151
|
Abstract
Dengue is an expanding public health problem in the tropics and subtropical areas. Millions of people, most from resource-constrained countries, seek treatment every year for dengue-related disease. Despite more than 70 years of effort, a safe and efficacious vaccine remains unavailable. Antidengue antiviral drugs also do not exist despite attempts to develop or repurpose drug compounds. Gaps in the knowledge of dengue immunology, absence of a validated animal or human model of disease, and suboptimal assay platforms to measure immune responses following infection or experimental vaccination are obstacles to drug and vaccine development efforts. The limited success of one vaccine candidate in a recent clinical endpoint efficacy trial challenges commonly held beliefs regarding potential correlates of protection. If a dengue vaccine is to become a reality in the near term, vaccine developers should expand development pathway explorations beyond those typically required to demonstrate safety and efficacy.
Collapse
|
152
|
Dupont-Rouzeyrol M, Aubry M, O'Connor O, Roche C, Gourinat AC, Guigon A, Pyke A, Grangeon JP, Nilles E, Chanteau S, Aaskov J, Cao-Lormeau VM. Epidemiological and molecular features of dengue virus type-1 in New Caledonia, South Pacific, 2001-2013. Virol J 2014; 11:61. [PMID: 24684835 PMCID: PMC3997821 DOI: 10.1186/1743-422x-11-61] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/27/2014] [Indexed: 11/17/2022] Open
Abstract
Background The epidemiology of dengue in the South Pacific has been characterized by transmission of a single dominant serotype for 3–5 years, with subsequent replacement by another serotype. From 2001 to 2008 only DENV-1 was reported in the Pacific. In 2008, DENV-4 emerged and quickly displaced DENV-1 in the Pacific, except in New Caledonia (NC) where DENV-1 and DENV-4 co-circulated in 2008–2009. During 2012–2013, another DENV-1 outbreak occurred in NC, the third DENV-1 outbreak in a decade. Given that dengue is a serotype-specific immunizing infection, the recurrent outbreaks of a single serotype within a 10-year period was unexpected. Findings This study aimed to inform this phenomenon by examining the phylogenetic characteristics of the DENV-1 viruses in NC and other Pacific islands between 2001 and 2013. As a result, we have demonstrated that NC experienced introductions of viruses from both the Pacific (genotype IV) and South-east Asia (genotype I). Moreover, whereas genotype IV and I were co-circulating at the beginning of 2012, we observed that from the second half of 2012, i.e. during the major DENV-1 outbreak, all analyzed viruses were genotype I suggesting that a genotype switch occurred. Conclusions Repeated outbreaks of the same dengue serotype, as observed in NC, is uncommon in the Pacific islands. Why the earlier DENV-1 outbreaks did not induce sufficient herd immunity is unclear, and likely multifactorial, but the robust vector control program may have played a role by limiting transmission and thus maintaining a large susceptible pool in the population.
Collapse
Affiliation(s)
- Myrielle Dupont-Rouzeyrol
- URE- Dengue et autres Arboviroses, Institut Pasteur de Nouvelle-Calédonie, Réseau International des Instituts Pasteur, 98800 Nouméa, Nouvelle-Calédonie.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Zhang H, Zhang Y, Hamoudi R, Yan G, Chen X, Zhou Y. Spatiotemporal characterizations of dengue virus in mainland China: insights into the whole genome from 1978 to 2011. PLoS One 2014; 9:e87630. [PMID: 24551062 PMCID: PMC3925084 DOI: 10.1371/journal.pone.0087630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/25/2013] [Indexed: 12/19/2022] Open
Abstract
Temporal-Spatial of dengue virus (DENV) analyses have been performed in previous epidemiological studies in mainland China, but few studies have examined the whole genome of the DENV. Herein, 40 whole genome sequences of DENVs isolated from mainland China were downloaded from GenBank. Phylogenetic analyses and evolutionary distances of the dengue serotypes 1 and 2 were calculated using 14 maximum likelihood trees created from individual genes and whole genome. Amino acid variations were also analyzed in the 40 sequences that included dengue serotypes 1, 2, 3 and 4, and they were grouped according to temporal and spatial differences. The results showed that none of the phylogenetic trees created from each individual gene were similar to the trees created using the complete genome and the evolutionary distances were variable with each individual gene. The number of amino acid variations was significantly different (p = 0.015) between DENV-1 and DENV-2 after 2001; seven mutations, the N290D, L402F and A473T mutations in the E gene region and the R101K, G105R, D340E and L349M mutations in the NS1 region of DENV-1, had significant substitutions, compared to the amino acids of DENV-2. Based on the spatial distribution using Guangzhou, including Foshan, as the indigenous area and the other regions as expanding areas, significant differences in the number of amino acid variations in the NS3 (p = 0.03) and NS1 (p = 0.024) regions and the NS2B (p = 0.016) and NS3 (p = 0.042) regions were found in DENV-1 and DENV-2. Recombination analysis showed no inter-serotype recombination events between the DENV-1 and DENV-2, while six and seven breakpoints were found in DENV-1 and DENV-2. Conclusively, the individual genes might not be suitable to analyze the evolution and selection pressure isolated in mainland China; the mutations in the amino acid residues in the E, NS1 and NS3 regions may play important roles in DENV-1 and DENV-2 epidemics.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Province, School of Public Health and Tropical Medicine, Southern Medical Guangzhou, Guangdong Province, China
| | - Yanru Zhang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rifat Hamoudi
- Department of Pathology, Rockefeller Building, University College London, London, United Kingdom
- UCL Cancer Institute, Paul O Gorman Building, University College London, London, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | - Xiaoguang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Province, School of Public Health and Tropical Medicine, Southern Medical Guangzhou, Guangdong Province, China
- * E-mail: (XGC); (YPZ)
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- * E-mail: (XGC); (YPZ)
| |
Collapse
|
154
|
Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA, Bhatt S, Katzelnick L, Howes RE, Battle KE, Simmons CP, Hay SI. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 2014; 22:138-46. [PMID: 24468533 PMCID: PMC3946041 DOI: 10.1016/j.tim.2013.12.011] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/28/2022]
Abstract
Since the first isolation of dengue virus (DENV) in 1943, four types have been identified. Global phenomena such as urbanization and international travel are key factors in facilitating the spread of dengue. Documenting the type-specific record of DENV spread has important implications for understanding patterns in dengue hyperendemicity and disease severity as well as vaccine design and deployment strategies. Existing studies have examined the spread of DENV types at regional or local scales, or described phylogeographic relationships within a single type. Here we summarize the global distribution of confirmed instances of each DENV type from 1943 to 2013 in a series of global maps. These show the worldwide expansion of the types, the expansion of disease hyperendemicity, and the establishment of an increasingly important infectious disease of global public health significance.
