151
|
Selective microspore abortion correlated with aneuploidy: an indication of meiotic drive. ACTA ACUST UNITED AC 2010; 24:1-8. [DOI: 10.1007/s00497-010-0150-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/18/2010] [Indexed: 11/27/2022]
|
152
|
Steigerová J, Oklešťková J, Levková M, Rárová L, Kolář Z, Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chem Biol Interact 2010; 188:487-96. [PMID: 20833159 DOI: 10.1016/j.cbi.2010.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 11/17/2022]
Abstract
Brassinosteroids (BRs) are plant hormones that appear to be ubiquitous in both lower and higher plants. Recently, we published the first evidence that some natural BRs induce cell growth inhibitory responses in several human cancer cell lines without affecting normal non-tumor cell growth (BJ fibroblasts). The aim of the study presented here was to examine the mechanism of the antiproliferative activity of the natural BRs 28-homocastasterone (28-homoCS) and 24-epibrassinolide (24-epiBL) in human hormone-sensitive and -insensitive (MCF-7 and MDA-MB-468, respectively) breast cancer cell lines. The effects of 6, 12 and 24h treatments with 28-homoCS and 24-epiBL on cancer cells were surveyed using flow cytometry, Western blotting, TUNEL assays and immunofluorescence analyses. The studied BRs inhibited cell growth and induced blocks in the G(1) cell cycle phase. ER-α immunoreactivity was uniformly present in the nuclei of control MCF-7 cells, while cytoplasmic speckles of ER-α immunofluorescence appeared in BR-treated cells (IC(50), 24h). ER-β was relocated to the nuclei following 28-homoCS treatment and found predominantly at the periphery of the nuclei in 24-epiBL-treated cells after 24h of treatment. These changes were also accompanied by down-regulation of the ERs following BR treatment. In addition, BR application to breast cancer cells resulted in G(1) phase arrest. Furthermore, TUNEL staining and double staining with propidium iodide and acridine orange demonstrated the BR-mediated induction of apoptosis in both cell lines, although changes in the expression of apoptosis-related proteins were modulated differently by the BRs in each cell line. The studied BRs seem to exert potent growth inhibitory effects via interactions with the cell cycle machinery, and they could be highly valuable leads for agents for managing breast cancer.
Collapse
Affiliation(s)
- Jana Steigerová
- Department of Pathology, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
153
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
154
|
Twumasi P, Iakimova ET, Qian T, van Ieperen W, Schel JHN, Emons AMC, van Kooten O, Woltering EJ. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures. BMC PLANT BIOLOGY 2010; 10:162. [PMID: 20691058 PMCID: PMC3017784 DOI: 10.1186/1471-2229-10-162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 08/06/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. RESULTS Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. CONCLUSIONS To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.
Collapse
Affiliation(s)
- Peter Twumasi
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Elena T Iakimova
- Wageningen University, Food and Biobased Research, PO Box 17, 6700 AA Wageningen, The Netherlands
- Institute of Ornamental Plants, 1222 Negovan, Sofia, Bulgaria
| | - Tian Qian
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Wim van Ieperen
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Jan HN Schel
- Wageningen University, Laboratory of Plant Cell Biology, P.O. Box 633, 6700 AP Wageningen, The Netherlands
| | - Anne Mie C Emons
- Wageningen University, Laboratory of Plant Cell Biology, P.O. Box 633, 6700 AP Wageningen, The Netherlands
| | - Olaf van Kooten
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
| | - Ernst J Woltering
- Wageningen University, Plant Sciences Group, Horticultural Supply Chains, P.O. Box 630, 6700 AP Wageningen, The Netherlands
- Wageningen University, Food and Biobased Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
155
|
Ma W, Xu W, Xu H, Chen Y, He Z, Ma M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. PLANTA 2010; 232:325-35. [PMID: 20449606 DOI: 10.1007/s00425-010-1177-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/13/2010] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd(2+)). Cd(2+) is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd(2+)-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 microM CdCl(2) underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester hydrochloride (L-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd(2+) concentration was measured subsequently. SNP led more Cd(2+) content than Cd(2+) treatment alone. By contrast, the prevention of NO by L-NAME decreased Cd(2+) accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes. This analysis revealed the promotion of Cd(2+) influxes into cells by application of SNP, while L-NAME and cPTIO reduced the rate of Cd(2+) uptake or even resulted in net Cd(2+) efflux. Based on these founding, we concluded that NO played a positive role in CdCl(2)-induced PCD by modulating Cd(2+) uptake and thus promoting Cd(2+) accumulation in BY-2 cells.
Collapse
Affiliation(s)
- Wenwen Ma
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
156
|
Serafini-Fracassini D, Di Sandro A, Del Duca S. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:602-11. [PMID: 20381367 DOI: 10.1016/j.plaphy.2010.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 05/02/2023]
Abstract
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine gamma-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22-30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.
Collapse
|
157
|
van Doorn WG, Woltering EJ. What about the role of autophagy in PCD? TRENDS IN PLANT SCIENCE 2010; 15:361-362. [PMID: 20621669 DOI: 10.1016/j.tplants.2010.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 05/26/2023]
|
158
|
Serrano I, Pelliccione S, Olmedilla A. Programmed-cell-death hallmarks in incompatible pollen and papillar stigma cells of Olea europaea L. under free pollination. PLANT CELL REPORTS 2010; 29:561-72. [PMID: 20352230 DOI: 10.1007/s00299-010-0845-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 05/05/2023]
Abstract
Programmed cell death (PCD) is a process that occurs both in animals and in plants and is an essential element in developmental processes. Pollination is a key factor in fruit production and self-incompatibility is one of the main limiting factors of this process. PCD has recently been put forward as a possible cause of pollen-growth arrest. As far as the olive is concerned, no data have been published concerning the mechanisms involved in hindering the growth of pollen tubes in incompatible pollen. Thus, we have studied olive pistils excised from freely pollinated flowers at different stages before and during the progamic phase using different cytochemical techniques, including trypan blue staining. To discover whether the elimination of incompatible pollen might be associated to PCD, we applied different tests to the excised pistils: (1) TUNEL assay; (2) DNA degradation analysis; (3) detection of caspase-3-like activity. Once we had determined that PCD was involved in pollen selection after free pollination, we conducted experiments after controlled pollination in pistils excised from flowers: (a) developing in the absence of pollen; (b) pollinated with sterile pollen that does not germinate; (c) self-pollinated; (d) pollinated with compatible pollen. Our results demonstrate that the growth of tubes in incompatible pollen is halted in the stylar area in a way that suggests the intervention of PCD. Furthermore, any pollen, even if sterile, seemed to accelerate PCD in papillar cells in the olive.
