151
|
Lian J, Schultz C, Cao M, HamediRad M, Zhao H. Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping. Nat Commun 2019; 10:5794. [PMID: 31857575 PMCID: PMC6923430 DOI: 10.1038/s41467-019-13621-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 11/12/2019] [Indexed: 01/20/2023] Open
Abstract
Genome-scale engineering is an indispensable tool to understand genome functions due to our limited knowledge of cellular networks. Unfortunately, most existing methods for genome-wide genotype–phenotype mapping are limited to a single mode of genomic alteration, i.e. overexpression, repression, or deletion. Here we report a multi-functional genome-wide CRISPR (MAGIC) system to precisely control the expression level of defined genes to desired levels throughout the whole genome. By combining the tri-functional CRISPR system and array-synthesized oligo pools, MAGIC is used to create, to the best of our knowledge, one of the most comprehensive and diversified genomic libraries in yeast ever reported. The power of MAGIC is demonstrated by the identification of previously uncharacterized genetic determinants of complex phenotypes, particularly those having synergistic interactions when perturbed to different expression levels. MAGIC represents a powerful synthetic biology tool to investigate fundamental biological questions as well as engineer complex phenotypes for biotechnological applications. Genome-scale engineering is generally limited to single methods of alteration such as overexpression, repression or deletion. Here the authors present a tri-functional CRISPR system that can engineer complex synergistic interactions in a genome-wide manner.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Carl Schultz
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Lifefoundry Inc., 60 Hazelwood Dr., Champaign, IL, 61820, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
152
|
Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Fact 2019; 18:191. [PMID: 31690329 PMCID: PMC6833135 DOI: 10.1186/s12934-019-1244-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aromatic amino acids and their derivatives are valuable chemicals and are precursors for different industrially compounds. p-Coumaric acid is the main building block for complex secondary metabolites in commercial demand, such as flavonoids and polyphenols. Industrial scale production of this compound from yeast however remains challenging. RESULTS Using metabolic engineering and a systems biology approach, we developed a Saccharomyces cerevisiae platform strain able to produce 242 mg/L of p-coumaric acid from xylose. The same strain produced only 5.35 mg/L when cultivated with glucose as carbon source. To characterise this platform strain further, transcriptomic analysis was performed, comparing this strain's growth on xylose and glucose, revealing a strong up-regulation of the glyoxylate pathway alongside increased cell wall biosynthesis and unexpectedly a decrease in aromatic amino acid gene expression when xylose was used as carbon source. CONCLUSIONS The resulting S. cerevisiae strain represents a promising platform host for future production of p-coumaric using xylose as a carbon source.
Collapse
Affiliation(s)
- Gheorghe M Borja
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Angelica Rodriguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark
| | - Kate Campbell
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jens Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- BioInnovation Institute, Ole Måløes Vej 3, 2200, Copenhagen N, Denmark.
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
153
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
154
|
Deaner M, Alper HS. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:foz076. [PMID: 31665284 DOI: 10.1093/femsyr/foz076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Although only 6 years old, the CRISPR system has blossomed into a tool for rapid, on-demand genome engineering and gene regulation in Saccharomyces cerevisiae. In this minireview, we discuss fundamental CRISPR technologies, tools to improve the efficiency and capabilities of gene targeting, and cutting-edge techniques to explore gene editing and transcriptional regulation at genome scale using pooled approaches. The focus is on applications to metabolic engineering with topics including development of techniques to edit the genome in multiplex, tools to enable large numbers of genetic modifications using pooled single-guide RNA libraries and efforts to enable programmable transcriptional regulation using endonuclease-null Cas enzymes.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|
155
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
156
|
