151
|
Kothari A, Charrier M, Wu YW, Malfatti S, Zhou CE, Singer SW, Dugan L, Mukhopadhyay A. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization. FEMS Microbiol Lett 2016; 363:fnw224. [PMID: 27664055 PMCID: PMC5074533 DOI: 10.1093/femsle/fnw224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulated genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. This study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1. Analysis of the transcriptome of the oil-degrading bacterium Acinetobacter venetianus RAG-1 helps in identification of genes that are involved in uptake and metabolism of alkanes, thus helping in bioremediation.
Collapse
Affiliation(s)
- Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8099, USA
| | - Marimikel Charrier
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8099, USA
| | - Yu-Wei Wu
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8099, USA.,Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan Biosciences
| | - Stephanie Malfatti
- Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-5507, USA
| | - Carol E Zhou
- Computing Applications and Research Department, Lawrence Livermore National Laboratory, Livermore, CA 94550-9234, USA
| | - Steven W Singer
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8099, USA
| | - Larry Dugan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan Biosciences.,Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550-5507, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8099, USA
| |
Collapse
|
152
|
Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines. Amino Acids 2016; 48:2313-26. [PMID: 27619911 DOI: 10.1007/s00726-016-2323-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.
Collapse
|
153
|
Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep 2016; 6:32410. [PMID: 27573305 PMCID: PMC5004102 DOI: 10.1038/srep32410] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca(2+)-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE.
Collapse
|
154
|
Lai L, Li YP, Mei P, Chen W, Jiang FL, Liu Y. Size Effects on the Interaction of QDs with the Mitochondrial Membrane In Vitro. J Membr Biol 2016; 249:757-767. [PMID: 27510720 DOI: 10.1007/s00232-016-9920-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/01/2016] [Indexed: 01/18/2023]
Abstract
The mitochondrial toxicity induced by GSH-CdTe Quantum dots (QDs) of different sizes was investigated. The decreases in absorbance and transmission electron microscopy images show that QDs induce the swelling of mitochondria. Results of flow cytometry indicate that QDs cause a reduction of mitochondrial membrane potential (MMP). A remarkable increase in fluidity of protein regions of mitochondrial membrane is observed, whereas the lipid regions are not obviously affected. Cyclosporin A (CsA) effectively prevents the QD-induced mitochondrial swelling. On the basis of these results, it is proposed that QDs induce mitochondrial permeability transition (MPT). Moreover, with increasing QDs size, a pronounced MPT is observed. The difference between the membrane fluidity induced by QDs and Cadmium ion and the ineffective protective effects of EDTA suggests that the mitochondrial toxicity of QDs cannot be only attributed to the release of metal ion. The protective effects of HSA indicate that the interaction of QDs with pore-forming protein gives rise to the increase in membrane fluidity. This hypothesis is demonstrated by the interaction of QDs with model membranes and proteins using differential scanning calorimetry and isothermal titration microcalorimetry. In conclusion, as the size of QDs increases, the binding affinity of QDs with membrane protein increases, and therefore causes a pronounced mitochondrial damage.
Collapse
Affiliation(s)
- Lu Lai
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China.
| | - Ya-Ping Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Ping Mei
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Wu Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Virology and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
155
|
Kim SY, Jeong HC, Hong SK, Lee MO, Cho SJ, Cha HJ. Quercetin induced ROS production triggers mitochondrial cell death of human embryonic stem cells. Oncotarget 2016; 8:64964-64973. [PMID: 29029404 PMCID: PMC5630304 DOI: 10.18632/oncotarget.11070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Small molecules to selectively induce cell death of undifferentiated human pluripotent stem cells (hPSCs) have been developed with the aim of lowering the risk of teratoma formation during hPSC-based cell therapy. In this context, we have reported that Quercetin (QC) induces cell death selectively in hESCs via p53 mitochondrial localization. However, the detailed molecular mechanism by which hESCs undergo selective cell death induced by QC remains unclear. Herein, we demonstrate that mitochondrial reactive oxygen species (ROS), strongly induced by QC in human embryonic stem cells (hESCs) but not in human dermal fibroblasts (hDFs), were responsible for QC-mediated hESC's cell death. Increased p53 protein stability and subsequent mitochondrial localization by QC treatment triggered mitochondrial cell death only in hESCs. Of interest, peptidylprolyl isomerase D [PPID, also called cyclophilin D (CypD)], which functions in mitochondrial permeability transition and mitochondrial cell death, was highly expressed in hESCs. Inhibition of CypD by cyclosporine A (CsA) clearly inhibited the QC-mediated loss of mitochondrial membrane potential and mitochondrial cell death. These results suggest that p53 and CypD in the mitochondria are critical for the QC-mediated induction of cell death in hESCs.
Collapse
Affiliation(s)
- So-Yeon Kim
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Ho-Chang Jeong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Soon-Ki Hong
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Mi-Ok Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Seung-Ju Cho
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences, Department of Life Sciences, Sogang University, Seoul 121-742, Korea
| |
Collapse
|
156
|
Torrezan-Nitao E, Boni R, Marques-Santos LF. Mitochondrial permeability transition pore (MPTP) desensitization increases sea urchin spermatozoa fertilization rate. Cell Biol Int 2016; 40:1071-83. [PMID: 27449751 DOI: 10.1002/cbin.10647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
Mitochondrial permeability transition pore (MPTP) is a protein complex whose opening promotes an abrupt increase in mitochondrial inner membrane permeability. Calcium signaling pathways are described in gametes and are involved in the fertilization process. Although mitochondria may act as Ca(2+) store and have a fast calcium-releasing mechanism through MPTP, its contribution to fertilization remains unclear. The work aimed to investigate the MPTP phenomenon in sea urchin spermatozoa and its role on the fertilization. Several pharmacological tools were used to evaluate the MPTP's physiology. Our results demonstrated that MPTP occurs in male gametes in a Ca(2+) - and voltage-dependent manner and it is sensitive to cyclosporine A. Additionally, our data show that MPTP opening does not alter ROS generation in sperm cells. Inhibition of MPTP in spermatozoa strongly improved the fertilization rate, which may involve mechanisms that increase the spermatozoa lifespan. The present work is the first report of the presence of a voltage- and Ca(2+) -dependent MPTP in gametes of invertebrates and indicates MPTP opening as another evolutionary feature shared by sea urchins and mammals. Studies about MPTP in sea urchin male gametes may contribute to the elucidation of several mechanisms involved in sperm infertility.