Collapse
Affiliation(s)
- Irene Serrano
- Department of Plant Biochemistry, Cell and Molecular Biology, Estación Experimental del Zaidín (CSIC), c/Profesor Albareda, 1, 18008, Granada, Spain
| | | | | |
Collapse
|
159
|
Duan Y, Zhang W, Li B, Wang Y, Li K, Han C, Zhang Y, Li X. An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. THE NEW PHYTOLOGIST 2010; 186:681-95. [PMID: 20298483 DOI: 10.1111/j.1469-8137.2010.03207.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drought induces root death in plants; however, the nature and characteristics of root cell death and its underlying mechanisms are poorly understood. Here, we provide a systematic analysis of cell death in the primary root tips in Arabidopsis during water stress. Root tip cell death occurs when high water deficit is reached. The dying cells were first detected in the apical meristem of the primary roots and underwent active programmed cell death (PCD). Transmission electron microscopic analysis shows that the cells undergoing induced death had unambiguous morphological features of autophagic cell death, including an increase in vacuole size, degradation of organelles, and collapse of the tonoplast and the plasma membrane. The results suggest that autophagic PCD occurs as a response to severe water deficit. Significant accumulation of reactive oxygen species (ROS) was detected in the stressed root tips. Expression of BAX inhibitor-1 (AtBI1) was increased in response to water stress, and atbi1-1 displayed accelerated cell death, indicating that AtBI1 and the endoplasmic reticulum (ER) stress response pathway both modulate water stress-induced PCD. These findings form the basis for further investigations into the mechanisms underlying the PCD and its role in developmental plasticity of root system architecture and subsequent adaptation to water stress.
Collapse
Affiliation(s)
- Yunfeng Duan
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Kirasak K, Ketsa S, Imsabai W, van Doorn WG. Do mitochondria in Dendrobium petal mesophyll cells form vacuole-like vesicles? PROTOPLASMA 2010; 241:51-61. [PMID: 20162306 DOI: 10.1007/s00709-010-0105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/01/2010] [Indexed: 05/28/2023]
Abstract
Using transmission electron microscopy, we investigated the ultrastructure of mitochondria in petal mesophyll cells of the orchid Dendrobium cv. Lucky Duan, from the time of floral opening to visible petal senescence. Cells close to the vascular bundle contained many mitochondria, some of which showed internal degeneration. This inner mitochondrial breakdown was accompanied by an eightfold increase in mitochondrial volume. Small electron-dense granules (approximately 0.04 mum in diameter) at the periphery of the mitochondrial matrix remained. These granules were used as an indicator of still later stages of mitochondrial development in these cells. The apparent final stage of mitochondrial degeneration was a single-membrane-bound vesicle, resembling a vacuole. No evidence was found for the idea that mitochondria became transferred (intact or degenerated) into a lytic vacuole. Taken together, the data suggest the hypotheses that (a) mitochondria in cells close to the vascular bundle in petals of open Dendrobium cv. Lucky Duan flowers undergo large-scale internal degeneration and that (b) such degenerating mitochondria form vacuole-like vesicles.
Collapse
Affiliation(s)
- Kanjana Kirasak
- Department of Horticulture, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand
| | | | | | | |
Collapse
|
161
|
van Doorn WG, Yoshimoto K. Role of chloroplasts and other plastids in ageing and death of plants and animals: a tale of Vishnu and Shiva. Ageing Res Rev 2010; 9:117-30. [PMID: 19720162 DOI: 10.1016/j.arr.2009.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 12/11/2022]
Abstract
Chloroplasts (chlorophyll-containing plastids) and other plastids are found in all plants and many animals. They are crucial to the survival of plants and most of the animals that harbour them. An example of a non-photosynthesizing plastid in animals is the apicoplast in the malaria-causing Plasmodium species, which is required for survival of the parasite. Many animals (such as sea slugs, sponges, reef corals, and clams) consume prey containing chloroplasts, or feed on algae. Some of these incorporate the chloroplasts from their food, or whole algal cells, into their own cells. Other species from these groups place algal cells between their own cells. Reef-building corals often lose their intracellular algae as a result of environmental changes, resulting in coral bleaching and death. The sensitivity of the chloroplast internal membranes to temperature stress is one of the reasons for coral death. Chloroplasts can also be a causal factor in the processes leading to whole-plant death, as the knockout of a gene encoding a chloroplast protein delayed the yellowing that proceeds death in tobacco plants. It is concluded that chloroplasts and other plastids are essential to individual survival in many species, including animals, and that they also play a role in triggering death in some plant and animal species.
Collapse
|
162
|
Ooi KL, Muhammad TST, Sulaiman SF. Growth arrest and induction of apoptotic and non-apoptotic programmed cell death by, Physalis minima L. chloroform extract in human ovarian carcinoma Caov-3 cells. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:92-99. [PMID: 20045455 DOI: 10.1016/j.jep.2009.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The decoction of the whole plant of Physalis minima L. is traditionally consumed to treat cancer. Its anticancer property has been previously verified (using in vitro cytotoxicity assays) against NCI-H23 lung, CORL23 lung and MCF7 breast cancer cell lines but the mechanism underlying the anticancer potency towards ovarian carcinoma cells remain unclear. AIM OF THE STUDY The present study is aimed to systematically determine the cytotoxicity and possible cell death mechanism elicited by the chloroform extract of Physalis minima in human ovarian Caov-3 carcinoma. MATERIALS AND METHODS Cytotoxicity of the extract was measured using the methylene blue assay. The mechanism of cell death was determined using four independent methods, namely DeadEnd assay to label the DNA fragmentation nuclei cells, RT-PCR analysis to determine the mRNA expression level of three apoptotic genes (c-myc, p53 and caspase-3 genes), Transmission Electron Microscope (TEM) analysis to describe the ultra structural characteristics and annexin V and propidium iodide staining to confirm the types and stages of cell deaths. RESULTS Cytotoxicity screening of the extract on Caov-3 cells exhibited concentration- and time-dependent inhibitory effects. A combination of apoptotic and autophagic programmed cell death was detected. The apoptotic characteristic was initially determined by DNA fragmentation followed by the expression of c-myc and p53 genes that was much earlier than caspase-3. Apoptotic ultra structural changes (including clumping and magination of chromatin, blebbing and convolution of nucleus membrane and formation of apoptotic bodies) and autophagy (Type II non-apoptotic programmed cell death) with distinct vacuolated morphology were detected in TEM analysis. The existence of these programmed cell deaths was then corroborated using annexin V and propidium iodide staining. CONCLUSIONS The chloroform extract of Physalis minima exerted anticancer effect due to a combination of apoptotic and autophagic cell death mechanisms on Caov-3 cells. The induction of these programmed cell deaths was mediated via c-myc, p53 and caspase-3 dependent pathway. The results could provide a valuable insight in cancer therapy.
