151
|
Lim JJ, Temenoff JS. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs. Biomaterials 2013; 34:5007-18. [PMID: 23570717 DOI: 10.1016/j.biomaterials.2013.03.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/13/2013] [Indexed: 11/17/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined in vitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6 ± 2.3 μg released over 8 days, compared to natively sulfated CS with 20.2 ± 0.8 μg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115 ± 100 and 23.1 ± 7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS hydrogels and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-β1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues.
Collapse
Affiliation(s)
- Jeremy J Lim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | |
Collapse
|
152
|
Mass preparation of oligosaccharides by the hydrolysis of chondroitin sulfate polysaccharides with a subcritical water microreaction system. Carbohydr Res 2013; 371:16-21. [DOI: 10.1016/j.carres.2013.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
|
153
|
Yuan X, Chen L, Deng X, Cao J, Yu S, Quankai W, Pang H, Liu S. Characterization of Rv0394c gene encoding hyaluronidase and chondrosulfatase from Mycobacterium tuberculosis. Tuberculosis (Edinb) 2013; 93:296-300. [PMID: 23465892 DOI: 10.1016/j.tube.2013.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that Mycobacterium tuberculosis can utilize hyaluronan (HA) as an alternative carbon resource; however, the gene responsible for HA utilization has not been identified. We overexpressed the soluble product of the Rv0394c gene from M. tuberculosis H37Rv in Escherichia coli and purified it using affinity chromatography and anion exchange chromatography. The hyaluronidase and chondrosulfatase activities of the purified recombinant protein Rv0394c (rRv0394c) were detected and quantitatively measured. Analysis of nucleotide and derived amino acid sequences of the Rv0394c gene revealed that homologs of this gene were conserved in pathogenic mycobacteria, but absent in non-pathogenic mycobacteria. In the current study, we provide novel identification and characterization of a gene encoding hyaluronidase and chondrosulfatase in M. tuberculosis.
Collapse
Affiliation(s)
- Xianglian Yuan
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street , Nangang Dist., Harbin 15000, PR China
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Ishiko T, Naitoh M, Kubota H, Yamawaki S, Ikeda M, Yoshikawa K, Fujita H, Yamaguchi H, Kurahashi Y, Suzuki S. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers. J Dermatol 2013; 40:380-3. [PMID: 23451938 DOI: 10.1111/1346-8138.12116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 11/27/2022]
Abstract
Keloids are a proliferative fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. Keloid lesions lack skin plasticity due to deficiencies in elastic fiber formation in the extracellular matrix. The loss of elastic fiber is caused by excessive accumulation of chondroitin sulfate (CS), a sulfated glycosaminoglycan. However, there is no radical cure for keloids. Using a model system, we show herein that treatment of keloid tissues with chondroitinase ABC, an enzyme that specifically digests CS, improves clinical features of keloids. Keloid tissues obtained from patients were grafted on nude mice, and chondroitinase ABC was injected into the grafted keloid tissues. Chondroitinase ABC treatment significantly reduced the volume of keloid implants concomitant with recovery of elastic fiber formation. These results suggest that chondroitinase ABC injection is an effective therapy for keloid.
Collapse
Affiliation(s)
- Toshihiro Ishiko
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Li HP, Komuta Y, Kimura-Kuroda J, van Kuppevelt TH, Kawano H. Roles of chondroitin sulfate and dermatan sulfate in the formation of a lesion scar and axonal regeneration after traumatic injury of the mouse brain. J Neurotrauma 2013; 30:413-25. [PMID: 23438307 DOI: 10.1089/neu.2012.2513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatan sulfate (DS) is synthesized from chondroitin sulfate (CS) by epimerization of glucuronic acid of CS to yield iduronic acid. In the present study, the role of CS and DS was examined in mice that received transection of nigrostriatal dopaminergic pathway followed by injection of glycosaminoglycan degrading enzymes into the lesion site. Two weeks after injury, fibrotic and glial scars were formed around the lesion, and transected axons did not regenerate beyond the fibrotic scar. Injection of chondroitinase ABC (ChABC), which degrades both CS and DS, completely suppressed the fibrotic scar formation, reduced the glial scar, and promoted the regeneration of dopaminergic axons. Injection of the DS-degrading enzyme chondroitinase B (ChB) also yielded similar results. By contrast, injection of chondroitinase AC (ChAC), a CS-degrading enzyme, did not suppress the fibrotic and glial scar formation, but reduced CS immunoreactivity and promoted the axonal regeneration. Addition of transforming growth factor-β1 (TGF-β1) to a co-culture of meningeal fibroblasts and cerebral astrocytes induces a fibrotic scar-like cell cluster. The effect of TGF-β1 on cluster formation was suppressed by treatment with ChABC or ChB, but not by ChAC. TGF-β1-induced cell cluster repelled neurites of neonatal cerebellar neurons, but addition of ChABC or ChAC suppressed the inhibitory property of clusters on neurite outgrowth. The present study is the first to demonstrate that DS and CS play different functions after brain injury: DS is involved in the lesion scar formation, and CS inhibits axonal regeneration.
Collapse
Affiliation(s)
- Hong-Peng Li
- Laboratory of Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya City, Tokyo, Japan
| | | | | | | | | |
Collapse
|
156
|
Nazari-Robati M, Khajeh K, Aminian M, Mollania N, Golestani A. Enhancement of thermal stability of chondroitinase ABC I by site-directed mutagenesis: An insight from Ramachandran plot. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:479-86. [DOI: 10.1016/j.bbapap.2012.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
|
157
|
Mountney A, Zahner MR, Sturgill ER, Riley CJ, Aston JW, Oudega M, Schramm LP, Hurtado A, Schnaar RL. Sialidase, chondroitinase ABC, and combination therapy after spinal cord contusion injury. J Neurotrauma 2013; 30:181-90. [PMID: 22934782 DOI: 10.1089/neu.2012.2353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Axon regeneration in the central nervous system is severely hampered, limiting functional recovery. This is in part because of endogenous axon regeneration inhibitors that accumulate at the injury site. Therapeutic targeting of these inhibitors and their receptors may facilitate axon outgrowth and enhance recovery. A rat model of spinal cord contusion injury was used to test the effects of two bacterial enzyme therapies that target independent axon regeneration inhibitors, sialidase (Vibrio cholerae) and chondroitinase ABC (ChABC, Proteus vulgaris). The two enzymes, individually and in combination, were infused for 2 weeks via implanted osmotic pumps to the site of a moderate thoracic spinal cord contusion injury. Sialidase was completely stable, whereas ChABC retained>30% of its activity in vivo over the 2 week infusion period. Immunohistochemistry revealed that infused sialidase acted robustly throughout the spinal cord gray and white matter, whereas ChABC activity was more intense superficially. Sialidase treatment alone resulted in improved behavioral and anatomical outcomes. Rats treated exclusively with sialidase showed significantly increased hindlimb motor function, evidenced by higher Basso Beattie and Bresnahan (BBB) and BBB subscores, and fewer stepping errors on a horizontal ladder. Sialidase-treated rats also had increased serotonergic axons caudal to the injury. ChABC treatment, in contrast, did not enhance functional recovery or alter axon numbers after moderate spinal cord contusion injury, and dampened the response of sialidase in the dual enzyme treatment group. We conclude that sialidase infusion enhanced recovery from spinal cord contusion injury, and that combining sialidase with ChABC failed to improve outcomes.