Collapse
Affiliation(s)
- Jane P Messina
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Oliver J Brady
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Thomas W Scott
- Department of Entomology, University of California Davis, Davis, California 95616, USA; Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chenting Zou
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - David M Pigott
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Kirsten A Duda
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Samir Bhatt
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Leah Katzelnick
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Rosalind E Howes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Katherine E Battle
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK; Nossal Institute of Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Simon I Hay
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK; Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
155
|
Sa-Ngasang A, Ohashi J, Naka I, Anantapreecha S, Sawanpanyalert P, Patarapotikul J. Association of IL1B -31C/T and IL1RA variable number of an 86-bp tandem repeat with dengue shock syndrome in Thailand. J Infect Dis 2014; 210:138-45. [PMID: 24446526 DOI: 10.1093/infdis/jiu042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Dengue patients present a range of symptoms: dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). It is not clear whether this variability is due to their genetic background. Here we tested polymorphisms of interleukin 1 beta (IL1B) and interleukin 1 receptor antagonist (IL1RA) genes for association with DSS in the Thai population. METHODS Polymorphisms of IL1B -31C/T (rs1143627) and IL1RA 86-base-pair tandem repeat were analyzed in 871 patients (DF = 384, DHF = 413, and DSS = 74). RESULTS IL1B -31C and IL1RA 2/4 genotype were associated with DSS (IL1B -31C: DSS vs DHF: P = .0061, odds ratio [OR, 95% confidence interval {CI}], 3.49 [1.36-8.95]; DSS vs DF: P = .027, OR [95% CI], 2.81 [1.12-7.06]; IL1RA 2/4: DSS vs DHF: P = .017, OR [95% CI], 1.94 [1.12-3.40]; DSS vs DF: P = .024, OR [95% CI], 1.90 [1.07-3.4]). No difference was found between DF and DHF. Logistic regression analysis revealed that IL1B -31C and IL1RA 2/4 genotypes were each independently associated with DSS. CONCLUSIONS Patients with IL1B -31C carrier, or IL1RA 2/4 genotype carry a risk for DSS, implying that IL1B may play a role in pathogenesis of DSS.
Collapse
|
156
|
Descloux E, La Fuentez C, Roca Y, De Lamballerie X. Clinical significance of intra-host variability of Dengue-1 virus in venous and capillary blood. Clin Microbiol Infect 2014; 20:O167-75. [PMID: 24397875 DOI: 10.1111/1469-0691.12368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 11/27/2022]
Abstract
Dengue fever represents a major public health problem. Both viral and host immune factors are involved in severe infections. Humans and mosquito-vectors are infected with diverse viral populations that may play a role in viral adaptation and disease pathogenesis. Our objective was to analyse the intra-host genetic variability of dengue virus type 1 (DENV-1) in the venous and capillary blood and its relationships with the clinical presentation of dengue fever. Early serum samples were collected in 2009 from ten DENV-1-infected patients hospitalized in Santa Cruz de la Sierra, Bolivia. Partial viral envelope sequences were analysed at the inter-host and intra-host level. For each patient, an average of 56 clone sequences was analysed both in the venous sector and the capillary sector (from right and left hands). The ten consensus sequences were highly similar. The intra-host DENV-1 genetic variability was significantly lower in the venous sector than in the capillary sector, and in patients with haemorrhagic symptoms than in those without haemorrhagic symptoms, particularly in capillary samples. No relation was found with sex, age, dengue IgG-serological status, day of serum sampling, or viral load. Significant relationships were found between the clinical presentation of dengue fever and the variability of viral populations within hosts, particularly in capillary samples. The observed variability of envelope sequences at the early phase of dengue infection was not critically influenced by the previous dengue serological status of patients. An important part of viral microevolution may occur in the capillary sector and influence the mechanisms of severe forms.
Collapse
Affiliation(s)
- E Descloux
- IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 "Emergence des Pathologies Virales" Aix-Marseille Université, Marseille, France; Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Territorial de Nouvelle Calédonie, Noumea, New Caledonia
| | | | | | | |
Collapse
|
157
|
Abstract
Dengue viruses cause mild disease in the majority of infected individuals. In most cases, the disease is characterised by fever, headache, pain behind the eyes, muscle ache, joint pains, vomiting and diarrhoea. In a low percentage of patients, bleeding and loss of plasma (haemorrhage and plasma leakage) may occur. The hyper-permeability syndrome results in plasma leakage and, if the compensatory mechanisms of the body fail to control the plasma leakage or if medical intervention is late, shock may set in. Profound shock will subsequently lead to acidic blood (metabolic acidosis) and development of disseminated intravascular coagulation (DIC). During DIC multiple micro thromboses occur, leading to organ failure. The mechanisms governing pathogenesis of these forms of severe disease are not clear. High amounts of virus in the blood are believed to cause vascular fragility which, together with infection of endothelial cells and high levels of cytokines and other soluble mediators, may result in bleeding. In the absence of a correlation between the amount of virus in the blood and disease severity, it is likely that response to infection is an important cause of disease. The aberrant immune response to infection is believed to result in a cytokine storm, defined as an imbalance between cytokines driving an inflammation (pro-inflammatory) and those silencing an inflammation (anti-inflammatory). Several lines of evidence indicate that displacement of viral genotype and host genetic background are key factors driving the production of a cytokine storm. Several cytokines are known to induce apoptosis, a form of cell suicide (cause of haemorrhage), and/or affect adherens junctions (cause permeability) in vitro. Whether these cytokines may have such effects in vivo remains to be established.
