151
|
Keelawat S, Thorner PS, Shuangshoti S, Bychkov A, Kitkumthorn N, Rattanatanyong P, Boonyayothin W, Poumsuk U, Ruangvejvorachai P, Mutirangura A. Detection of global hypermethylation in well-differentiated thyroid neoplasms by immunohistochemical (5-methylcytidine) analysis. J Endocrinol Invest 2015; 38:725-32. [PMID: 25740063 DOI: 10.1007/s40618-015-0246-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE While global hypomethylation of DNA has been found in several malignancies, studies on thyroid tumours have shown controversial results using different techniques. To help resolve this issue, we assessed methylation status using two different techniques in papillary thyroid carcinomas (PTC) and follicular adenomas (FA) and carcinomas (FTC), comparing adjacent non-neoplastic thyroid tissue. METHODS A series of 15 FA, 18 FTC and 17 PTC were assessed by: (1) measurement of methylation levels of long interspersed nuclear elements (LINE-1) using a combined bisulfite restriction analysis polymerase chain reaction protocol and (2) immunostaining with an anti-5-methylcytidine antibody that detects methylated DNA regardless of the DNA sequence. Immunostaining was scored by image analysis. RESULTS Methylation levels of LINE-1 in FA, FTC and PTC were not significantly different from adjacent normal tissue. There was no significant difference in methylation levels of LINE-1 between FA, FTC and PTC (p = 0.44). By immunohistochemical staining for methylation, the 5-methylcytidine score was significantly higher in tumours than in normal tissue counterparts, for FA (p < 0.001), FTC (p = 0.04) and PTC (p = 0.02). PTC showed the highest 5-methylcytidine expression amongst all tumours which was significantly different from FTC (p = 0.015), but not FA (p = 0.09). There was no correlation in methylation level between LINE-1 and 5-methylcytidine scores for each group and overall. CONCLUSIONS Well-differentiated thyroid neoplasms (FA, FTC and PTC) were not found by two independent methods to undergo global hypomethylation as part of an oncogenic sequence from normal tissue to carcinoma. Instead, hypermethylation was detected in all types of tumours, implying that this epigenetic event may contribute to oncogenic development of thyroid neoplasms (both benign and malignant).
Collapse
Affiliation(s)
- S Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - P S Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
- Division of Pathology, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - S Shuangshoti
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - A Bychkov
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - N Kitkumthorn
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - P Rattanatanyong
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - W Boonyayothin
- Department of Pathology, Chonburi Hospital, 69 Moo 2, Tambon Baan Seaun, Ampur Mueung, Chonburi, Thailand
| | - U Poumsuk
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - P Ruangvejvorachai
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - A Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
152
|
Deng T, Lin D, Zhang M, Zhao Q, Li W, Zhong B, Deng Y, Fu X. Differential expression of bone morphogenetic protein 5 in human lung squamous cell carcinoma and adenocarcinoma. Acta Biochim Biophys Sin (Shanghai) 2015; 47:557-63. [PMID: 25994008 DOI: 10.1093/abbs/gmv037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play important roles in tumor cell proliferation, metastasis, and invasion. However, the expression patterns of BMPs in patients with non-small-cell lung cancer (NSCLC) and their correlations with NSCLC pathogenesis have not been examined yet. In this study, the mRNA levels of BMP family members in NSCLC tissues were analyzed and results showed that the mRNA levels of BMP5 and BMP7 were significantly down-regulated and up-regulated, respectively, in tumor tissues compared with those in the corresponding noncancerous tissues. Interestingly, the mRNA level of BMP5 was significantly higher in lung adenocarcinoma tissues than that in lung squamous cell carcinoma tissues. Furthermore, results from immunohistochemistry analysis confirmed stronger expression of BMP5 protein in lung adenocarcinoma than in lung squamous cell carcinoma. Our findings suggested that BMP5 might be a potential prognostic biomarker or therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Taoran Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China The Second Clinical Medical Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dandan Lin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Man Zhang
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Qingchuan Zhao
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Weina Li
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
153
|
Yamashita N, Tokunaga E, Kitao H, Hitchins M, Inoue Y, Tanaka K, Hisamatsu Y, Taketani K, Akiyoshi S, Okada S, Oda Y, Saeki H, Oki E, Maehara Y. Epigenetic Inactivation of BRCA1 Through Promoter Hypermethylation and Its Clinical Importance in Triple-Negative Breast Cancer. Clin Breast Cancer 2015. [PMID: 26195437 DOI: 10.1016/j.clbc.2015.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has many similarities with basal-like breast cancer. Additionally, TNBCs are associated with Breast cancer susceptibility gene I (BRCA1) functional loss, which leads to impaired homologous recombination-mediated DNA repair. Although somatic mutations in BRCA1 rarely occur in sporadic breast cancer, lower than normal rates of expression of BRCA1 is reported to be an important factor that contributes to tumorigenesis in sporadic tumors. The epigenetic inactivation of BRCA1 expression might thus play an important role in sporadic breast cancer cases. PATIENTS AND METHODS Breast cancer specimens were obtained from 69 TNBC and 161 non-TNBC patients who underwent surgery without neoadjuvant systemic therapy. BRCA1 promoter methylation status was investigated using combined bisulfite and restriction analysis. BRCA1 mRNA expression was evaluated using quantitative reverse transcriptase polymerase chain reaction and BRCA1 protein expression was assessed using immunohistochemistry. RESULTS BRCA1 promoter methylation was found in 11 tumors and all of these were in TNBC cases (P < .0001). BRCA1 promoter methylation was significantly associated with lymphovessel invasion (P = .02), high nuclear grade (P = .05), low BRCA1 mRNA expression (P < .0001), and loss of BRCA1 protein expression (P = .0015). BRCA1 promoter methylation was significantly associated with shorter overall survival (P = .038). CONCLUSION BRCA1 promotor methylation was found only in TNBC cases and the methylated cases account for 16% of TNBC. BRCA1 promoter methylation was significantly associated with reduced BRCA1 expression, aggressive phenotype, and poor prognosis. BRCA1 promoter methylation is an important mechanism that leads to functional loss of BRCA1.
Collapse
Affiliation(s)
- Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Tokunaga
- Department of Comprehensive Clinical Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Hiroyuki Kitao
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Megan Hitchins
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kimihiro Tanaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Taketani
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Okada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
154
|
Villani G. Effect of Methylation on the Properties of the H-Bridges in DNA. A Systematic Theoretical Study on the Couples of Base Pairs. J Phys Chem B 2015; 119:7931-43. [DOI: 10.1021/acs.jpcb.5b02901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti
OrganoMetallici, UOS Pisa Area della Ricerca del CNR, Via G. Moruzzi,
1, I-56124 Pisa, Italy
| |
Collapse
|
155
|
Sanguedolce F, Cormio A, Bufo P, Carrieri G, Cormio L. Molecular markers in bladder cancer: Novel research frontiers. Crit Rev Clin Lab Sci 2015; 52:242-55. [PMID: 26053693 DOI: 10.3109/10408363.2015.1033610] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools combining standard clinical-pathological factors with molecular markers represents a major quest in managing this poorly predictable disease.
Collapse
|
156
|
Devailly G, Grandin M, Perriaud L, Mathot P, Delcros JG, Bidet Y, Morel AP, Bignon JY, Puisieux A, Mehlen P, Dante R. Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells. Nucleic Acids Res 2015; 43:5838-54. [PMID: 26007656 PMCID: PMC4499136 DOI: 10.1093/nar/gkv508] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells.
