151
|
Sagnella SM, White AL, Yeo D, Saxena P, van Zandwijk N, Rasko JEJ. Locoregional delivery of CAR-T cells in the clinic. Pharmacol Res 2022; 182:106329. [PMID: 35772645 DOI: 10.1016/j.phrs.2022.106329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 12/26/2022]
Abstract
Cellular therapies utilizing T cells expressing chimeric antigen receptors (CARs) have garnered significant interest due to their clinical success in hematological malignancies. Unfortunately, this success has not been replicated in solid tumors, with only a small fraction of patients achieving complete responses. A number of obstacles to effective CAR-T cell therapy in solid tumors have been identified including tumor antigen heterogeneity, poor T cell fitness and persistence, inefficient trafficking and inability to penetrate into the tumor, immune-related adverse events due to on-target/off-tumor toxicity, and the immunosuppressive tumor microenvironment. Many preclinical studies have focused on improvements to CAR design to try to overcome some of these hurdles. However, a growing body of work has also focused on the use of local and/or regional delivery of CAR-T cells as a means to overcome poor T cell trafficking and inefficient T cell penetration into tumors. Most trials that incorporate locoregional delivery of CAR-T cells have targeted tumors of the central nervous system - repurposing an Ommaya/Rickham reservoir for repeated delivery of cells directly to the tumor cavity or ventricles. Hepatic artery infusion is another technique used for locoregional delivery to hepatic tumors. Locoregional delivery theoretically permits increased numbers of CAR-T cells within the tumor while reducing the risk of immune-related systemic toxicity. Studies to date have been almost exclusively phase I. The growing body of evidence indicates that locoregional delivery of CAR-T cells is both safe and feasible. This review focuses specifically on the use of locoregional delivery of CAR-T cells in clinical trials.
Collapse
Affiliation(s)
- Sharon M Sagnella
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown 2050, Australia
| | - Amy L White
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Dannel Yeo
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown 2050, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia; Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown 2050, Australia
| | - Payal Saxena
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia; Division of Gastroenterology, Department of Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown 2050, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia; Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown 2050, Australia; Concord Repatriation General Hospital, Sydney Local Health District, Concord 2139, Australia
| | - John E J Rasko
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown 2050, Australia; Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia; Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown 2050, Australia; Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia.
| |
Collapse
|
152
|
Novel CD19 chimeric antigen receptor T cells manufactured next-day for acute lymphoblastic leukemia. Blood Cancer J 2022; 12:96. [PMID: 35750687 PMCID: PMC9232607 DOI: 10.1038/s41408-022-00688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor-engineered T (CAR-T) cells have shown promising efficacy in patients with relapsed/refractory B cell acute lymphoblastic leukemia (R/R B-ALL). However, challenges remain including long manufacturing processes that need to be overcome. We presented the CD19-targeting CAR-T cell product GC007F manufactured next-day (FasTCAR-T cells) and administered to patients with R/R B-ALL. A total of 21 patients over 14 years of age with CD19+ R/R B-ALL were screened, enrolled and infused with a single infusion of GC007F CAR-T at three different dose levels. The primary objective of the study was to assess safety, secondary objectives included pharmacokinetics of GC007F cells in patients with R/R B-ALL and preliminary efficacy. We were able to demonstrate in preclinical studies that GC007F cells exhibited better proliferation and tumor killing than conventional CAR-T (C-CAR-T) cells. In this investigator-initiated study all 18 efficacy-evaluable patients achieved a complete remission (CR) (18/18, 100.00%) by day 28, with 17 of the patients (94.4%) achieving CR with minimal residual disease (MRD) negative. Fifteen (83.3%) remained disease free at the 3-month assessment, 14 patients (77.8%) maintaining MRD negative at month 3. Among all 21 enrolled patients, the median peak of CAR-T cell was on day 10, with a median peak copy number of 104899.5/µg DNA and a median persistence period of 56 days (range: 7–327 days). The incidence of cytokine release syndrome (CRS) was 95.2% (n = 20), with severe CRS occurring in 52.4% (n = 11) of the patients. Six patients (28.6%) developed neurotoxicity of any grade. GC007F demonstrated superior expansion capacity and a less exhausted phenotype as compared to (C-CAR-T) cells. Moreover, this first-in-human clinical study showed that the novel, next-day manufacturing FasTCAR-T cells was feasible with a manageable toxicity profile in patients with R/R B-ALL.
Collapse
|
153
|
Kankeu Fonkoua LA, Sirpilla O, Sakemura R, Siegler EL, Kenderian SS. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities. Mol Ther Oncolytics 2022; 25:69-77. [PMID: 35434273 PMCID: PMC8980704 DOI: 10.1016/j.omto.2022.03.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable outcomes in individuals with hematological malignancies, but its success has been hindered by barriers intrinsic to the tumor microenvironment (TME), particularly for solid tumors, where it has yet to make its mark. In this article, we provide an updated review and future perspectives on features of the TME that represent barriers to CART cell therapy efficacy, including competition for metabolic fuels, physical barriers to infiltration, and immunosuppressive factors. We then discuss novel and promising strategies to overcome these obstacles that are in preclinical development or under clinical investigation.
Collapse
Affiliation(s)
- Lionel A. Kankeu Fonkoua
- T Cell Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Olivia Sirpilla
- T Cell Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Reona Sakemura
- T Cell Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Elizabeth L. Siegler
- T Cell Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Saad S. Kenderian
- T Cell Engineering Laboratory, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
154
|
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy against solid tumors in clinical studies in contrast to hematological malignancies. In a paper recently published in Nature, Larson et al. report that CAR T cell activity against solid tumors depends on cell adhesion mediated by IFNγ signaling, opening the prospect of improving their clinical activity in the future.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
155
|
Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu M, Xia L, Zhang Y, Liu L, Yuan Y, Liang X, Zhang Q. Biomimetic Nanocarriers Guide Extracellular ATP Homeostasis to Remodel Energy Metabolism for Activating Innate and Adaptive Immunity System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105376. [PMID: 35396800 PMCID: PMC9189650 DOI: 10.1002/advs.202105376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Metabolic interventions via targeting intratumoral dysregulated metabolism pathways have shown promise in reinvigorating antitumor immunity. However, approved small molecule immunomodulators often suffer from ineffective response rates and severe off-target toxicity. ATP occupies a crucial role in energy metabolism of components that form the tumor microenvironment (TME) and influences cancer immunosurveillance. Here, a nanocarrier-assisted immunometabolic therapy strategy that targets the ATP-adenosine axis for metabolic reprogramming of TME is reported. An ecto-enzyme (CD39) antagonist POM1 and AMP-activated protein kinase (AMPK) agonist metformin are both encapsulated into cancer cell-derived exosomes and used as nanocarriers for tumor targeting delivery. This method increases the level of pro-inflammatory extracellular ATP (eATP) while preventing the accumulation of immunosuppressive adenosine and alleviating hypoxia. Elevated eATP triggers the activation of P2X7-NLRP3-inflammasome to drive macrophage pyroptosis, potentiates the maturation and antigen capacity of dendritic cells (DCs) to enhance the cytotoxic function of T cells and natural killer (NK) cells. As a result, synergistic antitumor immune responses are initiated to suppress tumor progress, inhibit tumor distant metastases, provide long-term immune memory that offers protection against tumor recurrence and overcome anti-PD1 resistance. Overall, this study provides an innovative strategy to advance eATP-driven antitumor immunity in cancer therapy.