Collapse
|
158
|
Tsai JJ, Chokephaibulkit K, Chen PC, Liu LT, Hsiao HM, Lo YC, Perng GC. Role of cognitive parameters in dengue hemorrhagic fever and dengue shock syndrome. J Biomed Sci 2013; 20:88. [PMID: 24305068 PMCID: PMC4174897 DOI: 10.1186/1423-0127-20-88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/26/2013] [Indexed: 01/10/2023] Open
Abstract
Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.
Collapse
Affiliation(s)
- Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
159
|
Xavier-Carvalho C, Gibson G, Brasil P, Ferreira RX, de Souza Santos R, Gonçalves Cruz O, de Oliveira SA, de Sá Carvalho M, Pacheco AG, Kubelka CF, Moraes MO. Single nucleotide polymorphisms in candidate genes and dengue severity in children: A case–control, functional and meta-analysis study. INFECTION GENETICS AND EVOLUTION 2013; 20:197-205. [DOI: 10.1016/j.meegid.2013.08.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022]
|
160
|
Guo XX, Zhu XJ, Li CX, Dong YD, Zhang YM, Xing D, Xue RD, Qin CF, Zhao TY. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Acta Trop 2013; 128:566-70. [PMID: 23962388 DOI: 10.1016/j.actatropica.2013.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/04/2013] [Accepted: 08/11/2013] [Indexed: 10/26/2022]
Abstract
The vector competence of Aedes albopictus and Aedes aegypti with regard to DEN2-43 and New Guinea C (NGC) virus strains of Dengue 2 viruses was assessed and compared. The infection and dissemination rate and distribution of DEN2-43 antigens in orally infected Ae. albopictus was investigated using the reverse transcription polymerase chain reaction and an indirect immunofluorescence assay. To better understand the initial infection, dissemination and transmission of these viral strains in vector mosquitoes, Ae. albopoictus and Ae. aegypti were fed an artificial blood meal containing either the DEN2-43 or NGC strain. There was no significant difference in the infection and dissemination rates of DEN2-43 and NGC virus strains in Ae. albopictus, however, Ae. aegypti was more susceptible to infection by NGC than DEN2-43 vrius strain. Ae. albopictus mosquitoes infected with the NGC strain developed a higher percentage of midgut infections than those infected with the DEN2-43 strain (t=2.893, df=7, P=0.024). Approximately 26.7% of midgut samples were positive for the NGC antigen 5 days after infection, and 80% of mosquitoes had infected midgets after 15 days. The NGC antigen first became evident in mosquito salivary glands on Day 5, and 40% of mosquitoes had infected salivary by Day 9. In contrast, the DEN2-43 antigen first became evident in salivary glands on Day 7. The infection rate of NGC and DEN2-43 virus strains in salivary glands were similar. These results indicate that Ae. albopictus and Ae. aegypti are moderately competent vectors for the DEN2-43 virus, which could provide basic data for the epidemiology study of dengue fever in China.
Collapse
|
161
|
Sjatha F, Takizawa Y, Kotaki T, Yamanaka A, Konishi E. Comparison of infection-neutralizing and -enhancing antibody balance induced by two distinct genotype strains of dengue virus type 1 or 3 DNA vaccines in mice. Microbes Infect 2013; 15:828-36. [DOI: 10.1016/j.micinf.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/14/2013] [Accepted: 07/24/2013] [Indexed: 12/30/2022]
|
162
|
Abstract
The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.
Collapse
|
163
|
Muñoz-Jordán JL, Santiago GA, Margolis H, Stark L. Genetic relatedness of dengue viruses in Key West, Florida, USA, 2009-2010. Emerg Infect Dis 2013; 19:652-4. [PMID: 23632064 PMCID: PMC3647415 DOI: 10.3201/eid1904.121295] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sequencing of dengue virus type 1 (DENV-1) strains isolated in Key West/Monroe County, Florida, indicate endemic transmission for >2 years of a distinct and predominant sublineage of the American-African genotype. DENV-1 strains isolated elsewhere in Florida grouped within a separate Central American lineage. Findings indicate endemic transmission of DENV into the continental United States.
Collapse
Affiliation(s)
- Jorge L Muñoz-Jordán
- Dengue Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico.
| | | | | | | |
Collapse
|
164
|
|
165
|
Shin D, Richards SL, Alto BW, Bettinardi DJ, Smartt CT. Genome sequence analysis of dengue virus 1 isolated in Key West, Florida. PLoS One 2013; 8:e74582. [PMID: 24098658 PMCID: PMC3787005 DOI: 10.1371/journal.pone.0074582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/03/2013] [Indexed: 11/19/2022] Open
Abstract
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
Collapse
Affiliation(s)
- Dongyoung Shin
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
- * E-mail:
| | - Stephanie L. Richards
- Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, United States of America
| | - Barry W. Alto
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
| | - David J. Bettinardi
- Department of Molecular and Cellular Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Chelsea T. Smartt
- Department of Entomology and Nematology, University of Florida, Vero Beach, Florida, United States of America
| |
Collapse
|
166
|
Chokephaibulkit K, Perng GC. Challenges for the formulation of a universal vaccine against dengue. Exp Biol Med (Maywood) 2013; 238:566-78. [PMID: 23856907 DOI: 10.1177/1535370212473703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dengue is rapidly becoming a disease of an escalating global public health concern. The disease is a vector-borne disease, transmitted by the bite of an Aedes spp. mosquito. Dynamic clinical manifestations, ranging from asymptomatic, flu-like febrile illness, dengue fever (DF) to dengue hemorrhagic fever (DHF) with or without dengue shock syndrome (DSS), make the disease one of the most challenging to diagnose and treat. DF is a self-limited illness, while DHF/DSS, characterized by plasma leakage resulting from an increased vascular permeability, can have severe consequences, including death. The pathogenesis of dengue virus infection remains poorly understood, mainly due to the lack of a suitable animal model that can recapitulate the cardinal features of human dengue diseases. Currently, there is no specific treatment or antiviral therapy available for dengue virus infection and supportive care with vigilant monitoring is the principle course of treatment. Since vector control programs have been largely unsuccessful in preventing outbreaks, vaccination seems to be the most viable option for prevention. There are four dengue viral serotypes and each one of them is capable of causing severe dengue. Although immunity induced by infection by one serotype is effective in protection against the homologous viral serotype, it only has a transient protective effect against infection with the other three serotypes. The meager cross protective immunity generated wanes over time and may even induce a harmful effect at the time of subsequent secondary infection. Thus, it is imperative to have a vaccine that can elicit equal and long-lasting immunity to all four serotypes simultaneously. Numerous tetravalent vaccines are currently either in the pipeline for clinical trials or under development. For those frontrunner tetravalent vaccines in clinical trials, despite good safety and immunogenicity profiles registered, issues such as imbalanced immune responses between serotypes and questions with regard to whether the optimum formulation have been identified remain unresolved. This review centers on these issues and offers strategies that may improve the tetravalent vaccine formulation.
