertilization for 5 years. Soil biochemical properties were characterized, and carbon-, nitrogen-, and phosphorus-related soil enzyme activities were investigated, by assays. Increasing nitrogen fertilization led to a decreasing trend in the variation of microbial community structures and demonstrated a more definite influence on fungal rather than bacterial community compositions and functions. Changes in the level of nitrogen fertilization significantly affected chemical properties such as soil pH, nutrient content, and microbial biomass levels in both rhizosphere and bulk soil. Soil enzyme activity levels varied substantially across nitrogen fertilization intensities and correlated more with the fungal than with the bacterial community. Our results indicated that increased nitrogen input drives alterations in the structures and functions of microbial communities, properties of soil carbon, nitrogen, and phosphorus, as well as enzyme activities. These results provide novel insights into the associations among increased nitrogen input, changes in biochemical properties, and shifts in microbial communities in the rhizosphere of agriculturally intensive ecosystems.
Collapse
Affiliation(s)
- Hangyu Dong
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Shuxiu Fan
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haoyuan Sun
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Conglin Chen
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Aixin Wang
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Linlin Jiang
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Key Laboratory of Northeast Rice Biology and Breeding, National Rice Regional Technology Innovation Center, Rice Research Institute, Shenyang Agricultural University, Shenyang, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
182
|
Xue S, Zhou L, Zhong M, Kumar Awasthi M, Mao H. Bacterial agents affected bacterial community structure to mitigate greenhouse gas emissions during sewage sludge composting. BIORESOURCE TECHNOLOGY 2021; 337:125397. [PMID: 34139563 DOI: 10.1016/j.biortech.2021.125397] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The present work studied the influence of bacterial agents (B1, B2) and bamboo biochar (BB) on greenhouse gas emissions and bacterial community during the sewage sludge composting. Results showed that compared with CK, the total methane emissions ofC, B1, B1C, B2, and B2C treatments declined by 16.4%, 25.2%, 45.4%, 7.8%, and 44.4%, respectively. The total N2O emissions ofC and B1C treatments declined by 5.1% and 3.7% while B1, B2, and B2C treatments increased the total N2O emissions by 6.7%, 21.6%, and 10.4%, respectively. These results illustrated that the addition of BB is conducive for reducing greenhouse gas emissions while different bacterial agents have various effects. According to pearson correlation analysis, N2O emissions and Acidimicrobiia, Alphaproteobacteria, Gammaproteobacteria, and Tepidiformia have strong negative correlation while positive correlation with Bacilli and Clostridia. Methane emissions have a strong negative correlation with Actinobacteria. CO2 emissions have a strong positive correlation with Bacilli.
Collapse
Affiliation(s)
- Shudan Xue
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lina Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Minzheng Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
183
|
Wu MR, Hou TT, Liu Y, Miao LL, Ai GM, Ma L, Zhu HZ, Zhu YX, Gao XY, Herbold CW, Wagner M, Li DF, Liu ZP, Liu SJ. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N 2 with a previously unknown pathway. Environ Microbiol 2021; 23:6965-6980. [PMID: 34581470 DOI: 10.1111/1462-2920.15751] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
Heterotrophic nitrifiers are able to oxidize and remove ammonia from nitrogen-rich wastewaters but the genetic elements of heterotrophic ammonia oxidation are poorly understood. Here, we isolated and identified a novel heterotrophic nitrifier, Alcaligenes ammonioxydans sp. nov. strain HO-1, oxidizing ammonia to hydroxylamine and ending in the production of N2 gas. Genome analysis revealed that strain HO-1 encoded a complete denitrification pathway but lacks any genes coding for homologous to known ammonia monooxygenases or hydroxylamine oxidoreductases. Our results demonstrated strain HO-1 denitrified nitrite (not nitrate) to N2 and N2 O at anaerobic and aerobic conditions respectively. Further experiments demonstrated that inhibition of aerobic denitrification did not stop ammonia oxidation and N2 production. A gene cluster (dnfT1RT2ABCD) was cloned from strain HO-1 and enabled E. coli accumulated hydroxylamine. Sub-cloning showed that genetic cluster dnfAB or dnfABC already enabled E. coli cells to produce hydroxylamine and further to 15 N2 from (15 NH4 )2 SO4 . Transcriptome analysis revealed these three genes dnfA, dnfB and dnfC were significantly upregulated in response to ammonia stimulation. Taken together, we concluded that strain HO-1 has a novel dnf genetic cluster for ammonia oxidation and this dnf genetic cluster encoded a previously unknown pathway of direct ammonia oxidation (Dirammox) to N2 .