Collapse
Affiliation(s)
- Guillaume Devailly
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Mélodie Grandin
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Laury Perriaud
- Institut Curie and INSERM U612, Centre Universitaire, 91405, Orsay, France
| | - Pauline Mathot
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Guy Delcros
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Yannick Bidet
- Laboratoire d'Oncologie Moléculaire, Centre Jean Perrin, 63011 Clermont-Ferrand, France
| | - Anne-Pierre Morel
- EMT and cancer cell plasticity Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, CRCL, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Yves Bignon
- Laboratoire d'Oncologie Moléculaire, Centre Jean Perrin, 63011 Clermont-Ferrand, France
| | - Alain Puisieux
- EMT and cancer cell plasticity Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, CRCL, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Patrick Mehlen
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Robert Dante
- Dependence Receptors, Cancer and Development Laboratory - Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
157
|
WU FANG, LV TIANMIN, CHEN GANG, YE HUAJUN, WU WEI, LI GANG, ZHI FACHAO. Epigenetic silencing of DUSP9 induces the proliferation of human gastric cancer by activating JNK signaling. Oncol Rep 2015; 34:121-8. [DOI: 10.3892/or.2015.3998] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/03/2015] [Indexed: 11/05/2022] Open
|
158
|
Yu XD, Guo ZS. Epigenetic drugs for cancer treatment and prevention: mechanisms of action. Biomol Concepts 2015; 1:239-51. [PMID: 25962000 DOI: 10.1515/bmc.2010.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review provides a brief overview of the basic principles of epigenetic gene regulation and then focuses on recent development of epigenetic drugs for cancer treatment and prevention with an emphasis on the molecular mechanisms of action. The approved epigenetic drugs are either inhibitors of DNA methyltransferases or histone deacetylases (HDACs). Future epigenetic drugs could include inhibitors for histone methyltransferases and histone demethylases and other epigenetic enzymes. Epigenetic drugs often function in two separate yet interrelated ways. First, as epigenetic drugs per se, they modulate the epigenomes of premalignant and malignant cells to reverse deregulated epigenetic mechanisms, leading to an effective therapeutic strategy (epigenetic therapy). Second, HDACs and other epigenetic enzymes also target non-histone proteins that have regulatory roles in cell proliferation, migration and cell death. Through these processes, these drugs induce cancer cell growth arrest, cell differentiation, inhibition of tumor angiogenesis, or cell death via apoptosis, necrosis, autophagy or mitotic catastrophe (chemotherapy). As they modulate genes which lead to enhanced chemosensitivity, immunogenicity or dampened innate antiviral response of cancer cells, epigenetic drugs often show better efficacy when combined with chemotherapy, immunotherapy or oncolytic virotherapy. In chemoprevention, dietary phytochemicals such as epigallocatechin-3-gallate and sulforaphane act as epigenetic agents and show efficacy by targeting both cancer cells and the tumor microenvironment. Further understanding of how epigenetic mechanisms function in carcinogenesis and cancer progression as well as in normal physiology will enable us to establish a new paradigm for intelligent drug design in the treatment and prevention of cancer.
Collapse
|
159
|
Methylated DLX4 Predicts Response to Pathologic Stage I Non-Small Cell Lung Cancer Resection. Ann Thorac Surg 2015; 99:1746-54. [DOI: 10.1016/j.athoracsur.2014.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
|
160
|
Shenker NS, Flower KJ, Wilhelm-Benartzi CS, Dai W, Bell E, Gore E, El Bahrawy M, Weaver G, Brown R, Flanagan JM. Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues. BMC Cancer 2015; 15:337. [PMID: 25927974 PMCID: PMC4424887 DOI: 10.1186/s12885-015-1335-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/22/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation variability regions (MVRs) across the oestrogen receptor alpha (ESR1) gene have been identified in peripheral blood cells from breast cancer patients and healthy individuals. In contrast to promoter methylation, gene body methylation may be important in maintaining active transcription. This study aimed to assess MVRs in ESR1 in breast cancer cell lines, tumour biopsies and exfoliated epithelial cells from expressed breast milk (EBM), to determine their significance for ESR1 transcription. METHODS DNA methylation levels in eight MVRs across ESR1 were assessed by pyrosequencing bisulphite-converted DNA from three oestrogen receptor (ER)-positive and three ER-negative breast cancer cell lines. DNA methylation and expression were assessed following treatment with DAC (1 μM), or DMSO (controls). ESR1 methylation levels were also assayed in DNA from 155 invasive ductal carcinoma biopsies provided by the Breast Cancer Campaign Tissue Bank, and validated with DNA methylation profiles from the TCGA breast tumours (n = 356 ER-pos, n = 109 ER-neg). DNA methylation was profiled in exfoliated breast epithelial cells from EBM using the Illumina 450 K (n = 36) and pyrosequencing in a further 53 donor samples. ESR1 mRNA levels were measured by qRT-PCR. RESULTS We show that ER-positive cell lines had unmethylated ESR1 promoter regions and highly methylated intragenic regions (median, 80.45%) while ER-negative cells had methylated promoters and lower intragenic methylation levels (median, 38.62%). DAC treatment increased ESR1 expression in ER-negative cells, but significantly reduced methylation and expression of ESR1 in ER-positive cells. The ESR1 promoter was unmethylated in breast tumour biopsies with high levels of intragenic methylation, independent of ER status. However, ESR1 methylation in the strongly ER-positive EBM DNA samples were very similar to ER-positive tumour cell lines. CONCLUSION DAC treatment inhibited ESR1 transcription in cells with an unmethylated ESR1 promoter and reduced intragenic DNA methylation. Intragenic methylation levels correlated with ESR1 expression in homogenous cell populations (cell lines and exfoliated primary breast epithelial cells), but not in heterogeneous tumour biopsies, highlighting the significant differences between the in vivo tumour microenvironment and individual homogenous cell types. These findings emphasise the need for care when choosing material for epigenetic research and highlights the presence of aberrant intragenic methylation levels in tumour tissue.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- DNA Methylation
- Epigenesis, Genetic
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Mammary Glands, Human/metabolism
- Milk, Human/cytology
- Promoter Regions, Genetic
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Natalie S Shenker
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Kirsty J Flower
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Charlotte S Wilhelm-Benartzi
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Wei Dai
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
- Current Address: The University of Hong Kong, Pokfulam, Hong Kong, P. R. China.
| | - Emma Bell
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Edmund Gore
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Mona El Bahrawy
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Gillian Weaver
- Queen Charlotte and Chelsea Hospital Milk Bank, Du Cane Road, London, UK.
| | - Robert Brown
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - James M Flanagan
- Department of Surgery and Cancer, Epigenetics Unit, Division of Cancer, Faculty of Medicine, Imperial College London, 4th Floor IRDB, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
161
|
Goossens-Beumer IJ, Benard A, van Hoesel AQ, Zeestraten ECM, Putter H, Böhringer S, Liefers GJ, Morreau H, van de Velde CJH, Kuppen PJK. Age-dependent clinical prognostic value of histone modifications in colorectal cancer. Transl Res 2015; 165:578-88. [PMID: 25488396 DOI: 10.1016/j.trsl.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
Abstract
Aging is one of the prime risk factors for the development of cancer. Expression patterns of epigenetic regulators, including histone modification levels, are altered during aging of normal cells, a phenomenon referred to as epigenetic drift. Furthermore, it is known that epigenetic mechanisms are involved in the development of cancer. We hypothesized that expression of histone modifications, acetylation of histone 3 lysine 9 (H3K9Ac) and trimethylation of histone 3 lysine 27 (H3K27me3), with reported normal age-related expression patterns might show an age-dependent prognostic value in colorectal cancer (CRC). To quantify expression, we performed immunohistochemical staining of these histone modifications on a tissue microarray containing colorectal tissues of the 254 patients with TNM stage I-III CRC. Stratification of patients according to survival status revealed age-related tumor expression patterns of both H3K9Ac and H3K27me3. Decreased expression with advancing age was observed in patients who were alive after follow-up (no-event group), whereas increased expression with advancing age was observed in patients who presented with a recurrence or death in follow-up (event group). These opposite expression patterns translated into an age-dependent prognostic value in CRC for the individual histone modifications and their combination. The prognostic value reverses with advancing age, high nuclear expression associated with good clinical outcome in young adults, and, in contrast, with worse clinical outcome in elderly patients. In conclusion, for the first time, we demonstrated prognostic impact of epigenetic biomarkers that reverses with advancing age. This new insight supports the hypothesis that CRC biology is different in young vs elderly patients and emphasizes the importance of focusing on age-related effects in CRC.