Collapse
Affiliation(s)
- Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | |
Collapse
|
167
|
Abstract
Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265-420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012-2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future.
Collapse
Affiliation(s)
- Natasha Evelyn Anne Murray
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany ; Population Health, Waikato District Health Board, Hamilton, New Zealand
| | | | | |
Collapse
|
168
|
Yamanaka A, Thongrungkiat S, Ramasoota P, Konishi E. Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. INFECTION GENETICS AND EVOLUTION 2013; 19:188-94. [PMID: 23871775 DOI: 10.1016/j.meegid.2013.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Increasing attention is being devoted to ecological and evolutionary relationships between insect-specific flaviviruses and globally important human-pathogenic flaviviruses such as dengue viruses. One such insect flavivirus, cell-fusing agent virus (CFAV), remains poorly investigated. In this study, we isolated 13 and 16 CFAV strains from Aedes aegypti mosquitoes collected in Thailand in 2008 and 2012, respectively, and performed genetic and evolutionary analyses based on gene regions encoding the envelope protein (E) and nonstructural proteins 3 (NS3) and 5 (NS5). Consistent with previously reported CFAV strains, E, NS3 and NS5 regions comprised 1,290, 1,761 and 2,664 nucleotides, respectively. Nucleotide and amino acid identities of these three regions were >98% among the 29 isolates, and approximately 95-96% and 96-99%, respectively, between the isolates and previously reported CFAV strains. When amino acid sequences from representative strains of six insect-specific and seven mosquito-borne flaviviruses were compared, average identities of 14.9%, 31.8% and 44.3% were calculated for E, NS3 and NS5 regions, respectively. Phylogenetic analysis based on nucleotide and amino acid data indicated that the Thai CFAV isolates of the current study were distinct from previously reported CFAV strains from Indonesia and Puerto Rico. Analysis of each gene region consistently uncovered a clade made up of nearly the same subset of Thai CFAV isolates; this result, and the isolation of CFAV from mosquitoes reared from larvae, suggest that the virus is maintained by vertical transmission and conserved in a particular environment without considerable evolutionary alteration. The most recent common ancestor of the Thai CFAV isolates in this study was dated to 11-27 years ago, and is estimated to have diverged 46-86 years ago from previously reported CFAV strains. Superinfection with CFAV of Aedes mosquitoes carrying dengue viruses present in Thailand for over 50 years has most likely taken place.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchahewi, Bangkok 10440, Thailand.
| | | | | | | |
Collapse
|
169
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
170
|
Medina F, Medina JF, Colón C, Vergne E, Santiago GA, Muñoz-Jordán JL. Dengue virus: isolation, propagation, quantification, and storage. ACTA ACUST UNITED AC 2013. [PMID: 23184594 DOI: 10.1002/9780471729259.mc15d02s27] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is a disease caused by infection with one of the four dengue virus serotypes (DENV-1, -2, -3, and -4). The virus is transmitted to humans by Aedes sp. mosquitoes. This enveloped virus contains a positive single-stranded RNA genome. Clinical manifestations of dengue can have a wide range of outcomes varying from a mild febrile illness to a life-threatening condition. New techniques have largely replaced the use of DENV isolation in disease diagnosis. However, virus isolation still serves as the gold standard for detection and serotyping of DENV and is common practice in research and reference laboratories where clinical isolates of the virus are characterized and sequenced, or used for a variety of research experiments. Isolation of DENV from clinical samples can be achieved in mammalian and mosquito cells or by inoculation of mosquitoes. The experimental methods presented here describe the most common procedures used for the isolation, serotyping, propagation, and quantification of DENV.
Collapse
Affiliation(s)
- Freddy Medina
- Centers for Disease Control and Prevention, Division of Vector Borne Infectious Diseases, Dengue Branch, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
171
|
Sharp TM, Hunsperger E, Santiago GA, Muñoz-Jordan JL, Santiago LM, Rivera A, Rodríguez-Acosta RL, Gonzalez Feliciano L, Margolis HS, Tomashek KM. Virus-specific differences in rates of disease during the 2010 Dengue epidemic in Puerto Rico. PLoS Negl Trop Dis 2013; 7:e2159. [PMID: 23593526 PMCID: PMC3617145 DOI: 10.1371/journal.pntd.0002159] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/26/2013] [Indexed: 11/21/2022] Open
Abstract
Background Dengue is a potentially fatal acute febrile illness (AFI) caused by four mosquito-transmitted dengue viruses (DENV-1–4) that are endemic in Puerto Rico. In January 2010, the number of suspected dengue cases reported to the passive dengue surveillance system exceeded the epidemic threshold and an epidemic was declared soon after. Methodology/Principal Findings To characterize the epidemic, surveillance and laboratory diagnostic data were compiled. A suspected case was a dengue-like AFI in a person reported by a health care provider with or without a specimen submitted for diagnostic testing. Laboratory-positive cases had: (i) DENV nucleic acid detected by reverse transcriptase-polymerase chain reaction (RT-PCR) in an acute serum specimen; (ii) anti-DENV IgM antibody detected by ELISA in any serum specimen; or (iii) DENV antigen or nucleic acid detected in an autopsy-tissue specimen. In 2010, a total of 26,766 suspected dengue cases (7.2 per 1,000 residents) were identified, of which 46.6% were laboratory-positive. Of 7,426 RT-PCR-positive specimens, DENV-1 (69.0%) and DENV-4 (23.6%) were detected more frequently than DENV-2 (7.3%) and DENV-3 (<0.1%). Nearly half (47.1%) of all laboratory-positive cases were adults, 49.7% had dengue with warning signs, 11.1% had severe dengue, and 40 died. Approximately 21% of cases were primary DENV infections, and 1–4 year olds were the only age group for which primary infection was more common than secondary. Individuals infected with DENV-1 were 4.2 (95% confidence interval [CI]: 1.7–9.8) and 4.0 (95% CI: 2.4–6.5) times