Collapse
Affiliation(s)
- Meng-Ru Wu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Hou
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Xin Zhu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, China
| |
Collapse
|
184
|
Varliero G, Anesio AM, Barker GLA. A Taxon-Wise Insight Into Rock Weathering and Nitrogen Fixation Functional Profiles of Proglacial Systems. Front Microbiol 2021; 12:627437. [PMID: 34621246 PMCID: PMC8491546 DOI: 10.3389/fmicb.2021.627437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
The Arctic environment is particularly affected by global warming, and a clear trend of the ice retreat is observed worldwide. In proglacial systems, the newly exposed terrain represents different environmental and nutrient conditions compared to later soil stages. Therefore, proglacial systems show several environmental gradients along the soil succession where microorganisms are active protagonists of the soil and carbon pool formation through nitrogen fixation and rock weathering. We studied the microbial succession of three Arctic proglacial systems located in Svalbard (Midtre Lovénbreen), Sweden (Storglaciären), and Greenland (foreland close to Kangerlussuaq). We analyzed 65 whole shotgun metagenomic soil samples for a total of more than 400 Gb of sequencing data. Microbial succession showed common trends typical of proglacial systems with increasing diversity observed along the forefield chronosequence. Microbial trends were explained by the distance from the ice edge in the Midtre Lovénbreen and Storglaciären forefields and by total nitrogen (TN) and total organic carbon (TOC) in the Greenland proglacial system. Furthermore, we focused specifically on genes associated with nitrogen fixation and biotic rock weathering processes, such as nitrogenase genes, obcA genes, and genes involved in cyanide and siderophore synthesis and transport. Whereas we confirmed the presence of these genes in known nitrogen-fixing and/or rock weathering organisms (e.g., Nostoc, Burkholderia), in this study, we also detected organisms that, even if often found in soil and proglacial systems, have never been related to nitrogen-fixing or rock weathering processes before (e.g., Fimbriiglobus, Streptomyces). The different genera showed different gene trends within and among the studied systems, indicating a community constituted by a plurality of organisms involved in nitrogen fixation and biotic rock weathering, and where the latter were driven by different organisms at different soil succession stages.
Collapse
Affiliation(s)
- Gilda Varliero
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Gary L. A. Barker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
185
|
Spieck E, Wegen S, Keuter S. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl Microbiol Biotechnol 2021; 105:7123-7139. [PMID: 34508283 PMCID: PMC8494671 DOI: 10.1007/s00253-021-11487-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023]
Abstract
Abstract Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capacities and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need to be run at low temperatures. Key points • Characterization of the psychrotolerant nitrite oxidizer Cand. Nitrotoga • Comparison of the physiological features of Cand. Nitrotoga with those of other NOB • Identification of beneficial environmental/operational parameters for proliferation Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11487-5.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Simone Wegen
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
186
|
Lantz MA, Boddicker AM, Kain MP, Berg OMC, Wham CD, Mosier AC. Physiology of the Nitrite-Oxidizing Bacterium Candidatus Nitrotoga sp. CP45 Enriched From a Colorado River. Front Microbiol 2021; 12:709371. [PMID: 34484146 PMCID: PMC8415719 DOI: 10.3389/fmicb.2021.709371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen cycling microbes, including nitrite-oxidizing bacteria (NOB), perform critical ecosystem functions that help mitigate anthropogenic stresses and maintain ecosystem health. Activity of these beneficial nitrogen cycling microbes is dictated in part by the microorganisms’ response to physicochemical conditions, such as temperature, pH, and nutrient availability. NOB from the newly described Candidatus Nitrotoga genus have been detected in a wide range of habitats across the globe, yet only a few organisms within the genus have been physiologically characterized. For freshwater systems where NOB are critical for supporting aquatic life, Ca. Nitrotoga have been previously detected but little is known about the physiological potential of these organisms or their response to changing environmental conditions. Here, we determined functional response to environmental change for a representative freshwater species of Ca. Nitrotoga (Ca. Nitrotoga sp. CP45, enriched from a Colorado river). The physiological findings demonstrated that CP45 maintained nitrite oxidation at pH levels of 5–8, at temperatures from 4 to 28°C, and when incubated in the dark. Light exposure and elevated temperature (30°C) completely halted nitrite oxidation. Ca. Nitrotoga sp. CP45 maintained nitrite oxidation upon exposure to four different antibiotics, and potential rates of nitrite oxidation by river sediment communities were also resilient to antibiotic stress. We explored the Ca. Nitrotoga sp. CP45 genome to make predictions about adaptations to enable survival under specific conditions. Overall, these results contribute to our understanding of the versatility of a representative freshwater Ca. Nitrotoga sp. Identifying the specific environmental conditions that maximize NOB metabolic rates may ultimately direct future management decisions aimed at restoring impacted systems.