Collapse
Affiliation(s)
- Andrea Mountney
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ludwig A, Poller WC, Westphal K, Minkwitz S, Lättig-Tünnemann G, Metzkow S, Stangl K, Baumann G, Taupitz M, Wagner S, Schnorr J, Stangl V. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res Cardiol 2013; 108:328. [PMID: 23314954 DOI: 10.1007/s00395-013-0328-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/29/2022]
Abstract
Magnetic resonance imaging (MRI) with contrast agents that target specific inflammatory components of atherosclerotic lesions has the potential to emerge as promising diagnostic modality for detecting unstable plaques. Since a high content of macrophages and alterations of the extracellular matrix are hallmarks of plaque instability, these structures represent attractive targets for new imaging modalities. In this study, we compared in vitro uptake and binding of electrostatically stabilized citrate-coated very small superparamagnetic iron oxide particles (VSOP) to THP-1 cells with sterically stabilized carboxydextran-coated Resovist(®). Uptake of VSOP in both THP-1 monocytic cells and THP-derived macrophages (THP-MΦ) was more efficient compared to Resovist(®) without inducing cytotoxicity or modifying normal cellular functions (no changes in levels of reactive oxygen species, caspase-3 activity, proliferation, cytokine production). Importantly, VSOP bound with high affinity to the cell surface and to apoptotic membrane vesicles. Inhibition of glycosaminoglycan (GAG) synthesis by glucose deprivation in THP-MΦ was associated with a significant reduction of VSOP attachment suggesting that the strong interaction of VSOP with the membranes of cells and apoptotic vesicles occurs via binding to negatively charged GAGs. These in vitro experiments show that VSOP-enhanced MRI may represent a new imaging approach for visualizing high-risk plaques on the basis of targeting pathologically increased GAGs or apoptotic membrane vesicles in atherosclerotic lesions. VSOP should be investigated further in appropriate in vivo experiments to characterize accumulation in unstable plaque.
Collapse
Affiliation(s)
- Antje Ludwig
- Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité, Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Clemons TD, Fitzgerald M, Dunlop SA, Harvey AR, Iyer KS, Stubbs KA. An improved assay for the spectrophotometric determination of chondroitinase ABC activity. NEW J CHEM 2013. [DOI: 10.1039/c3nj00168g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
160
|
Mizumoto S, Murakoshi S, Kalayanamitra K, Deepa SS, Fukui S, Kongtawelert P, Yamada S, Sugahara K. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities. Glycobiology 2012; 23:155-68. [PMID: 23019154 DOI: 10.1093/glycob/cws137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
161
|
McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 2012; 61:963-72. [PMID: 22954428 DOI: 10.1016/j.neuint.2012.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022]
Abstract
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
162
|
Malleron A, Benjdia A, Berteau O, Le Narvor C. Chondroitin-4-O-sulfatase from Bacteroides thetaiotaomicron: exploration of the substrate specificity. Carbohydr Res 2012; 353:96-9. [PMID: 22525100 DOI: 10.1016/j.carres.2012.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/12/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
Abstract
Bacterial sulfatases can be good tools to increase the molecular diversity of glycosaminoglycan synthetic fragments. A chondroitin 4-O-sulfatase from the human commensal bacterium Bacteroides thetaiotaomicron has recently been identified and expressed. In order to use this enzyme for synthetic purposes, the minimal structure required for its activity has been determined. For that, four 4-O-sulfated monosaccharides and one 4-O-sulfated disaccharide have been synthesized and used as substrates with the sulfatase. The minimum structure was shown to be a disaccharide but in contrast to the natural substrate, which must have a 4,5-insaturation, the enzyme accepts as substrate, a disaccharide with a saturated glucuronic acid at the non-reducing end and even a glucopyranosyl moiety without the carboxylic acid functionality.
Collapse
Affiliation(s)
- Annie Malleron
- Univ Paris-Sud and CNRS, LCOM-eG2M, Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, LabEx LERMIT, Bât 420, Orsay F-91405, France
| | | | | | | |
Collapse
|
163
|
McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett 2012; 519:115-21. [PMID: 22343313 DOI: 10.1016/j.neulet.2012.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 01/03/2023]
Abstract
The inhibitory extracellular environment that develops in response to traumatic brain injury and spinal cord injury hinders axon growth thereby limiting restoration of function. Several strategies have been developed to engineer a more permissive central nervous system (CNS) environment to promote regeneration and functional recovery. The multi-faced inhibitory nature of the CNS lesion suggests that therapies used in combination may be more effective. In this mini-review we summarize the most recent attempts to engineer the CNS extracellular environment after injury using combinatorial strategies. The advantages and limits of various combination therapies utilizing neurotrophin delivery, cell transplantation, and biomaterial scaffolds are discussed. Treatments that reduce the inhibition by chondroitin sulfate proteoglycans, myelin-associated inhibitors, and other barriers to axon regeneration are also reviewed. Based on the current state of the field, future directions are suggested for research on combination therapies in the CNS.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr. Box 1097, St. Louis, MO 63130, United States
| | | |
Collapse
|
164
|
Nazari-Robati M, Khajeh K, Aminian M, Fathi-Roudsari M, Golestani A. Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris. Int J Biol Macromol 2012; 50:487-92. [PMID: 22274395 DOI: 10.1016/j.ijbiomac.2012.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
Abstract
Chondroitinase ABC I (cABC I) from Proteus vulgaris cleaves glycosaminoglycan chains which are responsible for most of the inhibition of axon regrowth in spinal cord injury. The clinical utilization of this enzyme is mainly limited by its thermal instability. This study has been undertaken to determine the effects of glycerol, sorbitol and trehalose on cABC I activity and thermal stability. The results indicated that the enzyme catalytic activity and intrinsic fluorescence intensity increased in the presence of these cosolvents whereas no considerable conformational changes observed in far-UV CD spectra. Thermal CD experiment revealed an increase in T(m) of cABC I in the presence of cosolvents which was significant for trehalose. Our results support the idea that cABC I has stabilized in the presence of glycerol, sorbitol and trehalose. Therefore, the use of these cosolvents seems to be promising for improvement in shelf-life and clinical applications of this drug enzyme.