more likely to have primary infection than those infected with DENV-2 or -4, respectively. Conclusions/Significance This epidemic was long in duration and yielded the highest incidence of reported dengue cases and deaths since surveillance began in Puerto Rico in the late 1960's. This epidemic re-emphasizes the need for more effective primary prevention interventions to reduce the morbidity and mortality of dengue. Dengue is a potentially fatal acute febrile illness that is endemic throughout the tropics and sub-tropics. Dengue has been endemic in Puerto Rico for several decades and recent epidemics occurred in 1994–5, 1998 and 2007. In January 2010, dengue surveillance indicated that an epidemic had begun. The epidemic peaked in early August and ended in December with a total of 26,766 suspected dengue cases identified, of which 128 were fatal. The 2010 epidemic was one of the longest in Puerto Rico history and resulted in the greatest number of cases and deaths ever detected. We analyzed the epidemiologic and immunologic characteristics of laboratory-confirmed dengue cases and age group-specific attack rates, and determined the frequency of first DENV infection and DENV-types among persons experiencing their first infection. This analysis indicated that 10–19 year-olds were most affected during the epidemic, and that DENV-1 was roughly four times more likely to be associated with clinically apparent illness upon first DENV infection than were DENV-2 or -4. The 2010 dengue epidemic demonstrated the heavy burden of illness due to dengue in Puerto Rico, re-emphasizing the critical need for effective primary prevention tools to reduce the morbidity and mortality due to dengue worldwide.
Collapse
Affiliation(s)
- Tyler M Sharp
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Faria NRDC, Nogueira RMR, de Filippis AMB, Simões JBS, Nogueira FDB, da Rocha Queiroz Lima M, dos Santos FB. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS Negl Trop Dis 2013; 7:e2095. [PMID: 23516646 PMCID: PMC3597488 DOI: 10.1371/journal.pntd.0002095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
In Brazil, dengue has been a major public health problem since its introduction in the 1980s. Phylogenetic studies constitute a valuable tool to monitor the introduction and spread of viruses as well as to predict the potential epidemiological consequences of such events. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, viral strains isolated from patients presenting different disease manifestations (n = 34), representing six states of the country, from 1990 to 2010, were sequenced. Partial genome sequencing (genes C/prM/M/E) was performed in 25 DENV-2 strains and full-length genome sequencing (coding region) was performed in 9 strains. The percentage of similarity among the DENV-2 strains in this study and reference strains available in Genbank identified two groups epidemiologically distinct: one represented by strains isolated from 1990 to 2003 and one from strains isolated from 2007 to 2010. No consistent differences were observed on the E gene from strains isolated from cases with different clinical manifestations analyzed, suggesting that if the disease severity has a genetic origin, it is not only due to the differences observed on the E gene. The results obtained by the DENV-2 full-length genome sequencing did not point out consistent differences related to a more severe disease either. The analysis based on the partial and/or complete genome sequencing has characterized the Brazilian DENV-2 strains as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. It was established that strains circulating prior DENV-2 emergence (1990–2003) belong to Southeast Asian genotype, Lineage I and strains isolated after DENV-2 emergence in 2007 belong to Southeast Asian genotype, Lineage II. Furthermore, all DENV-2 strains analyzed presented an asparagine (N) in E390, previously identified as a probable genetic marker of virulence observed in DHF strains from Asian origin. The percentage of identity of the latter with the Dominican Republic strain isolated in 2001 combined to the percentage of divergence with the strains first introduced in the country in the 1990s suggests that those viruses did not evolve locally but were due to a new viral Lineage introduction in the country from the Caribbean. In Brazil, the first dengue haemorrhagic cases were reported after the DENV-2 introduction in Rio de Janeiro, which spread to other states in the country. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, strains isolated from patients presenting different disease manifestations were sequenced. Phylogeny characterized the DENV-2 as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. Furthermore, all strains presented an asparagine in E390, previously identified as a probable genetic marker of virulence. The results show a temporal circulation of genetically different viruses in Brazil, probably due to the introduction of a new viral lineage from the Caribbean, which lead to the re-emergence of this serotype after 2007, causing the most severe epidemic already described in the country.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Barreto dos Santos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
173
|
Thomas SJ. Dengue human infection model: re-establishing a tool for understanding dengue immunology and advancing vaccine development. Hum Vaccin Immunother 2013; 9:1587-90. [PMID: 23466948 DOI: 10.4161/hv.24188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue is an emerging and re-emerging disease of the tropics and sub-tropics. Millions of infections occur annually exacting a significant social, financial, and health care resource toll. Widespread use of a safe and efficacious dengue vaccine in cooperation with strategic vector control is the best hope for reducing the global dengue burden. Despite over 100 y of research exploring dengue immunology, pathogenesis, animal models, and vaccine and drug development there is no licensed vaccine or dengue anti-viral. No correlate of protection or validated animal model of disease has been defined. Experimental human infection with partially attenuated dengue viruses are documented as early as 1902 and have facilitated research efforts resulting in seminal discoveries and observations. It is time to explore re-invigorating the dengue human infection model to support dengue vaccine development.