Collapse
Affiliation(s)
- Elis Torrezan-Nitao
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil
| | - Raianna Boni
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil
| | - Luis Fernando Marques-Santos
- Laboratório de Biologia Celular e do Desenvolvimento, Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, Cidade Universitária, CEP: 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
157
|
Cecatto C, Godoy KDS, da Silva JC, Amaral AU, Wajner M. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Toxicol In Vitro 2016; 36:1-9. [PMID: 27371118 DOI: 10.1016/j.tiv.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
158
|
Akabane S, Matsuzaki K, Yamashita SI, Arai K, Okatsu K, Kanki T, Matsuda N, Oka T. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy. J Biol Chem 2016; 291:16162-74. [PMID: 27302064 DOI: 10.1074/jbc.m116.714923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 02/04/2023] Open
Abstract
Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy.
Collapse
Affiliation(s)
- Shiori Akabane
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Kohei Matsuzaki
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Shun-Ichi Yamashita
- the Institute of Nephrology, Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Kana Arai
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501
| | - Kei Okatsu
- the Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomotake Kanki
- the Institute of Nephrology, Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, and
| | - Noriyuki Matsuda
- the Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshihiko Oka
- From the Department of Life Science, Rikkyo University, -34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501,
| |
Collapse
|
159
|
Tajeddine N. How do reactive oxygen species and calcium trigger mitochondrial membrane permeabilisation? Biochim Biophys Acta Gen Subj 2016; 1860:1079-88. [DOI: 10.1016/j.bbagen.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
160
|
cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1363-1372. [PMID: 27240720 DOI: 10.1016/j.bbabio.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency.
Collapse
|
161
|
Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques. Nat Protoc 2016; 11:1067-80. [DOI: 10.1038/nprot.2016.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
162
|
Ferrari R, Biscaglia S, Malagù M, Bertini M, Campo G. Can We Improve Myocardial Protection during Ischaemic Injury? Cardiology 2016; 135:14-26. [DOI: 10.1159/000444847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
|
163
|
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial Permeability Transition: New Findings and Persisting Uncertainties. Trends Cell Biol 2016; 26:655-667. [PMID: 27161573 DOI: 10.1016/j.tcb.2016.04.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Several insults cause the inner mitochondrial membrane to abruptly lose osmotic homeostasis, hence initiating a regulated variant of cell death known as 'mitochondrial permeability transition' (MPT)-driven necrosis. MPT provides an etiological contribution to several human disorders characterized by the acute loss of post-mitotic cells, including cardiac and cerebral ischemia. Nevertheless, the precise molecular determinants of MPT remain elusive, which considerably hampers the development of clinically implementable cardio- or neuroprotective strategies targeting this process. We summarize recent findings shedding new light on the supramolecular entity that mediates MPT, the so-called 'permeability transition pore complex' (PTPC). Moreover, we discuss hitherto unresolved controversies on MPT and analyze the major obstacles that still preclude the complete understanding and therapeutic targeting of this process.
Collapse
Affiliation(s)
- Valentina Izzo
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - José Manuel Bravo-San Pedro
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France
| | - Valentina Sica
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Faculté de Medicine, Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France.
| |
Collapse
|
164
|
Faizi M, Salimi A, Seydi E, Naserzadeh P, Kouhnavard M, Rahimi A, Pourahmad J. Toxicity of cuprizone a Cu(2+) chelating agent on isolated mouse brain mitochondria: a justification for demyelination and subsequent behavioral dysfunction. Toxicol Mech Methods 2016; 26:276-83. [PMID: 27088566 DOI: 10.3109/15376516.2016.1172284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is a complex disease with an unknown etiology and no effective cure, despite decades of extensive research that led to the development of several partially effective treatments. In this study we aimed to investigate brain mitochondrial dysfunction in demyelination induced by cuprizone in mice. Cuprizone was used for induction of demyelination in mice through a diet containing 0.2% w/w cuprizone for 5 weeks. Behavioral tests for proving of MS was performed and then mitochondria from brain of animals were isolated and afterwards parameters of mitochondrial dysfunction examined. Results of mitochondrial dysfunction parameters such as mitochondrial swelling, production ROS, collapse of the membrane potential showed that isolated mitochondria from cuprizone treated mice have been damaged compared to those of untreated control mice. It is likely that demyelination induced mitochondrial damage led to increased mitochondrial ROS formation and progression of oxidative damages in neurons. It is suggested that cuprizone which is a Cu(2+) chelating agent causes impairment of electron transport chain (complex IV) and antioxidant system (SOD) in mitochondria leading to decreased ATP production and increased ROS formation.
Collapse
Affiliation(s)
- Mehrdad Faizi
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ahmad Salimi
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran ;,b Department of Pharmacology and Toxicology , School of Pharmacy, Ardabil University of Medical Science , Ardabil , Iran ;,c Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Enayatolla Seydi
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran ;,c Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvaneh Naserzadeh
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran ;,c Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehdi Kouhnavard
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Atena Rahimi
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jalal Pourahmad
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
165
|
Burton GJ, Yung HW, Murray AJ. Mitochondrial - Endoplasmic reticulum interactions in the trophoblast: Stress and senescence. Placenta 2016; 52:146-155. [PMID: 27091649 DOI: 10.1016/j.placenta.2016.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Placental stress has been implicated in the pathophysiology of complications of pregnancy, including growth restriction and pre-eclampsia. Initially, attention focused on oxidative stress, but recently mitochondrial and endoplasmic reticulum stress have been identified. Complex molecular interactions exist among these different forms of stress, making it unlikely that any occurs in isolation. In part, this is due to close physiological connections between the two organelles principally involved, mitochondria and the endoplasmic reticulum (ER), mediated through Ca2+ signalling. Here, we review the involvement of the mitochondria-ER unit in the generation of stress within the trophoblast, and consider consequences for obstetric outcome. Mild stress may induce adaptive responses, including upregulation of antioxidant defences and autophagy, while moderate levels may affect stem cell behaviour and reduce cell proliferation, contributing to the growth-restricted phenotype. High levels of stress can stimulate release of pro-inflammatory cytokines and anti-angiogenic factors, increasing the risk of pre-eclampsia. In addition, chronic stress may promote senescence of the trophoblast, which in other cell types leads to a pro-inflammatory senescence-associated secretory phenotype. Evidence from rodents suggests that a degree of trophoblastic stress develops with increasing gestational age in normal pregnancies. The increase in maternal concentrations of soluble fms-like tyrosine kinase-1 (sFlt-1) and reduction in placental growth factor (PlGF) suggest the same may occur in the human, starting around 30 weeks of pregnancy. Placental malperfusion, or co-existing maternal conditions, such as diabetes, will exacerbate that stress. Amelioration of trophoblastic stress should remain a research priority, but will be difficult due to the complexity of the molecular pathways involved.