Collapse
Affiliation(s)
| | - Anne Benard
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Q van Hoesel
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hein Putter
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit-Jan Liefers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
162
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
163
|
Wang XX, Liu BB, Wu X, Su D, Zhu Z, Fu L. Loss of Leucine Zipper Putative Tumor Suppressor 1 (LZTS1) Expression Contributes to Lymph Node Metastasis of Breast Invasive Micropapillary Carcinoma. Pathol Oncol Res 2015; 21:1021-6. [PMID: 25813822 PMCID: PMC4550643 DOI: 10.1007/s12253-015-9923-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 02/20/2015] [Indexed: 10/26/2022]
Abstract
Breast invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer with a high potential of lymph node metastasis, aggressive clinical behavior, and poor disease-free or overall survival. Expression of leucine zipper putative tumor suppressor 1 (LZTS1) was frequently lost or reduced in breast cancer tissues. This study investigated the expression of LZTS1 protein in breast IMPC tissues using immunohistochemistry. In addition, somatic LZTS1 mutations and promoter methylation were assessed to determine an association with clinicopathological data from IMPC patients. LZTS1 protein was downregulated in 62 (62 %) of 100 IMPC tissue samples and was significantly associated with lymph node metastasis (P < 0.05). A LZTS1 exon mutation occurred in one of the 53 IMPC cases analyzed, whereas a LZTS1 intron mutation occurred in 26 of 53 cases. Moreover, LZTS1 promoter was frequently methylated in IMPC samples and was associated with reduced LZTS1 expression levels in IMPC tissues. These data demonstrated that the loss of LZTS1 expression was associated with lymph node metastasis in patients with IMPC, and LZTS1 promoter methylation could be responsible for the loss of LZTS1 expression.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Pathology, Beijing Youan Hospital of Capital Medical University, Beijing, 100069, China
| | | | | | | | | | | |
Collapse
|
164
|
Tsimberidou AM, Said R, Culotta K, Wistuba I, Jelinek J, Fu S, Falchook G, Naing A, Piha-Paul S, Zinner R, Siddik ZH, He G, Hess K, Stewart DJ, Kurzrock R, Issa JPJ. Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy. Clin Epigenetics 2015; 7:29. [PMID: 25806091 PMCID: PMC4371799 DOI: 10.1186/s13148-015-0065-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
Background Demethylation process is necessary for the expression of various factors involved in chemotherapy cytotoxicity or resistance. Platinum-resistant cells may have reduced expression of the copper/platinum transporter CTR1. We hypothesized that azacitidine and oxaliplatin combination therapy may restore platinum sensitivity. We treated patients with cancer relapsed/refractory to any platinum compounds (3 + 3 study design) with azacitidine (20 to 50 mg/m2/day intravenously (IV) over 15 to 30 min, D1 to 5) and oxaliplatin (15 to 30 mg/m2/day, IV over 2 h, D2 to 5) (maximum, six cycles). Platinum content, LINE1 methylation (surrogate of global DNA methylation), and CTR1 expression changes (pre- vs. post-treatment) were assessed. Drug pharmacokinetics were analyzed. Results Thirty-seven patients were treated. No dose-limiting toxicity (DLT) was noted at the maximum dose. The most common adverse events were anemia and fatigue. Two (5.4%) patients had stable disease and completed six cycles of therapy. Oxaliplatin (D2) and azacitidine (D1 and 5) mean systemic exposure based on plasma AUCall showed dose-dependent interaction whereby increasing the dose of oxaliplatin reduced the mean azacitidine exposure and vice versa; however, no significant differences in other non-compartmental modeled parameters were observed. Blood samples showed universal reduction in global DNA methylation. In tumor samples, hypomethylation was only observed in four out of seven patients. No correlation between blood and tumor demethylation was seen. The mean cytoplasmic CTR1 score decreased. The pre-dose tumor oxaliplatin levels ranged from <0.25 to 5.8 μg/g tumor. The platinum concentration increased 3- to 18-fold. No correlation was found between CTR1 score and oxaliplatin level, which was found to have a trend toward correlation with progression-free survival. Conclusions Oxaliplatin and azacitidine combination therapy was safe. CTR1 expression was not correlated with methylation status or tissue platinum concentration. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Rabih Said
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA ; Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6410 Fannin Street, Suite 722, Houston, TX 77030 USA
| | - Kirk Culotta
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140 USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Gerald Falchook
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Ralph Zinner
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Zahid H Siddik
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Guangan He
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - David J Stewart
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8 L6 Canada
| | - Razelle Kurzrock
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030 USA ; Department of Internal Medicine, Moores Cancer Center, University of California, 3855 Health Sciences Dr, La Jolla, CA 92093 USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
165
|
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska-Baran A, Grymuła K, Ratajczak MZ. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 2015; 46:2241-50. [PMID: 25707431 DOI: 10.3892/ijo.2015.2906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Grymuła
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
166
|
Abstract
The prognosis for patients with acute myeloid leukemia (AML) is determined to a large degree by the biology of the leukemic cell. In recent years, the identification and characterization of genetic aberrations has vastly improved our understanding of the pathogenesis of AML. In contrast, however, there has been a lack of clinically meaningful therapeutic advances. The same chemotherapeutic strategies have been applied to AML for several decades now, and while these regimens are effective in inducing remission, most patients relapse within months after initial treatment. Hence, there is an urgent need for novel therapies. We review herein a number of lines of laboratory and clinical trial data supporting the clinical value of targeted treatment approaches that will likely result in improved outcomes for patients with AML.
Collapse
Affiliation(s)
- Heiko Konig
- Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
167
|
Sandhu R, Roll JD, Rivenbark AG, Coleman WB. Dysregulation of the epigenome in human breast cancer: contributions of gene-specific DNA hypermethylation to breast cancer pathobiology and targeting the breast cancer methylome for improved therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:282-92. [PMID: 25541331 DOI: 10.1016/j.ajpath.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancers (including basal-like and claudin-low molecular subtypes) represent 20% to 25% of all breast cancers, but disproportionately contribute to breast cancer-associated death. We have identified a novel fundamental biological property of triple-negative breast cancers: most triple-negative breast cancers express aberrant DNA hypermethylation due to overexpression of DNA methyltransferase 3b (and hyperactivity of the DNA methyltransferase enzymes). DNA methyltransferase 3b overexpression occurs secondary to loss of miRNA-mediated post-transcriptional regulation. The resulting hyperactivity of DNA methyltransferase 3b produces concurrent DNA methylation-dependent silencing of numerous critical gene targets (including tumor suppressors and pro-apoptotic genes) and resistance to cytotoxic chemotherapy. This observation presents new opportunities for development of innovative treatment strategies on the basis of the epigenome as a novel therapeutic target in triple-negative breast cancers. Epigenetic therapy represents a new principle in cancer treatment in which restoration of critical molecular pathways occurs secondary to reexpression of silenced genes that encode negative mediators of cancer cell growth.