Collapse
Affiliation(s)
- Stephen J Thomas
- Director, Viral Diseases Branch; Walter Reed Army Institute of Research; Silver Spring, MD USA
| |
Collapse
|
174
|
Guo X, Zhao Q, Wu C, Zuo S, Zhang X, Jia N, Liu J, Zhou H, Zhang J. First isolation of dengue virus from Lao PDR in a Chinese traveler. Virol J 2013; 10:70. [PMID: 23497045 PMCID: PMC3606315 DOI: 10.1186/1743-422x-10-70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 02/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemic dengue activity has been demonstrated in several southern regions of China, but not in Yunnan province, which borders countries in Southeast Asia where dengue is endemic. Many dengue cases imported from Southeast Asia to Yunnan have been reported, but dengue virus (DENV) has not been isolated from any patients. This study is the first to report the isolation of DENV from a Chinese traveler returning to Yunnan from Lao PDR. FINDINGS A serum sample was collected from a patient presenting with a febrile illness who returned from Lao PDR in 2009 and was used to inoculate Aedes albopictus C6/36 cells for viral isolation. The viral isolate was identified using reverse transcription-polymerase chain reaction, and phylogenetic analyses based on the full E sequence were performed using Clustalx 1.8 software. The analyses detected DENV genome, and thus, a DENV isolate was obtained from the patient's serum sample. The new DENV isolate was grouped into genotype Asia 1, serotype 2. The viral E protein shared the greatest nucleotide sequence identity (99.6%) with the D2/Thailand/0606aTw strain isolated from Thailand in 2006 and demonstrated 94.3% to 100% identity with the predicted amino acid sequence of other DENV 2 strains. CONCLUSIONS Our findings indicate that DENV serotype 2 is circulating in Lao PDR, and surveillance of patients suspected of infection with dengue should be conducted not only by a serological test but also by pathogenic detection methods.
Collapse
Affiliation(s)
- Xiaofang Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Tripathi SK, Gupta P, Khare V, Chatterjee A, Kumar R, Khan MY, Dhole TN. Emergence of new lineage of Dengue virus 3 (genotype III) in Lucknow, India. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:68-75. [PMID: 23466682 PMCID: PMC3577557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Dengue has re-emerged as an important arboviral disease causing significant morbidity. It has become hyperendemic in the Indian subcontinent with all four known dengue serotypes circulating. MATERIALS AND METHODS Multiple sequence alignments and phylogenetic trees of DENV-3 were constructed to determine the extent of the isolated dengue virus genetic heterogeneity and phylogeny. RESULTS Sequencing and phylogenetic analysis of the C-prM gene junction revealed an active circulation of a new lineage of DENV-3 (genotype III) in this region of India. CONCLUSION Continuous epidemiological surveillance to monitor the incursion and spread of dengue virus genotypes in this region of India is needed.
Collapse
Affiliation(s)
- Sanjeev Kumar Tripathi
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Prashant Gupta
- Department of Microbiology, King George Medical University, Lucknow, India, Corresponding author: Dr. Prashant Gupta, Address: Department of Microbiology, King George Medical University, Lucknow, India. Mob: +941-5082806. E-mail:
| | - Vineeta Khare
- Department of Microbiology, Hind Institute of Medical Sciences, Barabanki, India
| | - Animesh Chatterjee
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Rashmi Kumar
- Department of Pediatrics, King George Medical University, Lucknow, India
| | - Mohammed Yahiya Khan
- Department of Biotechnology, Babasahib Bhimrao Ambedkar University, Lucknow, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
176
|
Sun Y, Meng S. Evolutionary history and spatiotemporal dynamics of dengue virus type 1 in Asia. INFECTION GENETICS AND EVOLUTION 2013; 16:19-26. [PMID: 23395769 DOI: 10.1016/j.meegid.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 01/07/2013] [Accepted: 01/12/2013] [Indexed: 12/27/2022]
Abstract
Previous studies showed that DENV-1 transmitted from monkeys to humans approximately 125 years ago. However, there is no comprehensive analysis about phylogeography and population dynamics of Asian DENV-1. Here, we adopt a Bayesian phylogeographic approach to investigate the evolutionary history and phylogeography of Asian DENV-1 using envelope (E) protein gene sequences of 450 viruses isolated from 1954 to 2010 throughout 18 Asian countries and regions. Bayesian phylogeographic analyses indicate that the high rates of viral migration possibly follows long-distance travel for humans in Southeast Asia. Our study highlights that Southeast Asian countries have acted as the main viral sources of the dengue epidemics in East Asia. The results reveal that the time to the most recent common ancestor (TMRCA) of Asian DENV-1 is 1906 (95% HPD, years 1897-1915). We show that the spatial dissemination of virus is the major source of DENV-1 outbreaks in the different localities and leads to subsequent establishment and expansion of the virus in these areas.
Collapse
Affiliation(s)
- Yan Sun
- Department of Immunology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
177
|
Rajmane Y, Shaikh S, Basha K, Reddy GECV, Nair S, Kamath S, Sreejesh G, Rao H, Ramana V, Kumar ASM. Infant mouse brain passaged Dengue serotype 2 virus induces non-neurological disease with inflammatory spleen collapse in AG129 mice after splenic adaptation. Virus Res 2013; 173:386-97. [PMID: 23337909 DOI: 10.1016/j.virusres.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 01/10/2023]
Abstract
AG129 mice are known to be permissive to infection by multiple serotypes of Dengue virus (DENV). There exists a concern that mouse passaged strains of the virus may induce neurological complications rather than increased vascular permeability in these mice, hence the use of human clinical isolates of the virus to develop the AG129 mouse model of Dengue disease with increased vascular permeability. The present study evaluated four mouse brain passaged DENV strains, each belonging to a different serotype and three of them having an original isolation history in India, for their suitability to serve as candidates to induce rapid lethal disease in AG129 mice. While all the viruses were able to establish a productive infection in the spleen, none of them induced paralysis despite their mouse brain passage history. Only the type-2 virus acquired the ability to induce a lethal disease after a single round of spleen to spleen passage, and became highly virulent after five more rounds. This apparently non-neurological lethal disease was characterized by high viral burden, elevated vascular permeability, serum TNF-α surge immediately before moribund stage, transient leukocytosis followed by severe leukopenia, lymphopenia throughout the course of the infection, and transient thrombocytopenia. The disease was also characterized by inflammatory splenic collapse during moribund stage, reminiscent of spontaneous splenic rupture reported in rare cases of severe Dengue in humans.