Collapse
Affiliation(s)
- Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
165
|
Abstract
AbstractCentral nervous system (CNS) injuries affect all levels of society indiscriminately, resulting in functional and behavioral deficits with devastating impacts on life expectancies, physical and emotional wellbeing. Considerable literature exists describing the pathophysiology of CNS injuries as well as the cellular and molecular factors that inhibit regrowth and regeneration of damaged connections. Based on these data, numerous therapeutic strategies targeting the various factors of repair inhibition have been proposed and on-going assessment has demonstrated some promising results in the laboratory environ. However, several of these treatment strategies have subsequently been taken into clinical trials but demonstrated little to no improvement in patient outcomes. As a result, options for clinical interventions following CNS injuries remain limited and effective restorative treatment strategies do not as yet exist. This review discusses some of the current animal models, with focus on nonhuman primates, which are currently being modeled in the laboratory for the study of CNS injuries. Last, we review the current understanding of the mechanisms underlying repair/regrowth inhibition and the current trends in experimental treatment strategies that are being assessed for potential translation to clinical applications.
Collapse
|
166
|
Chew DJ, Fawcett JW, Andrews MR. The challenges of long-distance axon regeneration in the injured CNS. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186719 DOI: 10.1016/b978-0-444-59544-7.00013-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injury to the central nervous system (CNS) that results in long-tract axonal damage typically leads to permanent functional deficits in areas innervated at, and below, the level of the lesion. The initial ischemia, inflammation, and neurodegeneration are followed by a progressive generation of scar tissue, dieback of transected axons, and demyelination, creating an area inhibitory to regrowth and recovery. Two ways to combat this inhibition is to therapeutically target the extrinsic and intrinsic properties of the axon-scar environment. Scar tissue within and surrounding the lesion site can be broken down using an enzyme known as chondroitinase. Negative regulators of adult neuronal growth, such as Nogo, can be neutralized with antibodies. Both therapies greatly improve functional recovery in animal models. Alternatively, modifying the intrinsic growth properties of CNS neurons through gene therapy or pharmacotherapy has also shown promising axonal regeneration after injury. Despite these promising therapies, the main challenge of long-distance axon regeneration still remains; achieving a level of functional and organized connectivity below the level of the lesion that mimics the intact CNS.
Collapse
Affiliation(s)
- Daniel J Chew
- Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | | | | |
Collapse
|
167
|
Endo M, Kakizaki I. Synthesis of neoproteoglycans using the transglycosylation reaction as a reverse reaction of endo-glycosidases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:327-44. [PMID: 22850725 PMCID: PMC3422686 DOI: 10.2183/pjab.88.327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
A method for the synthesis of carbohydrate chains (glycosaminoglycans) and their coupling to peptides was investigated using proteoglycans. Glycosidases generally catalyze a hydrolytic reaction, but can also mediate the reverse reaction, which in this case is a transglycosylation. In the transglycosylation reaction of bovine testicular hyaluronidase, which is an endoglycosidase, glycosaminoglycans (hyaluronan and chondroitin sulfates) release disaccharide (uronic acid-N-acetylhexosamine) moieties from non-reducing terminal sites, and then the liberated disaccharides are transferred immediately to the non-reducing termini of other glycosaminoglycan chains. Using such continuous reactions, it is possible to synthesize glycosaminoglycan chains according to a specific design. It then becomes possible to transfer glycosaminoglycan chains synthesized on a peptide to other peptides using the transglycosylation reaction of endo-β-xylosidase acting on the linkage region between a peptide and glycosaminoglycan chains of proteoglycans. We believe this approach will open a new field for the synthesis of homogeneous proteoglycans or their corresponding analogues.
Collapse
Affiliation(s)
- Masahiko Endo
- Department of Glycobiochemistry, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | |
Collapse
|
168
|
Mizumoto S, Sugahara K. Glycosaminoglycan chain analysis and characterization (glycosylation/epimerization). Methods Mol Biol 2012; 836:99-115. [PMID: 22252630 DOI: 10.1007/978-1-61779-498-8_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate/heparin (HS/Hep) are linear polysaccharides and involved in the regulation of various biological events through interaction with functional proteins. GAGs are modified by sulfation at various positions of each saccharide residue and the epimerization of uronic acid residues during the chain's biosynthesis, resulting in enormous structural diversity. This structural diversity is the basis for the wide range of biological activities of GAGs. Thus, the structural analysis of GAGs is key to understanding their biological functions. This chapter describes detailed instructions for the extraction and structural analysis of GAGs from cultured cells and tissues using a combination of GAG-degrading enzymes and high-performance liquid chromatography.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
169
|
Tingbø MG, Pedersen ME, Kolset SO, Enersen G, Hannesson KO. Lumican is a major small leucine-rich proteoglycan (SLRP) in Atlantic cod (Gadus morhua L.) skeletal muscle. Glycoconj J 2011; 29:13-23. [PMID: 22124673 DOI: 10.1007/s10719-011-9358-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/29/2011] [Accepted: 10/17/2011] [Indexed: 01/07/2023]
Abstract
Knowledge on fish matrix biology is important to ensure optimal fish -quality, -growth and -health in aquaculture. The aquaculture industry face major challenges related to matrix biology, such as inflammations and malformations. Atlantic cod skeletal muscle was investigated for collagen I, decorin, biglycan, and lumican expression and distribution by real-time PCR, immunohistochemical staining and Western blotting. Immunohistochemical staining and Western immunoblotting were also performed using antibodies against glycosaminoglycan side chains of these proteoglycans, in addition to fibromodulin. Real-time PCR showed highest mRNA expression of lumican and collagen I. Collagen I and proteoglycan immunohistochemical staining revealed distinct thread-like structures in the myocommata, with the exception of fibromodulin, which stained in dense structures embedded in the myocommata. Chondroitinase AC-generated epitopes stained more limited than cABC-generated epitopes, indicating a stronger presence of dermatan sulfate than chondroitin sulfate in cod muscle. Lumican and keratan sulfate distribution patterns were strong and ubiquitous in endomysia and myocommata. Western blots revealed similar SLRPs sizes in cod as are known from mammals. Staining of chondroitin/dermatan sulfate epitopes in Western blots were similar in molecular size to those of decorin and biglycan, whereas staining of keratan sulfate epitopes coincided with expected molecular sizes of lumican and fibromodulin. In conclusion, lumican was a major proteoglycan in cod muscle with ubiquitous distribution overlapping with keratan sulfate. Other leucine-rich proteoglycans were also present in cod muscle, and Western blot using antibodies developed for mammalian species showed cross reactivity with fish, demonstrating similar structures and molecular weights as in mammals.