Collapse
Affiliation(s)
- Long Wu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Wei Xie
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Yang Li
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative MedicineSechenov UniversityMoscow119991Russia
| | - Meng Lyu
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Ligang Xia
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Yuan Zhang
- Fujian GTR Biotech Co. Ltd.FuzhouFujian350108P. R. China
| | - Lingrong Liu
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071P. R. China
| | - Xing‐Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiqing Zhang
- Institute of Biomedical Engineering & Department of Gastrointestinal SurgeryShenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
156
|
Agostini A, Orlacchio A, Carbone C, Guerriero I. Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Front Immunol 2022; 13:876291. [PMID: 35711414 PMCID: PMC9193393 DOI: 10.3389/fimmu.2022.876291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| |
Collapse
|
157
|
Zhao Y, Dong Y, Yang S, Tu Y, Wang C, Li J, Yuan Y, Lian Z. Bioorthogonal Equipping CAR-T Cells with Hyaluronidase and Checkpoint Blocking Antibody for Enhanced Solid Tumor Immunotherapy. ACS CENTRAL SCIENCE 2022; 8:603-614. [PMID: 35647274 PMCID: PMC9136969 DOI: 10.1021/acscentsci.2c00163] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 05/28/2023]
Abstract
Adoptive cellular therapy utilizing chimeric antigen receptor redirected T (CAR-T) cells has shown impressive therapeutic effects on hematological malignancies. In contrast, the efficacy of CAR-T therapies in treating solid tumors is still poor, which is largely due to inefficient penetration into solid tumors and the immunosuppressive tumor microenvironment. Herein, we engineered hyaluronidase (HAase) and the checkpoint blocking antibody α-PDL1 on the CAR-T cell surface via highly efficient and biocompatible bioorthogonal click chemistry to improve their therapeutic effects on solid tumors. The modified HAase degrades hyaluronic acid and destroys the tumor extracellular matrix, allowing CAR-T cells to penetrate deeply into solid tumors, as evidenced by in vitro infiltration experiments and in vivo biodistribution studies. In addition, in vitro cytotoxicity studies showed stronger antitumor activity of α-PDL1-decorated cells than traditional CAR-T cells. Importantly, HAase- and α-PDL1-engineered CAR-T cells showed better therapeutic efficacy on two solid tumor models and did not cause significant systemic side effects. In this work, we provide a simple, efficient, and biologically safe chemical strategy to engineer traditional CAR-T cells for enhanced therapeutic efficacy on solid tumors, which can be extended to other adoptive cellular immunotherapies and holds great potential for clinical application.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Yansong Dong
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Shuhan Yang
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Yalan Tu
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
- Key
Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Chengbo Wang
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
- Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Jun Li
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Youyong Yuan
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
- National
Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People’s Republic of China
| | - Zhexiong Lian
- Institute
for Life Sciences, School of Medicine, South
China University of Technology, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
158
|
Ligon JA, Wessel KM, Shah NN, Glod J. Adoptive Cell Therapy in Pediatric and Young Adult Solid Tumors: Current Status and Future Directions. Front Immunol 2022; 13:846346. [PMID: 35273619 PMCID: PMC8901720 DOI: 10.3389/fimmu.2022.846346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Advances from novel adoptive cellular therapies have yet to be fully realized for the treatment of children and young adults with solid tumors. This review discusses the strategies and preliminary results, including T-cell, NK-cell and myeloid cell-based therapies. While each of these approaches have shown some early promise, there remain challenges. These include poor trafficking to the tumor as well as a hostile tumor microenvironment with numerous immunosuppressive mechanisms which result in exhaustion of cellular therapies. We then turn our attention to new strategies proposed to address these challenges including novel clinical trials that are ongoing and in development.
Collapse
Affiliation(s)
- John A Ligon
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Kristin M Wessel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
159
|
Joshi VB, Chadha J, Chahoud J. Penile cancer: Updates in systemic therapy. Asian J Urol 2022; 9:374-388. [DOI: 10.1016/j.ajur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
|
160
|
Ou Z, Qiu L, Rong H, Li B, Ren S, Kuang S, Lan T, Lin H, Li Q, Wu F, Cai T, Yan L, Ye Y, Fan S, Li J. Bibliometric Analysis of Chimeric Antigen Receptor-Based Immunotherapy in Cancers From 2001 to 2021. Front Immunol 2022; 13:822004. [PMID: 35432345 PMCID: PMC9005877 DOI: 10.3389/fimmu.2022.822004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background Chimeric antigen receptor (CAR)-based immunotherapy has shown great potential for the treatment of both hematopoietic malignancies and solid tumors. Nevertheless, multiple obstacles still block the development of CAR-based immunotherapy in the clinical setting. In this study, we aimed to summarize the research landscape and highlight the front lines and trends of this field. Methods Literature published from 2001 to 2021 was searched in the Web of Science Core Collection database. Full records and cited references of all the documents were extracted and screened. Bibliometric analysis and visualization were conducted using CiteSpace, Microsoft Excel 2019, VOSviewer and R software. Results A total of 5981 articles and reviews were included. The publication and citation results exhibited increasing trends in the last 20 years. Frontiers in Immunology and Blood were the most productive and most co-cited journals, respectively. The United States was the country with the most productive organizations and publications in the comprehensive worldwide cooperation network, followed by China and Germany. June, C.H. published the most papers with the most citations, while Maude, S.L. ranked first among the co-cited authors. The hotspots in CAR-based therapy research were multiple myeloma, safety and toxicity, solid tumors, CAR-engineered immune cells beyond T cells, and gene editing. Conclusion CAR-based immunotherapy is a promising treatment for cancer patients, and there is an emerging movement toward using advanced gene modification technologies to overcome therapeutic challenges, especially in solid tumors, and to generate safer and more effective universal CAR-engineered cell products.
Collapse
Affiliation(s)
- Zhanpeng Ou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ling Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Haixu Rong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Siqi Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Shijia Kuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Tianjun Lan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Hsinyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Qunxing Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Tingting Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Lingjian Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yushan Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
161
|
Petit PF, Bombart R, Desimpel PH, Naulaerts S, Thouvenel L, Collet JF, Van den Eynde BJ, Zhu J. T-cell mediated targeted delivery of anti-PD-L1 nanobody overcomes poor antibody penetration and improves PD-L1 blocking at the tumor site. Cancer Immunol Res 2022; 10:713-727. [PMID: 35439300 DOI: 10.1158/2326-6066.cir-21-0801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/09/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies blocking immune checkpoints such as PD-L1 have yielded strong clinical benefits in many cancer types. Still, the current limitations are the lack of clinical response in a majority of patients and the development of immune-related adverse events in some. As an alternative to PD-L1-specific antibody injection, we have developed an approach based on the engineering of tumor-targeting T cells to deliver intratumorally an anti-PD-L1 nanobody. In the MC38-OVA model, our strategy enhanced tumor control as compared to injection of PD-L1-specific antibody combined with adoptive transfer of tumor-targeting T cells. As a possible explanation for this, we demonstrated that PD-L1-specific antibody massively occupied PD-L1 in the periphery but failed to penetrate to PD-L1-expressing cells at the tumor site. In sharp contrast, locally delivered anti-PD-L1 nanobody improved PD-L1 blocking at the tumor site while avoiding systemic exposure. Our approach appears promising to overcome the limitations of immunotherapy based on PD-L1-specific antibody treatment.
Collapse
Affiliation(s)
| | - Raphaele Bombart
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Stefan Naulaerts
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laurie Thouvenel
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jingjing Zhu
- Ludwig Institute for Cancer Research, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
162
|
Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, Moore M, Michael J, Driscoll C, Pulido J, Swanson E, Kennedy R, Coffey M, Loghmani H, Sanchez-Perez L, Olivier G, Harrington K, Pandha H, Melcher A, Diaz RM, Vile RG. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med 2022; 14:eabn2231. [PMID: 35417192 PMCID: PMC9297825 DOI: 10.1126/scitranslmed.abn2231] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses (OVs) encoding a variety of transgenes have been evaluated as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-modified T cells in the solid tumor microenvironment (TME). Here, using systemically delivered OVs and CAR T cells in immunocompetent mouse models, we have defined a mechanism by which OVs can potentiate CAR T cell efficacy against solid tumor models of melanoma and glioma. We show that stimulation of the native T cell receptor (TCR) with viral or virally encoded epitopes gives rise to enhanced proliferation, CAR-directed antitumor function, and distinct memory phenotypes. In vivo expansion of dual-specific (DS) CAR T cells was leveraged by in vitro preloading with oncolytic vesicular stomatitis virus (VSV) or reovirus, allowing for a further in vivo expansion and reactivation of T cells by homologous boosting. This treatment led to prolonged survival of mice with subcutaneous melanoma and intracranial glioma tumors. Human CD19 CAR T cells could also be expanded in vitro with TCR reactivity against viral or virally encoded antigens and was associated with greater CAR-directed cytokine production. Our data highlight the utility of combining OV and CAR T cell therapy and show that stimulation of the native TCR can be exploited to enhance CAR T cell activity and efficacy in mice.