Collapse
Affiliation(s)
- Yogesh Rajmane
- Therapeutic proteins Group, Dhirubhai Ambani Life Sciences Centre, Reliance Life Sciences Pvt Ltd., Rabale, Navi Mumbai 400 701, Maharashtra, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Jiang L, Wu X, Wu Y, Bai Z, Jing Q, Luo L, Dong Z, Yang Z, Xu Y, Cao Y, Di B, Wang Y, Wang M. Molecular epidemiological and virological study of dengue virus infections in Guangzhou, China, during 2001-2010. Virol J 2013; 10:4. [PMID: 23282129 PMCID: PMC3558415 DOI: 10.1186/1743-422x-10-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background Dengue virus (DENV) infection is the most prevalent arthropod-borne viral infection in tropical and subtropical regions worldwide. Guangzhou has the ideal environment for DENV transmission and DENV epidemics have been reported in this region for more than 30 years. Methods Information for DENV infection cases in Guangzhou from 2001 to 2010 were collected and analyzed. The DENV strains were cultured and isolated from patients’ sera. Viral RNA was extracted from cell culture supernatants. cDNA was synthesized by reverse transcription PCR. Phylogenetic trees of four DENV serotypes were constructed respectively. Results In total, 2478 DENV infection cases were reported; 2143 of these (86.43%) occurred during 3 months of the year: August, September and October. Of these, 2398 were local cases (96.77%) and 80 were imported cases (3.23%). Among the imported cases, 69 (86.25%) were from Southeast Asian countries. From the 90 isolated strains, 66.67%, 3.33%, 14.44%, and 15.56% belonged to DENV serotypes 1, 2, 3, and 4, respectively. DENV-1 was predominant in most of the years, including during 2 outbreaks in 2002 and 2006; however, none of the strains or genotypes identified in this study were found to be predominant. Interestingly, DENV strains from different years had different origins. Moreover, the strains from each year belonged to different serotypes and/or genotypes. Conclusions Southeast Asia countries were found to be the possible source of DENV in Guangzhou. These findings suggest that there is increasing diversity in DENV strains in Guangzhou, which could increase the risk of DENV outbreaks in the near future.
Collapse
Affiliation(s)
- Liyun Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Sjatha F, Takizawa Y, Yamanaka A, Konishi E. Phylogenetic analysis of dengue virus types 1 and 3 isolated in Jakarta, Indonesia in 1988. INFECTION GENETICS AND EVOLUTION 2012; 12:1938-43. [DOI: 10.1016/j.meegid.2012.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/16/2012] [Accepted: 08/23/2012] [Indexed: 11/30/2022]
|
180
|
Chakravarti A, Chauhan MS, Kumar S, Ashraf A. Genotypic characterization of dengue virus strains circulating during 2007-2009 in New Delhi. Arch Virol 2012; 158:571-81. [DOI: 10.1007/s00705-012-1522-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
|
181
|
Soares ROS, Caliri A. Stereochemical features of the envelope protein Domain III of dengue virus reveals putative antigenic site in the five-fold symmetry axis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:221-30. [PMID: 23009809 DOI: 10.1016/j.bbapap.2012.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022]
Abstract
We bring to attention a characteristic parasitic pattern present in the dengue virus: it undergoes several intensive thermodynamic variations due to host environmental changes, from a vector's digestive tract, through the human bloodstream and intracellular medium. Comparatively, among the known dengue serotypes, we evaluate the effects that these medium variations may induce to the overall structural characteristics of the Domain III of the envelope (E) protein, checking for stereochemical congruences that could lead to the identification of immunologic relevant regions. We used molecular dynamics and principal component analysis to study the protein in solution, for all four dengue serotypes, under distinct pH and temperature. We stated that, while the core of Domain III is remarkably rigid and effectively unaffected by most of the mentioned intensive variations, the loops account for major and distinguishable flexibilities. Therefore, the rigidity of the Domain III core provides a foothold that projects specifically two of these high flexible loop regions towards the inner face of the envelope pores, which are found at every five-fold symmetry axis of the icosahedron-shaped mature virus. These loops bear a remarkable low identity though with high occurrence of ionizable residues, including histidines. Such stereochemical properties can provide very particular serotype-specific electrostatic surface patterns, suggesting a viral fingerprint region, on which other specific molecules and ions can establish chemical interactions in an induced fit mechanism. We assert that the proposed regions share enough relevant features to qualify for further immunologic and pharmacologic essays, such as target peptide synthesis and phage display using dengue patients' sera.
Collapse
Affiliation(s)
- R O S Soares
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, S/N. 14040-903, Ribeirão Preto, São Paulo, Brazil.
| | | |
Collapse
|
182
|
Carneiro AR, Cruz ACR, Vallinoto M, Melo DDV, Ramos RTJ, Medeiros DBA, Silva EVPD, Vasconcelos PFDC. Molecular characterisation of dengue virus type 1 reveals lineage replacement during circulation in Brazilian territory. Mem Inst Oswaldo Cruz 2012; 107:805-12. [DOI: 10.1590/s0074-02762012000600016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
|
183
|
Schein CH, Bowen DM, Lewis JA, Choi K, Paul A, van der Heden van Noort GJ, Lu W, Filippov DV. Physicochemical property consensus sequences for functional analysis, design of multivalent antigens and targeted antivirals. BMC Bioinformatics 2012; 13 Suppl 13:S9. [PMID: 23320474 PMCID: PMC3426803 DOI: 10.1186/1471-2105-13-s13-s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Analysis of large sets of biological sequence data from related strains or organisms is complicated by superficial redundancy in the set, which may contain many members that are identical except at one or two positions. Thus a new method, based on deriving physicochemical property (PCP)-consensus sequences, was tested for its ability to generate reference sequences and distinguish functionally significant changes from background variability. Methods The PCP consensus program was used to automatically derive consensus sequences starting from sequence alignments of proteins from Flaviviruses (from the Flavitrack database) and human enteroviruses, using a five dimensional set of Eigenvectors that summarize over 200 different scalar values for the PCPs of the amino acids. A PCP-consensus protein of a Dengue virus envelope protein was produced recombinantly and tested for its ability to bind antibodies to strains using ELISA. Results PCP-consensus sequences of the flavivirus family could be used to classify them into five discrete groups and distinguish areas of the envelope proteins that correlate with host specificity and disease type. A multivalent Dengue virus antigen was designed and shown to bind antibodies against all four DENV types. A consensus enteroviral VPg protein had the same distinctive high pKa as wild type proteins and was recognized by two different polymerases. Conclusions The process for deriving PCP-consensus sequences for any group of aligned similar sequences, has been validated for sequences with up to 50% diversity. Ongoing projects have shown that the method identifies residues that significantly alter PCPs at a given position, and might thus cause changes in function or immunogenicity. Other potential applications include deriving target proteins for drug design and diagnostic kits.