Collapse
Affiliation(s)
- G J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - H W Yung
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - A J Murray
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
166
|
Chlorogenic acid decreased intestinal permeability and ameliorated intestinal injury in rats via amelioration of mitochondrial respiratory chain dysfunction. Food Sci Biotechnol 2016; 25:253-260. [PMID: 30263265 DOI: 10.1007/s10068-016-0037-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023] Open
Abstract
Chlorogenic acid (CGA), an abundant polyphenol compound in plants, exhibits anti-oxidant effects. The protective effect of CGA in the rat intestine with endotoxin infusion was evaluated. CGA administration ameliorated endotoxin-induced intestinal injury, and decreased the ratio of lactulose/mannitol, the ileum pathological grade, the myeloperoxidase activity in the ileum, and the malondialdehyde content in the ileum and in ileum mitochondria. The small intestine weight, activities of alkaline phosphatase and superoxide dismutase in the ileum, and β-nicotinamide adenine dinucleotide reduce form (NADH) dehydrogenase and succinate dehydrogenase activities in ileum mitochondria were increased. Intestinal permeability was positively correlated with intestinal mitochondrial injury indicated as the level of malondialdehyde in ileum mitochondria, and negatively correlated with NADH dehydrogenase activity. Dietary administration of CGA protected against increased intestinal permeability caused by endotoxin infusion. The protective effect of CGA was probably associated with a decrease in mitochondrial lipid peroxidation levels and an increase in NADH dehydrogenase activity.
Collapse
|
167
|
Wat E, Ng CF, Wong ECW, Koon CM, Lau CP, Cheung DWS, Fung KP, Lau CBS, Leung PC. The hepatoprotective effect of the combination use of Fructus Schisandrae with statin--A preclinical evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:104-114. [PMID: 26666731 DOI: 10.1016/j.jep.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/23/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Schisandrae is traditionally used as a liver-toning Chinese herb. Recent studies suggested Fructus Schisandrae could prevent high-fat diet-induced hepatic steatosis as well as improving anti-oxidative status within the liver, which is a proposed mechanism against statin-induced liver toxicity. AIM The aim of the present study was to determine if the combination use of Atorvastatin (AS) and Fructus Schisandrae aqueous extract (FSE) could (a) exert potent therapeutic effects not only on high-fat diet-induced hyperlipidemia, but also on hepatomegaly (enlarge of liver size) and hepatic steatosis (fatty liver); and (b) reduce side effects caused by intake of statin alone including increased incidence of elevated liver enzymes and liver toxicity in Sprague Dawley rats. MATERIALS AND METHODS We studied 5 groups of Sprague Dawley rats that were given the following treatment for 8 weeks: (i) Normal-chow diet; (ii) High-fat diet (contains 21% fat and 0.15% cholesterol); (iii) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.3% Atorvastatin; (iv) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.45% FSE; (v) High-fat diet (contains 21% fat and 0.15% cholesterol)+0.3% Atorvastatin+0.45% FSE. After 8 weeks of treatment, body weight, adipose tissue and liver mass were measured, and liver and plasma lipid levels were determined to evaluate to effect of FSE with or without AS treatment on diet-induced obesity, hyperlipidemia and hepatic steatosis. Liver enzyme activities, anti-oxidative status and membrane permeability transition were also assessed to determine if FSE could reduce the side effects induced by AS. RESULTS From the results, FSE treatment alone resulted in significant inhibitory effect on diet-induced increase in: (a) body weight; (b) fat pad mass (epididymal, perirenal and inguinal fat); (c) liver weight; (d) total liver lipid; (e) liver triglyceride and cholesterol levels; and (f) plasma lipid levels, suggesting FSE has a potential preventive beneficial effect on weight control and lipid metabolism in Sprague Dawley rats with diet-induced obesity. However, FSE supplementation exerted no further beneficial effect on diet-induced metabolic syndrome when it is combined with AS treatment, compared with rats given AS-treatment alone. At the dose of 0.45%, dietary FSE supplementation resulted in: (a) reduced liver enzymes (ALT and AST) levels; (b) reduced macrophage infiltration (CD68); (c) improved liver glutathione levels (anti-oxidative status); (d) reduced liver reactive oxidative species; (e) a trend to reduce calcium-induced membrane permeability transition within the liver. Most importantly, these improvements induced by FSE treatment were not only observed in the livers of rats given high-fat-diet, but also in high-fat-fed rats with atorvastatin-induced hepatotoxicity. CONCLUSIONS Taken together, these data suggested FSE has a potential beneficial effect on weight control and lipid metabolism in Sprague Dawley rats with diet-induced obesity, and the combination use of FSE with AS could significantly prevent liver toxicity and anti-oxidative status induced by AS alone.
Collapse
Affiliation(s)
- Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Chun Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Eric Chun Wai Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Ching Po Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - David Wing Shing Cheung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Kwok Pui Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China; State Key Laboratory of Phytochemistry and Plant Reso urces in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| |
Collapse
|
168
|
Boussabbeh M, Ben Salem I, Hamdi M, Ben Fradj S, Abid-Essefi S, Bacha H. Diazinon, an organophosphate pesticide, induces oxidative stress and genotoxicity in cells deriving from large intestine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2882-2889. [PMID: 26490884 DOI: 10.1007/s11356-015-5519-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Diazinon (DZ) (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl]phosphorothioate) is an organophosphate pesticide which is extensively used to control household insects and fruit and vegetable crops. The exposure to this pesticide has been linked to the development of the serious problem in several experimental animals. The contamination of food by DZ may increase its danger to humans. The aim of this study was to investigate the toxic effect of DZ on intestine using an in vitro model (HCT116). Therefore, we evaluated the cell viability, elucidated the generation of free radicals, measured the mitochondrial membrane potential, and valued DNA fragmentation. Our results showed that DZ is cytotoxic to HCT116. It causes oxidative damage through the generation of free radicals and induces lipid peroxidation and DNA fragmentation. We also demonstrated that such effects can be responsible for DZ-induced apoptosis.