Collapse
Affiliation(s)
- Kheng Leong Ooi
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | | | | |
Collapse
|
163
|
Kaźmierczak A. Endoreplication in Anemia phyllitidis coincides with the development of gametophytes and male sex. PHYSIOLOGIA PLANTARUM 2010; 138:321-8. [PMID: 20015122 DOI: 10.1111/j.1399-3054.2009.01323.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Analyses of DNA content using fluorescence microcytophotometry showed that development of Anemia phyllitidis gametophytes coincided with endoreduplication process. The level of this process shown by the number of endopolyploid cells studied at the I-V arbitrarily established cellular gametophyte stages, was 3%, while at the VI-VII and VII* (male stages) were 10.5 and 4%, respectively. This process coincided with decreased mitotic activity of cells and concerned the cells with their profile area between 1100 and 13,000 microm(2). However, the correlation between cell size and its polyploidisation level was detected only for 12% of these cells. Endoreduplication during development of A. phyllitidis gametophytes seems to be connected with the end of cell cycle followed by the exit of cells from the cell cycle and with subsequent switch of proliferation to the postmitotic differentiation and/or to the endocycle. Endoreplication of A. phyllitidis gametophytes is a function of age, size and number of cells as well as type of gametophyte morphogenesis, which probably maintains the functional copies of genes whose number is restricted by elimination of cells from gametophytes by their death.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231 Łódź, Poland.
| |
Collapse
|
164
|
Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular algaChlamydomonas reinhardtii. Cell Biol Int 2010; 34:301-8. [DOI: 10.1042/cbi20090138] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
165
|
Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H. Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. PLANTA 2010; 231:537-48. [PMID: 19946703 DOI: 10.1007/s00425-009-1072-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 11/13/2009] [Indexed: 05/21/2023]
Abstract
To identify genes involved in resistance of tomato to Tomato yellow leaf curl virus (TYLCV), cDNA libraries from lines resistant (R) and susceptible (S) to the virus were compared. The hexose transporter LeHT1 was found to be expressed preferentially in R tomato plants. The role of LeHT1 in the establishment of TYLCV resistance was studied in R plants where LeHT1 has been silenced using Tobacco rattle virus-induced gene silencing (TRV VIGS). Following TYLCV inoculation, LeHT1-silenced R plants showed inhibition of growth and enhanced virus accumulation and spread. In addition, a necrotic response was observed along the stem and petioles of infected LeHT1-silenced R plants, but not on infected not-silenced R plants. This response was specific of R plants since it was absent in infected LeHT1-silenced S plants. Necrosis had several characteristics of programmed cell death (PCD): DNA from necrotic tissues presented a PCD-characteristic ladder pattern, the amount of a JNK analogue increased, and production of reactive oxygen was identified by DAB staining. A similar necrotic reaction along stem and petioles was observed in LeHT1-silenced R plants infected with the DNA virus Bean dwarf mosaic virus and the RNA viruses Cucumber mosaic virus and Tobacco mosaic virus. These results constitute the first evidence for a necrotic response backing natural resistance to TYLCV in tomato, confirming that plant defense is organized in multiple layers. They demonstrate that the hexose transporter LeHT1 is essential for the expression of natural resistance against TYLCV and its expression correlates with inhibition of virus replication and movement.
Collapse
Affiliation(s)
- Assaf Eybishtz
- The Otto Warburg Minerva Center for Agricultural Biotechnology and Institute of Plant Science and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
166
|
Autophagy in plants and phytopathogens. FEBS Lett 2010; 584:1350-8. [PMID: 20079356 DOI: 10.1016/j.febslet.2010.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/28/2022]
Abstract
Plants and plant-associated microorganisms including phytopathogens have to adapt to drastic changes in environmental conditions. Because of their immobility, plants must cope with various types of environmental stresses such as starvation, oxidative stress, drought stress, and invasion by phytopathogens during their differentiation, development, and aging processes. Here we briefly describe the early studies of plant autophagy, summarize recent studies on the molecular functions of ATG genes, and speculate on the role of autophagy in plants and phytopathogens. Autophagy regulates senescence and pathogen-induced cell death in plants, and autophagy and pexophagy play critical roles in differentiation and the invasion of host cells by phytopathogenic fungi.
Collapse
|
167
|
Lachaud C, Da Silva D, Cotelle V, Thuleau P, Xiong TC, Jauneau A, Brière C, Graziana A, Bellec Y, Faure JD, Ranjeva R, Mazars C. Nuclear calcium controls the apoptotic-like cell death induced by d-erythro-sphinganine in tobacco cells. Cell Calcium 2010; 47:92-100. [PMID: 20022633 DOI: 10.1016/j.ceca.2009.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 01/02/2023]
Abstract
Studies performed in animals have highlighted the major role of sphingolipids in regulating the balance between cell proliferation and cell death. Sphingolipids have also been shown to induce cell death in plants via calcium-based signalling pathways but the contribution of free cytosolic and/or nuclear calcium in the overall process has never been evaluated. Here, we show that increase in tobacco BY-2 cells of the endogenous content of Long Chain Bases (LCBs) caused by external application of d-erythro-sphinganine (DHS) is followed by immediate dose-dependent elevations of cellular free calcium concentration within the first minute in the cytosol and 10min later in the nucleus. Cells challenged with DHS enter a death process through apoptotic-like mechanisms. Lanthanum chloride, a general blocker of calcium entry, suppresses the cellular calcium variations and the PCD induced by DHS. Interestingly, dl-2-amino-5-phosphopentanoic acid (AP5) and [(+)-dizocilpine] (MK801), two inhibitors of animal and plant ionotropic glutamate receptors, suppress DHS-induced cell death symptoms by selectively inhibiting the variations of nuclear calcium concentration. The selective action of these compounds demonstrates the crucial role of nuclear calcium signature in controlling DHS-induced cell death in tobacco cells.
Collapse
Affiliation(s)
- Christophe Lachaud
- Université de Toulouse, UPS, UMR CNRS-UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, Auzeville, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Oh CS, Pedley KF, Martin GB. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK {alpha}. THE PLANT CELL 2010; 22:260-72. [PMID: 20061552 PMCID: PMC2828692 DOI: 10.1105/tpc.109.070664] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/11/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is triggered when Pto, a Ser-Thr protein kinase, recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv tomato. This PCD requires mitogen-activated protein kinase kinase kinase (MAPKKK alpha ) as a positive regulator in tomato (Solanum lycopersicum) and Nicotiana benthamiana. To examine how PCD-eliciting activity of the tomato MAPKKK alpha protein is regulated, we screened for MAPKKK alpha -interacting proteins in tomato and identified a 14-3-3 protein, TFT7. Virus-induced gene silencing using the TFT7 gene in N. benthamiana compromised both Pto- and MAPKKK alpha -mediated PCD, and coexpression of TFT7 with tomato MAPKKK alpha enhanced MAPKKK alpha -mediated PCD. TFT7 was also required for PCD associated with several other disease resistance proteins and contributed to resistance against P. syringae pv tomato. Coexpression of TFT7 with MAPKKK alpha in vivo caused increased accumulation of the kinase and enhanced phosphorylation of two MAP kinases. TFT7 protein contains a phosphopeptide binding motif that is present in human 14-3-3 epsilon, and substitutions in this motif abolished interaction with MAPKKK alpha in vivo and also the PCD-enhancing activity of TFT7. A 14-3-3 binding motif, including a putative phosphorylated Ser-535, is present in the C-terminal region of MAPKKK alpha. An S535A substitution in MAPKKK alpha reduced interaction with TFT7 and both PCD-eliciting ability and stability of MAPKKK alpha. Our results provide new insights into a role for 14-3-3 proteins in regulating immunity-associated PCD pathways in plants.