Dahabieh MS, Thevelein JM, Gibson B. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends Biotechnol 2019; 38:241-253. [PMID: 31653446 DOI: 10.1016/j.tibtech.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Biological engineering has unprecedented potential to solve society's most pressing challenges. Engineering approaches must consider complex technical, economic, and social factors. This requires methods that confer gene/pathway-level functionality and organism-level robustness in rapid and cost-effective ways. This article compares foundational engineering approaches - bottom-up, gene-targeted engineering, and top-down, whole-genome engineering - and identifies significant complementarity between them. Cases drawn from engineering Saccharomyces cerevisiae exemplify the synergy of a combined approach. Indeed, multimodal engineering streamlines strain development by leveraging the complementarity of whole-genome and gene-targeted engineering to overcome the gap in design knowledge that restricts rational design. As biological engineers target more complex systems, this dual-track approach is poised to become an increasingly important tool to realize the promise of synthetic biology.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Renaissance BioScience, 410-2389 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
157
|
Ouyang X, Cha Y, Li W, Zhu C, Zhu M, Li S, Zhuo M, Huang S, Li J. Stepwise engineering of Saccharomyces cerevisiae to produce (+)-valencene and its related sesquiterpenes. RSC Adv 2019; 9:30171-30181. [PMID: 35530214 PMCID: PMC9072130 DOI: 10.1039/c9ra05558d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
(+)-Valencene and (+)-nootkatone are high value-added sesquiterpenoids found in grapefruit. The synthesis of (+)-nootkatone by chemical oxidation from (+)-valencene cannot meet the increasing demand in natural aromatics markets. Development of a viable bioprocess using microorganisms is attractive. According to the yields of β-nootkatol and (+)-nootkatone by strains harboring different expression cassettes in the resting cell assay, premnaspirodiene oxygenase from Hyoscyamus muticus (HPO), cytochrome P450 reductase from Arabidopsis thaliana (AtCPR) and alcohol dehydrogenase (ADH1) from Saccharomyces cerevisiae were finally selected and overexpressed in CEN·PK2-1Ca, yielding β-nootkatol and (+)-nootkatone with 170.5 and 45.6 mg L-1 ethyl acetate, respectively. A combinational engineering strategy including promoter change, regulator ROX1 knockout, squalene pathway inhibition, and tHMGR overexpression was performed to achieve de novo (+)-valencene production. Subsequent culture investigations found that galactose as the induced carbon source and a lower temperature (25 °C) were beneficial to target accumulation. Also, replacing the inducible promoters (GAL1) of HPO and AtCPR with constitutive promoters (HXT7 and CYC1) dramatically increased the β-nootkatol accumulation from 108.2 to 327.8 mg L-1 ethyl acetate in resting-cell experiments using (+)-valencene as a substrate. Finally, the total terpenoid titer of the engineered strain of PK2-25 using glucose as a carbon source was improved to 157.8 mg L-1 cell culture, which was 56 times the initial value. We present a new candidate for production of (+)-valencene and its related sesquiterpenoids with attraction for industry.
Collapse
Affiliation(s)
- Xiaodan Ouyang
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Yaping Cha
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Wen Li
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Muzi Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology Guangzhou 510070 China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China +86 20 3938 0601 +86 20 3938 0601
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center Guangzhou 510006 China
| | - Jianjun Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology Guangzhou 510070 China
| |
Collapse
|
158
|
Wang R, Cress BF, Yang Z, Hordines JC, Zhao S, Jung GY, Wang Z, Koffas MAG. Design and Characterization of Biosensors for the Screening of Modular Assembled Naringenin Biosynthetic Library in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:2121-2130. [PMID: 31433622 DOI: 10.1021/acssynbio.9b00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A common challenge in the assembly and optimization of plant natural product biosynthetic pathways in recombinant hosts is the identification of gene orthologues that will result in best production titers. Here, we describe the modular assembly of a naringenin biosynthetic pathway in Saccharomyces cerevisiae that was facilitated by optimized naringenin-inducible prokaryotic transcription activators used as biosensors. The biosensors were designed and developed in S. cerevisiae by a multiparametric engineering strategy, which further was applied for the in vivo, high-throughput screening of the established yeast library. The workflow for assembling naringenin biosynthetic pathways involved Golden gate-directed combinatorial assembly of genes and promoters, resulting in a strain library ideally covering 972 combinations in S. cerevisiae. For improving the performance of our screening biosensor, a series of fundamental components was optimized, affecting the efficiency of the biosensor such as nuclear localization signal (NLS), the detector module and the effector module. One biosensor (pTDH3_NLS_FdeR-N_tPGK1-pGPM1-fdeO_mcherry_tTDH1-MV2) showed better performance, defined as better dynamic range and sensitivity than others established in this study as well as other previously reported naringenin biosensors. Using this biosensor, we were able to identify a recombinant S. cerevisiae strain as the most efficient candidate for the production of naringenin from the established naringenin biosynthetic library. This approach can be exploited for the optimization of other metabolites derived from the flavonoid biosynthetic pathways and more importantly employed in the characterization of putative flavonoid biosynthetic genes.