Collapse
|
169
|
Abstract
Са2+ is a very important and versatile intracellular signal which controls numerous biochemical and physiological (pathophysiological) processes in the cell. Good evidence exists that mitochondria are sensors, decoders and regulators of calcium signaling. Precise regulation of calcium signaling in the cell involves numerous molecular targets, which induce and decode changes of Са2+ concentrations in the cell (pumps, channels, Са2+-binding proteins, Са2+-dependent enzymes, localized in the cytoplasm and organelles). Mitochondrial Са2+ uniporter accumulates excess of Са2+ in mitochondria, while Na+/Са2+- and H+/Са2+-antiporters extrude Са2+ in the cytoplasm. Mitochondrial Са2+ overloading results in formation of mitochondria permeability transition pores which play an important role in cell death under many pathological conditions. Mitochondria regulate Са2+ homeostasis and control important cellular functions such as metabolism, proliferation, survival. Identification of cellular and mitochondrial Ca2+ transporters and understanding their functional mechanisms open up new prospects for their using as therapeutic targets
Collapse
Affiliation(s)
- I.B. Zavodnik
- Yanka Kupala Grodno State University, Grodno, Belarus
| |
Collapse
|
170
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
171
|
Andrade Pires ADR, Jabor Gozzi G, Rodrigues Noleto G, Echevarria A, Moretto Reis C, Merlin Rocha ME, Regina Martinez G, Correia Cadena SMS. Antioxidant effect of 1,3,4-thiadiazolium mesoionic derivatives on isolated mitochondria. Eur J Pharmacol 2015; 770:78-84. [PMID: 26667999 DOI: 10.1016/j.ejphar.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Mesoionic compounds have shown antitumor and citotoxic activity against different tumor cells lines, which has been attributed to their physical and chemical characteristics. Among these compounds, the 1,3,4-thiadiazolium-2-phenylamine derivatives have been highlighted due to their important anti-melanoma activity. In this work, the effects of three derivatives that belong this class, MI-J, MI-4F and MI-2,4diF, on the oxidative stress parameters were evaluated using rat liver mitochondria. All the derivatives prevented natural and calcium induced oxidation of pyridine nucleotides at lower concentrations (6.5 and 32.5nmol/mg protein). The calcium uptake was inhibited by all the derivatives at higher concentrations (65 and 130nmol/mg protein), whereas the cation efflux was inhibited only by the MI-J (52%) and MI-4F (50%), possibly by inhibiting the formation of the permeability transition pore (PTP) by 100% and 50%, respectively, as observed in the same experimental conditions. MI-2,4diF did not inhibit the mitochondrial permeability transition or calcium efflux. The enzymatic activity of glutathione reductase, glutathione peroxidase and catalase was not affected by any derivative, but superoxide dismutase was inhibited by all the derivatives. MI-J inhibited enzyme activity significantly (85%) at the highest concentration (130nmol/mg protein); on the other hand, their activity was less affected by fluorine derivatives (MI-4F-20% and MI-2,4diF-32%). These results suggest that these derivatives exert antioxidant effects on isolated mitochondria.
Collapse
Affiliation(s)
| | - Gustavo Jabor Gozzi
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Aurea Echevarria
- Department of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camilla Moretto Reis
- Department of Chemistry, Federal Rural University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Eliane Merlin Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
172
|
Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med 2015; 89:452-65. [PMID: 26454086 DOI: 10.1016/j.freeradbiomed.2015.08.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 02/05/2023]
Abstract
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China; Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Kui Wang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qifu Li
- Department of Neurology, the Affiliated Hospital of Hainan Medical College, Haikou, 570102, P.R. China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, P.R. China.
| |
Collapse
|
173
|
Seydi E, Motallebi A, Dastbaz M, Dehghan S, Salimi A, Nazemi M, Pourahmad J. Selective Toxicity of Persian Gulf Sea Cucumber (Holothuria parva) and Sponge (Haliclona oculata) Methanolic Extracts on Liver Mitochondria Isolated from an Animal Model of Hepatocellular Carcinoma. HEPATITIS MONTHLY 2015; 15:e33073. [PMID: 26977167 PMCID: PMC4774342 DOI: 10.5812/hepatmon.33073] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown that sea cucumbers and sponges contain antioxidants and anti-cancer compounds. OBJECTIVES This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva) and sponge (Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna. MATERIALS AND METHODS To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN) injections (200 mg/kg i.p. by a single dose), and then the cancer was promoted with 2-acetylaminofluorene (2-AAF) (0.02 w/w) for two weeks. Histopathological evaluations were performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein), were determined for confirmation of hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes. RESULTS Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL) and H. oculata methanolic extracts (200, 400, and 800 µg/mL) increased reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), mitochondrial swelling, and cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous liver hepatocytes. These extracts also induced caspase-3 activation, which is known as a final mediator of apoptosis, in the hepatocytes obtained only from cancerous, not non-cancerous, rat livers. CONCLUSIONS Our results suggest that H. parva and H. oculata may be promising therapeutic candidates for the treatment of HCC, following further confirmatory in vivo experiments and clinical trials.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Abbasali Motallebi
- Research and Education and Extension Organization (AREEO) and Iranian Fisheries Research Organization, Ministry of Jihad-e-Agriculture, Tehran, IR Iran
| | - Maryam Dastbaz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Sahar Dehghan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, IR Iran
| | - Melika Nazemi
- Research and Education and Extension Organization (AREEO) and Iranian Fisheries Research Organization, Ministry of Jihad-e-Agriculture, Tehran, IR Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
174
|
Osman RH, Shao D, Liu L, Xia L, Sun X, Zheng Y, Wang L, Zhang R, Zhang Y, Zhang J, Gong D, Geng T. Expression of mitochondria-related genes is elevated in overfeeding-induced goose fatty liver. Comp Biochem Physiol B Biochem Mol Biol 2015; 192:30-7. [PMID: 26627127 DOI: 10.1016/j.cbpb.2015.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
Mitochondrion, the power house of the cell, is an important organelle involving in energy homeostasis. Change in mitochondrial mass and function may lead to metabolic disorders. Previous studies indicate that mitochondrial mass loss and dysfunction are associated with non-alcoholic fatty liver disease (NAFLD) in human and mouse. However, it is unclear whether mitochondrial genes are involved in the development of goose fatty liver. To address this, we determined the response of goose mitochondrial genes to overfeeding and other fatty liver-related factors (e.g., hyperinsulinemia, hyperglycemia, and hyperlipidemia). We first employed RNA-seq technology to determine the differentially expressed genes in the livers from normally-fed vs. overfed geese, followed by bioinformatics analysis and quantitative PCR validation. Data indicated that a majority of mitochondrial genes in the liver were induced by overfeeding. To understand how these genes are regulated in the context of fatty liver, we treated goose primary hepatocytes with high levels of glucose, fatty acids and insulin. The results indicated that these factors had an influence on the expression of some mitochondria related genes. Together, these findings suggest that the induction of mitochondrial gene expression by overfeeding is required for the development of goose fatty liver, and this induction is partially attributable to hyperglycemia, hyperlipidemia and hyperinsulinemia.