Collapse
Affiliation(s)
- Rupninder Sandhu
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Devon Roll
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ashley G Rivenbark
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, Curriculum in Toxicology, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
168
|
Shin YH, Jin M, Hwang SM, Choi SK, Namkoong E, Kim M, Park MY, Choi SY, Lee JH, Park K. Epigenetic modulation of the muscarinic type 3 receptor in salivary epithelial cells. J Transl Med 2015; 95:237-45. [PMID: 25485536 DOI: 10.1038/labinvest.2014.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
Muscarinic receptors, particularly the type 3 subtype (M3R), have an important role in exocrine secretion. M3R normally function in HSG cells originated from human submandibular gland ducts, but not in A253 and SGT cells, derived from human submandibular carcinoma and salivary gland adenocarcinoma. However, the underlying mechanism of this suppression has remained elusive. In this study, we examined whether M3R function is suppressed by epigenetic modulation of the receptor. To this end, we investigated the mRNA transcript and protein levels of the M3R using reverse transcriptase-PCR, western blot, and confocal microscopy analyses. Global DNA methylation assays, methylation-specific PCR, and bisulfite sequencing were also performed to understand the epigenetic status of the M3R CpG island. We found that A253 cells expressed all subtypes of muscarinic receptors, except M3R, on the mRNA level. However, treatment of cells with 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA-demethylating agent, increased the expression levels of both M3R mRNA transcript and protein in proportion to the incubation period. 5-Aza-CdR completely restored the carbachol-induced calcium response, which was not observed in untreated A253 cells. In untreated A253 cells, all CG pairs from the 1st to 14th were methylated and 5-Aza-CdR treatment demethylated one of the methylated CG pairs. We also examined the methylation pattern of M3R CpG island in human cancer tissue. Interestingly, the result was very similar to those of A253 cells. All CG pairs in M3R CpG island were also methylated. Another salivary gland tumor cell line, SGT, also showed the similar methylation pattern, heavy methylation in M3R CpG island. It is concluded that CpG island in M3R is hypermethylated in cancer cell lines and human cancer. Our results further suggest that 5-Aza-CdR could potentially be used to restore the function of M3R, suppressed in some cancer cell types.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Meihong Jin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Sung-Min Hwang
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Seul-Ki Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Moon-Yong Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Se-Young Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Jong-Ho Lee
- Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| |
Collapse
|
169
|
Shen Q, Han L, Fan G, Abdel-Halim E, Jiang L, Zhu JJ. Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy. Biosens Bioelectron 2015; 64:449-55. [DOI: 10.1016/j.bios.2014.09.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 01/29/2023]
|
170
|
Shim J, Kim Y, Humphreys GI, Nardulli AM, Kosari F, Vasmatzis G, Taylor WR, Ahlquist DA, Myong S, Bashir R. Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS NANO 2015; 9:290-300. [PMID: 25569824 DOI: 10.1021/nn5045596] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine. Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially can be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis. We present a nanopore-based direct methylation detection assay that circumvents bisulfite conversion and polymerase chain reaction amplification. Building on our prior work, we used methyl-binding proteins (MBPs), which selectively label the methylated DNA. The nanopore-based assay selectively detects methylated DNA/MBP complexes through a 19 nm nanopore with significantly deeper and prolonged nanopore ionic current blocking, while unmethylated DNA molecules were not detectable due to their smaller diameter. Discrimination of hypermethylated and unmethylated DNA on 90, 60, and 30 bp DNA fragments was demonstrated using sub-10 nm nanopores. Hypermethylated DNA fragments fully bound with MBPs are differentiated from unmethylated DNA at 2.1- to 6.5-fold current blockades and 4.5- to 23.3-fold transport durations. Furthermore, these nanopore assays can detect the CpG dyad in DNA fragments and could someday profile the position of methylated CpG sites on DNA fragments.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Bioengineering, ‡Micro and Nanotechnology Laboratory, and §Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kim Y, Kim DH. CpG island hypermethylation as a biomarker for the early detection of lung cancer. Methods Mol Biol 2015; 1238:141-171. [PMID: 25421659 DOI: 10.1007/978-1-4939-1804-1_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the most frequent cause of cancer-related deaths and causes over one million deaths worldwide each year. Despite significant strides in the diagnosis and treatment of lung cancer, the prognosis is extremely poor, with the overall 5-year survival rates still remaining around 15 %. This is largely due to occult metastatic dissemination, which appears in approximately two-thirds of patients at the time of detection. Thus, the development of efficient diagnostic methods to enable the early detection of cancer for these patients is clearly imperative.One promising approach is the identification of lung cancer-specific biomarkers at an early stage. The de novo methylation of CpG islands within the promoters of tumor suppressor genes is one of the most frequently acquired epigenetic changes during the pathogenesis of lung cancer and usually associated with transcriptional downregulation of a gene. The analysis of DNA methylation patterns in sputum, bronchial fluid, plasma, or serum could become a powerful tool for the accurate and early diagnosis of lung cancer with unparalleled specificity and sensitivity.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University of School of Medicine, Suwon, 440-746, Korea
| | | |
Collapse
|
172
|
Mokarram P, Estiar MA, Ashktorab H. Methylation in Colorectal Cancer. EPIGENETICS TERRITORY AND CANCER 2015:373-455. [DOI: 10.1007/978-94-017-9639-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
173
|
Abstract
INTRODUCTION Approximately 23% of acute myeloid leukemia (AML) patients younger than 60 years of age carry a mutation in the transmembrane domain of the FMS-like tyrosine kinase-3 (FLT3) gene (FLT3/internal tandem duplications [ITD]). In normal karyotype AML, the presence of a FLT3/ITD mutation is associated with poor prognosis, as mirrored by a high risk of relapse even after allogeneic stem cell transplantation. The poor prognostic impact along with the observation that FLT3 is frequently overexpressed in the majority of AML cases has formed the platform for the development of FLT3-targeted strategies. To date, several FLT3 kinase inhibitors have been investigated in preclinical and clinical studies. However, as of yet, none of the studied FLT3 inhibitors has received FDA approval for routine clinical use in AML. This is in part due to the 'off target' effects observed with most inhibitors when administered at concentrations needed to achieve sustained levels of FLT3 inhibition, which are required to exhibit substantial cytotoxic effects against leukemic blasts. Furthermore, the development of resistance mutations has emerged as a clinical issue posing a threat to successful FLT3 inhibitor therapy. AREAS COVERED In this review, the authors provide a brief summary of FLT3 inhibitors investigated thus far, and discuss current treatment approaches and strategies how to best incorporate FLT3 tyrosine kinase inhibitors (TKIs) into therapy. EXPERT OPINION The combination of a FLT3 inhibitor with conventional chemotherapeutic regimens, epigenetic modifiers or inhibitors of FLT3 downstream and collateral effectors has emerged as a promising strategy to improve treatment outcome. The future of a tailored, molecular-based treatment approach for FLT3-mutated AML demands novel clinical trial concepts based on harmonized and aligned research goals between clinical and research centers and industry.
Collapse
Affiliation(s)
- Heiko Konig
- Johns Hopkins University, Medical Oncology , 1650 Orleans Street, Baltimore, MD , USA
| | | |
Collapse
|
174
|
Agarwal P, Sandey M, DeInnocentes P, Bird RC. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem 2014; 114:1355-63. [PMID: 23238983 DOI: 10.1002/jcb.24476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 02/03/2023]
Abstract
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16-defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16-transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re-feeding to induce cell cycle re-entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16-associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re-entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by (3)H-thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16-transfected CMT27A and CMT27H cells exited cell cycle post-serum-starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post-serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non-proliferative states.
Collapse
Affiliation(s)
- Payal Agarwal
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn, Albama 36849-5519, USA
| | | | | | | |
Collapse
|
175
|
Zheng X, Zhao Q, Wu HJ, Li W, Wang H, Meyer CA, Qin QA, Xu H, Zang C, Jiang P, Li F, Hou Y, He J, Wang J, Wang J, Zhang P, Zhang Y, Liu XS. MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes. Genome Biol 2014; 15:419. [PMID: 25103624 PMCID: PMC4165374 DOI: 10.1186/s13059-014-0419-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022] Open
Abstract
We propose a statistical algorithm MethylPurify that uses regions with bisulfite reads showing discordant methylation levels to infer tumor purity from tumor samples alone. MethylPurify can identify differentially methylated regions (DMRs) from individual tumor methylome samples, without genomic variation information or prior knowledge from other datasets. In simulations with mixed bisulfite reads from cancer and normal cell lines, MethylPurify correctly inferred tumor purity and identified over 96% of the DMRs. From patient data, MethylPurify gave satisfactory DMR calls from tumor methylome samples alone, and revealed potential missed DMRs by tumor to normal comparison due to tumor heterogeneity.