Collapse
Affiliation(s)
- Rufeng Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Brady F Cress
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Zheng Yang
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - John C Hordines
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Shujuan Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Gyoo Yeol Jung
- Department of Chemical Engineering , Pohang University of Science and Technology , Pohang , Gyeongbuk 37673 , Korea
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
- Department of Biological Sciences , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
159
|
Liu W, Tang D, Shi R, Lian J, Huang L, Cai J, Xu Z. Efficient production ofS‐adenosyl‐l‐methionine fromdl‐methionine in metabolic engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2019; 116:3312-3323. [DOI: 10.1002/bit.27157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Dandan Tang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- State Key Laboratory of Clean Energy Utilization, College of Energy EngineeringZhejiang University Hangzhou China
| | - Rui Shi
- Department of Food Science and TechnologyCollege of Light Industry and Food Engineering, Nanjing Forestry University Nanjing China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Jin Cai
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| |
Collapse
|
160
|
Wang L, Zong Z, Liu Y, Zheng M, Li D, Wang C, Zheng F, Madzak C, Liu Z. Metabolic engineering of Yarrowia lipolytica for the biosynthesis of crotonic acid. BIORESOURCE TECHNOLOGY 2019; 287:121484. [PMID: 31121443 DOI: 10.1016/j.biortech.2019.121484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, Y. lipolytica was engineered to produce crotonic acid via the butanol-forming route. Firstly, the crotonase and 3-hydroxybutyryl-CoA dehydrogenase genes from Clostridium beijerinckii, and the thioesterase gene from Bacteroides thetaiotaomicron were heterologously expressed in Y. lipolytica, the engineered strain LZJ001 accumulated 62.3 ± 4.2 mg/L of crotonic acid. Secondly, the acetyl-CoA acetyltransferase from Saccharomyces cerevisiae was overexpressed, the derived recombinant strain LZJ002 produced 123.5 ± 6.8 mg/L of crotonic acid. Finally, the pyruvate dehydrogenase from Escherichia coli was additionally expressed, giving the fully engineered strain LZJ004 that produced 220.0 ± 8.2 mg/L of crotonic acid in shaking-flask culture, which represents a 3.5-fold increase over LZJ001 strain. The approach described here paves the way for environmentally friendly and large-scale industrial production of crotonic acid.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhen Zong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Yuanlin Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Menglin Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Fuping Zheng
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Catherine Madzak
- GMPA, AgroParisTech, INRA, Université Paris-Saclay, Thiverval-Grignon 78850 France
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
161
|
The gal80 Deletion by CRISPR-Cas9 in Engineered Saccharomyces cerevisiae Produces Artemisinic Acid Without Galactose Induction. Curr Microbiol 2019; 76:1313-1319. [PMID: 31392501 DOI: 10.1007/s00284-019-01752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has emerged as the dominating tool for genome engineering, while also changes the speed and efficiency of metabolic engineering in conventional and non-conventional yeasts. Among these CRISPR-Cas systems, CRISPR-Cas9 technology has usually been applied for removing unfavorable target genes. Here, we used CRISPR-Cas9 technology to delete the gal80 gene in uracil-deficient strain and had successfully remolded the engineered Saccharomyces cerevisiae that can produce artemisinic acid without galactose induction. An L9(34) orthogonal test was adopted to investigate the effects of different factors on artemisinic acid production. Fermentation medium III with sucrose as carbon sources, 1% inoculum level, and 84-h culture time were identified as the optimal fermentation conditions. Under this condition, the maximum artemisinic acid production by engineered S. cerevisiae 1211-2 was 740 mg/L in shake-flask cultivation level. This study provided an effective approach to reform metabolic pathway of artemisinic acid-producing strain. The engineered S. cerevisiae 1211-2 may be applied to artemisinic acid production by industrial fermentation in the future.
Collapse
|
162
|
EauClaire SF, Webb CJ. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae. Yeast 2019; 36:607-615. [PMID: 31301239 DOI: 10.1002/yea.3432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022] Open
Abstract
Saccharomyces cerevisiae is a genetically facile organism, yet multiple CRISPR/Cas9 techniques are widely used to edit its genome more efficiently and cost effectively than conventional methods. The absence of selective markers makes CRISPR/Cas9 editing particularly useful when making mutations within genes or regulatory sequences. Heterozygous mutations within genes frequently arise in the winners of evolution experiments. The genetic dissection of heterozygous alleles can be important to understanding gene structure and function. Unfortunately, the high efficiency of genome cutting and repair makes the introduction of heterozygous alleles by standard CRISPR/Cas9 technique impossible. To be able to quickly and reliably determine the individual phenotypes of the thousands of heterozygous mutations that can occur during directed evolutions is of particular interest to industrial strain improvement research. In this report, we describe a CRISPR/Cas9 method that introduces specific heterozygous mutations into the S. cerevisiae genome. This method relies upon creating silent point mutations in the protospacer adjacent motif site or removing the protospacer adjacent motif site entirely to stop the multiple rounds of genome editing that prevent heterozygous alleles from being generated. This technique should be able to create heterozygous alleles in other diploid yeasts and different allelic copy numbers in polyploid cells.