Collapse
Affiliation(s)
- Rashid H Osman
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; College of Veterinary Science, West Kordofan University, El Nuhud 20, Sudan
| | - Dan Shao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoxian Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Laidi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
175
|
Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7843685. [PMID: 26635912 PMCID: PMC4655284 DOI: 10.1155/2016/7843685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent.
Collapse
|
176
|
Increased Susceptibility of Gracilinanus microtarsus Liver Mitochondria to Ca²⁺-Induced Permeability Transition Is Associated with a More Oxidized State of NAD(P). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:940627. [PMID: 26583063 PMCID: PMC4637094 DOI: 10.1155/2015/940627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/21/2023]
Abstract
In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca2+ but exhibited a much lower Ca2+ retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca2+, their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca2+ signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus.
Collapse
|
177
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
178
|
Cecatto C, Hickmann FH, Rodrigues MDN, Amaral AU, Wajner M. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders. FEBS J 2015; 282:4714-26. [PMID: 26408230 DOI: 10.1111/febs.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda H Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília D N Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre U Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
179
|
Pavón N, Correa F, Buelna-Chontal M, Hernández-Esquivel L, Chávez E. Ebselen induces mitochondrial permeability transition because of its interaction with adenine nucleotide translocase. Life Sci 2015; 139:108-13. [DOI: 10.1016/j.lfs.2015.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022]
|
180
|
Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma. Int J Mol Sci 2015; 16:23405-24. [PMID: 26426012 PMCID: PMC4632706 DOI: 10.3390/ijms161023405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/05/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone and is most prevalent in children and adolescents. OS is frequently associated with pulmonary metastasis, which is the main cause of OS-related mortality. OS has a poor prognosis and is often unresponsive to conventional chemotherapy. In this study, we determined that Nimbolide, a novel anti-cancer therapy, acts by modulating multiple mechanisms in osteosarcoma cells. Nimbolide induces apoptosis by increasing endoplasmic reticulum (ER) stress, mitochondrial dysfunction, accumulation of reactive oxygen species (ROS), and finally, caspase activation. We also determined that Nimbolide inhibits cell migration, which is crucial for metastasis, by reducing the expression of integrin αvβ5. In addition, our results demonstrate that integrin αvβ5 expression is modulated by the PI3K/Akt and NF-κB signaling cascade. Nimbolide has potential as an anti-tumor drug given its multifunctional effects in OS. Collectively, these results help us to understand the mechanisms of action of Nimbolide and will aid in the development of effective therapies for OS.
Collapse
|
181
|
Nelms MD, Mellor CL, Cronin MTD, Madden JC, Enoch SJ. Development of an in Silico Profiler for Mitochondrial Toxicity. Chem Res Toxicol 2015; 28:1891-902. [PMID: 26375963 DOI: 10.1021/acs.chemrestox.5b00275] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study outlines the analysis of mitochondrial toxicity for a variety of pharmaceutical drugs extracted from Zhang et al. ((2009) Toxicol. In Vitro, 23, 134-140). These chemicals were grouped into categories based upon structural similarity. Subsequently, mechanistic analysis was undertaken for each category to identify the molecular initiating event driving mitochondrial toxicity. The mechanistic information elucidated during the analysis enabled mechanism-based structural alerts to be developed and combined together to form an in silico profiler. This profiler is envisaged to be used to develop chemical categories based upon similar mechanisms as part of the adverse outcome pathway paradigm. Additionally, the profiler could be utilized in screening large data sets in order to identify chemicals with the potential to induce mitochondrial toxicity.
Collapse
Affiliation(s)
- Mark D Nelms
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Claire L Mellor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
182
|
Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA. Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica 2015; 46:369-78. [PMID: 26364812 DOI: 10.3109/00498254.2015.1078522] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Olanzapine (OLZ) is a widely used atypical antipsychotic agent for the treatment of schizophrenia and other disorders. Serious hepatotoxicity and elevated liver enzymes have been reported in patients receiving OLZ. However, the cellular and molecular mechanisms of the OLZ hepatotoxicity are unknown. 2. In this study, the cytotoxic effect of OLZ on freshly isolated rat hepatocytes was assessed. Our results showed that the cytotoxicity of OLZ in hepatocytes is mediated by overproduction of reactive oxygen species (ROS), mitochondrial potential collapse, lysosomal membrane leakiness, GSH depletion and lipid peroxidation preceding cell lysis. All the aforementioned OLZ-induced cellular events were significantly (p < 0.05) prevented by ROS scavengers, antioxidants, endocytosis inhibitors and adenosine triphosphate generators. Also, the present results demonstrated that CYP450 is involved in OLZ-induced oxidative stress and cytotoxicity mechanism. 3. It is concluded that OLZ hepatotoxicity is associated with both mitochondrial/lysosomal involvement following the initiation of oxidative stress in hepatocytes.
Collapse
Affiliation(s)
- Aziz Eftekhari
- a Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and.,d Students' Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Yadollah Azarmi
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Alireza Parvizpur
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| | - Mohammad Ali Eghbal
- b Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran .,c Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran , and
| |
Collapse
|
183
|
Granzotto A, Sensi SL. Intracellular zinc is a critical intermediate in the excitotoxic cascade. Neurobiol Dis 2015; 81:25-37. [DOI: 10.1016/j.nbd.2015.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 11/25/2022] Open
|
184
|
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH, Chang HI. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Lett 2015; 25:4191-6. [PMID: 26283511 DOI: 10.1016/j.bmcl.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Chang Hoon Ha
- Department of Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
185
|
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 2015; 6:183-197. [PMID: 26233704 PMCID: PMC4534574 DOI: 10.1016/j.redox.2015.07.008] [Citation(s) in RCA: 718] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
Redox biological reactions are now accepted to bear the Janus faceted feature of promoting both physiological signaling responses and pathophysiological cues. Endogenous antioxidant molecules participate in both scenarios. This review focuses on the role of crucial cellular nucleophiles, such as glutathione, and their capacity to interact with oxidants and to establish networks with other critical enzymes such as peroxiredoxins. We discuss the importance of the Nrf2-Keap1 pathway as an example of a transcriptional antioxidant response and we summarize transcriptional routes related to redox activation. As examples of pathophysiological cellular and tissular settings where antioxidant responses are major players we highlight endoplasmic reticulum stress and ischemia reperfusion. Topologically confined redox-mediated post-translational modifications of thiols are considered important molecular mechanisms mediating many antioxidant responses, whereas redox-sensitive microRNAs have emerged as key players in the posttranscriptional regulation of redox-mediated gene expression. Understanding such mechanisms may provide the basis for antioxidant-based therapeutic interventions in redox-related diseases. Antioxidant responses are crucial for both redox signaling and redox damage. Glutathione-mediated reactions and Nrf2-Keap1 pathway are key antioxidant responses. Redox-related post-translational modifications activate specific signaling pathways. Redox-sensitive microRNAs contribute to redox-mediated gene expression regulation. ER stress and ischemia-reperfusion are antioxidant-related pathophysiological events.