Collapse
Affiliation(s)
- Munira A Lantz
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| | - Andrew M Boddicker
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| | - Michael P Kain
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| | - Owen M C Berg
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| | - Courtney D Wham
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, United States
| |
Collapse
|
187
|
Harindintwali JD, Zhou J, Muhoza B, Wang F, Herzberger A, Yu X. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112856. [PMID: 34051535 DOI: 10.1016/j.jenvman.2021.112856] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/12/2021] [Accepted: 05/19/2021] [Indexed: 05/22/2023]
Abstract
To meet the ever-growing human demands for food, fuel, and fiber, agricultural activities have dramatically altered the global carbon (C) and nitrogen (N) cycles. These biogeochemical cycles along with water, phosphorus, and sulfur cycles are fundamental features of life on Earth. Human alteration of the global N cycle has had both positive and negative outcomes. To efficiently feed a growing population, crop-livestock production systems have been developed, however, these systems also contribute significantly to environmental pollution and global climate change. Management of agricultural waste (AW) and the application of N fertilizers are central to the issues of greenhouse gas (GHG) emissions and nutrient runoff that contributes to the eutrophication of water bodies. If managed properly, AW can provide nutrients for plants and contribute to the conservation of soil health. In order to achieve the long-term conservation of agricultural production systems, it is important to promote the proper recycling of AW in agroecosystems and to minimize the reliance on chemical N fertilizers. Composting is one of the sustainable and effective approaches for recycling AW in agriculture. However, the conventional composting process is dilatory and produces compost with low N content compared to chemical N fertilizers. For this reason, comprehensive research is required to improve the composting process and the N content of the soil organic amendments. This work aims to explore the beneficial effects of the integrated application of biochar and specific C and N cycling microorganisms to the composting process and the quality of the composted products. In pursuit of replacing chemical N fertilizers with bio/organic fertilizers, we further discussed the power of the combined application of compost, biochar, and N-fixing bacteria in agricultural production systems. The knowledge of smart integration of AW and microorganisms in agriculture could solve the main agricultural and environmental problems associated with human-induced flows of C and N. Building upon the knowledge disseminated in review to further extensive research will pave the way for better management of agricultural production systems and sustainable C and N cycling in agriculture.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| | - Jianli Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China
| | - Bertrand Muhoza
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin, 150028, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Anna Herzberger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Xiaobin Yu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, 214122, China.
| |
Collapse
|
188
|
Sun H, Jiang T, Zhang F, Zhang P, Zhang H, Yang H, Lu J, Ge S, Ma B, Ding J, Zhang W. Understanding the effect of free ammonia on microbial nitrification mechanisms in suspended activated sludge bioreactors. ENVIRONMENTAL RESEARCH 2021; 200:111737. [PMID: 34302827 DOI: 10.1016/j.envres.2021.111737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
During nitrification, the varieties of microbial structures, metabolic pathways and functional profiles in four parallel laboratory-scale sequencing batch reactors (SBRs) with 0.5, 5, 10 and 15 mg/L of free ammonia (FA) concentrations were analyzed by high-throughput sequencing of the 16S rRNA gene. The SBRs were named S0.5, S5, S10 and S15, respectively. Ammonia removal via the nitrate pathway was achieved in S0.5 and S5 throughout the whole experimental period, while ammonia removal via the nitrite pathway was established in S10 and S15 after 89 and 146 day, respectively. The key finding of this study is that both the microbial diversity and richness were significantly affected (p < 0.05) by the FA concentration at different taxonomic levels. The most dominant taxa of S5, S10 and S15 were same, and mainly included Thauera while S0.5 was mainly composed of Zoogloea. Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to identify unique biomarkers in SBR activated sludge (AS) sample. The functional genera and enzyme in the four SBRs are similar but different in abundance and they are responsible for the removal of organics and nitrogen. Moreover, metabolic pathways are similar by PICRUSt analysis. The relative proportions of pathway-specific genes involved in some metabolic pathways differed to some extent. The ammonia oxidation rate was positively linked to Nitrosomonas and amo (both Spearman correlation coefficients (ρ) = 0.777) while the nitrite oxidation rate was positively linked to Nitrospira (ρ = 0.777) by co-occurrence network analysis. This work deciphered the response of microbial characteristics to different FA constraints in AS process and could provide helpful information for revealing the biological mechanism of FA inhibition on nitrogen removal.