Collapse
Affiliation(s)
- Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Amanda L. Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Josefine Michael
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | | | - Jose Pulido
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Eric Swanson
- Vaccine Research Group, Mayo Clinic, Rochester, MN 55905,
USA
| | - Richard Kennedy
- Vaccine Research Group, Mayo Clinic, Rochester, MN 55905,
USA
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, AB, Canada
| | | | | | - Gloria Olivier
- Mayo Clinic Ventures, Mayo Clinic, Rochester, MN 55905,
USA
| | - Kevin Harrington
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of
Surrey, Guildford GU2 7WG, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester,
MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905,
USA
| |
Collapse
|
163
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
164
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
165
|
Gabriel NN, Balaji K, Jayachandran K, Inkman M, Zhang J, Dahiya S, Goldstein M. Loss of H3K27 trimethylation promotes radiotherapy resistance in medulloblastoma and induces an actionable vulnerability to BET inhibition. Cancer Res 2022; 82:2019-2030. [PMID: 35315927 DOI: 10.1158/0008-5472.can-21-0871] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Medulloblastoma has been categorized into four subgroups based on genetic, epigenetic, and transcriptional profiling. Radiation is used for treating medulloblastoma regardless of the subgroup. A better understanding of the molecular pathways determining radiotherapy response could help improve medulloblastoma treatment. Here, we investigated the role of the EZH2-dependent histone H3K27 trimethylation in radiotherapy response in medulloblastoma. The tumors in 47.2% of group 3 and 4 medulloblastoma patients displayed H3K27me3 deficiency. Loss of H3K27me3 was associated with a radioresistant phenotype, high relapse rates, and poor overall survival. In H3K27me3-deficient medulloblastoma cells, an epigenetic switch from H3K27me3 to H3K27ac occurred at specific genomic loci, altering the transcriptional profile. The resulting upregulation of EPHA2 stimulated excessive activation of the pro-survival AKT signaling pathway, leading to radiotherapy resistance. BET inhibition overcame radiation resistance in H3K27me3-deficient medulloblastoma cells by suppressing H3K27ac levels, blunting EPHA2 overexpression, and mitigating excessive AKT signaling. Additionally, BET inhibition sensitized medulloblastoma cells to radiation by enhancing the apoptotic response through suppression of Bcl-xL and upregulation of Bim. This work demonstrates a novel mechanism of radiation resistance in medulloblastoma and identifies an epigenetic marker predictive of radiotherapy response. Based on these findings, we propose an epigenetically guided treatment approach targeting radiotherapy resistance in medulloblastoma patients.
Collapse
Affiliation(s)
- Nishanth N Gabriel
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kumaresh Balaji
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kay Jayachandran
- Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew Inkman
- Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jin Zhang
- Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Sonika Dahiya
- Washington University in St. Louis School of Medicine, St Louis, MO, United States
| | - Michael Goldstein
- Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
166
|
Yeo D, Giardina C, Saxena P, Rasko JE. The next wave of cellular immunotherapies in pancreatic cancer. Mol Ther Oncolytics 2022; 24:561-576. [PMID: 35229033 PMCID: PMC8857655 DOI: 10.1016/j.omto.2022.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is an aggressive disease that is predicted to become the second leading cause of cancer-related death worldwide by 2030. The overall 5-year survival rate is around 10%. Pancreatic cancer typically presents late with locally advanced or metastatic disease, and there are limited effective treatments available. Cellular immunotherapy, such as chimeric antigen receptor (CAR) T cell therapy, has had significant success in treating hematological malignancies. However, CAR T cell therapy efficacy in pancreatic cancer has been limited. This review provides an overview of current and ongoing CAR T cell clinical studies of pancreatic cancer and the major challenges and strategies to improve CAR T cell efficacy. These strategies include arming CAR T cells; developing off-the-shelf allogeneic CAR T cells; using other immune CAR cells, like natural killer cells and tumor-infiltrating lymphocytes; and combination therapy. Careful incorporation of preclinical models will enhance management of affected individuals, assisting incorporation of cellular immunotherapies. A multifaceted, personalized approach involving cellular immunotherapy treatment is required to improve pancreatic cancer outcomes.
Collapse
Affiliation(s)
- Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Caroline Giardina
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Payal Saxena
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Division of Gastroenterology, Department of Medicine, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - John E.J. Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
167
|
Shafer P, Kelly LM, Hoyos V. Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Front Immunol 2022; 13:835762. [PMID: 35309357 PMCID: PMC8928448 DOI: 10.3389/fimmu.2022.835762] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
To redirect T cells against tumor cells, T cells can be engineered ex vivo to express cancer-antigen specific T cell receptors (TCRs), generating products known as TCR-engineered T cells (TCR T). Unlike chimeric antigen receptors (CARs), TCRs recognize HLA-presented peptides derived from proteins of all cellular compartments. The use of TCR T cells for adoptive cellular therapies (ACT) has gained increased attention, especially as efforts to treat solid cancers with ACTs have intensified. In this review, we describe the differing mechanisms of T cell antigen recognition and signal transduction mediated through CARs and TCRs. We describe the classes of cancer antigens recognized by current TCR T therapies and discuss both classical and emerging pre-clinical strategies for antigen-specific TCR discovery, enhancement, and validation. Finally, we review the current landscape of clinical trials for TCR T therapy and discuss what these current results indicate for the development of future engineered TCR approaches.
Collapse
Affiliation(s)
- Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lauren M. Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Program in Cancer & Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
168
|
Xin T, Cheng L, Zhou C, Zhao Y, Hu Z, Wu X. In-Vivo Induced CAR-T Cell for the Potential Breakthrough to Overcome the Barriers of Current CAR-T Cell Therapy. Front Oncol 2022; 12:809754. [PMID: 35223491 PMCID: PMC8866962 DOI: 10.3389/fonc.2022.809754] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the treatment of hematological malignancies, but the systemic toxicity and complex manufacturing process of current autologous CAR-T cell therapy hinder its broader applications. Universal CAR-T cells have been developed to simplify the production process through isolation and editing of allogeneic T cells from healthy persons, but the allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia and reducing systemic toxicity in a mouse model. The in-situ programming of autologous T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here, we provide a review on CAR structures, gene-editing tools, and gene delivery techniques applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.
Collapse
Affiliation(s)
- Tianqing Xin
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Cheng
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chuchao Zhou
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Zhao
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wu
- Department of Pediatrics, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
169
|
Cobb DA, de Rossi J, Liu L, An E, Lee DW. Targeting of the alpha v beta 3 integrin complex by CAR-T cells leads to rapid regression of diffuse intrinsic pontine glioma and glioblastoma. J Immunother Cancer 2022; 10:jitc-2021-003816. [PMID: 35210306 PMCID: PMC8883284 DOI: 10.1136/jitc-2021-003816] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) and glioblastoma (GBM) are two highly aggressive and generally incurable gliomas with little therapeutic advancements made in the past several decades. Despite immense initial success of chimeric antigen receptor (CAR) T cells for the treatment of leukemia and lymphoma, significant headway into the application of CAR-T cells against solid tumors, including gliomas, is still forthcoming. The integrin complex alphav beta3 (αvβ3) is present on multiple and diverse solid tumor types and tumor vasculature with limited expression throughout most normal tissues, qualifying it as an appealing target for CAR-T cell-mediated immunotherapy. Methods Patient-derived DIPG and GBM cell lines were evaluated by flow cytometry for surface expression of αvβ3. Second-generation CAR-T cells expressing an anti-αvβ3 single-chain variable fragment were generated by retroviral transduction containing either a CD28 or 4-1BB costimulatory domain and CD3zeta. CAR-T cells were evaluated by flow cytometry for CAR expression, memory phenotype distribution, and inhibitory receptor profile. DIPG and GBM cell lines were orthotopically implanted into NSG mice via stereotactic injection and monitored with bioluminescent imaging to evaluate αvβ3 CAR-T cell-mediated antitumor responses. Results We found that patient-derived DIPG cells and GBM cell lines express high levels of surface αvβ3 by flow cytometry, while αvβ3 is minimally expressed on normal tissues by RNA sequencing and protein microarray. The manufactured CAR-T cells consisted of a substantial frequency of favorable early memory cells and a low inhibitory receptor profile. αvβ3 CAR-T cells demonstrated efficient, antigen-specific tumor cell killing in both cytotoxicity assays and in in vivo models of orthotopically and stereotactically implanted DIPG and GBM tumors into relevant locations in the brain of NSG mice. Tumor responses were rapid and robust with systemic CAR-T cell proliferation and long-lived persistence associated with long-term survival. Following tumor clearance, TCF-1+αvβ3 CAR-T cells were detectable, underscoring their ability to persist and undergo self-renewal. Conclusions These results highlight the potential of αvβ3 CAR-T cells for immunotherapeutic treatment of aggressive brain tumors with reduced risk of on-target, off-tumor mediated toxicity due to the restricted nature of αvβ3 expression in normal tissues.