Collapse
|
176
|
Amiot A, Mansour H, Baumgaertner I, Delchier JC, Tournigand C, Furet JP, Carrau JP, Canoui-Poitrine F, Sobhani I. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS One 2014; 9:e99233. [PMID: 25025467 PMCID: PMC4099003 DOI: 10.1371/journal.pone.0099233] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/13/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The clinical benefit of guaiac fecal occult blood tests (FOBT) is now well established for colorectal cancer screening. Growing evidence has demonstrated that epigenetic modifications and fecal microbiota changes, also known as dysbiosis, are associated with CRC pathogenesis and might be used as surrogate markers of CRC. PATIENTS AND METHODS We performed a cross-sectional study that included all consecutive subjects that were referred (from 2003 to 2007) for screening colonoscopies. Prior to colonoscopy, effluents (fresh stools, sera-S and urine-U) were harvested and FOBTs performed. Methylation levels were measured in stools, S and U for 3 genes (Wif1, ALX-4, and Vimentin) selected from a panel of 63 genes; Kras mutations and seven dominant and subdominant bacterial populations in stools were quantified. Calibration was assessed with the Hosmer-Lemeshow chi-square, and discrimination was determined by calculating the C-statistic (Area Under Curve) and Net Reclassification Improvement index. RESULTS There were 247 individuals (mean age 60.8±12.4 years, 52% of males) in the study group, and 90 (36%) of these individuals were patients with advanced polyps or invasive adenocarcinomas. A multivariate model adjusted for age and FOBT led to a C-statistic of 0.83 [0.77-0.88]. After supplementary sequential (one-by-one) adjustment, Wif-1 methylation (S or U) and fecal microbiota dysbiosis led to increases of the C-statistic to 0.90 [0.84-0.94] (p = 0.02) and 0.81 [0.74-0.86] (p = 0.49), respectively. When adjusted jointly for FOBT and Wif-1 methylation or fecal microbiota dysbiosis, the increase of the C-statistic was even more significant (0.91 and 0.85, p<0.001 and p = 0.10, respectively). CONCLUSION The detection of methylated Wif-1 in either S or U has a higher performance accuracy compared to guaiac FOBT for advanced colorectal neoplasia screening. Conversely, fecal microbiota dysbiosis detection was not more accurate. Blood and urine testing could be used in those individuals reluctant to undergo stool testing.
Collapse
Affiliation(s)
- Aurelien Amiot
- Department of Gastroenterology, APHP, Henri-Mondor hospital, Créteil, France
- University of Paris Est Creteil, Créteil, France
- Laboratoire d'Investigation Clinique EA 4393 EC2M3, Créteil, France
| | - Hicham Mansour
- Laboratoire d'Investigation Clinique EA 4393 EC2M3, Créteil, France
- Bioscience Core Laboratories, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Jean-Charles Delchier
- Department of Gastroenterology, APHP, Henri-Mondor hospital, Créteil, France
- University of Paris Est Creteil, Créteil, France
| | - Christophe Tournigand
- University of Paris Est Creteil, Créteil, France
- Department of Oncology, APHP, Henri-Mondor Hospital, Créteil, France
| | - Jean-Pierre Furet
- Commensals and Probiotics-Host Interactions Laboratory, INRA, MICALIS Institute, Jouy en Josas, France
| | | | - Florence Canoui-Poitrine
- University of Paris Est Creteil, Créteil, France
- Laboratoire d'Investigation Clinique EA 4393 EC2M3, Créteil, France
- Department of Public Health, APHP, Henri-Mondor Hospital, Créteil, France
| | - Iradj Sobhani
- Department of Gastroenterology, APHP, Henri-Mondor hospital, Créteil, France
- University of Paris Est Creteil, Créteil, France
- Laboratoire d'Investigation Clinique EA 4393 EC2M3, Créteil, France
- * E-mail:
| | | |
Collapse
|
177
|
PTEN methylation involved in benzene-induced hematotoxicity. Exp Mol Pathol 2014; 96:300-6. [DOI: 10.1016/j.yexmp.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022]
|
178
|
Jin C, Lu Y, Jelinek J, Liang S, Estecio MRH, Barton MC, Issa JPJ. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 2014; 42:6956-71. [PMID: 24875481 PMCID: PMC4066785 DOI: 10.1093/nar/gku372] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.
Collapse
Affiliation(s)
- Chunlei Jin
- The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Yue Lu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Shoudan Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos R H Estecio
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Department of Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Craig Barton
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jean-Pierre J Issa
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
179
|
Subramaniam D, Thombre R, Dhar A, Anant S. DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 2014; 4:80. [PMID: 24822169 PMCID: PMC4013461 DOI: 10.3389/fonc.2014.00080] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of death in US. Despite the emergence of new, targeted agents, and the use of various therapeutic combinations, none of the available treatment options are curative in patients with advanced cancer. Epigenetic alterations are increasingly recognized as valuable targets for the development of cancer therapies. DNA methylation at the 5-position of cytosine, catalyzed by DNA methyltransferases (DNMTs), is the predominant epigenetic modification in mammals. DNMT1, the major enzyme responsible for maintenance of the DNA methylation pattern is located at the replication fork and methylates newly biosynthesized DNA. DNMT2 or TRDMT1, the smallest mammalian DNMT is believed to participate in the recognition of DNA damage, DNA recombination, and mutation repair. It is composed solely of the C-terminal domain, and does not possess the regulatory N-terminal region. The levels of DNMTs, especially those of DNMT3B, DNMT3A, and DNMT3L, are often increased in various cancer tissues and cell lines, which may partially account for the hypermethylation of promoter CpG-rich regions of tumor suppressor genes in a variety of malignancies. Moreover, it has been shown to function in self-renewal and maintenance of colon cancer stem cells and need to be studied in several cancers. Inhibition of DNMTs has demonstrated reduction in tumor formation in part through the increased expression of tumor suppressor genes. Hence, DNMTs can potentially be used as anti-cancer targets. Dietary phytochemicals also inhibit DNMTs and cancer stem cells; this represents a promising approach for the prevention and treatment of many cancers.
Collapse
Affiliation(s)
- Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA
| | - Ravi Thombre
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Animesh Dhar
- The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center , Kansas City, KS , USA ; The University of Kansas Cancer Center , Kansas City, KS , USA ; Department of Cancer Biology, The University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
180
|
Du J, Patel DJ. Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:719-27. [PMID: 24747177 DOI: 10.1016/j.bbagrm.2014.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 12/11/2022]
Abstract
Epigenetic mechanisms control gene regulation by writing, reading and erasing specific epigenetic marks. Within the context of multi-disciplinary approaches applied to investigate epigenetic regulation in diverse systems, structural biology techniques have provided insights at the molecular level of key interactions between upstream regulators and downstream effectors. The early structural efforts focused on studies at the single domain-single mark level have been rapidly extended to research at the multiple domain-multiple mark level, thereby providing additional insights into connections within the complicated epigenetic regulatory network. This review focuses on recent results from structural studies on combinatorial readout and crosstalk among epigenetic marks. It starts with an overview of multiple readout of histone marks associated with both single and dual histone tails, as well as the potential crosstalk between them. Next, this review further expands on the simultaneous readout by epigenetic modules of histone and DNA marks, thereby establishing connections between histone lysine methylation and DNA methylation at the nucleosomal level. Finally, the review discusses the role of pre-existing epigenetic marks in directing the writing/erasing of certain epigenetic marks. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
181
|
Li X, Song Q, Chen Y, Chang C, Wu D, Wu L, Su J, Zhang X, Zhou L, Song L, Zhang Z, Xu F, Hou M. Decitabine of reduced dosage in Chinese patients with myelodysplastic syndrome: a retrospective analysis. PLoS One 2014; 9:e95473. [PMID: 24748149 PMCID: PMC3991661 DOI: 10.1371/journal.pone.0095473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/27/2014] [Indexed: 11/27/2022] Open
Abstract
Decitabine has been approved for the treatment of all subtypes of myelodysplastic syndrome (MDS). However, the optimal regimen for decitabine treatment is not well established. In this study, an observational, retrospective and multi-center analysis was performed to explore the decitabine schedule for the treatment of MDS. A total of 79 patients received reduced dosage decitabine treatment (15 mg/M2/day intravenously for five consecutive days every four weeks). Fifty-three out of the 79 patients were defined as intermediate-2/high risk by international prognostic scoring system (IPSS) risk category. 67.1% of MDS patients achieved treatment response including complete response (CR) (n = 23), Partial response (n = 1), marrow CR (mCR) with hematological improvement (HI) (n = 11), mCR without HI (n = 11) and HI alone (n = 7) with a median of 4 courses (range 1–11). The median overall survival (OS) was 18.0 months. The median OS was 22.0, 17.0 and 12.0 months in the patients with CR, those with other response, and those without response, respectively. In addition, this regimen contributed to zero therapy-related death and punctual course delivery, although III or IV grade of cytopenia was frequently observed. In conclusion, the 15 mg/M2/d×5 day decitabine regimen was effective and safe for Chinese MDS patients with IPSS score of 0.5 or higher.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Qiang Song
- Department of Hematology, Qilu Hospital affiliated with Shandong University, Jinan, China
| | - Yu Chen
- Department of Hematology, Ruijin Hospital affiliated with Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunkang Chang
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Dong Wu
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Lingyun Wu
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Jiying Su
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Xi Zhang
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Liyu Zhou
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Luxi Song