Collapse
Affiliation(s)
- Monica G Tingbø
- The Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima AS, Ås, Norway.
| | | | | | | | | |
Collapse
|
170
|
Novotna I, Slovinska L, Vanicky I, Cizek M, Radonak J, Cizkova D. IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury. Cell Mol Neurobiol 2011; 31:1129-39. [PMID: 21630006 PMCID: PMC11498576 DOI: 10.1007/s10571-011-9714-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/18/2011] [Indexed: 01/09/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) with the major component NG2 have an inhibitory effect on regeneration of damaged axons after spinal cord injury. In this study, we investigate whether the digestion of CSPGs by chondroitinase ABC (ChABC) may decrease the NG2 expression and promote axon regrowth through the lesion site. Rats underwent spinal cord compression injury and were treated with ChABC or vehicle through an intrathecal catheter delivery at 2, 3, and 4 days after injury. In addition, animals were behaviorally scored using BBB test in weekly intervals after SCI. Based on immunocytochemical analyses, we have quantified distribution of NG2 glycoprotein and GAP-43 in spinal cord tissue in both experimental groups. Multiple injections of ChABC caused decrease of NG2 expression at lesion site at 5 and 7 days, but not at 14 and 28 days in comparison with vehicle-treated rats and significantly enhanced GAP-43 expression during the entire survival. The densitometry analysis showed significantly higher GAP-43 immunoreactivity (1.8-2.2-fold) in the regrowing axons and cell bodies within the central lesion cavity when compared with vehicle group. Longitudinally oriented and disorganized GAP-43-labeled axons were able to infiltrate and penetrate damaged tissue. The outgrowth of GAP-43 axons after CHABC delivery was significantly longer (≤0.457 mm) when compared with the length of axons in vehicle-treated rats (≤0.046 mm). Present findings suggest that degradation of NG2 with acute IT ChABC treatment may promote ongoing (long-lasting) axonal regenerative processes at late survival (14 and 28 days), but with no significant impact on the improvement of motor function.
Collapse
Affiliation(s)
- I Novotna
- Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 4, 04001 Kosice, Slovakia.
| | | | | | | | | | | |
Collapse
|
171
|
Kwok JC, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 2011; 71:1073-89. [DOI: 10.1002/dneu.20974] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
172
|
Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 2011; 32:7411-31. [PMID: 21764438 PMCID: PMC3161498 DOI: 10.1016/j.biomaterials.2011.06.037] [Citation(s) in RCA: 696] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/07/2023]
Abstract
Extensive scientific investigations in recent decades have established the anatomical, biomechanical, and functional importance that the meniscus holds within the knee joint. As a vital part of the joint, it acts to prevent the deterioration and degeneration of articular cartilage, and the onset and development of osteoarthritis. For this reason, research into meniscus repair has been the recipient of particular interest from the orthopedic and bioengineering communities. Current repair techniques are only effective in treating lesions located in the peripheral vascularized region of the meniscus. Healing lesions found in the inner avascular region, which functions under a highly demanding mechanical environment, is considered to be a significant challenge. An adequate treatment approach has yet to be established, though many attempts have been undertaken. The current primary method for treatment is partial meniscectomy, which commonly results in the progressive development of osteoarthritis. This drawback has shifted research interest toward the fields of biomaterials and bioengineering, where it is hoped that meniscal deterioration can be tackled with the help of tissue engineering. So far, different approaches and strategies have contributed to the in vitro generation of meniscus constructs, which are capable of restoring meniscal lesions to some extent, both functionally as well as anatomically. The selection of the appropriate cell source (autologous, allogeneic, or xenogeneic cells, or stem cells) is undoubtedly regarded as key to successful meniscal tissue engineering. Furthermore, a large variation of scaffolds for tissue engineering have been proposed and produced in experimental and clinical studies, although a few problems with these (e.g., byproducts of degradation, stress shielding) have shifted research interest toward new strategies (e.g., scaffoldless approaches, self-assembly). A large number of different chemical (e.g., TGF-β1, C-ABC) and mechanical stimuli (e.g., direct compression, hydrostatic pressure) have also been investigated, both in terms of encouraging functional tissue formation, as well as in differentiating stem cells. Even though the problems accompanying meniscus tissue engineering research are considerable, we are undoubtedly in the dawn of a new era, whereby recent advances in biology, engineering, and medicine are leading to the successful treatment of meniscal lesions.
Collapse
Affiliation(s)
- Eleftherios A Makris
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
173
|
Characterization of chondroitin sulfate from deer tip antler and osteogenic properties. Glycoconj J 2011; 28:473-80. [PMID: 21894464 DOI: 10.1007/s10719-011-9346-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Deer antler is a highly regenerative tissue that involves cellular differentiation, osteogenesis and ossification processes. Chondroitin sulfate is the major glycosaminoglycan contained in antler connective tissue and has been isolated from cartilaginous antler by 4 M GuHCl extraction, gradient ultracentrifugation and chromatography techniques. We examined the disaccharide composition by 2-AB labeling and anion exchange HPLC analysis of the three resultant fractions (high, medium and low density fractions). The high density fraction consists of A-unit and D-unit disaccharide in the ratio of 1:1, whereas, the CS disaccharide composition ratio of A- unit:C-unit:D-Unit:E-unit contained in medium and low density fractions are 3:4:3:1 and 2:2:2:1, respectively. The only intact CS oligosaccharides of the medium density fraction upregulated gene expression of bone-specific proteins of a human osteoblastic cell line (hFOB1.19). Thus, CS oligosaccharides from cartilaginous deer antler, with their oversulfated chondroitin sulfate composition, demonstrated the physiological properties and may be good candidates for osteogenetic agents in humans.
Collapse
|
174
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
175
|
Xu X, Warrington AE, Bieber AJ, Rodriguez M. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network. CNS Drugs 2011; 25:555-73. [PMID: 21699269 PMCID: PMC3140701 DOI: 10.2165/11587830-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | - Allan J. Bieber
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
- Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
176
|
Sugiura N, Setoyama Y, Chiba M, Kimata K, Watanabe H. Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity. J Biol Chem 2011; 286:29026-29034. [PMID: 21715327 DOI: 10.1074/jbc.m111.251157] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate is a linear polysaccharide of alternating D-glucuronic acid and N-acetyl-D-galactosamine residues with sulfate groups at various positions of the sugars. It interacts with and regulates cytokine and growth factor signal transduction, thus influencing development, organ morphogenesis, inflammation, and infection. We found chondroitinase activity in medium conditioned by baculovirus-infected insect cells and identified a novel chondroitinase. Sequence analysis revealed that the enzyme was a truncated form of occlusion-derived virus envelope protein 66 (ODV-E66) of Autographa californica nucleopolyhedrovirus. The enzyme was a novel chondroitin lyase with distinct substrate specificity. The enzyme was active over a wide range of pH (pH 4-9) and temperature (30-60 °C) and was unaffected by divalent metal ions. The ODV-E66 truncated protein digested chondroitin most efficiently followed by chondroitin 6-sulfate. It degraded hyaluronan to a minimal extent but did not degrade dermatan sulfate, heparin, and N-acetylheparosan. Further analysis using chemo-enzymatically synthesized substrates revealed that the enzyme specifically acted on glucuronate residues in non-sulfated and chondroitin 6-sulfate structures but not in chondroitin 4-sulfate structures. These results suggest that this chondroitinase is useful for detailed structural and compositional analysis of chondroitin sulfate, preparation of specific chondroitin oligosaccharides, and study of baculovirus infection mechanism.