Collapse
Affiliation(s)
- Chang-Sik Oh
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Kerry F. Pedley
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Gregory B. Martin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
169
|
Andronis EA, Roubelakis-Angelakis KA. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. PLANTA 2010; 231:437-48. [PMID: 19937341 DOI: 10.1007/s00425-009-1060-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/30/2009] [Indexed: 05/08/2023]
Abstract
Recent results have identified mitochondria as centers of stress-induced generation of reactive oxygen species in plants. Depolarization of plant mitochondrial membrane during stress results the release of programmed cell death (PCD)-inducing factors in the cytosol in a fashion similar to the onset of animal-like PCD. Herein, we report significant similarities of animal-like PCD and salinity stress-induced plant PCD. Short-term salinity stress (3 h) led to depolarization of the mitochondrial membrane, release of cytochrome c (CYT-c), which was visualized using a contemporary molecular technique, activation of caspase-3 type proteases and the onset of PCD in wild type tobacco plants, Nicotiana tabacum cv. Petit Havana. However, PCD was not manifested during long-term salinity stress (24 h). Interestingly long-term salinity stress led to necrotic-like features, which were accompanied by collapse of respiration, reduction of key components of the respiratory chain, such as CYT-c and alternative oxidase, ATP depletion and high proteolytic activity. The results suggest that salinity stress of tobacco plants in planta leads to the onset of animal-like PCD only during the early stages post-stress, while long-term stress leads to necrotic-like features.
Collapse
Affiliation(s)
- Efthimios A Andronis
- Department of Biology, University of Crete, P.O. Box 2208, 71409 Heraklion Crete, Greece.
| | | |
Collapse
|
170
|
Petrussa E, Bertolini A, Casolo V, Krajnáková J, Macrì F, Vianello A. Mitochondrial bioenergetics linked to the manifestation of programmed cell death during somatic embryogenesis of Abies alba. PLANTA 2009; 231:93-107. [PMID: 19834734 DOI: 10.1007/s00425-009-1028-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/17/2009] [Indexed: 05/05/2023]
Abstract
The present work reports changes in bioenergetic parameters and mitochondrial activities during the manifestation of two events of programmed cell death (PCD), linked to Abies alba somatic embryogenesis. PCD, evidenced by in situ nuclear DNA fragmentation (TUNEL assay), DNA laddering and cytochrome c release, was decreased in maturing embryogenic tissue with respect to the proliferation stage. In addition, the major cellular energetic metabolites (ATP, NAD(P)H and glucose-6-phosphate) were highered during maturation. The main mitochondrial activities changed during two developmental stages. Mitochondria, isolated from maturing, with respect to proliferating cell masses, showed an increased activity of the alternative oxidase, external NADH dehydrogenase and fatty-acid mediated uncoupling. Conversely, a significant decrease of the mitochondrial K (ATP)(+) channel activity was observed. These results suggest a correlation between mitochondrial activities and the manifestation of PCD during the development of somatic embryos. In particular, it is suggested that the K (ATP)(+) channel activity could induce an entry of K(+) into the matrix, followed by swelling and a release of cytochrome c during proliferation, whereas the alternative pathways, acting as anti-apoptotic factors, may partially counteract PCD events occurring during maturation of somatic embryos.
Collapse
Affiliation(s)
- Elisa Petrussa
- Section of Plant Biology, Department of Biology and Plant Protection, University of Udine, via delle Scienze 91, 33100, Udine, Italy
| | | | | | | | | | | |
Collapse
|
171
|
Abstract
The growing apices of plants contain stem cells that continually produce tissues, which, in the shoot, include the germline. These stem cell populations remain active throughout the plant's life, which can last for centuries, and are particularly exposed to environmental hazards that cause DNA damage and mutations. It is not known whether plants have mechanisms to safeguard the genome specifically in these crucial cell populations. Here, we show that root and shoot stem cells and their early descendants are selectively killed by mild treatment with radiomimetic drugs, x-rays, or mutations that disrupt DNA repair by nonhomologous end-joining. Stem cell death required transduction of DNA damage signals by the ATAXIA-TELANGIECTASIA MUTATED (ATM) kinase and, specifically in the root, also the ATM/RAD3-RELATED (ATR) kinase. Consistent with the absence of p53 and the core apoptotic machinery in plants, death of the stem cells did not show apoptotic but autolytic features as seen in other cases of plant developmentally programmed cell death. We propose that plants have independently evolved selective death as a stringent mechanism to safeguard genome integrity in their stem cell populations.
Collapse
|
172
|
Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. THE PLANT CELL 2009; 21:2914-27. [PMID: 19773385 PMCID: PMC2768913 DOI: 10.1105/tpc.109.068635] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/05/2009] [Accepted: 09/02/2009] [Indexed: 05/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. In higher plants, autophagy defects result in early senescence and excessive immunity-related programmed cell death (PCD) irrespective of nutrient conditions; however, the mechanisms by which cells die in the absence of autophagy have been unclear. Here, we demonstrate a conserved requirement for salicylic acid (SA) signaling for these phenomena in autophagy-defective mutants (atg mutants). The atg mutant phenotypes of accelerated PCD in senescence and immunity are SA signaling dependent but do not require intact jasmonic acid or ethylene signaling pathways. Application of an SA agonist induces the senescence/cell death phenotype in SA-deficient atg mutants but not in atg npr1 plants, suggesting that the cell death phenotypes in the atg mutants are dependent on the SA signal transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. We also show that autophagy is induced by the SA agonist. These findings imply that plant autophagy operates a novel negative feedback loop modulating SA signaling to negatively regulate senescence and immunity-related PCD.
Collapse
|
173
|
Kusano T, Tateda C, Berberich T, Takahashi Y. Voltage-dependent anion channels: their roles in plant defense and cell death. PLANT CELL REPORTS 2009; 28:1301-1308. [PMID: 19585120 DOI: 10.1007/s00299-009-0741-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/23/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
The voltage-dependent anion channels (VDACs), mitochondrial outer membrane components, are present in organisms from fungi to animals and plants. They are thought to function in the regulation of metabolite transport between mitochondria and the cytoplasm. Sufficient knowledge on plant VDACs has been accumulated, so that we can here summarize the current information. Then, the involvement of mitochondria in plant defense and cell death is overviewed. While, in mammals, it is suggested that VDAC, also known as a component of the permeability transition pore (PTP) complex formed in the junction site of mitochondrial outer and inner membrane, is a key player in mitochondria-mediated cell death, little is known about the role of plant VDACs in this process. We have shown that plant VDACs are involved in mitochondria-mediated cell death and in defense against a non-host pathogen. In light of the current findings, we discuss the role of the PTP complex and VDAC as its component in plant pathogen defense and cell death.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Laboratory of Plant Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai-City, Miyagi, 980-8577, Japan.
| | | | | | | |
Collapse
|
174
|
Reinbothe C, Springer A, Samol I, Reinbothe S. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 2009; 276:4666-81. [PMID: 19663906 DOI: 10.1111/j.1742-4658.2009.07193.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plants are continuously challenged by a variety of abiotic and biotic cues. To deter feeding insects, nematodes and fungal and bacterial pathogens, plants have evolved a plethora of defence strategies. A central player in many of these defence responses is jasmonic acid. It is the aim of this minireview to summarize recent findings that highlight the role of jasmonic acid during programmed cell death, plant defence and leaf senescence.