Collapse
Affiliation(s)
- Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China.
| | - Tingting Jiang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Feng Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Hui Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Hao Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jianbo Lu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bin Ma
- College of Environment and Ecology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
189
|
Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. WATER RESEARCH 2021; 202:117426. [PMID: 34274897 DOI: 10.1016/j.watres.2021.117426] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The discovery of anaerobic ammonia-oxidizing bacteria (Anammox) and, more recently, aerobic bacteria common in many natural and engineered systems that oxidize ammonia completely to nitrate (Comammox) have significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place Comammox Nitrospira inopinata, the first described isolate, in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with the Anammox bacterium Candidatus Brocadia anammoxidans. Synthetic communities of the two were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. The functional significance of interspecies spatial organization was informed by the hydrogel encapsulation format, broadening our limited understanding of the interplay between these two species. The resulting low nitrate formation and the competitiveness of Comammox over other aerobic ammonia- and nitrite-oxidizers sets this ecological cooperation apart and points to potential biotechnological applications. Since nitrate is an undesirable product of wastewater treatment effluents, the Comammox-Anammox symbiosis may be of economic and ecological importance to reduce nitrogen contamination of receiving waters.
Collapse
Affiliation(s)
- Ekaterina Y Gottshall
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States.
| | - Sam J Bryson
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Kathryn I Cogert
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Matthieu Landreau
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria; The Comammox Research Platform. University of Vienna, 1010, Austria
| | - Mari Winkler
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| |
Collapse
|
190
|
Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and 13C-Tracer Analysis. mSystems 2021; 6:e0017321. [PMID: 34402644 PMCID: PMC8407350 DOI: 10.1128/msystems.00173-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCENitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.
Collapse
|
191
|
Clark IM, Hughes DJ, Fu Q, Abadie M, Hirsch PR. Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Sci Rep 2021; 11:15905. [PMID: 34354121 PMCID: PMC8342464 DOI: 10.1038/s41598-021-95100-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
The abundance and phylogenetic diversity of functional genes involved in nitrification were assessed in Rothamsted field plots under contrasting management regimes-permanent bare fallow, grassland, and arable (wheat) cultivation maintained for more than 50 years. Metagenome and metatranscriptome analysis indicated nitrite oxidizing bacteria (NOB) were more abundant than ammonia oxidizing archaea (AOA) and bacteria (AOB) in all soils. The most abundant AOA and AOB in the metagenomes were, respectively, Nitrososphaera and Ca. Nitrososcosmicus (family Nitrososphaeraceae) and Nitrosospira and Nitrosomonas (family Nitrosomonadaceae). The most abundant NOB were Nitrospira including the comammox species Nitrospira inopinata, Ca. N. nitrificans and Ca. N. nitrosa. Anammox bacteria were also detected. Nitrospira and the AOA Nitrososphaeraceae showed most transcriptional activity in arable soil. Similar numbers of sequences were assigned to the amoA genes of AOA and AOB, highest in the arable soil metagenome and metatranscriptome; AOB amoA reads included those from comammox Nitrospira clades A and B, in addition to Nitrosomonadaceae. Nitrification potential assessed in soil from the experimental sites (microcosms amended or not with DCD at concentrations inhibitory to AOB but not AOA), was highest in arable samples and lower in all assays containing DCD, indicating AOB were responsible for oxidizing ammonium fertilizer added to these soils.