Collapse
Affiliation(s)
- Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan.
| | - Yuka Setoyama
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | - Mie Chiba
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Research Complex for the Medicine Frontiers, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
177
|
Abstract
Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative, respectively. The resulting suitably substituted tetrasaccharide analogues can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogues.
Collapse
Affiliation(s)
- Smritilekha Bera
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
178
|
Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2011; 84:306-16. [PMID: 20620201 DOI: 10.1016/j.brainresbull.2010.06.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 12/30/2022]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are potent inhibitors of growth in the adult CNS. Use of the enzyme chondroitinase ABC (ChABC) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of a remarkable capacity for repair. Here we review the evidence that treatment with ChABC, either as an individual therapy or in combination with other strategies, can have multiple beneficial effects on promoting repair following spinal cord injury. These include promoting regeneration of injured axons, plasticity of uninjured pathways and neuroprotection of injured projection neurons. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Thus, there is robust pre-clinical evidence demonstrating beneficial effects of ChABC treatment following spinal cord injury. Furthermore, these effects have been replicated in a number of different injury models, with independent confirmation by different laboratories, providing an important validation of ChABC as a promising therapeutic strategy. We discuss putative mechanisms underlying ChABC-mediated repair as well as potential issues and considerations in translating ChABC treatment into a clinical therapy for spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, United Kingdom.
| | | |
Collapse
|
179
|
|
180
|
Huey DJ, Athanasiou KA. Maturational growth of self-assembled, functional menisci as a result of TGF-β1 and enzymatic chondroitinase-ABC stimulation. Biomaterials 2011; 32:2052-8. [PMID: 21145584 PMCID: PMC3038547 DOI: 10.1016/j.biomaterials.2010.11.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
Replacement of the knee meniscus requires a material possessing adequate geometrical and biomechanical properties. Meniscal tissue engineering attempts have been unable to produce tissue with collagen content and biomechanical properties, particularly tensile properties, mimicking native menisci. In an effort to obtain the geometric properties and the maturational growth necessary for the recapitulation of biochemical and, thus, biomechanical properties, a scaffoldless cell-based system, the self-assembly process, was used in conjunction with the catabolic enzyme chondroitinase-ABC and TGF-β1. We show that combinations of these agents resulted in maturational growth as evidenced by synergistic enhancement of the radial tensile modulus by 5-fold and the compressive relaxation modulus by 68%, and additive increases of the compressive instantaneous modulus by 136% and Col/WW by 196%. This study shows that tissue engineering can produce a biomaterial that is on par with the biochemical and biomechanical properties of native menisci.
Collapse
Affiliation(s)
- Daniel J. Huey
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
181
|
Easy HPLC-based separation and quantitation of chondroitin sulphate and hyaluronan disaccharides after chondroitinase ABC treatment. Carbohydr Res 2011; 346:50-7. [DOI: 10.1016/j.carres.2010.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/28/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022]
|
182
|
Liu Z, Xiao Z, Masuko S, Zhao W, Sterner E, Bansal V, Fareed J, Dordick J, Zhang F, Linhardt RJ. Mass balance analysis of contaminated heparin product. Anal Biochem 2011; 408:147-56. [PMID: 20850409 PMCID: PMC3180931 DOI: 10.1016/j.ab.2010.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/05/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022]
Abstract
A quantitative analysis of a recalled contaminated lot of heparin sodium injection U.S. Pharmacopeia (USP) was undertaken in response to the controversy regarding the exact nature of the contaminant involved in the heparin (HP) crisis. A mass balance analysis of the formulated drug product was performed. After freeze-drying, a 1-ml vial for injection afforded 54.8±0.3 mg of dry solids. The excipients, sodium chloride and residual benzyl alcohol, accounted for 11.4±0.5 and 0.9±0.5 mg, respectively. Active pharmaceutical ingredient (API) represented 41.5±1.0 mg, corresponding to 75.7 wt% of dry mass. Exhaustive treatment of API with specific enzymes, heparin lyases, and/or chondroitin lyases was used to close mass balance. HP represented 30.5±0.5 mg, corresponding to 73.5 wt% of the API. Dermatan sulfate (DS) impurity represented 1.7±0.3 mg, corresponding to 4.1 wt% of API. Contaminant, representing 9.3±0.1 mg corresponding to 22.4 wt% of API, was found in the contaminated formulated drug product. The recovery of contaminant was close to quantitative (95.6-100 wt%). A single contaminant was unambiguously identified as oversulfated chondroitin sulfate (OSCS).
Collapse
Affiliation(s)
- Zhenling Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Zhongping Xiao
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Sayaka Masuko
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Wenjing Zhao
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Eric Sterner
- Department of Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Vinod Bansal
- Department of Nephrology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Jonathan Dordick
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
- Department of Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
- Department of Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
- Department of Chemical, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
- Department of Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| |
Collapse
|
183
|
Akatsu C, Mizumoto S, Kaneiwa T, Maccarana M, Malmström A, Yamada S, Sugahara K. Dermatan sulfate epimerase 2 is the predominant isozyme in the formation of the chondroitin sulfate/dermatan sulfate hybrid structure in postnatal developing mouse brain. Glycobiology 2010; 21:565-74. [DOI: 10.1093/glycob/cwq208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
184
|
Li F, Nandini CD, Hattori T, Bao X, Murayama D, Nakamura T, Fukushima N, Sugahara K. Structure of pleiotrophin- and hepatocyte growth factor-binding sulfated hexasaccharide determined by biochemical and computational approaches. J Biol Chem 2010; 285:27673-85. [PMID: 20584902 PMCID: PMC2934635 DOI: 10.1074/jbc.m110.118703] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 06/05/2010] [Indexed: 01/16/2023] Open
Abstract
Endogenous pleiotrophin and hepatocyte growth factor (HGF) mediate the neurite outgrowth-promoting activity of chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains isolated from embryonic pig brain. CS/DS hybrid chains isolated from shark skin have a different disaccharide composition, but also display these activities. In this study, pleiotrophin- and HGF-binding domains in shark skin CS/DS were investigated. A high affinity CS/DS fraction was isolated using a pleiotrophin-immobilized column. It showed marked neurite outgrowth-promoting activity and strong inhibitory activity against the binding of pleiotrophin to immobilized CS/DS chains from embryonic pig brain. The inhibitory activity was abolished by chondroitinase ABC or B, and partially reduced by chondroitinase AC-I. A pentasulfated hexasaccharide with a novel structure was isolated from the chondroitinase AC-I digest using pleiotrophin affinity and anion exchange chromatographies. It displayed a potent inhibitory effect on the binding of HGF to immobilized shark skin CS/DS chains, suggesting that the pleiotrophin- and HGF-binding domains at least partially overlap in the CS/DS chains involved in the neuritogenic activity. Computational chemistry using molecular modeling and calculations of the electrostatic potential of the hexasaccharide and two pleiotrophin-binding octasaccharides previously isolated from CS/DS hybrid chains of embryonic pig brain identified an electronegative zone potentially involved in the molecular recognition of the oligosaccharides by pleiotrophin. Homology modeling of pleiotrophin based on a related midkine protein structure predicted the binding pocket of pleiotrophin for the oligosaccharides and provided new insights into the molecular mechanism of the interactions between the oligosaccharides and pleiotrophin.