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Feng Xu
- Department of Hematology, the Sixth People’s Hospital affiliated with Shanghai Jiaotong University, Shanghai, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital affiliated with Shandong University, Jinan, China
| |
Collapse
|
182
|
Xiang J, Luo F, Chen Y, Zhu F, Wang J. si-DNMT1 restore tumor suppressor genes expression through the reversal of DNA hypermethylation in cholangiocarcinoma. Clin Res Hepatol Gastroenterol 2014; 38:181-9. [PMID: 24361215 DOI: 10.1016/j.clinre.2013.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/10/2013] [Accepted: 11/15/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The aim of our study was to evaluate the effect of shorthairpin RNA plasmid vector knockdown of human DNA methyltransferase 1 on proliferation and the methylation status and expression of tumor suppressor genes in hilar cholangiocarcinoma. METHODS The hilar cholangiocarcinoma cell line QBC939 was utilized for this study. QBC939 cells were transfected with a shorthairpin RNA plasmid vector targeting human DNA methyltransferase 1. Control and human DNA methyltransferase 1 shorthairpin RNA plasmid vector-transfected cells were collected at different time points, and the expression levels of human DNA methyltransferase 1 and tumor suppressor genes (cyclin-dependent kinase inhibitor 2B, cyclin-dependent kinase inhibitor 2A, RAS association domain family 1, and cadherin-1) were detected by reverse transcription-polymerase chain reaction. Furthermore, interfering efficiency was confirmed by Western blotting. The methylation status of tumor suppressor genes was detected using methylation-specific polymerase chain reaction. Furthermore, the effect of human DNA methyltransferase 1 knockdown on proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS Targeted gene knockout of human DNA methyltransferase 1 restored the expression levels of tumor suppressor genes cyclin-dependent kinase inhibitor 2B, cyclin-dependent kinase inhibitor 2A, RAS association domain family 1, and cadherin-1, indicating that the silencing of these tumor suppressor genes is associated with promoter hypermethylation. In addition, knockdown of human DNA methyltransferase 1 expression significantly inhibited the proliferation of QBC939 cells. CONCLUSIONS Targeted knockdown of human DNA methyltransferase 1 expression restores the expression levels of tumor suppressor genes, thus inhibiting the proliferation of QBC939 cells. These results may provide insight for the development of novel therapies for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jifeng Xiang
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Fang Luo
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Chen
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Fangyu Zhu
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jiming Wang
- Department of Hepatobiliary Sugery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
183
|
Novel multiplex MethyLight protocol for detection of DNA methylation in patient tissues and bodily fluids. Sci Rep 2014; 4:4432. [PMID: 24651255 PMCID: PMC3961737 DOI: 10.1038/srep04432] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
Aberrant DNA methylation is a hallmark of cancer and is an important potential biomarker. Particularly, combined analysis of a panel of hypermethylated genes shows the most promising clinical performance. Herein, we developed, optimized and standardized a multiplex MethyLight assay to simultaneously detect hypermethylation of APC, HOXD3 and TGFB2 in DNA extracted from prostate cancer (PCa) cell lines, archival tissue specimens, and urine samples. We established that the assay is capable of discriminating between fully methylated and unmethylated alleles with 100% specificity and demonstrated the assay as highly accurate and reproducible as the singleplex approach. For proof of principle, we analyzed the methylation status of these genes in tissue and urine samples of PCa patients as well as PCa-free controls. These data show that the multiplex MethyLight assay offers a significant advantage when working with limited quantities of DNA and has potential applications in research and clinical settings.
Collapse
|
184
|
Kim Y, Kim IH, Kim HJ, Park S, Lee KH, Kim SJ, Lee JH, Kim DY, Yoon SS, Kim YK, Jang JH, Park SY, Ahn JS, Cheong CW, Lee JH, Cheong JW. Multicenter study evaluating the impact of hypomethylating agents as bridging therapy to hematopoietic stem cell transplantation in myelodysplastic syndromes. Int J Hematol 2014; 99:635-43. [DOI: 10.1007/s12185-014-1549-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 11/30/2022]
|
185
|
Molinari C, Casadio V, Foca F, Zingaretti C, Giannini M, Avanzolini A, Lucci E, Saragoni L, Passardi A, Amadori D, Calistri D, Zoli W. Gene methylation in rectal cancer: predictive marker of response to chemoradiotherapy? J Cell Physiol 2014; 228:2343-9. [PMID: 23702823 DOI: 10.1002/jcp.24405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/11/2023]
Abstract
Although numerous studies have focused on the link between CpG island methylator phenotypes and the development of colorectal cancer, few studies have dealt specifically with methylation profiling in rectal cancer and its role in predicting response to neoadjuvant chemoradiotherapy (NCRT). We characterized methylation profiles in normal and neoplastic tissue samples from patients with rectal cancer and assessed the role of this molecular profile in predicting chemoradioactivity. We evaluated 74 pretreatment tumor samples and 16 apparently normal tissue biopsies from rectal cancer patients submitted to NCRT. The methylation profile of 24 different tumor suppressor genes was analyzed from FFPE samples by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). Methylation status was studied in relation to tissue type and clinical pathological parameters, in particular, pathological response evaluated by tumor regression grade (TRG). ESR1, CDH13, RARB, IGSF4, and APC genes showed high methylation levels in tumor samples (range 18.92-49.77) with respect to normal tissue. Methylation levels of the remaining genes were low and similar in both normal (range 1.91-14.56) and tumor tissue (range 1.84-11). Analysis of the association between methylation and response to therapy in tumor samples showed that only TIMP3 methylation status differed significantly within the four TRG classes (ANOVA, P < 0.05). Results from the present explorative study suggest that quantitative epigenetic classification of rectal cancer by MS-MLPA clearly distinguishes tumor tissue from apparently normal mucosa. Conversely, with the exception of TIMP3 gene, the methylation of selected genes does not seem to correlate with response to NCRT.
Collapse
Affiliation(s)
- Chiara Molinari
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Liao XH, Li YQ, Wang N, Zheng L, Xing WJ, Zhao DW, Yan TB, Wang Y, Liu LY, Sun XG, Hu P, Zhou H, Zhang TC. Re-expression and epigenetic modification of maspin induced apoptosis in MCF-7 cells mediated by myocardin. Cell Signal 2014; 26:1335-46. [PMID: 24607789 DOI: 10.1016/j.cellsig.2014.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/02/2014] [Indexed: 02/06/2023]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. It is well known that oncogene activation and anti-oncogene inactivation affect the development and progression of breast cancer, but the role of oncogene activation and anti-oncogene inactivation in breast cancer is still not fully understood. We now report that maspin acts as a tumor suppressor gene to induce MCF-7 cell apoptosis. In addition, maspin promoter hypermethylation and histone hypoacetylation lead to silencing of maspin gene expression in MCF-7 cells. Moreover, DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-aza-dc) and/or the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) strongly up-regulated the expression of maspin in MCF-7 cells. Notably, myocardin can promote the re-expression of maspin in MCF-7 cells. Luciferase assay shows that myocardin activates the transcription of maspin promoter by CArG box. More importantly, 5-aza-dc/TSA and myocardin synergetically enhance re-expression of maspin and augment maspin-mediated apoptosis in MCF-7 cells. Thus, these data reveal the new insight that myocardin meditates apoptosis in breast cancer through affecting maspin re-expression and epigenetic modification to regulate the development of breast cancer, thereby raising the possibility of its use in breast cancer therapy.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China; Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yan-Qi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| | - Li Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Wen-Jing Xing
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Dong-Wei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Ting-Bao Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Yue Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Long-Yue Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Xue-Guang Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China; Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China.
| |
Collapse
|
187
|
Sharma P, Garg G, Kumar A, Mohammad F, Kumar SR, Tanwar VS, Sati S, Sharma A, Karthikeyan G, Brahmachari V, Sengupta S. Genome wide DNA methylation profiling for epigenetic alteration in coronary artery disease patients. Gene 2014; 541:31-40. [PMID: 24582973 DOI: 10.1016/j.gene.2014.02.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/29/2013] [Accepted: 02/17/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND The alteration in the epigenome forms an interface between the genotype and the environment. Epigenetic alteration is expected to make a significant contribution to the development of cardiovascular disease where environmental interactions play a key role in disease progression. We had previously shown that global DNA hypermethylation per se is associated with coronary artery disease (CAD) and is further accentuated by high levels of homocysteine, a thiol amino acid which is an independent risk factor for cardiovascular disease and is also a key modulator of macromolecular methylation. RESULTS We have identified 72 differentially methylated regions (DMRs) that were hypermethylated in CAD patients in the background of varying homocysteine levels. Following deep bisulfite sequencing of a few of the selected DMRs, we found significantly higher methylation in CAD cases. We get six CpG sites in three DMRs that included the intronic region of C1QL4 gene and upstream region of CCDC47 and TGFBR3 genes. CONCLUSION To the best of our knowledge, this is the first study to identify hypermethylated regions across the genome in patients with coronary artery disease. Further validation in different populations is necessary for this information to be used for disease risk assessment and management.