Collapse
Affiliation(s)
- Steven F EauClaire
- Experimental Station E353/107C, DuPont Nutrition & Biosciences, Wilmington, Delaware
| | - Christopher J Webb
- DuPont Palo Alto Research & Development Center, Dupont Nutrition & Biosciences, Palo Alto, California
| |
Collapse
|
163
|
Ma B, Liu M, Li ZH, Tao X, Wei DZ, Wang FQ. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8590-8598. [PMID: 31287301 DOI: 10.1021/acs.jafc.9b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Patchoulol, a natural sesquiterpene compound, is widely used in perfumes and cosmetics. Several strategies were adopted to enhance patchoulol production in Saccharomyces cerevisiae: (i) farnesyl pyrophosphate (FPP) synthase and patchoulol synthase were fused to increase the utilization of FPP precursor; (ii) expression of the limiting genes of the mevalonate pathway was enhanced; (iii) squalene synthase was weakened by a glucose-inducible promoter of HXT1 (promoter for hexose transporter) to reduce metabolic flux from FPP to ergosterol; and (iv) farnesol biosynthesis was inhibited to decrease the consumption of FPP. Glucose was used to balance the trade-off between the competitive squalene and patchoulol pathways. The patchoulol production was 59.2 ± 0.7 mg/L in a shaken flask with a final production of 466.8 ± 12.3 mg/L (20.5 ± 0.5 mg/g dry cell weight) combined with fermentation optimization, which was 7.8-fold higher than the reported maximum production. The work significantly promoted the industrialization process of patchoulol production using biobased microbial platforms.
Collapse
Affiliation(s)
- Bin Ma
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Min Liu
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhen-Hai Li
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinyi Tao
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Dong-Zhi Wei
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Feng-Qing Wang
- State key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
164
|
López J, Cataldo VF, Peña M, Saa PA, Saitua F, Ibaceta M, Agosin E. Build Your Bioprocess on a Solid Strain-β-Carotene Production in Recombinant Saccharomyces cerevisiae. Front Bioeng Biotechnol 2019; 7:171. [PMID: 31380362 PMCID: PMC6656860 DOI: 10.3389/fbioe.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
Robust fermentation performance of microbial cell factories is critical for successful scaling of a biotechnological process. From shake flask cultivations to industrial-scale bioreactors, consistent strain behavior is fundamental to achieve the production targets. To assert the importance of this feature, we evaluated the impact of the yeast strain design and construction method on process scalability -from shake flasks to bench-scale fed-batch fermentations- using two recombinant Saccharomyces cerevisiae strains capable of producing β-carotene; SM14 and βcar1.2 strains. SM14 strain, obtained previously from adaptive evolution experiments, was capable to accumulate up to 21 mg/gDCW of β-carotene in 72 h shake flask cultures; while the βcar1.2, constructed by overexpression of carotenogenic genes, only accumulated 5.8 mg/gDCW of carotene. Surprisingly, fed-batch cultivation of these strains in 1L bioreactors resulted in opposite performances. βcar1.2 strain reached much higher biomass and β-carotene productivities (1.57 g/L/h and 10.9 mg/L/h, respectively) than SM14 strain (0.48 g/L/h and 3.1 mg/L/h, respectively). Final β-carotene titers were 210 and 750 mg/L after 80 h cultivation for SM14 and βcar1.2 strains, respectively. Our results indicate that these substantial differences in fermentation parameters are mainly a consequence of the exacerbated Crabtree effect of the SM14 strain. We also found that the strategy used to integrate the carotenogenic genes into the chromosomes affected the genetic stability of strains, although the impact was significantly minor. Overall, our results indicate that shake flasks fermentation parameters are poor predictors of the fermentation performance under industrial-like conditions, and that appropriate construction designs and performance tests must be conducted to properly assess the scalability of the strain and the bioprocess.
Collapse
Affiliation(s)
- Javiera López
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Peña
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro A Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Maximiliano Ibaceta
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Agosin
- Centro de Aromas and Sabores, DICTUC S.A., Santiago, Chile.,Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
165
|
Nazhand A, Durazzo A, Lucarini M, Mobilia MA, Omri B, Santini A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat Prod Res 2019; 34:110-121. [DOI: 10.1080/14786419.2019.1630122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Sari, Iran
| | | | | | | | - Besma Omri
- Laboratory of Improvement & Integrated Development of Animal Productivity & Food Resources, Higher School of Agriculture of Mateur, University of Carthage, Bizerte, Tunisia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
166
|
Affiliation(s)
- Yajie Wang
- Institute for Sustainability, Energy, and Environment University of Illinois at Urbana‐Champaign Urbana Illinois
| | - Xiaowei Yu
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi People's Republic of China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Department of Chemistry University of Illinois at Urbana‐Champaign Urbana Illinois
- Department of Bioengineering University of Illinois at Urbana‐Champaign Urbana Illinois
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois
| |
Collapse
|
167
|
Zhang P, Chen Q, Fu G, Xia L, Hu X. Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2019; 35:112. [PMID: 31286266 DOI: 10.1007/s11274-019-2684-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
Abstract