Collapse
Affiliation(s)
- Fuchuan Li
- From the Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| | | | | | - Xingfeng Bao
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| | | | - Toshikazu Nakamura
- the Kringle Pharma Joint Research Division, Center for Advanced Science and Innovation, Osaka University, Osaka 565-0871, Japan
| | | | - Kazuyuki Sugahara
- From the Faculty of Advanced Life Science, Hokkaido University Graduate School of Life Science, Sapporo 001-0021
- the Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558
| |
Collapse
|
185
|
Yamaguchi M, Kakizaki I, Endo M. Novel Glycosaminoglycan Glycotechnology: Method for Hybrid Synthesis of Glycosaminoglycan Chains Utilizing Chemo-enzymatic Procedures. J Carbohydr Chem 2010. [DOI: 10.1080/07328303.2010.514488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
186
|
Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A, Nagashima Y, Arai E, Takahashi K, Kawamura R, Wakui K, Takahashi J, Kato H, Yasui H, Ishida T, Ohashi H, Nishimura G, Shiina M, Saitsu H, Tsurusaki Y, Doi H, Fukushima Y, Ikegawa S, Yamada S, Sugahara K, Matsumoto N. Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 2010; 31:966-74. [PMID: 20533528 DOI: 10.1002/humu.21300] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a heterogeneous connective tissue disorder involving skin and joint laxity and tissue fragility. A new type of EDS, similar to kyphoscoliosis type but without lysyl hydroxylase deficiency, has been investigated. We have identified a homozygous CHST14 (carbohydrate sulfotransferase 14) mutation in the two familial cases and compound heterozygous mutations in four sporadic cases. CHST14 encodes dermatan 4-O-sulfotransferase 1 (D4ST1), which transfers active sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 4 of the N-acetyl-D-galactosamine (GalNAc) residues of dermatan sulfate (DS). Transfection experiments of mutants and enzyme assays using fibroblast lysates of patients showed the loss of D4ST1 activity. CHST14 mutations altered the glycosaminoglycan (GAG) components in patients' fibroblasts. Interestingly, DS of decorin proteoglycan, a key regulator of collagen fibril assembly, was completely lost and replaced by chondroitin sulfate (CS) in the patients' fibroblasts, leading to decreased flexibility of GAG chains. The loss of the decorin DS proteoglycan due to CHST14 mutations may preclude proper collagen bundle formation or maintenance of collagen bundles while the sizes and shapes of collagen fibrils are unchanged as observed in the patients' dermal tissues. These findings indicate the important role of decorin DS in the extracellular matrix and a novel pathomechanism in EDS.
Collapse
Affiliation(s)
- Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Rieppo L, Saarakkala S, Närhi T, Holopainen J, Lammi M, Helminen HJ, Jurvelin JS, Rieppo J. Quantitative analysis of spatial proteoglycan content in articular cartilage with Fourier transform infrared imaging spectroscopy: Critical evaluation of analysis methods and specificity of the parameters. Microsc Res Tech 2010; 73:503-12. [PMID: 19839035 DOI: 10.1002/jemt.20789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the specificity of the current Fourier transform infrared imaging spectroscopy (FT-IRIS) methods for the determination of depthwise proteoglycan (PG) content in articular cartilage (AC). In addition, curve fitting was applied to study whether the specificity of FT-IRIS parameters for PG determination could be improved. METHODS Two sample groups from the steer AC were prepared for the study (n = 8 samples/group). In the first group, chondroitinase ABC enzyme was used to degrade the PGs from the superficial cartilage, while the samples in the second group served as the controls. Samples were examined with FT-IRIS and analyzed using previously reported direct absorption spectrum techniques and multivariate methods and, in comparison, by curve fitting. Safranin O-stained sections were measured with digital densitometry to obtain a reference for depthwise PG distribution. RESULTS Carbohydrate region-based absorption spectrum methods showed a statistically weaker correlation with the PG reference distributions than the results of the curve fitting (subpeak located approximately at 1,060 cm(-1)). Furthermore, the shape of the depthwise profiles obtained using the curve fitting was more similar to the reference profiles than with the direct absorption spectrum analysis. CONCLUSIONS Results suggest that the current FT-IRIS methods for PG analysis lack the specificity for quantitative measurement of PGs in AC. The curve fitting approach demonstrated that it is possible to improve the specificity of the PG analysis. However, the findings of the present study suggest that further development of the FT-IRIS analysis techniques is still needed.
Collapse
Affiliation(s)
- L Rieppo
- Department of Physics, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Hobo F, Takahashi M, Saito Y, Sato N, Takao T, Koshiba S, Maeda H. 33S nuclear magnetic resonance spectroscopy of biological samples obtained with a laboratory model 33S cryogenic probe. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:054302. [PMID: 20515157 DOI: 10.1063/1.3424853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
(33)S nuclear magnetic resonance (NMR) spectroscopy is limited by inherently low NMR sensitivity because of the quadrupolar moment and low gyromagnetic ratio of the (33)S nucleus. We have developed a 10 mm (33)S cryogenic NMR probe, which is operated at 9-26 K with a cold preamplifier and a cold rf switch operated at 60 K. The (33)S NMR sensitivity of the cryogenic probe is as large as 9.8 times that of a conventional 5 mm broadband NMR probe. The (33)S cryogenic probe was applied to biological samples such as human urine, bile, chondroitin sulfate, and scallop tissue. We demonstrated that the system can detect and determine sulfur compounds having SO(4)(2-) anions and -SO(3)(-) groups using the (33)S cryogenic probe, as the (33)S nuclei in these groups are in highly symmetric environments. The NMR signals for other common sulfur compounds such as cysteine are still undetectable by the (33)S cryogenic probe, as the (33)S nuclei in these compounds are in asymmetric environments. If we shorten the rf pulse width or decrease the rf coil diameter, we should be able to detect the NMR signals for these compounds.