Collapse
|
175
|
Casani S, Fontanini D, Capocchi A, Lombardi L, Galleschi L. Investigation on cell death in the megagametophyte of Araucaria bidwillii Hook. post-germinated seeds. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:599-607. [PMID: 19321357 DOI: 10.1016/j.plaphy.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/08/2009] [Accepted: 02/24/2009] [Indexed: 05/27/2023]
Abstract
The megagametophyte of the Araucaria bidwillii seed is a storage tissue that surrounds and feeds the embryo. When all its reserves are mobilized, the megagametophyte degenerates as a no longer needed tissue. In this work we present a biochemical and a cytological characterization of the megagametophyte cell death. The TUNEL assay showed progressive DNA fragmentation throughout the post-germinative stages, while DNA electrophoretic analysis highlighted a smear as the predominant pattern of DNA degradation and internucleosomal DNA cleavage only for a minority of cells at late post-germinative stages. Cytological investigations at these stages detected profound changes in the size and morphology of the megagametophyte nuclei. By using in vitro assays, we were able to show a substantial increase in proteolytic activities, including caspase-like protease activities during the megagametophyte degeneration. Among the caspase-like enzymes, caspase 6- and 1-like proteases appeared to be the most active in the megagametophyte with a preference for acidic pH. On the basis of our results, we propose that the major pathway of cell death in the Araucaria bidwillii megagametophyte is necrosis; however, we do not exclude that some cells undergo developmental programmed cell death.
Collapse
Affiliation(s)
- Simone Casani
- Department of Biology, University of Pisa, Via Luca Ghini 5, 56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|
176
|
Hayward AP, Tsao J, Dinesh-Kumar SP. Autophagy and plant innate immunity: Defense through degradation. Semin Cell Dev Biol 2009; 20:1041-7. [PMID: 19406248 DOI: 10.1016/j.semcdb.2009.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 01/02/2023]
Abstract
Autophagy is a process of bulk degradation and nutrient sequestration that occurs in all eukaryotes. In plants, autophagy is activated during development, environmental stress, starvation, and senescence. Recent evidence suggests that autophagy is also necessary for the proper regulation of hypersensitive response programmed cell death (HR-PCD) during the plant innate immune response. We review autophagy in plants with emphasis on the role of autophagy during innate immunity. We hypothesize a role for autophagy in the degradation of pro-death signals during HR-PCD, with specific focus on reactive oxygen species and their sources. We propose that the plant chloroplasts are an important source of pro-death signals during HR-PCD, and that the chloroplast itself may be targeted for autophagosomal degradation by a process called chlorophagy.
Collapse
Affiliation(s)
- Andrew P Hayward
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
177
|
Wright H, van Doorn WG, Gunawardena AHLAN. In vivo study of developmental programmed cell death using the lace plant (Aponogeton madagascariensis; Aponogetonaceae) leaf model system. AMERICAN JOURNAL OF BOTANY 2009; 96:865-76. [PMID: 21628239 DOI: 10.3732/ajb.0800343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Programmed cell death (PCD) is required for many morphological changes, but in plants it has been studied in much less detail than in animals. The unique structure and physiology of the lace plant (Aponogeton madagascariensis) is well suited for the in vivo study of developmental PCD. Live streaming video and quantitative analysis, coupled with transmission electron microscopy, were used to better understand the PCD sequence, with an emphasis on the chloroplasts. Dividing, dumbbell-shaped chloroplasts persisted until the late stages of PCD. However, the average size and number of chloroplasts, and the starch granules associated with them, declined steadily in a manner reminiscent of leaf senescence, but distinct from PCD described in the Zinnia tracheary element system. Remaining chloroplasts often formed a ring around the nucleus. Transvacuolar strands, which appeared to be associated with chloroplast transport, first increased and then decreased. Mitochondrial streaming ceased abruptly during the late stages of PCD, apparently due to tonoplast rupture. This rupture occurred shortly before the rapid degradation of the nucleus and plasma membrane collapse, in a manner also reminiscent of the Zinnia model. The presence of numerous objects in the vacuoles suggests increased macro-autophagy before cell death. These objects were rarely observed in cells not undergoing PCD.
Collapse
Affiliation(s)
- Harrison Wright
- Atlantic Food and Horticulture Research Center, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, B4N 1J5, Canada
| | | | | |
Collapse
|
178
|
Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H. A unique program for cell death in xylem fibers of Populus stem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:260-74. [PMID: 19175765 DOI: 10.1111/j.1365-313x.2008.03777.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.
Collapse
|
179
|
Reina-Pinto JJ, Voisin D, Kurdyukov S, Faust A, Haslam RP, Michaelson LV, Efremova N, Franke B, Schreiber L, Napier JA, Yephremov A. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. THE PLANT CELL 2009; 4:625-8. [PMID: 19376931 PMCID: PMC2685613 DOI: 10.1105/tpc.109.065565] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/09/2009] [Accepted: 03/31/2009] [Indexed: 05/20/2023]
Abstract
Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific beta-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool.
Collapse
|
180
|
Lee TC, Hsu BD. DISINTEGRATION OF THE CELLS OF SIPHONOUS GREEN ALGA CODIUM EDULE (BRYOPSIDALES, CHLOROPHYTA) UNDER MILD HEAT STRESS(1). JOURNAL OF PHYCOLOGY 2009; 45:348-56. [PMID: 27033813 DOI: 10.1111/j.1529-8817.2009.00656.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The siphonous green alga Codium edule P. C. Silva (Bryopsidales, Chlorophyta) has the highest covering ratio among the macroalgae on the coral reef of Nanwan Bay in southern Taiwan, but its population in the subtidal region drastically decreases from July to September each year. The objective of this study was to determine whether the high temperature of summer could be the basis for this population decrease. Chlorophyll fluorescence measurements revealed that when the algae were incubated at 35°C (a temperature that can be reached in southern Taiwan during the summer), their photosynthetic activities were almost completely inhibited after about 8 h. The circadian rhythm of photosynthesis was disrupted at a temperature as low as 32°C. TEM studies showed that 4 h incubation at 35°C induced a decrease in turgidity accompanied by vacuole shrinkage and plasmolysis. The marked disintegrative changes, including damage to organelles, such as chloroplasts and nuclei, occurred after about 8 h, at which time central vacuoles collapsed and the cell interior was then filled with numerous small vesicles. Our results suggested that the rise in seawater temperature during the summer could be one of the major causes of the massive death of C. edule in the field.