Collapse
Affiliation(s)
- Ian M Clark
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - David J Hughes
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - Qingling Fu
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, Hertfordshire, UK
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Maïder Abadie
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, Hertfordshire, UK
| | - Penny R Hirsch
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, Hertfordshire, UK.
| |
Collapse
|
192
|
Andrade-Linares DR, Zistl-Schlingmann M, Foesel B, Dannenmann M, Schulz S, Schloter M. Short term effects of climate change and intensification of management on the abundance of microbes driving nitrogen turnover in montane grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146672. [PMID: 34030328 DOI: 10.1016/j.scitotenv.2021.146672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/09/2023]
Abstract
Montane grasslands in Europe are exposed to increasing temperatures twice as fast as the global average. Changes in climatic conditions are possibly accompanied by an increase in land use intensity, caused by a prolongation of the vegetation period and the need to improve productivity. Therefore, the investigation of combined effects of climate change and land use intensity is needed to further implement agricultural management strategies. Here we present results from a study performed in the pre-alpine region of southern Germany, where intact plant-soil mesocosms from grasslands, were translocated along an altitudinal gradient, resulting in an increase in soil temperature (moderate treatment: +0.5 K; strong treatment: +1.9 K warming) during the experimental period. Additionally, we applied an extensive or intensive agricultural management (two vs. five times of mowing and slurry application) on the transplanted mesocosms. After an exposure of one year, we measured plant growth and soil properties and quantified abundances of soil microorganisms catalyzing key steps in the nitrogen (N) cycle. Our data indicate, significant interactions between climate change and management. For example, microbial biomass was significantly reduced (-47.7% and -49.8% for Cmic and Nmic respectively), which was further accompanied by lower abundances of N2-fixing bacteria (up to -89,3%), as well as ammonia oxidizing bacteria (-81.4%) under intensive management, whereas N-mineralizing bacteria increased in abundance (up to +139.8%) under extensive management. Surprisingly, the abundances of denitrifying bacteria as well as mean N2O emissions were not affected by the treatments. Overall, our data suggest pronounced shifts in the abundance of microbes driving the N cycle in soil as a result of combined climate change and land use intensification already after a short simulation period of one year.
Collapse
Affiliation(s)
- Diana R Andrade-Linares
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Marcus Zistl-Schlingmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Baerbel Foesel
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Soil Science, Technical University of Munich, Freising, Germany.
| |
Collapse
|
193
|
Manu MK, Li D, Liwen L, Jun Z, Varjani S, Wong JWC. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. BIORESOURCE TECHNOLOGY 2021; 334:125032. [PMID: 33964812 DOI: 10.1016/j.biortech.2021.125032] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Food waste digestate is a by-product of the anaerobic digestion of food waste. Presence of high ammonium nitrogen content significantly increase the nitrogen loss upon direct application on soil or by conventional composting. In this review, a comprehensive discussion regarding the effective management of food waste digestate is outlined, in which global food waste digestate production, characteristics, and composting are discussed. The nitrogen dynamics cycle considering high ammonium nitrogen content in the digestate is also evaluated, including ammonification, nitrification, denitrification, and other possible mechanisms based on the current literature. Mitigation strategies for reducing nitrogen loss via C/N ratio adjustment and the addition of physical, chemical, and microbial amendments were evaluated and estimated for 15 countries based on the available data on food waste anaerobic digestion plants. Reduced nitrogen loss and high quality compost could be produced from food waste digestate by adapting mitigation strategies.
Collapse
Affiliation(s)
- M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Luo Liwen
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Zhao Jun
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010 Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
194
|