Collapse
Affiliation(s)
- Fumio Hobo
- Graduate School of Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
189
|
Akatsu C, Fongmoon D, Mizumoto S, Jacquinet JC, Kongtawelert P, Yamada S, Sugahara K. Development of a mouse monoclonal antibody against the chondroitin sulfate-protein linkage region derived from shark cartilage. Glycoconj J 2010; 27:387-99. [DOI: 10.1007/s10719-010-9286-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/29/2022]
|
190
|
Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, Seidenbecher C. Contributions of astrocytes to synapse formation and maturation - Potential functions of the perisynaptic extracellular matrix. ACTA ACUST UNITED AC 2010; 63:26-38. [PMID: 20096729 DOI: 10.1016/j.brainresrev.2010.01.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/05/2023]
Abstract
The concept of the tripartite synapse proposes that in addition to the presynapse and the postsynaptic membrane closely apposed processes of astrocytes constitute an integral part of the synapse. Accordingly, astrocytes may influence synaptic activity by various ways. Thus glia- and neuron-derived neurotrophins, cytokines and metabolites influence neuronal survival, synaptic activity and plasticity. Beyond these facts, the past years have shown that astrocytes are required for synaptogenesis, the structural maintenance and proper functioning of synapses. In particular, astrocytes seem to play a key role in the organization of the brain's extracellular matrix (ECM) - most prominently the so-called perineuronal nets (PNNs), complex macromolecular assemblies of ECM components. Due to progress in cellular and molecular neurosciences, it has been possible to decipher the composition of ECM structures and to obtain insight into their function(s) and underlying mechanisms. It appears that PNN-related structures are involved in regulating the sprouting and pruning of synapses, which represents an important morphological correlate of synaptic plasticity in the adult nervous system. Perturbation assays and gene elimination by recombinant techniques have provided clear indications that astrocyte-derived ECM components, e.g. the tenascins and chondroitinsulfate proteoglycans (CSPGs) of the lectican family participate in these biological functions. The present review will discuss the glia-derived glycoproteins and CSPGs of the perisynaptic ECM, their neuronal and glial receptors, and in vitro assays to test their physiological functions in the framework of the synapse, the pivotal element of communication in the central nervous system.
Collapse
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, D-44801 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
191
|
Ishii-Nozawa R, Naito T, Mita M, Miyazaki K, Matsuda Y, Takeuchi K. Effect of chondroitinase on dermatan sulfate-facilitated arginine amidase released from rabbit ear artery. Biol Pharm Bull 2010; 33:150-2. [PMID: 20045955 DOI: 10.1248/bpb.33.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effects of chondroitinases on the release of dermatan sulfate (DS)-induced arginine amidase (AA) from rabbit ear artery. DS-induced AA release was significantly decreased by treatment with chondroitinase ABC (ABCase) in the rabbit ear artery. On the other hand, Chondroitinase ACII (ACIIase) enhanced spontaneous and DS-induced AA release. Heat-inactivated ABCase and ACIIase did not affect spontaneous and DS-induced AA release. Furthermore, ABCase, but not ACIIase and heat-inactivated chondroitinases, degraded DS. These results indicate that the facilitatory effect of DS-induced AA release from the rabbit ear artery is affected by the molecular size of DS.
Collapse
Affiliation(s)
- Reiko Ishii-Nozawa
- Department of Clinical Pharmacology, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
192
|
Schenauer MR, Meissen JK, Seo Y, Ames JB, Leary JA. Heparan sulfate separation, sequencing, and isomeric differentiation: ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides. Anal Chem 2009; 81:10179-85. [PMID: 19925012 PMCID: PMC2810830 DOI: 10.1021/ac902186h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe the resolution of heparan sulfate (HS) isomers by chromatographic methods and their subsequent differentiation by mass spectrometry (MS), ion mobility, and (1)H nuclear magnetic resonance (NMR) analysis. The two purified hexasaccharide isomers produced nearly identical MS spectra, quantitative disaccharide profiles, and partial enzymatic digestions. However, both tandem spectrometry (MS(2)) and ion mobility spectrometry (IMS) indicated structural differences existed. All data suggested the distinction between the two hexasaccharides resided in their uronic acid stereochemistries. Glucuronic (GlcA) and iduronic acids (IdoA) were subsequently defined by (1)H NMR analysis completing the structural analysis and verifying the unique structures initially indicated by MS(2) and IMS. Our results suggest that IMS may be a powerful tool in the rapid differentiation of GlcA and IdoA containing isomers in the absence of prior structural knowledge.
Collapse
Affiliation(s)
- Matthew R. Schenauer
- The Departments of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - John K. Meissen
- The Departments of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Youjin Seo
- The Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - James B. Ames
- The Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| | - Julie A. Leary
- The Departments of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616
- The Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616
| |
Collapse
|
193
|
Bian L, Crivello KM, Ng KW, Xu D, Williams DY, Ateshian GA, Hung CT. Influence of temporary chondroitinase ABC-induced glycosaminoglycan suppression on maturation of tissue-engineered cartilage. Tissue Eng Part A 2009; 15:2065-72. [PMID: 19196151 DOI: 10.1089/ten.tea.2008.0495] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE A fundamental challenge of cartilage tissue engineering has been the inability to promote collagen synthesis up to native levels. In contrast, recent protocols have demonstrated that glycosaminoglycans (GAG) can be synthesized to native levels in 4-6 weeks of in vitro culture. We hypothesize that rapid GAG synthesis may be an impediment to collagen synthesis, possibly by altering transport pathways of nutrients or synthesis products. In this study, this hypothesis is tested by inducing enzymatic GAG loss in the early culture period of cartilage tissue constructs, and monitoring collagen content at various time points after cessation of enzymatic treatment. METHODS In Study 1, to induce breakdown of proteoglycans, chondroitinase ABC (CABC, 0.002U/mL) was continuously added into the culture media for the initial 4 weeks of culture or for 2 weeks starting on day 14 of culture. In Study 2, multiple transient CABC treatments (0.15U/mL, for 2 days) were applied to the matured tissue-engineered constructs. RESULTS Continuous and transient CABC treatments significantly increased the collagen concentration of the constructs, improving their tensile properties. The GAG content of the treated constructs recovered quickly to the pretreatment level after 2-3 weeks. CONCLUSIONS This study demonstrates that tissue-engineered cartilage constructs with improved tensile properties can be achieved by temporarily suppressing the GAG content enzymatically.