Collapse
Affiliation(s)
- Priyanka Sharma
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Gaurav Garg
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Arun Kumar
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Farhan Mohammad
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sudha Ramesh Kumar
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vinay Singh Tanwar
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Satish Sati
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Abhay Sharma
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Ganesan Karthikeyan
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Shantanu Sengupta
- CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India.
| |
Collapse
|
188
|
|
189
|
Ellis RJ, Wang Y, Stevenson HS, Boufraqech M, Patel D, Nilubol N, Davis S, Edelman DC, Merino MJ, He M, Zhang L, Meltzer PS, Kebebew E. Genome-wide methylation patterns in papillary thyroid cancer are distinct based on histological subtype and tumor genotype. J Clin Endocrinol Metab 2014; 99:E329-37. [PMID: 24423287 PMCID: PMC3913809 DOI: 10.1210/jc.2013-2749] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
CONTEXT Aberrant DNA methylation is known to be a major factor in oncogenesis and cancer progression, but effects of methylation in papillary thyroid cancer (PTC) are not well defined. OBJECTIVE The objective of the study was to identify altered methylation patterns, which may be associated with PTC disease behavior. DESIGN This study was a genome-wide methylation analysis of PTC. SETTING The study was conducted at the National Institutes of Health Clinical Center. PATIENTS PTC tissue from 51 patients were analyzed and compared with normal thyroid tissue from seven patients. INTERVENTIONS CpG methylation status was assessed using advanced genome-wide methylation bead chips. OUTCOME MEASURES Altered methylation patterns in PTC were analyzed by stage, recurrence, histological subtype of tumor, and tumor genotype. RESULTS PTC is globally hypomethylated compared with normal thyroid with 2837 differentially methylated CpG sites. The follicular variant of PTC demonstrated less differential methylation with only 569 differentially methylated CpG sites. Tumors with mutations in BRAF, RET/PTC, and RAS demonstrated a 3.6-fold increase in the number of differentially methylated sites compared with wild-type tumors. The differentially methylated genes were associated with oncological pathways including cellular movement, growth, and proliferation. CONCLUSION PTC is epigenetically distinct from the follicular variant of PTC and by gene mutation status (BRAF, RET/PTC, and RAS).
Collapse
Affiliation(s)
- Ryan J Ellis
- Endocrine Oncology Branch (R.J.E., M.B., D.P., N.N., M.H., L.Z., E.K.), Genetics Branch (Y.W., H.S.S., S.D., D.C.E., P.S.M.), and Laboratory of Pathology (M.J.M.), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Perelman School of Medicine (R.J.E.), University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
SANDHU RUPNINDER, RIVENBARK ASHLEYG, MACKLER RANDIM, LIVASY CHADA, COLEMAN WILLIAMB. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer. Int J Oncol 2014; 44:563-72. [PMID: 24297604 PMCID: PMC3898722 DOI: 10.3892/ijo.2013.2197] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/21/2013] [Indexed: 12/21/2022] Open
Abstract
Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal-like breast cancers with reduced expression of multiple regulatory miRs express aberrant DNA hypermethylation. Together, these findings strongly suggest that the molecular mechanism governing the DNMT3b-mediated aberrant DNA hypermethylation in primary breast cancer involves the loss of post-transcriptional regulation of DNMT3b by regulatory miRs.
Collapse
Affiliation(s)
- RUPNINDER SANDHU
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
| | - ASHLEY G. RIVENBARK
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
| | - RANDI M. MACKLER
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
| | - CHAD A. LIVASY
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
| | - WILLIAM B. COLEMAN
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599,
USA
| |
Collapse
|
191
|
Okamoto Y, Shinjo K, Shimizu Y, Sano T, Yamao K, Gao W, Fujii M, Osada H, Sekido Y, Murakami S, Tanaka Y, Joh T, Sato S, Takahashi S, Wakita T, Zhu J, Issa JPJ, Kondo Y. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology 2014; 146:562-72. [PMID: 24184133 DOI: 10.1053/j.gastro.2013.10.056] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. METHODS Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. RESULTS No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). CONCLUSIONS In chimeric mice with humanized livers, infection with HBV and HCV appears to activate a natural kill cell-dependent innate immune response. This contributes to the induction and accumulation of aberrant DNA methylation in human hepatocytes.
Collapse
Affiliation(s)
- Yasuyuki Okamoto
- Division of Epigenomics, Aichi Cancer Center, Nagoya, Japan; Division of Molecular Oncology, Aichi Cancer Center, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Division of Epigenomics, Aichi Cancer Center, Nagoya, Japan; Division of Oncological Pathology, Aichi Cancer Center, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Tsuyoshi Sano
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center, Nagoya, Japan
| | - Wentao Gao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Makiko Fujii
- Division of Molecular Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Hirotaka Osada
- Division of Molecular Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Sato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jingde Zhu
- Cancer Epigenetics Program, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Yutaka Kondo
- Division of Epigenomics, Aichi Cancer Center, Nagoya, Japan; Division of Molecular Oncology, Aichi Cancer Center, Nagoya, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
192
|
Zhao R, Meng F, Wang N, Ma W, Yan Q. Silencing of CHD5 gene by promoter methylation in leukemia. PLoS One 2014; 9:e85172. [PMID: 24454811 PMCID: PMC3890315 DOI: 10.1371/journal.pone.0085172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/23/2013] [Indexed: 01/25/2023] Open
Abstract
Chromodomain helicase DNA binding protein 5 (CHD5) was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2) as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter.
Collapse
Affiliation(s)
- Rui Zhao
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Nisha Wang
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Wenli Ma
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
| | - Qitao Yan
- Institute of Molecular Biology, Southern Medical University, Guangzhou, PR China,
- * E-mail:
| |
Collapse
|
193
|
Marrone A, Dokal I. Dyskeratosis congenita: a disorder of telomerase deficiency and its relationship to other diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.3.463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
194
|
Sauter ER. Analysis of nipple aspirate fluid for diagnosis of breast cancer: an alternative to invasive biopsy. Expert Rev Mol Diagn 2014; 5:873-81. [PMID: 16255629 DOI: 10.1586/14737159.5.6.873] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over 40,000 women in the USA will die this year of breast cancer. Current generally accepted techniques to detect breast cancer are limited to breast examination and mammography. Abnormalities found by these techniques require an invasive needle or surgical biopsy to determine if cancer is present. The author's ultimate goal is to determine if a woman has breast cancer without the need for invasive biopsies, and do this before the abnormality is detectable by standard screening techniques. Herein, the technology is reviewed as it was, as it is today, and its future potential is discussed.
Collapse
Affiliation(s)
- Edward R Sauter
- University of Missouri, One Hospital Drive, Columbia, MO 65212, USA.
| |
Collapse
|
195
|
Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Issa JP, Wistuba II, Kurzrock R. Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors. Clin Epigenetics 2014; 6:2. [PMID: 24401732 PMCID: PMC3895853 DOI: 10.1186/1868-7083-6-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/13/2013] [Indexed: 12/30/2022] Open
Abstract
Background In 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed. Results Pre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = −0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≤150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = −0.45, P = 0.19). Conclusions In conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation.