Activity-Based Cell Sorting Reveals Resistance of Functionally Degenerate Nitrospira during a Press Disturbance in Nitrifying Activated Sludge. mSystems 2021; 6:e0071221. [PMID: 34282936 PMCID: PMC8407113 DOI: 10.1128/msystems.00712-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Managing and engineering activated sludge wastewater treatment microbiomes for low-energy nitrogen removal requires process control strategies to stop the oxidation of ammonium at nitrite. Our ability to out-select nitrite-oxidizing bacteria (NOB) from activated sludge is challenged by their metabolic and physiological diversity, warranting measurements of their in situ physiology and activity under selective growth pressures. Here, we examined the stability of nitrite oxidation in activated sludge during a press disturbance induced by treating a portion of return activated sludge with a sidestream flow containing free ammonia (FA) at 200 mg NH3-N/liter. The nitrite accumulation ratio peaked at 42% by day 40 in the experimental bioreactor with the press disturbance, while it did not increase in the control bioreactor. A subsequent decrease in nitrite accumulation within the experimental bioreactor coincided with shifts in dominant Nitrospira 16S rRNA amplicon sequence variants (ASVs). We applied bioorthogonal noncanonical amino acid tagging (BONCAT) coupled with fluorescence-activated cell sorting (FACS) to investigate changes in the translational activity of NOB populations throughout batch exposure to FA. BONCAT-FACS confirmed that the single Nitrospira ASV washed out of the experimental bioreactor had reduced translational activity following exposure to FA, whereas the two Nitrospira ASVs that emerged after process acclimation were not impacted by FA. Thus, the coexistence of functionally degenerate and physiologically resistant Nitrospira populations provided resilience to the nitrite-oxidizing function during the press disturbance. These results highlight how BONCAT-FACS can resolve ecological niche differentiation within activated sludge and inform strategies to engineer and control microbiome function. IMPORTANCE Nitrogen removal from activated sludge wastewater treatment systems is an energy-intensive process due to the large aeration requirement for nitrification. This energy footprint could be minimized with engineering control strategies that wash out nitrite-oxidizing bacteria (NOB) to limit oxygen demands. However, NOB populations can have a high degree of physiological diversity, and it is currently difficult to decipher the behavior of individual taxa during applied selective pressures. Here, we utilized a new substrate analog probing approach to measure the activity of NOB at the cellular translational level in the face of a press disturbance applied to the activated sludge process. Substrate analog probing corroborated the time series reactor sampling, showing that coexisting and functionally degenerate Nitrospira populations provided resilience to the nitrite oxidation process. Taken together, these results highlight how substrate analog approaches can illuminate in situ ecophysiologies within shared niches, and can inform strategies to improve microbiome engineering and management.
Collapse
|
195
|
Niederdorfer R, Fragner L, Yuan L, Hausherr D, Wei J, Magyar P, Joss A, Lehmann MF, Ju F, Bürgmann H. Distinct growth stages controlled by the interplay of deterministic and stochastic processes in functional anammox biofilms. WATER RESEARCH 2021; 200:117225. [PMID: 34052477 DOI: 10.1016/j.watres.2021.117225] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Mainstream anaerobic ammonium oxidation (anammox) represents one of the most promising energy-efficient mechanisms of fixed nitrogen elimination from wastewaters. However, little is known about the exact processes and drivers of microbial community assembly within the complex microbial biofilms that support anammox in engineered ecosystems. Here, we followed anammox biofilm development on fresh carriers in an established 8m3 mainstream anammox reactor that is exposed to seasonal temperature changes (~25-12°C) and varying NH4+ concentrations (5-25 mg/L). We use fluorescence in situ hybridization and 16S rRNA gene sequencing to show that three distinct stages of biofilm development emerge naturally from microbial community composition and biofilm structure. Neutral modelling and network analysis are employed to elucidate the relative importance of stochastic versus deterministic processes and synergistic and antagonistic interactions in the biofilms during their development. We find that the different phases are characterized by a dynamic succession and an interplay of both stochastic and deterministic processes. The observed growth stages (Colonization, Succession and Maturation) appear to be the prerequisite for the anticipated growth of anammox bacteria and for reaching a biofilm community structure that supports the desired metabolic and functional capacities observed for biofilm carriers already present in the system (~100gNH4-N m3 d-1). We discuss the relevance of this improved understanding of anammox-community ecology and biofilm development in the context of its practical application in the start-up, configuration, and optimization of anammox biofilm reactors.
Collapse
Affiliation(s)
- Robert Niederdorfer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland.