Collapse
Affiliation(s)
- Dustin A Cobb
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Jacopo de Rossi
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Lixia Liu
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Erin An
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel W Lee
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA .,University of Virginia Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
170
|
Burns I, Gwynne WD, Suk Y, Custers S, Chaudhry I, Venugopal C, Singh SK. The Road to CAR T-Cell Therapies for Pediatric CNS Tumors: Obstacles and New Avenues. Front Oncol 2022; 12:815726. [PMID: 35155252 PMCID: PMC8829546 DOI: 10.3389/fonc.2022.815726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumors diagnosed in children and are the leading cause of pediatric cancer-related death. Those who do survive are faced with the long-term adverse effects of the current standard of care treatments of chemotherapy, radiation, and surgery. There is a pressing need for novel therapeutic strategies to treat pediatric CNS tumors more effectively while reducing toxicity - one of these novel modalities is chimeric antigen receptor (CAR) T-cell therapy. Currently approved for use in several hematological malignancies, there are promising pre-clinical and early clinical data that suggest CAR-T cells could transform the treatment of pediatric CNS tumors. There are, however, several challenges that must be overcome to develop safe and effective CAR T-cell therapies for CNS tumors. Herein, we detail these challenges, focusing on those unique to pediatric patients including antigen selection, tumor immunogenicity and toxicity. We also discuss our perspective on future avenues for CAR T-cell therapies and potential combinatorial treatment approaches.
Collapse
Affiliation(s)
- Ian Burns
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Stefan Custers
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Iqra Chaudhry
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
171
|
Rafii S, Tashkandi E, Bukhari N, Al-Shamsi HO. Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges. Cancers (Basel) 2022; 14:cancers14040947. [PMID: 35205694 PMCID: PMC8870204 DOI: 10.3390/cancers14040947] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered by not only multiple genetic but also epigenetic amendments that drive malignant cell propagation and consult chemo-resistance. The ability to correct or ablate such mutations holds enormous promise for battling cancer. Recently, because of its great efficiency and feasibility, the CRISPR-Cas9 advanced genome editing technique has been extensively considered for therapeutic investigations of cancers. Several studies have used the CRISPR-Cas9 technique for editing cancer cell genomic DNA in cells and animal cancer models and have shown therapeutic potential in intensifying anti-cancer protocols. Moreover, CRISPR-Cas9 may be used to correct oncogenic mutations, discover anticancer drugs, and engineer immune cells and oncolytic viruses for immunotherapeutic treatment of cancer. We herein discuss the challenges and opportunities for translating therapeutic methods with CRISPR-Cas9 for clinical use and suggest potential directions of the CRISPR-Cas9 system for future cancer therapy.
Collapse
Affiliation(s)
- Saeed Rafii
- Department of Oncology, Saudi German Hospital, Dubai P.O. Box 391093, United Arab Emirates;
- Emirates Oncology Society, Dubai P.O. Box 6600, United Arab Emirates
| | - Emad Tashkandi
- Oncology Center, King Abdullah Medical City, Makkah P.O. Box 24246, Saudi Arabia;
- Department of Medicine, College of Medicine, Umm Al Qura University, Makkah P.O. Box 24382, Saudi Arabia
| | - Nedal Bukhari
- Department of Medical Oncology, King Fahad Specialist Hospital, Dammam P.O. Box 31444, Saudi Arabia
- Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 34212, Saudi Arabia;
| | - Humaid O. Al-Shamsi
- Emirates Oncology Society, Dubai P.O. Box 6600, United Arab Emirates
- Department of Oncology, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi P.O. Box 92510, United Arab Emirates
- Innovation and Research Center, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi P.O. Box 92510, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-506-315-388
| |
Collapse
|
172
|
Sonzogni O, Zak DE, Sasso MS, Lear R, Muntzer A, Zonca M, West K, Champion BR, Rottman JB. T-SIGn tumor reengineering therapy and CAR T cells synergize in combination therapy to clear human lung tumor xenografts and lung metastases in NSG mice. Oncoimmunology 2022; 11:2029070. [PMID: 35154906 PMCID: PMC8837249 DOI: 10.1080/2162402x.2022.2029070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although chimeric antigen receptor (CAR) T cells have emerged as highly effective treatments for patients with hematologic malignancies, similar efficacy has not been achieved in the context of solid tumors. There are several reasons for this disparity including a) fewer solid tumor target antigens, b) heterogenous target expression amongst tumor cells, c) poor trafficking of CAR T cells to the solid tumor and d) an immunosuppressive tumor microenvironment (TME). Oncolytic viruses have the potential to change this paradigm by a) directly lysing tumor cells and releasing tumor neoantigens, b) stimulating the local host innate immune response to release cytokines and recruit additional innate and adaptive immune cells, c) carrying virus-encoded transgenes to “re-program” the TME to a pro-inflammatory environment and d) promoting an adaptive immune response to the neoantigens in this newly permissive TME. Here we show that the Tumor-Specific Immuno-Gene (T-SIGn) virus NG-347 which encodes IFNα, MIP1α and CD80 synergizes with anti-EGFR CAR T cells as well as anti-HER-2 CAR T cells to clear A549 human tumor xenografts and their pulmonary metastases at doses which are subtherapeutic when each is used as a sole treatment. We show that NG-347 changes the TME to a pro-inflammatory environment resulting in the recruitment and activation of both CAR T cells and mouse innate immune cells. We also show that the transgenes encoded by the virus are critical as synergy is lost in their absence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katy West
- PsiOxus Therapeutics Limited, Abingdon, UK
| | | | | |
Collapse
|
173
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
174
|
Luginbuehl V, Abraham E, Kovar K, Flaaten R, Müller AMS. Better by design: What to expect from novel CAR-engineered cell therapies? Biotechnol Adv 2022; 58:107917. [PMID: 35149146 DOI: 10.1016/j.biotechadv.2022.107917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Chimeric antigen receptor (CAR) technology, and CAR-T cells in particular, have emerged as a new and powerful tool in cancer immunotherapy since demonstrating efficacy against several hematological malignancies. However, despite encouraging clinical results of CAR-T cell therapy products, a significant proportion of patients do not achieve satisfactory responses, or relapse. In addition, CAR-T cell applications to solid tumors is still limited due to the tumor microenvironment and lack of specifically targetable tumor antigens. All current products on the market, as well as most investigational CAR-T cell therapies, are autologous, using the patient's own peripheral blood mononuclear cells as starting material to manufacture a patient-specific batch. Alternative cell sources are, therefore, under investigation (e.g. allogeneic cells from an at least partially human leukocyte antigen (HLA)-matched healthy donor, universal "third-party" cells from a non-HLA-matched donor, cord blood-derived cells, immortalized cell lines or cells differentiated from induced pluripotent stem cells). However, genetic modifications of CAR-engineered cells, bioprocesses used to expand cells, and improved supply chains are still complex and costly. To overcome drawbacks associated with CAR-T technologies, novel CAR designs have been used to genetically engineer cells derived from alpha beta (αβ) T cells, other immune cells such as natural killer (NK) cells, gamma delta (γδ) T cells, macrophages or dendritic cells. This review endeavours to trigger ideas on the next generation of CAR-engineered cell therapies beyond CAR-T cells and, thus, will enable effective, safe and affordable therapies for clinical management of cancer. To achieve this, we present a multidisciplinary overview, addressing a wide range of critical aspects: CAR design, development and manufacturing technologies, pharmacological concepts and clinical applications of CAR-engineered cell therapies. Each of these fields employs a large number of ground-breaking scientific advances, where coordinated and complex process and product development occur at their interfaces.
Collapse
Affiliation(s)
- Vera Luginbuehl
- Novartis Oncology, Cell & Gene Therapy, Novartis Pharma Schweiz AG, Rotkreuz, Switzerland.