Collapse
Affiliation(s)
- David J Stewart
- Head, Division of Medical Oncology, The Ottawa Hospital/University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8 L6, Canada
| | - Maria I Nunez
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA 19410, USA
| | - David Hong
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sanjay Gupta
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research, Temple University, 3307 North Broad Street, Philadelphia, PA 19410, USA
| | - Ignacio I Wistuba
- University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Razelle Kurzrock
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
196
|
Bruse S, Petersen H, Weissfeld J, Picchi M, Willink R, Do K, Siegfried J, Belinsky SA, Tesfaigzi Y. Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion. Respir Res 2014; 15:2. [PMID: 24405663 PMCID: PMC3893562 DOI: 10.1186/1465-9921-15-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
Background Chronic mucous hypersecretion (CMH) contributes to COPD exacerbations and increased risk for lung cancer. Because methylation of gene promoters in sputum has been shown to be associated with lung cancer risk, we tested whether such methylation was more common in persons with CMH. Methods Eleven genes commonly silenced by promoter methylation in lung cancer and associated with cancer risk were selected. Methylation specific PCR (MSP) was used to profile the sputum of 900 individuals in the Lovelace Smokers Cohort (LSC). Replication was performed in 490 individuals from the Pittsburgh Lung Screening Study (PLuSS). Results CMH was significantly associated with an overall increased number of methylated genes, with SULF2 methylation demonstrating the most consistent association. The association between SULF2 methylation and CMH was significantly increased in males but not in females both in the LSC and PLuSS (OR = 2.72, 95% CI = 1.51-4.91, p = 0.001 and OR = 2.97, 95% CI = 1.48-5.95, p = 0.002, respectively). Further, the association between methylation and CMH was more pronounced among 139 male former smokers with persistent CMH compared to current smokers (SULF2; OR = 3.65, 95% CI = 1.59-8.37, p = 0.002). Conclusions These findings demonstrate that especially male former smokers with persistent CMH have markedly increased promoter methylation of lung cancer risk genes and potentially could be at increased risk for lung cancer.
Collapse
|
197
|
Abstract
Besides 5-azacytidine (azacitidine, Vidaza®), 5-aza-2'-deoxycytidine (decitabine, Dacogen®) is the most widely used inhibitor of DNA methylation, which triggers demethylation leading to consecutive reactivation of epigenetically silenced tumor suppressor genes in vitro and in vivo. Although antileukemic activity of decitabine is known for almost 40 years, its therapeutic potential in hematologic malignancies has only recently led to its approval in higher-risk MDS patients and as first-line treatment in AML patients>65 years who are not candidates for intensive chemotherapy. Several clinical trials showed promising activity of low-dose decitabine also in CML and hemoglobinopathies, whereas its efficacy in solid tumors is very limited. Clinical responses appear to be exerted both by epigenetic alterations and by induction of cell-cycle arrest and/or apoptosis. Recent and ongoing clinical trials investigate new dosing schedules, routes of administration, and combination of decitabine with other agents, including histone deacetylase inhibitors.
Collapse
|
198
|
Lee CJ, Evans J, Kim K, Chae H, Kim S. Determining the effect of DNA methylation on gene expression in cancer cells. Methods Mol Biol 2014; 1101:161-78. [PMID: 24233782 DOI: 10.1007/978-1-62703-721-1_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation, a DNA modification by adding methyl group to cytosine, has an important role in the regulation of gene expression. DNA methylation is known to be associated with gene transcription by interfering with DNA-binding proteins, such as transcription factors. DNA methylation is closely related to tumorigenesis, and the methylation state of some genes can be used as a biomarker for tumorigenesis. Aberrant DNA methylation of genomic regions, including CpG islands, CpG shores, and first exons, is related to the altered gene expression pattern characteristics of all human cancers. Subheading 1 surveys recent developments on DNA methylation and gene expressions in cancer. Then we provide analysis of DNA methylation and gene expression in 30 breast cancer cell lines representing different tumor phenotypes. This study conducted an integrated analysis to identify the relationship between DNA methylation in various genomic regions and expression levels of downstream genes, using MethylCapseq data (affinity purification followed by next-generation sequencing of eluted DNA) and Affymetrix gene expression microarray data. The goal of this study was to assess genome-wide methylation profiles associated with different molecular subtypes of human breast cancer (luminal, basal A, and basal B) and to comprehensively investigate the effect of DNA methylation on gene expression in breast cancer phenotypes. This showed that methylation of genomic regions near transcription start sites, CpG island, CpG shore, and first exon was strongly associated with gene repression, and the effects of the regions on gene expression patterns were different for different molecular subtypes of breast cancer. The results further indicated that aberrant methylation of specific genomic regions was significantly associated with different breast cancer subtypes.
Collapse
|
199
|
Abstract
Although epigenetic aberrations frequently occur in aging and cancer and form a core component of these conditions, perhaps the most useful aspect of epigenetic processes is that they are readily reversible. Unlike genetic effects that also play a role in cancer and aging, epigenetic aberrations can be relatively easily corrected. One of the most widespread approaches to the epigenetic alterations in cancer and aging is dietary control. This can be achieved not only through the quality of the diet, but also through the quantity of calories that are consumed. Many phytochemicals such as sulforaphane from cruciferous vegetables and green tea have anticancer epigenetic effects and are also efficacious for preventing or treating the epigenetic aberrations of other age-associated diseases besides cancer. Likewise, the quantity of calories that are consumed has proven to be advantageous in preventing cancer and extending the lifespan through control of epigenetic mediators. The purpose of this chapter is to review some of the most recent advances in the epigenetics of cancer and aging and to provide insights into advances being made with respect to dietary intervention into these biological processes that have vast health implications and high translational potential.
Collapse
Affiliation(s)
- Trygve O Tollefsbol
- Department of Biology, Center for Aging, Comprehensive Cancer Center, Nutrition Obesity Research Center, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, USA,
| |
Collapse
|
200
|
Choi WS, Seo HS, Song KY, Yoon JH, Kim O, Nam SW, Lee JY, Park WS. Gastrokine 1 expression in the human gastric mucosa is closely associated with the degree of gastritis and DNA methylation. J Gastric Cancer 2013; 13:232-41. [PMID: 24511419 PMCID: PMC3915185 DOI: 10.5230/jgc.2013.13.4.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose Gastrokine 1 plays an important role in gastric mucosal defense. Additionally, the Gastrokine 1-miR-185-DNMT1 axis has been shown to suppress gastric carcinogenesis through regulation of epigenetic alteration. Here, we investigated the effects of Gastrokine 1 on DNA methylation and gastritis. Materials and Methods Expression of Gastrokine 1, DNMT1, EZH2, and c-Myc proteins, and the presence of Helicobacter pylori CagA protein were determined in 55 non-neoplastic gastric mucosal tissue samples by western blot analysis. The CpG island methylation phenotype was also examined using six markers (p16, hMLH1, CDH1, MINT1, MINT2 and MINT31) by methylation-specific polymerase chain reaction. Histological gastritis was assessed according to the updated Sydney classification system. Results Reduced Gastrokine 1 expression was found in 20 of the 55 (36.4%) gastric mucosal tissue samples and was closely associated with miR-185 expression. The Gastrokine 1 expression level was inversely correlated with that of DNMT1, EZH2, and c-Myc, and closely associated with the degree of gastritis. The H. pylori CagA protein was detected in 26 of the 55 (47.3%) gastric mucosal tissues and was positively associated with the expression of DNMT1, EZH2, and c-Myc. In addition, 30 (54.5%) and 23 (41.9%) of the gastric mucosal tissues could be classified as CpG island methylation phenotype-low and CpG island methylation phenotype-high, respectively. Reduced expression of Gastrokine 1 and miR-185, and increased expression of DNMT1, EZH2, and c-Myc were detected in the CpG island methylation phenotype-high gastric mucosa. Conclusions Gastrokine 1 has a crucial role in gastric inflammation and DNA methylation in gastric mucosa.
Collapse
Affiliation(s)
- Won Suk Choi
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Ho Suk Seo
- Department of General Surgery, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Kyo Young Song
- Department of General Surgery, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Jung Hwan Yoon
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Olga Kim
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Suk Woo Nam
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Jung Yong Lee
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| | - Won Sang Park
- Department of Pathology, The Catholic University of Korea, School of Medicine, Seoul, Korea
| |
Collapse
|