Microorganisms have evolved permeases to incorporate various essential nutrients and exclude harmful products, which assists in adaptation to different environmental conditions for survival. As permeases are directly involved in the utilization of and regulatory response to nutrient sources, metabolic engineering of microbial permeases can predictably influence nutrient metabolism and regulation. In this mini-review, we have summarized the mechanisms underlying the general regulation of permeases, and the current advancements and future prospects of metabolic engineering strategies targeting the permeases in Saccharomyces cerevisiae. The different types of permeases and their regulatory mechanisms have been discussed. Furthermore, methods for metabolic engineering of permeases have been highlighted. Understanding the mechanisms via which permeases are meticulously regulated and engineered will not only facilitate research on regulation of global nutrition and yeast metabolic engineering, but can also provide important insights for future studies on the synthesis of valuable products and elimination of harmful substances in S. cerevisiae.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China
| | - Linglin Xia
- Department of Software, Nanchang University, Nanchang, 330047, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,School of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
168
|
Favaro L, Jansen T, van Zyl WH. Exploring industrial and naturalSaccharomyces cerevisiaestrains for the bio-based economy from biomass: the case of bioethanol. Crit Rev Biotechnol 2019; 39:800-816. [DOI: 10.1080/07388551.2019.1619157] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Trudy Jansen
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
169
|
Claus S, Jezierska S, Van Bogaert INA. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Lett 2019; 593:1508-1527. [DOI: 10.1002/1873-3468.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Silke Claus
- Biochemical and Microbial Technology Universiteit Gent Belgium
| | | | - Inge N. A. Van Bogaert
- Lab. of Industrial Microbiology and Biocatalysis Faculty of Bioscience Engineering Ghent University Belgium
| |
Collapse
|
170
|
Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Biotechnol 2019; 57:1-9. [DOI: 10.1016/j.copbio.2018.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022]
|
171
|
Wang Z, Dien BS, Rausch KD, Tumbleson ME, Singh V. Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast. BIORESOURCE TECHNOLOGY 2019; 282:103-109. [PMID: 30852329 DOI: 10.1016/j.biortech.2019.02.123] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Corn stover and sugarcane bagasse are the most widely available agriculture processing biomass and could serve as feedstocks for production of biofuel. In this study, three different technologies are combined to develop a more efficient conversion process for each of these feedstocks. The three technologies are diluted alkaline deacetylation process, combined thermochemical and mechanical shear pretreatment, and fermentation using a combined inoculum of two commercial Saccharomyces yeast strains. The two yeast strains used were a non-GMO and GMO strain engineered for xylose fermentation. The final ethanol concentrations obtained were 35.7 g/L from deacetylated corn stover and 32.9 g/L from sugarcane bagasse. Blending the two yeast reduced residual xylose content from 1.24 g/L to 0.48 g/L and increased ethanol production by 6.5% compared to solely using the C5/C6 yeast. The optimized yeast blend also lowered the amount of C5/C6 yeast required for inoculation by 80%.
Collapse
Affiliation(s)
- Zhaoqin Wang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce S Dien
- National Center for Agricultural Utilization Research, USDA, Peoria, IL, USA
| | - Kent D Rausch
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M E Tumbleson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
172
|
Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019; 14:e1800437. [DOI: 10.1002/biot.201800437] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin‐Ping Yu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Fu‐Qing Wu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Guo‐Qiang Chen
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
173
|
Gu Y, Gao J, Cao M, Dong C, Lian J, Huang L, Cai J, Xu Z. Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris. World J Microbiol Biotechnol 2019; 35:79. [PMID: 31134410 DOI: 10.1007/s11274-019-2654-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023]
Abstract
The methylotrophic yeast Pichia pastoris is widely used in recombinant expression of eukaryotic proteins owing to the ability of post-translational modification, tightly regulated promoters, and high cell density fermentation. However, episomal plasmids for heterologous gene expression and the CRISPR/Cas9 system for genome editing have not been well developed in P. pastoris. In the present study, a panel of episomal plasmids containing various autonomously replicating sequences (ARSs) were constructed and their performance in transformation efficiency, copy numbers, and propagation stability were systematically compared. Among the five ARSs with different origins, panARS isolated from Kluyveromyces lactis was determined to have the best performance and used to develop an efficient CRISPR/Cas9 based genome editing system. Compared with a previously reported system using the endogenous and most commonly used ARS (PARS1), the CRISPR/Cas9 genome editing efficiency was increased for more than tenfold. Owing to the higher plasmid stability with panARS, efficient CRISPR/Cas9-mediated genome editing with a type III promoter (i.e. SER promoter) to drive the expression of the single guide RNA (sgRNA) was achieved for the first time. The constructed episomal plasmids and developed CRISPR/Cas9 system will be important synthetic biology tools for both fundamental studies and industrial applications of P. pastoris.