| | - Eytan Abraham
- Personalized Medicine Lonza Pharma&Biotech, Lonza Ltd., Walkersville, MD, USA
| | | | - Richard Flaaten
- Novartis Oncology, Cell & Gene Therapy, Novartis Norge AS, Oslo, Norway
| | - Antonia M S Müller
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
175
|
Park JA, Cheung NKV. Overcoming tumor heterogeneity by ex vivo arming of T cells using multiple bispecific antibodies. J Immunother Cancer 2022; 10:jitc-2021-003771. [PMID: 35086947 PMCID: PMC8796264 DOI: 10.1136/jitc-2021-003771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumorous heterogeneity is a hallmark of tumor evolution and cancer progression, being a longstanding challenge to targeted immunotherapy. Ex vivo armed T cells (EATs) using IgG-(L)-scFv bispecific antibodies (BsAbs) are potent tumor-specific cytotoxic effectors. To improve the anti-tumor efficacy of EATs against heterogeneous solid tumors, we explored multi-antigen targeting approaches. METHODS Ex vivo expanded T cells were armed with BsAbs built on the IgG-(L)-scFv platform, where an anti-CD3 (huOKT3) scFv was attached to the carboxyl end of both light chains of a tumor specific IgG. Multispecificity was created by combining monospecific EATs, combining BsAbs on the same T cell, or combining specificities on the same antibody. Three multi-antigens targeting EAT strategies were tested: (1) pooled-EATs (EATs each with unique specificity administered simultaneously) or alternate-EATs (EATs each with unique specificity administered in an alternating schedule), (2) dual-EATs or multi-EATs (T cells simultaneously armed with ≥2 BsAbs), and (3) TriAb-EATs (T cells armed with BsAb specific for two targets besides CD3 (TriAb)). The properties and efficiencies of these three strategies were evaluated by flow cytometry, in vitro cytotoxicity, cytokine release assays, and in vivo studies performed in BALB-Rag2 -/-IL-2R-γc-KO (BRG) mice xenografted with cancer cell line (CDX) or patient-derived tumor (PDX). RESULTS Multi-EATs retained target antigen specificity and anti-tumor potency. Cytokine release with multi-EATs in the presence of tumor cells was substantially less than when multiple BsAbs were mixed with unarmed T cells. When tested against CDXs or PDXs, dual-EATs or multi-EATs effectively suppressed tumor growth without clinical toxicities. Most importantly, dual-EATs or multi-EATs were highly efficient in preventing clonal escape while mono-EATs or TriAb- EATs were not as effective. CONCLUSIONS Multi-EATs have the potential to increase potency, reduce toxicity, and overcome tumor heterogeneity without excessive cytokine release. Arming T cells with multiple BsAbs deserves further exploration to prevent or to treat cancer resistance.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
176
|
Perera MP, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030503. [PMID: 35158771 PMCID: PMC8833489 DOI: 10.3390/cancers14030503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers amongst men worldwide. Treatment for metastatic disease is often in the form of androgen deprivation therapy. However, over the course of treatment affected men may become castrate-resistant. Options for men with metastatic castrate-resistant cancer are limited. This review focuses on the role of chimeric antigen receptor T-cell therapy (CAR-T) in men with metastatic castrate-resistant prostate cancer. This review is a contemporary appraisal of preclinical and clinical studies conducted in this emerging form of immunotherapy. A thorough evaluation of the role of CAR-T therapy in prostate cancer is provided, as well as the obstacles we must overcome to clinically translate this therapy for men affected with this rapidly fatal disease. Abstract Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
Collapse
Affiliation(s)
- Mahasha P.J. Perera
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| | - Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Renea Taylor
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Arun Azad
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| |
Collapse
|
177
|
Semmrich M, Marchand JB, Fend L, Rehn M, Remy C, Holmkvist P, Silvestre N, Svensson C, Kleinpeter P, Deforges J, Junghus F, Cleary KL, Bodén M, Mårtensson L, Foloppe J, Teige I, Quéméneur E, Frendéus B. Vectorized Treg-depleting αCTLA-4 elicits antigen cross-presentation and CD8+ T cell immunity to reject ‘cold’ tumors. J Immunother Cancer 2022; 10:jitc-2021-003488. [PMID: 35058324 PMCID: PMC8783833 DOI: 10.1136/jitc-2021-003488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
BackgroundImmune checkpoint blockade (ICB) is a clinically proven concept to treat cancer. Still, a majority of patients with cancer including those with poorly immune infiltrated ‘cold’ tumors are resistant to currently available ICB therapies. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is one of few clinically validated targets for ICB, but toxicities linked to efficacy in approved αCTLA-4 regimens have restricted their use and precluded full therapeutic dosing. At a mechanistic level, accumulating preclinical and clinical data indicate dual mechanisms for αCTLA-4; ICB and regulatory T cell (Treg) depletion are both thought to contribute efficacy and toxicity in available, systemic, αCTLA-4 regimens. Accordingly, strategies to deliver highly effective, yet safe αCTLA-4 therapies have been lacking. Here we assess and identify spatially restricted exposure to a novel strongly Treg-depleting, checkpoint-blocking, vectorized αCTLA-4, as a highly efficacious and potentially safe strategy to target CTLA-4.MethodsA novel human IgG1 CTLA-4 antibody (4-E03) was identified using function-first screening for monoclonal antibodies (mAbs) and targets associated with superior Treg-depleting activity. A tumor-selective oncolytic vaccinia vector was then engineered to encode this novel, strongly Treg-depleting, checkpoint-blocking, αCTLA-4 antibody or a matching surrogate antibody, and Granulocyte-macrophage colony-stimulating factor (GM-CSF) (VVGM-αCTLA-4).ResultsThe identified 4-E03 antibody showed significantly stronger Treg depletion, but equipotent checkpoint blockade, compared with clinically validated αCTLA-4 ipilimumab against CTLA-4-expressing Treg cells in a humanized mouse model in vivo. Intratumoral administration of VVGM-αCTLA-4 achieved tumor-restricted CTLA-4 receptor saturation and Treg depletion, which elicited antigen cross-presentation and stronger systemic expansion of tumor-specific CD8+ T cells and antitumor immunity compared with systemic αCTLA-4 antibody therapy. Efficacy correlated with FcγR-mediated intratumoral Treg depletion. Remarkably, in a clinically relevant mouse model resistant to systemic ICB, intratumoral VVGM-αCTLA-4 synergized with αPD-1 to reject cold tumors.ConclusionOur findings demonstrate in vivo proof of concept for spatial restriction of Treg depletion-optimized immune checkpoint blocking, vectorized αCTLA-4 as a highly effective and safe strategy to target CTLA-4. A clinical trial evaluating intratumoral VVGM-αhCTLA-4 (BT-001) alone and in combination with αPD-1 in metastatic or advanced solid tumors has commenced.
Collapse
Affiliation(s)
- Monika Semmrich
- Department of Research, BioInvent International AB, Lund, Sweden
| | | | - Laetitia Fend
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | - Matilda Rehn
- Department of Research, BioInvent International AB, Lund, Sweden
| | - Christelle Remy
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | - Petra Holmkvist
- Department of Research, BioInvent International AB, Lund, Sweden
| | | | - Carolin Svensson
- Department of Research, BioInvent International AB, Lund, Sweden
| | | | - Jules Deforges
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | - Fred Junghus
- Department of Research, BioInvent International AB, Lund, Sweden
| | - Kirstie L Cleary
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mimoza Bodén
- Department of Research, BioInvent International AB, Lund, Sweden
| | - Linda Mårtensson
- Department of Research, BioInvent International AB, Lund, Sweden
| | - Johann Foloppe
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | - Ingrid Teige
- Department of Research, BioInvent International AB, Lund, Sweden
| | - Eric Quéméneur
- Department of Research, Transgene SA, Illkirch-Graffenstaden, France
| | - Björn Frendéus
- Department of Research, BioInvent International AB, Lund, Sweden
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
178
|
Asimgil H, Ertetik U, Çevik NC, Ekizce M, Doğruöz A, Gökalp M, Arık-Sever E, Istvanffy R, Friess H, Ceyhan GO, Demir IE. Targeting the undruggable oncogenic KRAS: the dawn of hope. JCI Insight 2022; 7:e153688. [PMID: 35014625 PMCID: PMC8765045 DOI: 10.1172/jci.insight.153688] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are the drivers of various cancers, including non-small cell lung cancer, colon cancer, and pancreatic cancer. Over the last 30 years, immense efforts have been made to inhibit KRAS mutants and oncogenic KRAS signaling using inhibitors. Recently, specific targeting of KRAS mutants with small molecules revived the hopes for successful therapies for lung, pancreatic, and colorectal cancer patients. Moreover, advances in gene editing, protein engineering, and drug delivery formulations have revolutionized cancer therapy regimens. New therapies aim to improve immune surveillance and enhance antitumor immunity by precisely targeting cancer cells harboring oncogenic KRAS. Here, we review recent KRAS-targeting strategies, their therapeutic potential, and remaining challenges to overcome. We also highlight the potential synergistic effects of various combinatorial therapies in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hande Asimgil
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Utku Ertetik
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Nedim Can Çevik
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Menar Ekizce
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Alper Doğruöz
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Muazzez Gökalp
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Elif Arık-Sever
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- SFB/Collaborative Research Centre 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- SFB/Collaborative Research Centre 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Güralp Onur Ceyhan
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Department of General Surgery, Hepatopancreatobiliary-Unit, School of Medicine, Kerem Aydınlar Campus at Acıbadem University, Istanbul, Turkey
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- SFB/Collaborative Research Centre 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Munich, Germany
| |
Collapse
|
179
|
Nobili A, Kobayashi A, Gedeon PC, Novina CD. Clutch Control: Changing the Speed and Direction of CAR-T Cell Therapy. JOURNAL OF CANCER IMMUNOLOGY 2022; 4:52-59. [PMID: 36531912 PMCID: PMC9754302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alberto Nobili
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA,Current Address: Dynamic Cell Therapies, Inc., 127 Western Ave., Allston, MA 02134, USA
| | - Aya Kobayashi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick C. Gedeon
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl D. Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA,Correspondence should be addressed to Carl D. Novina,
| |
Collapse
|
180
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
181
|
Sloas C, Gill S, Klichinsky M. Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors. Front Immunol 2021; 12:783305. [PMID: 34899748 PMCID: PMC8652144 DOI: 10.3389/fimmu.2021.783305] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Cellular immunotherapies represent a promising approach for the treatment of cancer. Engineered adoptive cell therapies redirect and augment a leukocyte’s inherent ability to mount an immune response by introducing novel anti-tumor capabilities and targeting moieties. A prominent example of this approach is the use of T cells engineered to express chimeric antigen receptors (CARs), which have demonstrated significant efficacy against some hematologic malignancies. Despite increasingly sophisticated strategies to harness immune cell function, efficacy against solid tumors has remained elusive for adoptive cell therapies. Amongst cell types used in immunotherapies, however, macrophages have recently emerged as prominent candidates for the treatment of solid tumors. In this review, we discuss the use of monocytes and macrophages as adoptive cell therapies. Macrophages are innate immune cells that are intrinsically equipped with broad therapeutic effector functions, including active trafficking to tumor sites, direct tumor phagocytosis, activation of the tumor microenvironment and professional antigen presentation. We focus on engineering strategies for manipulating macrophages, with a specific focus on CAR macrophages (CAR-M). We highlight CAR design for macrophages, the production of CAR-M for adoptive cell transfer, and clinical considerations for their use in treating solid malignancies. We then outline recent progress and results in applying CAR-M as immunotherapies. The recent development of engineered macrophage-based therapies holds promise as a key weapon in the immune cell therapy armamentarium.