Collapse
Affiliation(s)
- Tzan-Chain Lee
- Department of Life Science, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Ban-Dar Hsu
- Department of Life Science, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| |
Collapse
|
181
|
Yamada T, Ichimura K, Kanekatsu M, van Doorn WG. Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. PLANT & CELL PHYSIOLOGY 2009; 50:610-25. [PMID: 19182226 DOI: 10.1093/pcp/pcp019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In senescent petals of Ipomoea nil, we investigated the expression of genes showing homology to genes involved in animal programmed cell death (PCD). Three encoded proteins were homologous to apoptotic proteins in animals: Bax inhibitor-1 (BI-1), a vacuolar processing enzyme (VPE; homologous to caspases) and a monodehydroascorbate reductase [MDAR; homologous to apoptosis-inducing factor (AIF)]. AIFs harbor an oxidoreductase domain and an apoptotic domain. MDARs exhibit homology to the AIF oxidoreductase domain, not to the apoptotic domain. The three other genes studied relate to autophagy. They encode homologs to vacuolar protein sorting 34 (VPS34) and to the Arabidopsis autophagy-related proteins 4b and 8a (ATG4b and ATG8a). The transcript abundance of MDAR decreased continuously, whereas that of the other genes studies exhibited a transient increase, except ATG4b whose abundance stayed high after an increase. Treatment with ethylene advanced the time to visible petal senescence, and hastened the changes in expression of each of the genes studied. In order to assess the role of VPS34 in petal senescence, we studied the effect of its inhibitor 3-methyladenine (3-MA). 3-MA reduced the time to visible petal senescence, and also accelerated the time to DNA degradation. Remarkably, 3-MA increased the time to nuclear fragmentation, indicating that the time to visible petal senescence was independent of nuclear fragmentation. The data on 3-MA might suggest the idea that autophagy is not a cause of PCD, but part of the remobilization process.
Collapse
Affiliation(s)
- Tetsuya Yamada
- National Institute of Floricultural Science, Tsukuba 305-8519, Japan.
| | | | | | | |
Collapse
|
182
|
Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:939-54. [PMID: 19213813 PMCID: PMC2652054 DOI: 10.1093/jxb/ern348] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 12/02/2008] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a key element in normal plant growth and development which may also be induced by various abiotic and biotic stress factors including salt stress. In the present study, morphological, biochemical, and physiological responses of the theoretically immortal unicellular freshwater green alga Micrasterias denticulata were examined after salt (200 mM NaCl or 200 mM KCl) and osmotic stress induced by iso-osmotic sorbitol. KCl caused morphological changes such as cytoplasmic vacuolization, extreme deformation of mitochondria, and ultrastructural changes of Golgi and ER. However, prolonged salt stress (24 h) led to the degradation of organelles by autophagy, a special form of PCD, both in NaCl- and KCl-treated cells. This was indicated by the enclosure of organelles by ER-derived double membranes. DNA of NaCl- and KCl-stressed cells but not of sorbitol-treated cells showed a ladder-like pattern on agarose gel, which means that the ionic rather than the osmotic component of salt stress leads to the activation of the responsible endonuclease. DNA laddering during salt stress could be abrogated by addition of Zn(2+). Neither cytochrome c release from mitochondria nor increase in caspase-3-like activity occurred after salt stress. Reactive oxygen species could be detected within 5 min after the onset of salt and osmotic stress. Respiration, photosynthetic activity, and pigment composition indicated an active metabolism which supports programmed rather than necrotic cell death in Micrasterias after salt stress.
Collapse
Affiliation(s)
- Matthias Josef Affenzeller
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Anza Darehshouri
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Ancuela Andosch
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - Cornelius Lütz
- Institute of Botany, Faculty of Biology, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| |
Collapse
|
183
|
Shibuya K, Yamada T, Suzuki T, Shimizu K, Ichimura K. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory. PLANT PHYSIOLOGY 2009; 149:816-24. [PMID: 19036837 PMCID: PMC2633835 DOI: 10.1104/pp.108.127415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japanese morning glory. InPSR26 is dominantly expressed in petal limbs and its transcript level increases prior to visible senescence symptoms. Transgenic plants with reduced InPSR26 expression (PSR26r lines) showed accelerated petal wilting, with PCD symptoms including cell collapse, ion and anthocyanin leakage, and DNA degradation accelerated in petals compared to wild-type plants. Transcript levels of autophagy- and PCD-related genes (InATG4, InATG8, InVPE, and InBI-1) were reduced in the petals of PSR26r plants. Autophagy visualized by monodansylcadaverine staining confirmed that autophagy is induced in senescing petal cells of wild-type plants and that the percentage of cells containing monodansylcadaverine-stained structures, most likely autophagosomes, was significantly lower in the petals of PSR26r plants, indicating reduced autophagic activity in the PSR26r plants. These results suggest that InPSR26 acts to delay the progression of PCD during petal senescence, possibly through regulation of the autophagic process. Our data also suggest that autophagy delays PCD in petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- National Institute of Floricultural Science, National Agriculture and Food Research Organization, Tsukuba 305-8519, Japan.
| | | | | | | | | |
Collapse
|
184
|
Iakimova ET, Woltering EJ, Kapchina-Toteva VM. Cadmium-Induced Programmed Cell Death Signaling in Tomato Suspension Cells. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
185
|
Koshiba T, Kobayashi M, Matoh T. Boron nutrition of tobacco BY-2 cells. V. oxidative damage is the major cause of cell death induced by boron deprivation. PLANT & CELL PHYSIOLOGY 2009; 50:26-36. [PMID: 19054807 PMCID: PMC2638710 DOI: 10.1093/pcp/pcn184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/26/2008] [Indexed: 05/18/2023]
Abstract
Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD.
Collapse
Affiliation(s)
| | - Masaru Kobayashi
- Laboratory of Plant Nutrition, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | | |
Collapse
|
186
|
|
187
|
Love AJ, Milner JJ, Sadanandom A. Timing is everything: regulatory overlap in plant cell death. TRENDS IN PLANT SCIENCE 2008; 13:589-95. [PMID: 18824399 DOI: 10.1016/j.tplants.2008.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/22/2008] [Accepted: 08/28/2008] [Indexed: 05/21/2023]
Abstract
Plant development and defence are intimately connected to programmed cell death (PCD). PCD can occur after environmental cues such as pathogen infection, mechanical damage or abiotic stress. However, PCD also constitutes an essential feature of various aspects of growth and development. Despite the differences in stimuli, the subsequent steps leading to programmed cellular death show considerable commonality, reflecting the essential and overlapping roles of individual regulatory components in these processes. These components can function as positive or negative regulators and can have contrasting functions depending on the form of cell death.