Collapse
Affiliation(s)
- Yang Gu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingfeng Cao
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Lei Huang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jin Cai
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
174
|
Xia PF, Ling H, Foo JL, Chang MW. Synthetic genetic circuits for programmable biological functionalities. Biotechnol Adv 2019; 37:107393. [PMID: 31051208 DOI: 10.1016/j.biotechadv.2019.04.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Living organisms evolve complex genetic networks to interact with the environment. Due to the rapid development of synthetic biology, various modularized genetic parts and units have been identified from these networks. They have been employed to construct synthetic genetic circuits, including toggle switches, oscillators, feedback loops and Boolean logic gates. Building on these circuits, complex genetic machines with capabilities in programmable decision-making could be created. Consequently, these accomplishments have led to novel applications, such as dynamic and autonomous modulation of metabolic networks, directed evolution of biological units, remote and targeted diagnostics and therapies, as well as biological containment methods to prevent release of engineered microorganisms and genetic materials. Herein, we outline the principles in genetic circuit design that have initiated a new chapter in transforming concepts to realistic applications. The features of modularized building blocks and circuit architecture that facilitate realization of circuits for a variety of novel applications are discussed. Furthermore, recent advances and challenges in employing genetic circuits to impart microorganisms with distinct and programmable functionalities are highlighted. We envision that this review gives new insights into the design of synthetic genetic circuits and offers a guideline for the implementation of different circuits in various aspects of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Peng-Fei Xia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Hua Ling
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jee Loon Foo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| | - Matthew Wook Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
175
|
Jiang R, Chen X, Lian J, Huang L, Cai J, Xu Z. Efficient production of Pseudoionone with multipathway engineering in
Escherichia coli. J Appl Microbiol 2019; 126:1751-1760. [DOI: 10.1111/jam.14245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Affiliation(s)
- R. Jiang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry) College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - X. Chen
- Hangzhou Tongjuntang Biotechnology Corporation, Ltd Hangzhou China
| | - J. Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry) College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - L. Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry) College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - J. Cai
- Institute of Biological Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Z. Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry) College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
176
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
177
|
Zhao Q, Wang L, Luo Y. Recent advances in natural products exploitation in Streptomyces via synthetic biology. Eng Life Sci 2019; 19:452-462. [PMID: 32625022 DOI: 10.1002/elsc.201800137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 02/05/2023] Open
Abstract
Natural products of microbial origin have proven to be the wellspring of clinically useful compounds for human therapeutics. Streptomyces species are predominant sources of bioactive compounds, most of which serve as potential drug candidates. While the exploitation of natural products has been severely reduced over the past two decades, the growing crisis of evolution and dissemination of drug resistant pathogens have again attracted great interest in this field. The emerging synthetic biology has been heralded as a new bioengineering platform to discover novel bioactive compounds and expand bioactive natural products diversity and production. Herein, we review recent advances in the natural products exploitation of Streptomyces with the applications of synthetic biology from three major aspects, including recently developed synthetic biology tools, natural products biosynthetic pathway engineering strategies as well as chassis host modifications.
Collapse
Affiliation(s)
- Qiyuan Zhao
- Department of Gastroenterology Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu P. R. China
| | - Liping Wang
- Department of Gastroenterology Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu P. R. China
| | - Yunzi Luo
- Department of Gastroenterology Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu P. R. China
| |
Collapse
|
178
|
Yuan SF, Alper HS. Metabolic engineering of microbial cell factories for production of nutraceuticals. Microb Cell Fact 2019; 18:46. [PMID: 30857533 PMCID: PMC6410520 DOI: 10.1186/s12934-019-1096-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineering allows for the rewiring of basic metabolism to overproduce both native and non-native metabolites. Among these biomolecules, nutraceuticals have received considerable interest due to their health-promoting or disease-preventing properties. Likewise, microbial engineering efforts to produce these value-added nutraceuticals overcome traditional limitations of low yield from extractions and complex chemical syntheses. This review covers current strategies of metabolic engineering employed for the production of a few key nutraceuticals with selecting polyunsaturated fatty acids, polyphenolic compounds, carotenoids and non-proteinogenic amino acids as exemplary molecules. We focus on the use of both mono-culture and co-culture strategies to produce these molecules of interest. In each of these cases, metabolic engineering efforts are enabling rapid production of these molecules.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
179
|
Auxillos JY, Garcia-Ruiz E, Jones S, Li T, Jiang S, Dai J, Cai Y. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae. Biochemistry 2019; 58:1492-1500. [DOI: 10.1021/acs.biochem.8b01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jamie Y. Auxillos
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JY, United Kingdom
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sally Jones
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Tianyi Li
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuangying Jiang
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
180
|