Collapse
Affiliation(s)
| | - Saar Gill
- Division of Hematology-Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
182
|
Long C, Li G, Zhang C, Jiang T, Li Y, Duan X, Zhong G. B7-H3 as a Target for CAR-T Cell Therapy in Skull Base Chordoma. Front Oncol 2021; 11:659662. [PMID: 34868903 PMCID: PMC8634710 DOI: 10.3389/fonc.2021.659662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
Objective chordomas are rare bone tumors with few therapeutic options. Skull base and sacrum are the two most common origin sites. Immunotherapies are emerging as the most promising approaches to fight various cancers. This study tends to identify new cell surface targets for immunotherapeutic options of skull base chordomas. Methods we profiled 45 skull base chordoma clinical samples by immunohistochemistry for the expression of six CAR-Targets (PD-L1, B7-H3, B7-H4, VISTA, HER2 and HER3). In addition, we generated B7-H3 targeted CAR-T-cells and evaluated their antitumor activities in vitro. Results We found that B7-H3 was positively stained in 7 out of 45 (16%) chordoma samples and established an expression hierarchy for these antigens (B7-H3 > HER3 > PD-L1 > HER2 = VISTA = B7-H4). We then generated a B7-H3 targeted CAR vector and demonstrated that B7-H3-CAR-T-cells recognized antigen positive cells and exhibited significant antitumor effects, including suppression of tumor spheroid formation, CAR-T-cell activation and cytokine secretion. Conclusions Our results support B7-H3 might serve as a promising target for CAR-T-cell therapies against chordomas.
Collapse
Affiliation(s)
- Cheng Long
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chengyun Zhang
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Jiang
- Orthopedics Department, Xiandai Hospital of Sichuan Province, Chengdu, China
| | - Yanjun Li
- Orthopedics Department, Fukang Hospital of Tibet, Chengdu, China
| | - Xin Duan
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Zhong
- Orthopedics Department, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
183
|
Tanaka H, Miyama R, Sakurai Y, Tamagawa S, Nakai Y, Tange K, Yoshioka H, Akita H. Improvement of mRNA Delivery Efficiency to a T Cell Line by Modulating PEG-Lipid Content and Phospholipid Components of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13122097. [PMID: 34959378 PMCID: PMC8706876 DOI: 10.3390/pharmaceutics13122097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
(1) Background: T cells are important target cells, since they exert direct cytotoxic effects on infected/malignant cells, and affect the regulatory functions of other immune cells in a target antigen-specific manner. One of the current approaches for modifying the function of T cells is gene transfection by viral vectors. However, the insertion of the exogenous DNA molecules into the genome is attended by the risk of mutagenesis, especially when a transposon-based gene cassette is used. Based on this scenario, the transient expression of proteins by an in vitro-transcribed messenger RNA (IVT-mRNA) has become a subject of interest. The use of lipid nanoparticles (LNPs) for the transfection of IVT-mRNA is one of the more promising strategies for introducing exogenous genes. In this study, we report on the development of LNPs with transfection efficiencies that are comparable to that for electroporation in a T cell line (Jurkat cells). (2) Methods: Transfection efficiency was improved by optimizing the phospholipids and polyethylene glycol (PEG)-conjugated lipid components. (3) Results: Modification of the lipid composition resulted in the 221-fold increase in luciferase activity compared to a previously optimized formulation. Such a high transfection activity was due to the efficient uptake by clathrin/dynamin-dependent endocytosis and the relatively efficient escape into the cytoplasm at an early stage of endocytosis.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
- Correspondence: (H.T.); (H.A.); Tel.: +81-43-226-2894 (H.T.); +81-43-226-2893 (H.A.)
| | - Ryo Miyama
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
| | - Shinya Tamagawa
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Yuta Nakai
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Kota Tange
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Hiroki Yoshioka
- DDS Research Laboratory, NOF CORPORATION, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki City 210-0865, Japan; (S.T.); (Y.N.); (K.T.); (H.Y.)
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City 260-0856, Japan; (R.M.); (Y.S.)
- Correspondence: (H.T.); (H.A.); Tel.: +81-43-226-2894 (H.T.); +81-43-226-2893 (H.A.)
| |
Collapse
|
184
|
Hu Y, Cao G, Chen X, Huang X, Asby N, Ankenbruck N, Rahman A, Thusu A, He Y, Riedell PA, Bishop MR, Schreiber H, Kline JP, Huang J. Antigen-Multimers: Specific, Sensitive, Precise, and Multifunctional High-Avidity CAR-Staining Reagents. MATTER 2021; 4:3917-3940. [PMID: 34901832 PMCID: PMC8654235 DOI: 10.1016/j.matt.2021.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although chimeric antigen receptor (CAR) T-cell therapy has transformed cancer treatment, high-quality and universal CAR-staining reagents are urgently required to manufacture CAR T cells, predict therapy response, decipher CAR biology, and engineer new CARs. Here, we developed tetrameric and dodecameric forms of a multifunctional and extensible category of high-avidity CAR-staining reagents: antigen-multimers. Antigen-multimers detected CARs against CD19, HER2, and Tn-glycoside with significantly higher specificity, sensitivity, and precision than existing reagents. In addition to accurate CAR T-cell detection by flow cytometry, antigen-multimers also enabled ≥100-fold magnetic enrichment of rare CAR T cells, selective CAR T-cell stimulation, and high-dimensional CAR T-cell profiling by single-cell multi-omics analyses. Finally, antigen-multimers accurately captured clinical anti-CD19 CAR T cells from patients' cellular infusion products, post-infusion peripheral blood, and tumor biopsies. Antigen-multimers can be readily extended to other CAR systems by switching its antigen ligand. As such, antigen-multimers have broad clinical and research applications.
Collapse
Affiliation(s)
- Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nicholas Ankenbruck
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ali Rahman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ashima Thusu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yanran He
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Hans Schreiber
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
185
|
Kopecka J, Salaroglio IC, Perez-Ruiz E, Sarmento-Ribeiro AB, Saponara S, De Las Rivas J, Riganti C. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 2021; 59:100787. [PMID: 34840068 DOI: 10.1016/j.drup.2021.100787] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure. Indeed, multiple metabolic cross talks between tumor and stromal cells determine the prevalence of immunosuppressive populations within the hypoxic tumor microenvironment and confer upon tumor cells resistance to ICPIs and CAR T-cells. Notably, hypoxia-triggered angiogenesis causes immunosuppression, adding another piece to the puzzle of hypoxia-induced immunoresistance. If these factors concurrently contribute to the resistance to immunotherapy, they also unveil an unexpected Achille's heel of hypoxic tumors, providing the basis for innovative combination therapies that may rescue the efficacy of ICPIs and CAR T-cells. Although these treatments reveal both a bright side and a dark side in terms of efficacy and safety in clinical trials, they represent the future solution to enhance the efficacy of immunotherapy against hypoxic and therapy-resistant solid tumors.
Collapse
Affiliation(s)
| | | | - Elizabeth Perez-Ruiz
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB) and Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | | - Javier De Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), and Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
186
|
Chung H, Jung H, Noh JY. Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Int J Mol Sci 2021; 22:ijms222212126. [PMID: 34830003 PMCID: PMC8621681 DOI: 10.3390/ijms222212126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient’s autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.