Collapse
Affiliation(s)
- Andrew J Love
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
188
|
Darehshouri A, Affenzeller M, Lütz-Meindl U. Cell death upon H(2)O(2) induction in the unicellular green alga Micrasterias. PLANT BIOLOGY (STUTTGART, GERMANY) 2008; 10:732-45. [PMID: 18950431 PMCID: PMC2923030 DOI: 10.1111/j.1438-8677.2008.00078.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the present study, we investigated whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction, and which morphological, molecular and physiological hallmarks characterise this. This is particularly interesting as unicellular freshwater green algae growing in shallow bog ponds are exposed to extreme environmental conditions, and the capacity to perform PCD may be an important strategy to guarantee survival of the population. The theoretically 'immortal' alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system for many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatments with low concentrations of H(2)O(2) are known to induce PCD in other organisms, resulting in severe ultrastructural changes to organelles, as observed in TEM. These include deformation and part disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, occurrence of multivesicular bodies, an increase in the number of ER compartments, and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity was detected, which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H(2)O(2) exposure, whereas pigment composition, except for a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as a hallmark of PCD in higher plants, could only be detected in dead Micrasterias cells.
Collapse
Affiliation(s)
| | | | - Ursula Lütz-Meindl
- Corresponding author: U. Lütz-Meindl, Plant Physiology Division, Cell Biology Department, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria, Tel.: +43 662 8044 5555; fax +43 662 8044 619,
| |
Collapse
|
189
|
Abstract
Cell death is a vital process in multi-cellular eukaryotes. Rather than being a contradiction in terms, this statement highlights the importance of limited and localized cell killing to the health and normal development of complex organisms. The main focus of this article is the role of mitochondrial morphological changes during cell death programmes, and the conserved role of mitochondrial permeability transition (increased permeability of either the outer or inner membrane) as an early mechanistic event preceding cell death in both plant and non-plant eukaryotes. A second focus of this article is a review of the terminology and fundamental paradigms underpinning cell death research. Because of the importance of the process of cell death, there has been an enormous quantity of research performed to try to understand the underlying biological mechanisms. One result of such a large and varied research effort, and a result that is perhaps particularly evident to investigators coming into the field anew, is that some of the basic tenets of cell death research appear to have become confused. In this short article, I make an attempt to clarify the subject, focussing on the role of mitochondria, and the difficulties in comprehensibility arising from the sometimes-erroneous, or at least unnecessarily confusing use of specific terminology; there are several key terms in the cell death literature that appear interchangeable when they are not, or are interchanged when they should not be.
Collapse
Affiliation(s)
- D C Logan
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, Fife, KY16 9TH, Scotland, United Kingdom.
| |
Collapse
|
190
|
Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ. Autophagy regulated by day length determines the number of fertile florets in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1010-24. [PMID: 18547393 DOI: 10.1111/j.1365-313x.2008.03570.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The wheat spikelet meristem differentiates into up to 12 floret primordia, but many of them fail to reach the fertile floret stage at anthesis. We combined microarray, biochemical and anatomical studies to investigate floret development in wheat plants grown in the field under short or long days (short days extended with low-fluence light) after all the spikelets had already differentiated. Long days accelerated spike and floret development and greening, and the expression of genes involved in photosynthesis, photoprotection and carbohydrate metabolism. These changes started while the spike was in the light-depleted environment created by the surrounding leaf sheaths. Cell division ceased in the tissues of distal florets, which interrupted their normal developmental progression and initiated autophagy, thus decreasing the number of fertile florets at anthesis. A massive decrease in the expression of genes involved in cell proliferation, a decrease in soluble carbohydrate levels, and an increase in the expression of genes involved in programmed cell death accompanied anatomical signs of cell death, and these effects were stronger under long days. We propose a model in which developmentally generated sugar starvation triggers floret autophagy, and long days intensify these processes due to the increased carbohydrate consumption caused by the accelerated plant development.
Collapse
Affiliation(s)
- Hernán O Ghiglione
- Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Av San Martín 4453, 1417 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM. Cadmium toxicity in cultured tomato cells--role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 2008; 32:1521-9. [PMID: 18801448 DOI: 10.1016/j.cellbi.2008.08.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/15/2008] [Accepted: 08/19/2008] [Indexed: 01/08/2023]
Abstract
Our aim was to investigate the ability of cadmium to induce programmed cell death in tomato suspension cells and to determine the involvement of proteolysis, oxidative stress and ethylene. Tomato suspension cells were exposed to treatments with CdSO(4) and cell death was calculated after fluorescein diacetate staining of the living cells. Ethylene was measured in a flow-through system using a laser-driven photo acoustic detector; hydrogen peroxide was determined by chemiluminescence in a ferricyanide-catalysed oxidation of luminol. We have demonstrated that cadmium induces cell death in tomato suspension cells involving caspase-like proteases, indicating that programmed cell death took place. Using range of inhibitors, we found that cysteine and serine peptidases, oxidative stress, calcium and ethylene are players in the cadmium-induced cell death signaling. Cadmium-induced cell death in tomato suspension cells exhibits morphological and biochemical similarities to plant hypersensitive response and to cadmium effects in animal systems.
Collapse
Affiliation(s)
- Elena T Iakimova
- Wageningen University & Research Centre, Department of Horticultural Supply Chains (HSC) and Agrotechnology and Food Science Group (AFSG) P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
192
|
Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2008; 16:21-30. [DOI: 10.1038/cdd.2008.120] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
193
|
Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3247-58. [PMID: 18603613 PMCID: PMC2529240 DOI: 10.1093/jxb/ern176] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/19/2008] [Accepted: 06/03/2008] [Indexed: 05/18/2023]
Abstract
Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5' promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis.
Collapse
Affiliation(s)
- Sarit Farage-Barhom
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
- Faculty of Life Science, Bar Ilan University, Ramat Gan, Israel
| | - Shaul Burd
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Lilian Sonego
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | | | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| |
Collapse
|
194
|
Scott I, Logan DC. Mitochondria and cell death pathways in plants: Actions speak louder than words. PLANT SIGNALING & BEHAVIOR 2008; 3:475-7. [PMID: 19704490 PMCID: PMC2634434 DOI: 10.4161/psb.3.7.5678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/31/2008] [Indexed: 05/24/2023]
Abstract
The mitochondrion has a central role during programmed cell death (PCD) in animals, acting as both a sensor of death signals, and as an initiator of the biochemical processes which lead to the controlled destruction of the cell. In contrast to our extensive knowledge of animal cell death, the part played by mitochondria in the death of plant cells has received relatively little attention. Using a combination of whole-organism and cell-based models, we recently demonstrated that changes in mitochondrial morphology are an early and crucial step in plant cell death. Here, we discuss these findings in the light of recent literature, and how they relate to our knowledge of plant cell death as a whole.