Collapse
Affiliation(s)
- Cristina Espinosa-Diez
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 7, University of Oulu, FI-90230 Oulu, Finland
| | - Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Santiago Lamas
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
186
|
NMDA Receptors and Oxidative Stress Induced by the Major Metabolites Accumulating in HMG Lyase Deficiency Mediate Hypophosphorylation of Cytoskeletal Proteins in Brain From Adolescent Rats: Potential Mechanisms Contributing to the Neuropathology of This Disease. Neurotox Res 2015; 28:239-52. [PMID: 26174040 DOI: 10.1007/s12640-015-9542-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
Neurological symptoms and cerebral abnormalities are commonly observed in patients with 3-hydroxy-3-methylglutaryl-CoA lyase (HMG lyase) deficiency, which is biochemically characterized by predominant tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), 3-methylglutaric (MGA), and 3-methylglutaconic (MGT) acids. Since the pathogenesis of this disease is poorly known, the present study evaluated the effects of these compounds on the cytoskeleton phosphorylating system in rat brain. HMG, MGA, and MGT caused hypophosphorylation of glial fibrillary acidic protein (GFAP) and of the neurofilament subunits NFL, NFM, and NFH. HMG-induced hypophosphorylation was mediated by inhibiting the cAMP-dependent protein kinase (PKA) on Ser55 residue of NFL and c-Jun kinase (JNK) by acting on KSP repeats of NFM and NFH subunits. We also evidenced that the subunit NR2B of NMDA receptor and Ca(2+) was involved in HMG-elicited hypophosphorylation of cytoskeletal proteins. Furthermore, the antioxidants L-NAME and TROLOX fully prevented both the hypophosphorylation and the inhibition of PKA and JNK caused by HMG, suggesting that oxidative damage may underlie these effects. These findings indicate that the main metabolites accumulating in HMG lyase deficiency provoke hypophosphorylation of cytoskeleton neural proteins with the involvement of NMDA receptors, Ca(2+), and reactive species. It is presumed that these alterations may contribute to the neuropathology of this disease.
Collapse
|
187
|
dos Santos GA, Ferreira MS, de Oliveira DN, de Oliveira V, Siqueira-Santos ES, Cintra DEC, Castilho RF, Velloso LA, Catharino RR. Identification of compounds from high-fat and extra virgin olive oil-supplemented diets in whole mouse liver extracts and isolated mitochondria using mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:951-958. [PMID: 26349651 DOI: 10.1002/jms.3609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 06/05/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a fatty liver disorder that could be improved with extra virgin olive oil (EVOO) supplementation in diet. We propose the monitoring, in whole mouse liver extracts and in isolated mitochondria, of the absorption of compounds from three different diets: standard (CT), high-fat (HFD) and high-fat supplemented with EVOO (HFSO). Male mice were submitted to one of the following three diets: CT or HFD for 16 weeks or HFD for 8 weeks followed by additional 8 weeks with HFSO. Following this period, liver was extracted for histological evaluation, mitochondria isolation and mass spectrometry analyses. Diets, liver extracts and Percoll-purified mitochondria were analyzed using ESI-MS and the lipidomics approach. Morphological, histological and spectrometric results indicated a decrease in NASH severity with EVOO supplementation in comparison with animals maintained with HFD. Spectrometric data also demonstrated that some compounds presented on the diets are absorbed by the mitochondria. EVOO was shown to be a potential therapeutic alternative in food for NASH. Our results are in accordance with the proposition that the major factor that influences different responses to diets is their composition - and not only calories - especially when it comes to studies on obesity.
Collapse
Affiliation(s)
| | - Mônica Siqueira Ferreira
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Diogo Noin de Oliveira
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Vanessa de Oliveira
- Sport Sciences Course, Faculty of Applied Sciences, University of Campinas, Campinas, SP, Brazil
| | - Edilene S Siqueira-Santos
- Experimental Neurodegeneration Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Roger Frigério Castilho
- Experimental Neurodegeneration Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Lício Augusto Velloso
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- INNOVARE Biomarkers Laboratory, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
188
|
Salimi A, Eybagi S, Seydi E, Naserzadeh P, Kazerouni NP, Pourahmad J. Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect. Xenobiotica 2015; 46:82-93. [PMID: 26068526 DOI: 10.3109/00498254.2015.1046975] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Macrolides belong to the polyketide class of natural products. These products are a group of drugs (typically antibiotics) which their activity stems from the presence of a macrolide ring. Antibiotic macrolides are used to treat infections caused by Gram-positive bacteria and Haemophilus influenzae infections such as respiratory tract and soft-tissue infections. Macrolides, mainly erythromycin and clarithromycin, rarely show QT prolongation, as their infamous adverse reaction which can lead to torsades de pointes. Electrophysiological studies showed that macrolides prolonging the QT interval inhibit the rapid component of the delayed rectifier K(+) current (IKr) through the block of potassium channels encoded by the human ether-a-go-go-related gene (HERG). Other studies suggest that increased ROS generation alters the kinetics of hERG K(+) conductance. 2. In our study, rat cardiomyocytes were isolated with collagen perfusion technique. Finally, mitochondria isolated from cardiomyocytes were exposed to erythromycin, azithromycin and clarithromycin for their probable toxicity effects. 3. Our results demonstrated that macrolides induced reactive oxygen species formation, mitochondrial membrane permeabilization and mitochondrial swelling and finally cytochrome c release in cardiomyocyte mitochondria. 4. These findings suggested that the toxicity of heart mitochondria is a starting point for cardiotoxic effects of macrolides including QT prolongation, torsades de pointes and arrhythmia.