Collapse
Affiliation(s)
- Hyunmin Chung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.J.); (J.-Y.N.)
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (H.J.); (J.-Y.N.)
| |
Collapse
|
187
|
Liu C, Zhang G, Xiang K, Kim Y, Lavoie RR, Lucien F, Wen T. Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunol Immunother 2021; 71:1549-1567. [PMID: 34739560 DOI: 10.1007/s00262-021-03097-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Guangwei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kanghui Xiang
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ti Wen
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
188
|
Nguyen J, Pettmann J, Kruger P, Dushek O. Quantitative contributions of TNF receptor superfamily members to CD8 + T-cell responses. Mol Syst Biol 2021; 17:e10560. [PMID: 34806839 PMCID: PMC8607805 DOI: 10.15252/msb.202110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
T-cell responses to infections and cancers are regulated by co-signalling receptors grouped into the binary categories of co-stimulation or co-inhibition. The co-stimulation TNF receptor superfamily (TNFRSF) members 4-1BB, CD27, GITR and OX40 have similar signalling mechanisms raising the question of whether they have similar impacts on T-cell responses. Here, we screened for the quantitative impact of these TNFRSFs on primary human CD8+ T-cell cytokine production. Although both 4-1BB and CD27 increased production, only 4-1BB was able to prolong the duration over which cytokine was produced, and both had only modest effects on antigen sensitivity. An operational model explained these different phenotypes using shared signalling based on the surface expression of 4-1BB being regulated through signalling feedback. The model predicted and experiments confirmed that CD27 co-stimulation increases 4-1BB expression and subsequent 4-1BB co-stimulation. GITR and OX40 displayed only minor effects on their own but, like 4-1BB, CD27 could enhance GITR expression and subsequent GITR co-stimulation. Thus, different co-stimulation receptors can have different quantitative effects allowing for synergy and fine-tuning of T-cell responses.
Collapse
Affiliation(s)
- John Nguyen
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Philipp Kruger
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Omer Dushek
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
189
|
Bourbon E, Ghesquières H, Bachy E. CAR-T cells, from principle to clinical applications. Bull Cancer 2021; 108:S4-S17. [DOI: 10.1016/j.bulcan.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
|
190
|
Hosseinkhani N, Shadbad MA, Asghari Jafarabadi M, Karim Ahangar N, Asadzadeh Z, Mohammadi SM, Lotfinejad P, Alizadeh N, Brunetti O, Fasano R, Silvestris N, Baradaran B. A Systematic Review and Meta-Analysis on the Significance of TIGIT in Solid Cancers: Dual TIGIT/PD-1 Blockade to Overcome Immune-Resistance in Solid Cancers. Int J Mol Sci 2021; 22:ijms221910389. [PMID: 34638729 PMCID: PMC8508743 DOI: 10.3390/ijms221910389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Preclinical studies have indicated that T-cell immunoglobulin and ITIM domain (TIGIT) can substantially attenuate anti-tumoral immune responses. Although multiple clinical studies have evaluated the significance of TIGIT in patients with solid cancers, their results remain inconclusive. Thus, we conducted the current systematic review and meta-analysis based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to determine its significance in patients with solid cancers. We systematically searched the Web of Science, Embase, PubMed, and Scopus databases to obtain peer-reviewed studies published before September 20, 2020. Our results have shown that increased TIGIT expression has been significantly associated with inferior overall survival (OS) (HR = 1.42, 95% CI: 1.11–1.82, and p-value = 0.01). Besides, the level of tumor-infiltrating TIGIT+CD8+ T-cells have been remarkably associated inferior OS and relapse-free survival (RFS) of affected patients (HR = 2.17, 95% CI: 1.43–3.29, and p-value < 0.001, and HR = 1.89, 95% CI: 1.36–2.63, and p-value < 0.001, respectively). Also, there is a strong positive association between TIGIT expression with programmed cell death-1 (PD-1) expression in these patients (OR = 1.71, 95% CI: 1.10–2.68, and p-value = 0.02). In summary, increased TIGIT expression and increased infiltration of TIGIT+CD8+ T-cells can substantially worsen the prognosis of patients with solid cancers. Besides, concerning the observed strong association between TIGIT and PD-1, ongoing clinical trials, and promising preclinical results, PD-1/TIGIT dual blockade can potentially help overcome the immune-resistance state seen following monotherapy with a single immune checkpoint inhibitor in patients with solid cancers.
Collapse
Affiliation(s)
- Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mohammad Asghari Jafarabadi
- Department of Statistics and Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
- Center for the Development of Interdisciplinary Research in Islamic Sciences and Health Sciences, Tabriz University of Medical Sciences, Tabriz 4513956184, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (N.H.); (N.K.A.); (Z.A.); (P.L.); (N.A.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
| | - Rossella Fasano
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (O.B.); (R.F.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-337-1440 (B.B.); Fax: +98-413-337-1311 (B.B.)
| | - Behzad Baradaran
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +98-413-337-1440 (B.B.); Fax: +98-413-337-1311 (B.B.)
| |
Collapse
|
191
|
Murayama Y, Kawashima H, Kubo N, Shin C, Kasahara Y, Imamura M, Oike N, Ariizumi T, Saitoh A, Mihara K, Umezu H, Ogose A, Imai C. Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Transl Oncol 2021; 14:101227. [PMID: 34555727 PMCID: PMC8461377 DOI: 10.1016/j.tranon.2021.101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
HER2-targeted/4-1BB costimulated CAR T cells recognized synovial sarcoma cells. HER2-targeted CAR T cells secrete interferon gamma and tumor necrosis factor alpha. HER2-targeted CAR T cells exert cytotoxic effects in synovial sarcoma cells. HER2-targeted CAR T cell therapy for chemo-refractory or relapsed synovial sarcoma.
Background Synovial sarcoma is a rare malignant soft-tissue tumor that is prevalent in adolescents and young adults, and poor prognosis has been reported in patients with metastatic lesions. Chimeric antigen receptor (CAR) T-cell therapy is an emerging novel therapy for solid tumors; however, its application in synovial sarcoma has not yet been explored. Methods A novel human epidermal growth factor receptor 2 (HER2)-targeted CAR containing scFv-FRP5, CD8α hinge and transmembrane domains as well as 4-1BB costimulatory and CD3ζ signaling domains was developed. Three synovial sarcoma cell lines that expressed the fusion transcript SS18-SSX1/2/4 were used in the study. Cytokine secretion assay, cytotoxicity assay, and real-time cell analysis experiments were conducted to confirm the function of T cells transduced with the CAR gene. Results High cell-surface expression of HER2 was observed in all the cell lines. HER2-targeted/4-1BB-costimulated CAR T cells specifically recognized the synovial sarcoma cells, secreted interferon gamma and tumor necrosis factor alpha, and exerted cytotoxic effects in these cells. Conclusion To the best of our knowledge, this is the first study to indicate that HER2-targeted CAR T cells are directly effective against molecularly defined synovial sarcoma cells. Furthermore, our findings might set the basis for developing improved CAR T cell-based therapies for chemo-refractory or relapsed synovial sarcoma.