Xu X, Niu C, Liu C, Li Q. Unraveling the Mechanisms for Low-Level Acetaldehyde Production during Alcoholic Fermentation in Saccharomyces pastorianus Lager Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2020-2027. [PMID: 30666873 DOI: 10.1021/acs.jafc.8b06868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acetaldehyde is produced by yeast during alcoholic fermentation, and its modification greatly affects beer flavor and quality. In the current study, we analyzed two yeast strains with a low level of acetaldehyde to reveal the potential mechanism underpinning the desirable low acetaldehyde production by these strains. We demonstrated that high alcohol dehydrogenase (ADH) activity and high NADH availability were the dominant factors for the low level of acetaldehyde in the fermentation liquor at the end of fermentation. High ADH activity resulted in reduced accumulation of acetaldehyde during the cell growth phase by increasing the flux to ethanol, whereas high NADH availability (in the cytosol or mitochondria) enhanced acetaldehyde reduction at the later phase of main fermentation. Furthermore, NADH availability is a more useful target trait than ADH activity for constructing yeast strains with a low level of acetaldehyde for industrial applications in terms of flavor contribution and unaltered fermentation period.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , Jiangsu 214122 , People's Republic of China
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214000 , People's Republic of China
- School of Biotechnology , Jiangnan University , 1800 Lihu Avenue , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
181
|
Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L. Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:20. [PMID: 30705706 PMCID: PMC6348659 DOI: 10.1186/s13068-019-1360-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/18/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Xylose isomerase (XI) and xylose reductase/xylitol dehydrogenase (XR/XDH) pathways have been extensively used to confer xylose assimilation capacity to Saccharomyces cerevisiae and tackle one of the major bottlenecks in the attainment of economically viable lignocellulosic ethanol production. Nevertheless, there is a lack of studies comparing the efficiency of those pathways both separately and combined. In this work, the XI and/or XR/XDH pathways were introduced into two robust industrial S. cerevisiae strains, evaluated in synthetic media and corn cob hemicellulosic hydrolysate and the results were correlated with the differential enzyme activities found in the xylose-pathway engineered strains. RESULTS The sole expression of XI was found to increase the fermentative capacity of both strains in synthetic media at 30 °C and 40 °C: decreasing xylitol accumulation and improving xylose consumption and ethanol production. Similar results were observed in fermentations of detoxified hydrolysate. However, in the presence of lignocellulosic-derived inhibitors, a positive synergistic effect resulted from the expression of both XI and XR/XDH, possibly caused by a cofactor equilibrium between the XDH and furan detoxifying enzymes, increasing the ethanol yield by more than 38%. CONCLUSIONS This study clearly shows an advantage of using the XI from Clostridium phytofermentans to attain high ethanol productivities and yields from xylose. Furthermore, and for the first time, the simultaneous utilization of XR/XDH and XI pathways was compared to the single expression of XR/XDH or XI and was found to improve ethanol production from non-detoxified hemicellulosic hydrolysates. These results extend the knowledge regarding S. cerevisiae xylose assimilation metabolism and pave the way for the construction of more efficient strains for use in lignocellulosic industrial processes.
Collapse
Affiliation(s)
- Joana T. Cunha
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Pedro O. Soares
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
182
|
Qiao J, Luo Z, Cui S, Zhao H, Tang Q, Mo C, Ma X, Ding Z. Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2018; 46:147-157. [PMID: 30535727 DOI: 10.1007/s10295-018-2116-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
Cucurbitane-type triterpenoids such as mogrosides and cucurbitacins that are present in the plants of Cucurbitaceae are widely used in Asian traditional medicine. Cucurbitadienol is the skeleton of cucurbitane-type triterpenoids. As an alternative production strategy, we developed baker's yeast Saccharomyces cerevisiae as a microbial host for the eventual transformation of cucurbitadienol. The synthetic pathway of cucurbitadienol was constructed in Saccharomyces cerevisiae by introducing the cucurbitadienol synthase gene from different plants, resulting in 7.80 mg cucurbitadienol from 1 L of fermentation broth. Improving supplies of isoprenoid precursors was then investigated for increasing cucurbitadienol production. Cucurbitadienol production increased to 21.47 mg/L through the overexpression of a global regulatory factor (UPC2) gene of triterpenoid synthase. In addition, knockout of the ERG7 gene increased cucurbitadienol production from 21.47 to 61.80 mg/L. Finally, fed-batch fermentation was performed, and 63.00 mg/L cucurbitadienol was produced. This work is an important step towards the total biosynthesis of valuable cucurbitane-type triterpenoids and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for triterpenoids.
Collapse
Affiliation(s)
- Jing Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Huan Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Tang
- National and Local Union Engineering Research Center of Veterinary Herbal Medicine Resources and Initiative and Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Changming Mo
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Zimian Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
183
|
Rudroff F. Whole-cell based synthetic enzyme cascades-light and shadow of a promising technology. Curr Opin Chem Biol 2018; 49:84-90. [PMID: 30458384 DOI: 10.1016/j.cbpa.2018.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/16/2023]
Abstract
Mimicking Nature by biocatalytic cascade reactions in a whole-cell environment is a revolutionary development in multistep synthesis for the production of bulk and fine chemicals. In the past decade, several proof of concept success stories demonstrated the power of those synthetic cascades and paved the road for future industrial applications. Although enzymes and their promiscuity are best suited to construct such artificial pathways, the complexity and the lack of understanding of the cellular machinery slowed down this progress significantly. In this review, recent achievements in the field of whole-cell biocatalysis are described, challenges and hidden traps that have to be overcome are depicted, and strategies are illustrated how to increase overall cascade productivity.