Collapse
Affiliation(s)
- Ahmad Salimi
- a Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran and
| | - Sadaf Eybagi
- a Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran and
| | - Enayatollah Seydi
- a Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran and
| | - Parvaneh Naserzadeh
- a Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran and
| | | | - Jalal Pourahmad
- a Faculty of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran and
| |
Collapse
|
189
|
da Silva AI, Braz GRF, Silva-Filho R, Pedroza AA, Ferreira DS, Manhães de Castro R, Lagranha C. Effect of fluoxetine treatment on mitochondrial bioenergetics in central and peripheral rat tissues. Appl Physiol Nutr Metab 2015; 40:565-74. [DOI: 10.1139/apnm-2014-0462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent investigations have focused on the mitochondrion as a direct drug target in the treatment of metabolic diseases (obesity, metabolic syndrome). Relatively few studies, however, have explicitly investigated whether drug therapies aimed at changing behavior by altering central nervous system (CNS) function affect mitochondrial bioenergetics, and none has explored their effect during early neonatal development. The present study was designed to evaluate the effects of chronic treatment of newborn male rats with the selective serotonin reuptake inhibitor fluoxetine on the mitochondrial bioenergetics of the hypothalamus and skeletal muscle during the critical nursing period of development. Male Wistar rat pups received either fluoxetine (Fx group) or vehicle solution (Ct group) from the day of birth until 21 days of age. At 60 days of age, mitochondrial bioenergetics were evaluated. The Fx group showed increased oxygen consumption in several different respiratory states and reduced production of reactive oxygen species, but there was no change in mitochondrial permeability transition pore opening or oxidative stress in either the hypothalamus or skeletal muscle. We observed an increase in glutathione S-transferase activity only in the hypothalamus of the Fx group. Taken together, our results suggest that chronic exposure to fluoxetine during the nursing phase of early rat development results in a positive modulation of mitochondrial respiration in the hypothalamus and skeletal muscle that persists into adulthood. Such long-lasting alterations in mitochondrial activity in the CNS, especially in areas regulating appetite, may contribute to permanent changes in energy balance in treated animals.
Collapse
Affiliation(s)
- Aline Isabel da Silva
- Programa de Pós-Graduação em Nutrição, Departamento de Nutrição da Universidade Federal de Pernambuco, Recife, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Glauber Ruda Feitoza Braz
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Reginaldo Silva-Filho
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Anderson Apolonio Pedroza
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Diorginis Soares Ferreira
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| | - Raul Manhães de Castro
- Programa de Pós-Graduação em Nutrição, Departamento de Nutrição da Universidade Federal de Pernambuco, Recife, Brazil
| | - Claudia Lagranha
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, CAV-Federal University of Pernambuco, Brazil
| |
Collapse
|
190
|
Lei X, Chao H, Zhang Z, Lv J, Li S, Wei H, Xue R, Li F, Li Z. Neuroprotective effects of quercetin in a mouse model of brain ischemic/reperfusion injury via anti-apoptotic mechanisms based on the Akt pathway. Mol Med Rep 2015; 12:3688-3696. [PMID: 26016839 DOI: 10.3892/mmr.2015.3857] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
The present study provided experimental evidence for the neuroprotective effects of quercetin using a rat model of global brain ischemic/reperfusion (I/R) injury. Pre‑treatment with quercetin (5 or 10 mg/kg orally (p.o.); once daily) induced a dose‑dependent reduction in I/R‑induced hippocampal neuron cell loss, with 10 mg/kg/day being the lowest dose that achieved maximal neuroprotection. Administration of 10 mg/kg quercetin over at least 3 days prior to I/R was required to improve the survival rate of I/R rats. Fluorescence‑assisted cell sorting, hematoxylin and eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling indicated neuronal cell loss in the CA1 hippocampus. Rats that had undergone transient global cerebral ischemia for 15 min followed by 1 h of reperfusion exhibited a significant increase in reactive oxygen species (ROS) production in the hippocampus. The I/R‑induced ROS overproduction in the hippocampus at 1, 12 and 24 h following I/R was significantly decreased by quercetin pre‑treatment. Western blot analysis revealed that the neuroprotective effects of quercetin (5 and 10 mg/kg/day, p.o.) were associated with an upregulation of the I/R‑induced suppression of B‑cell lymphoma‑2 (Bcl‑2), Bcl extra large and survivin expression as well as phosphorylation of Bcl‑2‑associated death promoter. Furthermore, the neuroprotective effects of quercetin (5, 10 mg/kg/day) in the brain were associated with an upregulation of Akt signaling. These findings suggested that the inhibition of I/R‑induced brain injury by quercetin likely involves a transcriptional mechanism to enhance anti‑apoptotic signaling.
Collapse
Affiliation(s)
- Xiaoming Lei
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hailian Chao
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhenni Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianrui Lv
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Siyuan Li
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haidong Wei
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rongliang Xue
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Fang Li
- Department of Anesthesiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zongfang Li
- Department of General Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
191
|
The Recovery of Hibernating Hearts Lies on a Spectrum: from Bears in Nature to Patients with Coronary Artery Disease. J Cardiovasc Transl Res 2015; 8:244-52. [DOI: 10.1007/s12265-015-9625-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
192
|
Yokomizo CH, Pessoto FS, Prieto T, Cunha RLOR, Nantes IL. Effects of Trichlorotelluro-dypnones on Mitochondrial Bioenergetics and Their Relationship to the Reactivity with Protein Thiols. Chem Res Toxicol 2015; 28:1167-75. [DOI: 10.1021/tx5005166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- César H. Yokomizo
- Departamento
de Biologia Molecular, Universidade Federal de São Paulo, R. Botucatu, 740, São Paulo, SP Brazil
| | - Felipe S. Pessoto
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Tatiana Prieto
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Rodrigo L. O. R. Cunha
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| | - Iseli L. Nantes
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos
Estados, 5001, Santo
André, SP Brazil
| |
Collapse
|
193
|
Hickmann FH, Cecatto C, Kleemann D, Monteiro WO, Castilho RF, Amaral AU, Wajner M. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:620-8. [PMID: 25868874 DOI: 10.1016/j.bbabio.2015.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/16/2015] [Accepted: 04/05/2015] [Indexed: 12/23/2022]
Abstract
Patients with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiency commonly present liver dysfunction whose pathogenesis is unknown. We studied the effects of long-chain 3-hydroxylated fatty acids (LCHFA) that accumulate in LCHAD deficiency on liver bioenergetics using mitochondrial preparations from young rats. We provide strong evidence that 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, the monocarboxylic acids that are found at the highest tissue concentrations in this disorder, act as metabolic inhibitors and uncouplers of oxidative phosphorylation. These conclusions are based on the findings that these fatty acids decreased ADP-stimulated (state 3) and uncoupled respiration, mitochondrial membrane potential and NAD(P)H content, and, in contrast, increased resting (state 4) respiration. We also verified that 3HTA and 3HPA markedly reduced Ca2+ retention capacity and induced swelling in Ca2+-loaded mitochondria. These effects were mediated by mitochondrial permeability transition (MPT) induction since they were totally prevented by the classical MPT inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca2+ uptake blocker. Taken together, our data demonstrate that the major monocarboxylic LCHFA accumulating in LCHAD deficiency disrupt energy mitochondrial homeostasis in the liver. It is proposed that this pathomechanism may explain at least in part the hepatic alterations characteristic of the affected patients.