Collapse
Affiliation(s)
- Yudai Murayama
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuhiro Kubo
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Yasushi Kasahara
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
192
|
Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X. Reply to Comment on "In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells". LIGHT, SCIENCE & APPLICATIONS 2021; 10:189. [PMID: 34531363 PMCID: PMC8446013 DOI: 10.1038/s41377-021-00625-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Nan Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kai Pang
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing, 100192, China
| | - Chengying Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meilu Tian
- Biomedical Engineering Department, Peking University, Beijing, 100081, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
193
|
Martino M, Macheda S, Aguglia U, Arcudi L, Pucci G, Martino B, Altomonte M, Rossetti AM, Cusumano G, Russo L, Imbalzano L, Stelitano C, Alati C, Germano' J, Labate D, Amalfi V, Florenzano MT, Morabito A, Borzumati V, Dattola V, Gattuso C, Moschella A, Quattrone D, Curmaci F, Franzutti C, Scappatura G, Rao CM, Loddo V, Pontari A, Pellicano' M, Surace R, Sanguedolce C, Naso V, Ferreri A, Irrera G, Console G, Moscato T, Loteta B, Canale FA, Trimarchi A, Monteleone R, Al Sayyad S, Cirrone F, Bruno B. Identifying and managing CAR T-cell-mediated toxicities: on behalf of an Italian CAR-T multidisciplinary team. Expert Opin Biol Ther 2021; 22:407-421. [PMID: 34463175 DOI: 10.1080/14712598.2021.1974394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR)-T-cell therapy is a new treatment for patients with hematologic malignancies in which other therapies have failed. AREAS COVERED The review provides an overview for recognizing and managing the most acute toxicities related to CAR-T cells. EXPERT OPINION The development of immune-mediated toxicities is a common challenge of CAR-T therapy. The mechanism that determines this toxicity is still unclear, although an unfavorable tumor microenvironment and a pro-inflammatory state put patients at risk. The monitoring, diagnosis, and treatment of post-CAR-T toxicities must be determined and based on international guidelines and internal clinical practice. It is urgent to identify biomarkers that can identify patients at greater risk of developing complications. The adoption of consistent grading criteria is necessary to improve toxicity management strategies continually. The first-line therapy consists of supportive care and treatment with tocilizumab or corticosteroids. An early start of cytokine blockade therapies could mitigate toxicity. The plan will include cytokine release prophylaxis, a risk-adapted treatment, prevention of on-target/off-tumor effect, and a switch on/off CAR-T approach.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Sebastiano Macheda
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Umberto Aguglia
- Department of Medicine, Surgery and Health Sciences, Magna Græcia University, Catanzaro, Italy, Regional Epilepsy Centre, Great Metropolitan Hospital "Bianchi-melacrino-morelli," Reggio Calabria, Italy.,Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Luciano Arcudi
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giulia Pucci
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Bruno Martino
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Altomonte
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Maria Rossetti
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppa Cusumano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Letteria Russo
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Lucrezia Imbalzano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Stelitano
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Alati
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Jessyca Germano'
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Demetrio Labate
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Amalfi
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Teresa Florenzano
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonella Morabito
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vittoria Borzumati
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Dattola
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Gattuso
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Moschella
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Domenico Quattrone
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Francesco Curmaci
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Claudio Franzutti
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Scappatura
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Viviana Loddo
- Catholic University of the Sacred Heart, Rome, Italy
| | - Antonella Pontari
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Pellicano'
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Rosangela Surace
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Cristina Sanguedolce
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Virginia Naso
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Anna Ferreri
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Irrera
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Console
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Tiziana Moscato
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Barbara Loteta
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Alfonso Trimarchi
- Immunotransfusion Service Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli,", Reggio, Calabria, Italy
| | - Renza Monteleone
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Said Al Sayyad
- Onco-hematology and Radiotherapy Department, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy
| | - Frank Cirrone
- Department of Pharmacy, Nyu Langone Health, New York, NY
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.o.u. Città Della Salute E Della Scienza Di Torino, Presidio Molinette, Torino, Italy.,Division Of Hematology And Medical Oncology, Perlmutter Cancer Center, Grossman School Of Medicine, NYU Langone Health, New York, Ny
| |
Collapse
|
194
|
Aharon A, Horn G, Bar-Lev TH, Zagagi Yohay E, Waks T, Levin M, Deshet Unger N, Avivi I, Globerson Levin A. Extracellular Vesicles Derived from Chimeric Antigen Receptor-T Cells: A Potential Therapy for Cancer. Hum Gene Ther 2021; 32:1224-1241. [PMID: 34494460 DOI: 10.1089/hum.2021.192] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells are genetically engineered T cells, directed against a tumor-associated antigen. Extracellular vesicles (EVs) derived from CAR-T cells (CAR-T EVs) may preserve CAR-T activity and overcome one of the major obstacles responsible for CAR-T cell failure in patients with solid tumors. This study aimed to compare CAR-T EVs with their parental cells and explore their cell penetration and cytotoxic activity. Anti-HER-2 CARs were stimulated with specific target cells. EVs were isolated from the cell media and characterized for their content and functions. We found that CAR-T EVs contained a mixture of small and large EVs. Stimulated anti-HER-2+ CAR-T EVs expressed lower cytokine levels compared with their parental CAR-T cells (such as interferon gamma). Higher levels of granzyme B were found in CAR-T EVs (≥20 × ) compared with EVs from unstimulated cells (p < 0.001). Anti-HER-2+ CAR-T EVs bound and penetrated specifically into HER-2 expressing target cells. Similar cytotoxic effects measured by caspase-3/7 activity were found in CAR-T cells and their derived EVs. However, while the CAR-T cells induced massive apoptosis during the first 24 h, CAR-T EVs required 60 - 90 h. In summary, CAR-T EVs provide a novel potent immunotherapy approach that may be effective against solid tumors.
Collapse
Affiliation(s)
- Anat Aharon
- Hematology Research Laboratory for Extracellular Vesicles, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Horn
- Immunology Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tali Hana Bar-Lev
- Hematology Research Laboratory for Extracellular Vesicles, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Einav Zagagi Yohay
- Hematology Research Laboratory for Extracellular Vesicles, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tova Waks
- Immunology Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Immunology Department, The Weizmann Institute, Rehovot, Israel
| | - Maya Levin
- Hematology Research Laboratory for Extracellular Vesicles, Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Naamit Deshet Unger
- Immunology Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Hematology Division, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Globerson Levin
- Immunology Laboratory, Research & Development Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Dotan Center for Advanced Therapies, Tel-Aviv Sourasky Medical Center and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
195
|
Abdin SM, Paasch D, Morgan M, Lachmann N. CARs and beyond: tailoring macrophage-based cell therapeutics to combat solid malignancies. J Immunother Cancer 2021; 9:jitc-2021-002741. [PMID: 34462325 PMCID: PMC8407221 DOI: 10.1136/jitc-2021-002741] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/20/2022] Open
Abstract
Recent understanding of the role and contribution of immune cells in disease onset and progression has pioneered the field of immunotherapies. Use of genetic engineering to deliver, correct or enhance immune cells has been clinically successful, especially in the field of cancer immunotherapy. Indeed, one of the most attractive approaches is the introduction of chimeric antigen receptors (CARs) to immune cells, such as T cells. Recent studies revealed that adapting this platform for use in macrophages may widen the spectrum of CAR applications for better control of solid tumors and, thus, extend this treatment strategy to more patients with cancer. Given the novel insights into tumor-associated macrophages and new targeting strategies to boost anticancer therapy, this review aims to provide an overview of the current status of the role of macrophages in cancer therapy. The various genetic engineering approaches that can be used to optimize macrophages for use in oncology are discussed, with special attention dedicated to the implication of the CAR platform on macrophages for anticancer therapy. The current clinical status, challenges and future perspective of macrophage-based drugs are highlighted.
Collapse
Affiliation(s)
- Shifaa M Abdin
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Daniela Paasch
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany .,REBIRTH Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.,RESIST, Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
196
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
197
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|
198
|
Abstract
PURPOSE OF REVIEW For patients with metastatic melanoma, immune checkpoint inhibition has drastically changed outcomes. Here, we review the current and next generations of immune-based anti-cancer therapeutics for patients with metastatic melanoma. RECENT FINDINGS The need for new anti-cancer therapeutics in patients with metastatic melanoma who have progression of disease despite immune checkpoint blockade is evident. Several novel agents are expected to have FDA approval within the next few years, as they have yielded impressive responses. Despite these optimistic agents, the field of immuno-oncology continues to expand and produce agents with novel mechanisms of action. The next generation of immunotherapy is based upon years of thoroughly researched immuno-oncology. Many of these agents are currently being evaluated in early phase clinical trials, and much of the preliminary data looks promising.
Collapse
Affiliation(s)
- Tyler Buchanan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Afsaneh Amouzegar
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Hillman Cancer Center, UPMC, 5150 Centre Ave. Room 564, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
199
|
Globerson Levin A, Rivière I, Eshhar Z, Sadelain M. CAR T cells: Building on the CD19 paradigm. Eur J Immunol 2021; 51:2151-2163. [PMID: 34196410 DOI: 10.1002/eji.202049064] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Spearheaded by the therapeutic use of chimeric antigen receptors (CARs) targeting CD19, synthetic immunology has entered the clinical arena. CARs are recombinant receptors for antigen that engage cell surface molecules through the variable region of an antibody and signal through arrayed T-cell activating and costimulatory domains. CARs allow redirection of T-cell cytotoxicity against any antigen of choice, independent of MHC expression. Patient T cells engineered to express CARs specific for CD19 have yielded remarkable outcomes in subjects with relapsed/refractory B- cell malignancies, setting off unprecedented interest in T-cell engineering and cell-based cancer immunotherapy. In this review, we present the challenges to extend the use of CAR T cells to solid tumors and other pathologies. We further highlight progress in CAR design, cell manufacturing, and genome editing, which in aggregate hold the promise of generating safer and more effective genetically instructed immunity. Novel engineered cell types, including innate T-cell types, natural killer (NK) cells, macrophages, and induced pluripotent stem cell-derived immune cells, are on the horizon, as are applications of CAR T cells to treat autoimmunity, severe infections, and senescence-associated pathologies.
Collapse
Affiliation(s)
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zelig Eshhar
- Immunology Lab, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
200
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|