| | - Lisa Fragner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland
| | - Ling Yuan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Damian Hausherr
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Process Engineering, 8600 Duebendorf, Switzerland
| | - Jing Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution & Environmental Technology, 8600 Duebendorf, Switzerland
| | - Paul Magyar
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Adriano Joss
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Process Engineering, 8600 Duebendorf, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Department of Surface Waters-Research and Management, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
196
|
Rodriguez J, Chakrabarti S, Choi E, Shehadeh N, Sierra-Martinez S, Zhao J, Martens-Habbena W. Nutrient-Limited Enrichments of Nitrifiers From Soil Yield Consortia of Nitrosocosmicus-Affiliated AOA and Nitrospira-Affiliated NOB. Front Microbiol 2021; 12:671480. [PMID: 34322099 PMCID: PMC8312096 DOI: 10.3389/fmicb.2021.671480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery of ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing (comammox) bacteria widespread in terrestrial ecosystems indicates an important role of these organisms in terrestrial nitrification. Recent evidence indicated a higher ammonia affinity of comammox bacteria than of terrestrial AOA and ammonia-oxidizing bacteria (AOB), suggesting that comammox bacteria could potentially represent the most low-nutrient adapted nitrifiers in terrestrial systems. We hypothesized that a nutrient-limited enrichment strategy could exploit the differences in cellular kinetic properties and yield enrichments dominated by high affinity and high yield comammox bacteria. Using soil with a mixed community of AOA, AOB, and comammox Nitrospira, we compared performance of nutrient-limited chemostat enrichment with or without batch culture pre-enrichment in two different growth media without inhibitors or antibiotics. Monitoring of microbial community composition via 16S rRNA and amoA gene sequencing showed that batch enrichments were dominated by AOB, accompanied by low numbers of AOA and comammox Nitrospira. In contrast, nutrient-limited enrichment directly from soil, and nutrient-limited sub-cultivation of batch enrichments consistently yielded high enrichments of Nitrosocosmicus-affiliated AOA associated with multiple canonical nitrite-oxidizing Nitrospira strains, whereas AOB numbers dropped below 0.1% and comammox Nitrospira were lost completely. Our results reveal competitiveness of Nitrosocosmicus sp. under nutrient limitation, and a likely more complex or demanding ecological niche of soil comammox Nitrospira than simulated in our nutrient-limited chemostat experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Davie, FL, United States
| |
Collapse
|
197
|
Li Y, Liang Y, Zhang H, Liu Y, Zhu J, Xu J, Zhou Z, Ma J, Liu K, Yu F. Variation, distribution, and diversity of canonical ammonia-oxidizing microorganisms and complete-nitrifying bacteria in highly contaminated ecological restoration regions in the Siding mine area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112274. [PMID: 33930771 DOI: 10.1016/j.ecoenv.2021.112274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Canonical ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and complete-nitrifying bacteria (comammox) exist in a variety of ecosystems. However, little is known about AOA, AOB and comammox or their contributions to nitrification in the soils of heavily degraded and acidic mine regions. In the present study, the activity, richness, diversity and distribution patterns of AOA, AOB and comammox in the Siding mine area were investigated. Nemerow's multifactor pollution index (PN) values indicated that the soil in all three areas in the Siding mine area was highly contaminated by Cd, Pb, Zn, Mn and Cu. The AOA, AOB and comammox amoA gene copy numbers exhibited significant positive correlations with Pb and Zn levels and PN values, which indicated that the populations of AOA, AOB and comammox underwent adaptation and reproduction in response to pollution from multiple metals in the Siding mine area. Among them, the abundance of AOA was the highest, and AOA may survive better than AOB and comammox under such severely pollution-stressed and ammonia-limited conditions. The phyla Thaumarchaeota and Crenarchaeota may play vital roles in the soil ammonia oxidation process. Unlike AOA, AOB may use soil available phosphorus to help them compete for NH3 and other limiting nutrients with AOA and heterotrophs. Moreover, soil organic matter was the main factor influencing the species diversity of AOB, the β-diversity of AOB and comammox, and the community composition of AOA, AOB and comammox. Our research will help to explain the role and importance of AOA, AOB and comammox in the different ecological restoration regions in the Siding mine area.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China; Innovation Institute of Sustainable Development, Guangxi Normal University, 541004 Guilin, China
| | - Ying Liang
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Haichun Zhang
- College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Yuan Liu
- College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Jing Zhu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Jie Xu
- College of Life Science, Guangxi Normal University, 541004 Guilin, China
| | - Zhenming Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China
| | - Jiangming Ma
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China; Innovation Institute of Sustainable Development, Guangxi Normal University, 541004 Guilin, China
| | - Kehui Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Life Science, Guangxi Normal University, 541004 Guilin, China; Innovation Institute of Sustainable Development, Guangxi Normal University, 541004 Guilin, China.
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004 Guilin, China; Innovation Institute of Sustainable Development, Guangxi Normal University, 541004 Guilin, China.
| |
Collapse
|
198
|
Wang N, Gao J, Liu Y, Wang Q, Zhuang X, Zhuang G. Realizing the role of N-acyl-homoserine lactone-mediated quorum sensing in nitrification and denitrification: A review. CHEMOSPHERE 2021; 274:129970. [PMID: 33979914 DOI: 10.1016/j.chemosphere.2021.129970] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Nitrification and denitrification are crucial processes in the nitrogen cycle, a vital microbially driven biogeochemical cycle. N-acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) is widespread in bacteria and plays a key role in their physiological status. Recently, there has been an increase in research into how the AHL-mediated QS system is involved in nitrification and denitrification. Consequentially, the AHL-mediated QS system has been considered a promising regulatory approach in nitrogen metabolism processes, with high potential for real-world applications. In this review, the universal presence of QS in nitrifiers and denitrifiers is summarized. Many microorganisms taking part in nitrification and denitrification harbor QS genes, and they may produce AHLs with different chain lengths. The phenotypes and processes affected by QS in real-world applications are also reviewed. In wastewater bioreactors, QS could affect nitrogen metabolism efficiency, granule aggregation, and biofilm formation. Furthermore, methods commonly used to identify the existence and functions of QS, including physiological tests, genetic manipulation and omics analyses are discussed.