Collapse
Affiliation(s)
- Liming Bian
- Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 2009; 83:12714-24. [PMID: 19812150 DOI: 10.1128/jvi.00717-09] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The hepatitis E virus (HEV), a nonenveloped RNA virus, is the causative agent of hepatitis E. The mode by which HEV attaches to and enters into target cells for productive infection remains unidentified. Open reading frame 2 (ORF2) of HEV encodes its major capsid protein, pORF2, which is likely to have the determinants for virus attachment and entry. Using an approximately 56-kDa recombinant pORF2 that can self-assemble as virus-like particles, we demonstrated that cell surface heparan sulfate proteoglycans (HSPGs), specifically syndecans, play a crucial role in the binding of pORF2 to Huh-7 liver cells. Removal of cell surface heparan sulfate by enzymatic (heparinase) or chemical (sodium chlorate) treatment of cells or competition with heparin, heparan sulfate, and their oversulfated derivatives caused a marked reduction in pORF2 binding to the cells. Syndecan-1 is the most abundant proteoglycan present on these cells and, hence, plays a key role in pORF2 binding. Specificity is likely to be dictated by well-defined sulfation patterns on syndecans. We show that pORF2 binds syndecans predominantly via 6-O sulfation, indicating that binding is not entirely due to random electrostatic interactions. Using an in vitro infection system, we also showed a marked reduction in HEV infection of heparinase-treated cells. Our results indicate that, analogous to some enveloped viruses, a nonenveloped virus like HEV may have also evolved to use HSPGs as cellular attachment receptors.
Collapse
|
195
|
Maculotti K, Tira EM, Sonaggere M, Perugini P, Conti B, Modena T, Pavanetto F. In vitroevaluation of chondroitin sulphate-chitosan microspheres as carrier for the delivery of proteins. J Microencapsul 2009; 26:535-43. [DOI: 10.1080/02652040802485725] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
196
|
Novel proteoglycan glycotechnology: chemoenzymatic synthesis of chondroitin sulfate-containing molecules and its application. Glycoconj J 2009; 27:189-98. [DOI: 10.1007/s10719-009-9252-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 06/12/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
197
|
Góes RM, Nader HB, Porcionatto MA, Haddad A, Laicine EM. Chondroitin Sulfate Proteoglycans Are Structural Renewable Constituents of the Rabbit Vitreous Body. Curr Eye Res 2009; 30:405-13. [PMID: 16020271 DOI: 10.1080/02713680590934148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE To characterize the vitreous intrinsic proteoglycans, investigate their dynamics, and examine their role in the supramolecular organization of the vitreous. METHODS Vitreous from normal rabbits was collected and processed for observation with the transmission electron microscope after treatment with glycosidases. Also, rabbits were injected intravitreally with [35S]-sodium sulfate and sacrificed at several time intervals after the injection. Proteoglycans (PGs) were assayed in the vitreous supernatant or in whole samples extracted with guanidine hydrochloride by polyacrylamide or agarose gel electrophoresis, followed respectively by fluorography or autoradiography, and ion-exchange chromatography and gel-filtration chromatography, combined with glycolytic treatment of the samples. The sulfated glycosaminoglycans (GAGs) were characterized by agarose gel electrophoresis after treating vitreous samples with protease and specific glycosidases. RESULTS The electron microscopic study revealed a network with hyaluronic acid (HA) as thin threads coating and connecting collagen fibrils. The elimination of the HA coat showed chondroitin sulfate granules (8-25 nm) arranged at regular intervals on the fibril surface. The chondroitinase ABC digestion, besides removing the granules, also caused the formation of thicker bundles of the collagen fibrils. The PG and GAG analysis indicated that there are three renewable PGs in the vitreous (e.g., one heparan- and two chondroitin-sulfate ones). CONCLUSIONS At least one of the chondroitin sulfate PGs is involved in the interactions that occur in the vitreous structure, mainly by providing adequate spacing between the collagen fibrils, a condition that is probably required for the transparency of the vitreous.
Collapse
Affiliation(s)
- Rejane M Góes
- Departamento de Biologia, UNESP, São José do Rio Preto, Brazil
| | | | | | | | | |
Collapse
|
198
|
Expression of a novel hyaluronidase from Streptococcus zooepidemicus in Escherichia coli and its application for the preparation of HA oligosaccharides. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Zhang Z, Park Y, Kemp MM, Zhao W, Im AR, Shaya D, Cygler M, Kim YS, Linhardt RJ. Liquid chromatography-mass spectrometry to study chondroitin lyase action pattern. Anal Biochem 2009; 385:57-64. [PMID: 18992215 PMCID: PMC2636793 DOI: 10.1016/j.ab.2008.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 10/08/2008] [Accepted: 10/13/2008] [Indexed: 12/12/2022]
Abstract
Liquid chromatography-mass spectrometry was applied to determine the action pattern of different chondroitin lyases. Two commercial enzymes, chondroitinase ABC (Proteus vulgaris) and chondroitinase ACII (Arthrobacter aurescens), having action patterns previously determined by viscosimetry and gel electrophoresis were first examined. Next, the action patterns of recombinant lyases, chondroitinase ABC from Bacteroides thetaiotaomicron (expressed in Escherichia coli) and chondroitinase AC from Flavobacterium heparinum (expressed in its original host), were examined. Chondroitin sulfate A (CS-A, also known as chondroitin-4-sulfate) was used as the substrate for these four lyases. Aliquots taken at various time points were analyzed. The products of chondroitinase ABC (P. vulgaris) and chondroitinase AC (F. heparinum) contained unsaturated oligosaccharides of sizes ranging from disaccharide to decasaccharide, demonstrating that both are endolytic enzymes. The products afforded by chondroitinase ABC (B. thetaiotaomicron) and chondroitinase ACII (A. aurescens) contained primarily unsaturated disaccharide. These two exolytic enzymes showed different minor products, suggesting some subtle specificity differences between the actions of these two exolytic lyases on chondroitin sulfate A.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Youmie Park
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Melissa M. Kemp
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - Wenjing Zhao
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| | - A-Rang Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - David Shaya
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
- Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Yeong Shik Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| |
Collapse
|
200
|
The effect of composition and microstructure on the viscoelastic properties of dermis. J Biomech 2009; 42:430-5. [PMID: 19159885 DOI: 10.1016/j.jbiomech.2008.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 11/20/2022]
Abstract
Dermis is a heterogeneous tissue in which extracellular matrix components change in relative amount and spatial assembly across the tissue thickness. The effect of the microstructural and compositional heterogeneities on the overall mechanical response of dermis is, however, largely ignored. In this work, we aimed at gaining a better insight into the effect of extracellular matrix microstructure and composition on the mechanical behaviour of different dermal strata by combining mechanical analysis and selective enzymatic digestion of extracellular matrix components. The dynamical-mechanical tests we performed on bovine dermal splits show that the upper dermal stratum, which is richer in papillary dermis, is characterized by higher mechanical properties than the lower one, which is almost composed of reticular dermis. Moreover, the depletion of interfibrillar proteins, proteoglycans and glycosamminoglycans decreases the dynamic moduli of dermis, especially at small frequencies. Of the two dermal layers tested, the upper dermal layer is more sensitive to the enzymatic treatment than the lower layer. Interestingly, the disruption of the elastic network greatly influenced the viscoelastic properties of upper dermis, inducing a dramatic decrease of both storage (G') and loss (G'') moduli, suggesting that the spatial assembly of the elastin and collagen networks as well as their mutual interactions dominate the dynamical mechanical response of the tissue.
Collapse
|