Collapse
Affiliation(s)
- Fernanda Hermes Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniele Kleemann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wagner Oliveira Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roger Frigério Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
194
|
Zheng G, Lyu J, Liu S, Huang J, Liu C, Xiang D, Xie M, Zeng Q. Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. Int J Mol Med 2015; 35:1525-36. [PMID: 25873251 PMCID: PMC4432931 DOI: 10.3892/ijmm.2015.2177] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
Uncoupling protein 2 (UCP2) regulates the production of mitochondrial reactive oxygen species (ROS) and cellular energy transduction under physiological or pathological conditions. In this study, we aimed to determine whether mitochondrial UCP2 plays a protective role in cardiomyocytes under septic conditions. In order to mimic the septic condition, rat embryonic cardiomyoblast-derived H9C2 cells were cultured in the presence of lipopolysaccharide (LPS) plus peptidoglycan G (PepG) and small interfering RNA (siRNA) against UCP2 (siUCP2) was used to suppress UCP2 expression. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR), western blot analysis, transmission electron microscopy (TEM), confocal microscopy and flow cytometry (FCM) were used to detect the mRNA levels, protein levels, mitochondrial morphology and mitochondrial membrane potential (MMP or ΔΨm) in qualitative and quantitative analyses, respectively. Indicators of cell damage [lactate dehydrogenase (LDH), creatine kinase (CK), interleukin (IL)-6 and tumor necrosis factor (TNF)-α in the culture supernatant] and mitochondrial function [ROS, adenosine triphosphate (ATP) and mitochondrial DNA (mtDNA)] were detected. Sepsis enhanced the mRNA and protein expression of UCP2 in the H9C2 cells, damaged the mitochondrial ultrastructure, increased the forward scatter (FSC)/side scatter (SSC) ratio, increased the CK, LDH, TNF-α and IL-6 levels, and lead to the dissipation of MMP, as well as the overproduction of ROS; in addition, the induction of sepsis led to a decrease in ATP levels and the deletion of mtDNA. The silencing of UCP2 aggravated H9C2 cell damage and mitochondrial dysfunction. In conclusion, our data demonstrate that mitochondrial morphology and funtion are damaged in cardiomyocytes under septic conditions, while the silencing of UCP2 using siRNA aggravated this process, indicating that UCP2 may play a protective role in cardiomyocytes under septic conditions.
Collapse
Affiliation(s)
- Guilang Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Juanjuan Lyu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shu Liu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jinda Huang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Cui Liu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Dan Xiang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Meiyan Xie
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
195
|
Extract of Zuojin Pill ([characters: see text]) induces apoptosis of SGC-7901 cells via mitochondria-dependent pathway. Chin J Integr Med 2015; 21:837-45. [PMID: 25847773 DOI: 10.1007/s11655-015-2043-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To observe the effects of water extract of Zuojin Pill ([characters: see text], ZJP) on inhibiting the growth of human gastric cancer cell line SGC-7901 and its potential mechanism. METHODS Effects of ZJP on SGC-7901 cells growth were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, cell apoptosis and cell cycle were determined by flow cytometry, and apoptosis induction was detected by means of DNA gel electrophoresis. The cellular mechanism of drug-induced cell death was unraveled by assaying oxidative injury level of SGC-7901 cell, mitochondrial membrane potentials, expression of apoptosis-related genes, such as B cell lymphoma/lewkmia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and cleaved caspase-3 and caspase-9. RESULTS ZJP exerted evident inhibitory effect on SGC-7901 cells by activating production of reactive oxygen species and elevating Bax/Bcl-2 ratio in SGC-7901 cells, leading to attenuation of mitochondrial membrane potential and DNA fragmentation. CONCLUSIONS ZJP inhibits the cancer cell growth via activating mitochondria-dependent apoptosis pathway. ZJP can potentially serve as an antitumor agent.
Collapse
|
196
|
Zhang JF, Hu ZP, Lu CH, Yang MX, Zhang LL, Wang T. Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway1. J Anim Sci 2015; 93:1656-65. [DOI: 10.2527/jas.2014-8244] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
197
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
198
|
Pardo Andreu GL, Reis FH, Dalalio FM, Nuñez Figueredo Y, Cuesta Rubio O, Uyemura SA, Curti C, Alberici LC. The cytotoxic effects of brown Cuban propolis depend on the nemorosone content and may be mediated by mitochondrial uncoupling. Chem Biol Interact 2015; 228:28-34. [DOI: 10.1016/j.cbi.2015.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
|
199
|
Hong SH, Park SJ, Lee S, Kim S, Cho MH. Biological effects of inorganic phosphate: potential signal of toxicity. J Toxicol Sci 2015; 40:55-69. [DOI: 10.2131/jts.40.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sung-Jin Park
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Somin Lee
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Sanghwa Kim
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - Myung-Haing Cho
- Advanced Institute of Convergence Technology, Seoul National University, Korea
- Graduate Group of Tumor Biology, Seoul National University, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Korea
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
200
|
Zhao M, Wang P, Zhu Y, Liu X, Hu X, Chen F. The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver. Food Funct 2015; 6:3006-12. [DOI: 10.1039/c5fo00408j] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitochondrial mechanism of Acrylamide-induced oxidative stress.
Collapse
Affiliation(s)
- Mengyao Zhao
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| | - Pengpu Wang
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| | - Xin Liu
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| | - Fang Chen
- College of Food Science and Nutritional Engineering
- National Engineering Research Centre for Fruits and Vegetables Processing
- Key Laboratory of Fruits and Vegetables Processing
- Ministry of Agriculture
- Engineering Research Centre for Fruits and Vegetables Processing
| |
Collapse
|