Collapse
Affiliation(s)
- Iain Scott
- Biochemistry Section; Surgical Neurology Branch; National Institute for Neurological Disorders and Stroke; National Institutes of Health; Bethesda, Maryland USA
| | | |
Collapse
|
195
|
Malerba M, Contran N, Tonelli M, Crosti P, Cerana R. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore (Acer pseudoplatanus) cultured cells. PHYSIOLOGIA PLANTARUM 2008; 133:449-57. [PMID: 18346076 DOI: 10.1111/j.1399-3054.2008.01085.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore (Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c, FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy.
| | | | | | | | | |
Collapse
|
196
|
Kaźmierczak A. Cell number, cell growth, antheridiogenesis, and callose amount is reduced and atrophy induced by deoxyglucose in Anemia phyllitidis gametophytes. PLANT CELL REPORTS 2008; 27:813-21. [PMID: 18210119 DOI: 10.1007/s00299-007-0501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 05/22/2023]
Abstract
Fluorescence staining and morphometrical measurements revealed that callose was a component of newly formed cell plates of symmetrically dividing cells and asymmetrically dividing antheridial mother cells during gibberellic acid-induced antheridiogenesis as well as in walls of young growing cells of Anemia phyllitidis gametophytes. Callose in cell walls forms granulations characteristic of pit fields with plasmodesmata. 2-deoxy-D-glucose (DDG), eliminated callose granulations and reduced its amount estimated by measurements of fluorescence intensity. This effect was accompanied by reduction of antheridia and cell numbers as well as size and atrophy of particular cells and whole gametophytes. It is suggested that inhibition of glucose metabolism and/or signalling, might decrease callose synthesis in A. phyllitidis gametophytes leading to its elimination from cell plates of dividing cells and from walls of differentiating ones as well as from plasmodesmata resulting in inhibition of cytokinesis, cell growth and disruption of the intercellular communication system, thus disturbing developmental programs and leading to cell death.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90231 Łódź, Poland.
| |
Collapse
|
197
|
Li S, Franklin-Tong VE. Self-incompatibility in Papaver: A MAP kinase signals to trigger programmed cell death. PLANT SIGNALING & BEHAVIOR 2008; 3:243-245. [PMID: 19704642 PMCID: PMC2634190 DOI: 10.4161/psb.3.4.5152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 05/28/2023]
Abstract
Self-incompatibility (SI) in higher plants prevents inbreeding through specific recognition and rejection of incompatible ("self") pollen. In Papaver rhoeas, S proteins encoded by the pistil component of the S-locus interact with incompatible pollen, triggering a Ca(2+)-dependent signaling network resulting in programmed cell death (PCD). We recently showed that a mitogen-activated protein kinase (MAPK) is involved in loss of pollen viability, stimulation of caspase-3-like (DEVDase) activity and later DNA fragmentation in incompatible pollen. As p56 appears to be the only MAPK activated by SI, our data suggest that p56 could be the MAPK responsible for mediating SI-induced PCD.
Collapse
Affiliation(s)
- Shutian Li
- School of Biosciences; University of Birmingham; Birmingham, United Kingdom
| | | |
Collapse
|
198
|
Gao C, Xing D, Li L, Zhang L. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. PLANTA 2008; 227:755-767. [PMID: 17972096 DOI: 10.1007/s00425-007-0654-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/12/2007] [Indexed: 05/25/2023]
Abstract
Recent studies have suggested that ultraviolet-C (UV-C) overexposure induces programmed cell death (PCD) in Arabidopsis thaliana (L.) Heynh, and this process includes participation of caspase-like proteases, DNA laddering as well as fragmentation of the nucleus. To investigate possible early signal events, we used microscopic observations to monitor in vivo the behaviour of mitochondria, as well as the production and localization of reactive oxygen species (ROS) during protoplast PCD induced by UV-C. A quick burst of ROS was detected when the protoplasts were kept in continuous light after UV-C exposure, which was restricted in chloroplasts and the adjacent mitochondria. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) or 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU, an inhibitor of photosynthetic electron transport) decreased the ROS production and partially protected protoplasts from PCD. A mitochondrial transmembrane potential (MTP) loss occurred prior to cell death; thereafter, the mitochondria irregularly clumped around chloroplasts or aggregated in other places within the cytoplasm, and the movement of mitochondria was concomitantly blocked. Pre-treatment with an inhibitor of mitochondrial permeability transition pores (MPTP), cyclosporine (CsA), effectively retarded the decrease of MTP and reduced the percentage of protoplasts undergoing PCD after UV-C overexposure. Our results suggest that the MTP loss and the changes in distribution and mobility of mitochondria, as well as the production of ROS play important roles during UV-induced plant PCD, which is in good accordance with what has been reported in many types of apoptotic cell death, both in animals and plants.
Collapse
Affiliation(s)
- Caiji Gao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, People's Republic of China
| | | | | | | |
Collapse
|
199
|
Azevedo H, Lino-Neto T, Tavares RM. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells. PLANT & CELL PHYSIOLOGY 2008; 49:386-395. [PMID: 18252735 DOI: 10.1093/pcp/pcn015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.
Collapse
Affiliation(s)
- Herlânder Azevedo
- Grupo de Bioquímica e Fisiologia Molecular de Plantas, Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
200
|
Liang X, Nazarenus TJ, Stone JM. Identification of a consensus DNA-binding site for the Arabidopsis thaliana SBP domain transcription factor, AtSPL14, and binding kinetics by surface plasmon resonance. Biochemistry 2008; 47:3645-53. [PMID: 18302343 DOI: 10.1021/bi701431y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins with a conserved Cys- and His-rich SQUAMOSA promoter binding protein (SBP) domain are transcription factors restricted to photosynthetic organisms that possess a novel two Zn-finger structure DNA-binding domain. Despite the fact that altered expression of some SBP-encoding genes has profound effects on organism growth and development, little is known about SBP domain protein target genes. Misexpression of the Arabidopsis thaliana AtSPL14 SBP domain gene confers resistance to programmed cell death and modifies plant architecture. A consensus DNA-binding motif for AtSPL14 was identified by systematic evolution of ligands by exponential enrichment (SELEX) or random binding site selection (RBSS). DNA recognized by AtSPL14 contained the core binding motif (GTAC) found for other SBP domain proteins, but mutational analyses indicated that at least one additional flanking nucleotide is necessary for effective AtSPL14-DNA interaction. Comparison of several SBP domain amino acid sequences allows us to hypothesize which specific amino acids might participate in this sequence-specific DNA recognition. Electrophoretic mobility shift assays (EMSA) with mutant AtSPL14 DNA-binding domain proteins indicated that not all of the Zn (2+) ion coordinating ligands in the second Zn structure are strictly required for DNA binding. Surface plasmon resonance (SPR) was used to evaluate AtSPL14 in vitro binding kinetics for comparison of equilibrium binding constants with other SBP domain proteins. These data provide a strong basis for further experiments aimed at defining and distinguishing the sets of genes regulated by the closely related SBP domain family members.
Collapse
Affiliation(s)
- Xinwen Liang
- Department of Biochemistry, Plant Science Initiative, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | | | |
Collapse
|