Collapse
Affiliation(s)
- Florian Rudroff
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 163-OC, 1060 Vienna, Austria.
| |
Collapse
|
184
|
Bourgeois L, Pyne ME, Martin VJJ. A Highly Characterized Synthetic Landing Pad System for Precise Multicopy Gene Integration in Yeast. ACS Synth Biol 2018; 7:2675-2685. [PMID: 30372609 DOI: 10.1021/acssynbio.8b00339] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A fundamental undertaking of metabolic engineering involves identifying and troubleshooting metabolic bottlenecks that arise from imbalances in pathway flux. To expedite the systematic screening of enzyme orthologs in conjunction with DNA copy number tuning, here we develop a simple and highly characterized CRISPR-Cas9 integration system in Saccharomyces cerevisiae. Our engineering strategy introduces a series of synthetic DNA landing pads (LP) into the S. cerevisiae genome to act as sites for high-level gene integration. LPs facilitate multicopy gene integration of one, two, three, or four DNA copies in a single transformation, thus providing precise control of DNA copy number. We applied our LP system to norcoclaurine synthase (NCS), an enzyme with poor kinetic properties involved in the first committed step of the production of high-value benzylisoquinoline alkaloids. The platform enabled rapid construction of a 40-strain NCS library by integrating ten NCS orthologs in four gene copies each. Six active NCS variants were identified, whereby production of ( S)-norcoclaurine could be further enhanced by increasing NCS copy number. We anticipate the LP system will aid in metabolic engineering efforts by providing strict control of gene copy number and expediting strain and pathway engineering campaigns.
Collapse
Affiliation(s)
- Leanne Bourgeois
- Department of Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
| | - Michael E. Pyne
- Department of Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
| | - Vincent J. J. Martin
- Department of Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H3G 1M8, Canada
| |
Collapse
|
185
|
Ji RY, Ding Y, Shi TQ, Lin L, Huang H, Gao Z, Ji XJ. Metabolic Engineering of Yeast for the Production of 3-Hydroxypropionic Acid. Front Microbiol 2018; 9:2185. [PMID: 30298059 PMCID: PMC6160737 DOI: 10.3389/fmicb.2018.02185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 02/05/2023] Open
Abstract
The beta-hydroxy acid 3-hydroxypropionic acid (3-HP) is an attractive platform compound that can be used as a precursor for many commercially interesting compounds. In order to reduce the dependence on petroleum and follow sustainable development, 3-HP has been produced biologically from glucose or glycerol. It is reported that 3-HP synthesis pathways can be constructed in microbes such as Escherichia coli, Klebsiella pneumoniae and the yeast Saccharomyces cerevisiae. Among these host strains, yeast is prominent because of its strong acid tolerance which can simplify the fermentation process. Currently, the malonyl-CoA reductase pathway and the β-alanine pathway have been successfully constructed in yeast. This review presents the current developments in 3-HP production using yeast as an industrial host. By combining genome-scale engineering tools, malonyl-CoA biosensors and optimization of downstream fermentation, the production of 3-HP in yeast has the potential to reach or even exceed the yield of chemical production in the future.
Collapse
Affiliation(s)
- Rong-Yu Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lu Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| |
Collapse
|
186
|
Wu H, Li Y, Ma Q, Li Q, Jia Z, Yang B, Xu Q, Fan X, Zhang C, Chen N, Xie X. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 2018; 49:248-256. [PMID: 30189293 DOI: 10.1016/j.ymben.2018.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 01/14/2023]
Abstract
Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.
Collapse
Affiliation(s)
- Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zifan Jia
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
187
|
Kutyna DR, Borneman AR. Heterologous Production of Flavour and Aroma Compounds in Saccharomyces cerevisiae. Genes (Basel) 2018; 9:E326. [PMID: 29958445 PMCID: PMC6071175 DOI: 10.3390/genes9070326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023] Open
Abstract
Over the last two decades, rapid progress in the field of synthetic biology has opened several avenues for the heterologous de novo production of complex biological compounds, such as biofuels, pharmaceuticals, and food additives in microbial hosts. This minireview addresses the usage of the yeast Saccharomyces cerevisiae as a microbial cell factory for the production of flavour and aroma compounds, thereby providing a path towards a sustainable and efficient means of producing what are normally rare, and often expensive plant-derived chemicals.
Collapse
Affiliation(s)
- Dariusz R Kutyna
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia.
| | - Anthony R Borneman
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia.
| |
Collapse
|