Collapse
Affiliation(s)
- Na Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Liu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qiuying Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
199
|
Pavlovska M, Prekrasna I, Dykyi E, Zotov A, Dzhulai A, Frolova A, Slobodnik J, Stoica E. Niche partitioning of bacterial communities along the stratified water column in the Black Sea. Microbiologyopen 2021; 10:e1195. [PMID: 34180601 PMCID: PMC8217838 DOI: 10.1002/mbo3.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
The Black Sea is the largest semi‐closed permanently anoxic basin on our planet with long‐term stratification. The study aimed at describing the Black Sea microbial community taxonomic and functional composition within the range of depths spanning across oxic/anoxic interface, and to uncover the factors behind both their vertical and regional differentiation. 16S rRNA gene MiSeq sequencing was applied to get the data on microbial community taxonomy, and the PICRUSt pipeline was used to infer their functional profile. The normoxic zone was mainly inhabited by primary producers and heterotrophic prokaryotes (e.g., Flavobacteriaceae, Rhodobacteraceae, Synechococcaceae) whereas the euxinic zone—by heterotrophic and chemoautotrophic taxa (e.g., MSBL2, Piscirickettsiaceae, and Desulfarculaceae). Assimilatory sulfate reduction and oxygenic photosynthesis were prevailing within the normoxic zone, while the role of nitrification, dissimilatory sulfate reduction, and anoxygenic photosynthesis increased in the oxygen‐depleted water column part. Regional differentiation of microbial communities between the Ukrainian shelf and offshore zone was detected as well, yet it was significantly less pronounced than the vertical one. It is suggested that regional differentiation within a well‐oxygenated zone is driven by the difference in phytoplankton communities providing various substrates for the prokaryotes, whereas redox stratification is the main driving force behind microbial community vertical structure.
Collapse
Affiliation(s)
- Mariia Pavlovska
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine.,National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | - Evgen Dykyi
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine
| | - Andrii Zotov
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,State Institution Institute of Marine Biology of the NAS of Ukraine, Odesa, Ukraine
| | - Artem Dzhulai
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Alina Frolova
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Constanta, Romania
| |
Collapse
|
200
|
Li X, Wan W, Zheng L, Wang A, Luo X, Huang Q, Chen W. Community assembly mechanisms and co-occurrence patterns of nitrite-oxidizing bacteria communities in saline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145472. [PMID: 33770900 DOI: 10.1016/j.scitotenv.2021.145472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/16/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification by oxidizing nitrite to nitrate, which is a key process in the biogeochemical nitrogen cycling. However, little is known about the co-occurrence patterns and assembly processes of NOB communities in agricultural soils with different salinities. Here, we explored the effects of salinity on Nitrobacter and Nitrospira community using high-throughput sequencing and multivariate statistical analyses. Our results showed that high salinity significantly inhibited the nitrite oxidation rates and decreased the abundance of Nitrobacter and Nitrospira. Extreme salty conditions significantly altered the diversity and composition of Nitrospira community but had little effect on Nitrobacter community. Nitrobacter network in high salinity soils was more closely connected while the connectivity of Nitrospira network became weak. Nitrobacter and Nitrospira community exhibited distinct assembly processes at different salinity levels. Stochastic processes were dominant in the Nitrobacter community assembly in both low and high salinity soils. Interestingly, the assembly of Nitrospira community was governed by stochastic and deterministic processes in low and high salinity soils, respectively. To our knowledge, our study provides the first description of the co-occurrence patterns and assembly processes of NOB communities in agricultural soils with different salinities. These results can help us understand the NOB ecological roles and improve the nitrite oxidation activity in a high salinity environment.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China
| | - Wenjie Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China
| | - Liuxia Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China
| | - Achen Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430010, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430010, China.
| |
Collapse
|