Collapse
Affiliation(s)
- Catherine H Schein
- Institute for Translational Sciences, Computational Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Texas 77555-0857, USA.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Bowen DM, Lewis JA, Lu W, Schein CH. Simplifying complex sequence information: a PCP-consensus protein binds antibodies against all four Dengue serotypes. Vaccine 2012; 30:6081-7. [PMID: 22863657 DOI: 10.1016/j.vaccine.2012.07.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022]
Abstract
Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels.
Collapse
Affiliation(s)
- David M Bowen
- Computational Biology, Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0857, United States
| | | | | | | |
Collapse
|
185
|
Martins VEP, Alencar CH, Kamimura MT, Kamimura MT, de Carvalho Araújo FM, De Simone SG, Dutra RF, Guedes MIF. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One 2012; 7:e41386. [PMID: 22848479 PMCID: PMC3405123 DOI: 10.1371/journal.pone.0041386] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/20/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Aedes aegypti and Aedes albopictus perform an important role in the transmission of the dengue virus to human populations, particularly in the tropical and subtropical regions of the world. Despite a lack of understanding in relation to the maintenance of the dengue virus in nature during interepidemic periods, the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus appears to be of significance in relation to the urban scenario of Fortaleza. METHODS From March 2007 to July 2009 collections of larvae and pupae of Aedes spp were carried out in 40 neighborhoods of Fortaleza. The collections yielded 3,417 (91%) A. aegypti mosquitoes and 336 (9%) A. albopictus mosquitoes. Only pools containing females, randomly chosen, were submitted to the following tests indirect immunofluorescence (virus isolation), RT-PCR/nested-PCR and nucleotide sequencing at the C-prM junction of the dengue virus genome. RESULTS The tests on pool 34 (35 A. albopictus mosquitoes) revealed with presence of DENV-3, pool 35 (50 A. aegypti mosquitoes) was found to be infected with DENV-2, while pool 49 (41 A. albopictus mosquitoes) revealed the simultaneous presence of DENV-2 and DENV-3. Based on the results obtained, there was a minimum infection rate of 0.5 for A. aegypti and 9.4 for A. albopictus. The fragments of 192 bp and 152 bp related to DENV-3, obtained from pools 34 and 49, was registered in GenBank with the access codes HM130699 and JF261696, respectively. CONCLUSIONS This study recorded the first natural evidence of the vertical transmission of the dengue virus in populations of A. aegypti and A. albopictus collected in Fortaleza, Ceará State, Brazil, opening a discuss on the epidemiological significance of this mechanism of viral transmission in the local scenario, particularly with respect to the maintenance of these viruses in nature during interepidemic periods.
Collapse
|
186
|
Steidel M, Fragnoud R, Guillotte M, Roesch C, Michel S, Meunier T, Paranhos-Baccalà G, Gervasi G, Bedin F. Nonstructural protein NS1 immunodominant epitope detected specifically in dengue virus infected material by a SELDI-TOF/MS based assay. J Med Virol 2012; 84:490-9. [PMID: 22246837 DOI: 10.1002/jmv.23204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dengue virus (DV) infection is the most common mosquito-born viral disease of public health significance. Though most patients only suffer from flu-like symptoms, a small group of patients experiences more severe forms of the disease. The viral nonstructural protein 1 (NS1), a secreted protein correlating with viremia, is a key element used for dengue diagnosis with potential implications in severe dengue prognosis. Capture-ELISAs for the early detection of the NS1 protein in the sera during the acute febrile stage are commonly used in routine by diagnostic laboratories. In this study, the detection of NS1 protein in DV-infected material was assessed by an alternative method combining a single NS1-directed monoclonal antibody and the SELDI-TOF/MS technology. According to the epitope mapping, the antibodies used are mainly directed against an immuno-dominant peptide located on the C-terminal part of the protein. The NS1 SELDI-TOF assay is specific, has a sensitivity level close to capture-ELISAs and is potentially useful for a coupled serotyping/detection assay or for the detection of subtle post-translational modifications on the protein.
Collapse
Affiliation(s)
- Marine Steidel
- Biomarker Department, BioMerieux SA, Chemin de l'Orme, Marcy l'Etoile, France
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Malavige GN, McGowan S, Atukorale V, Salimi M, Peelawatta M, Fernando N, Jayaratne SD, Ogg G. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses. Clin Exp Immunol 2012; 168:215-23. [PMID: 22471283 DOI: 10.1111/j.1365-2249.2012.04566.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Determining previous infecting dengue virus (DENV) serotypes has been difficult due to highly cross-reactive immune responses from previous DENV infections. Determining the correlates of serotype-specific immune responses would be crucial in understanding dengue transmission in the community and would also help to determine the correlates of protective immune responses. Therefore, we set out to define highly conserved, serotype-specific regions of the DENVs. Serotype-specific and highly conserved regions of the four DENV serotypes were identified using Basic Local Alignment Search Tool (BLAST) searches and custom perl scripts. Using ex-vivo and cultured enzyme-linked immunospot (ELISPOT) assays, we identified serotype-specific T cell epitopes within the four DENV serotypes in healthy adult donors from Sri Lanka. We identified T cell responses to 19 regions of the four DENV serotypes. Six peptides were from the NS2A region and four peptides were from the NS4A region. All immune donors responded to peptides of at least two DENV serotypes, suggesting that heterologous infection is common in Sri Lanka. Eight of 20 individuals responded to at least two peptides of DENV-4, despite this serotype not being implicated previously in any of the epidemics in Sri Lanka. The use of these regions to determine past and current infecting DENV serotypes will be of value to characterize further the dynamics of silent dengue transmission in the community. In addition, these T cell responses to these regions could be used to characterize DENV serotype-specific immune responses and thus possibly help us to understand the immune correlates of a protective immune response.
Collapse
Affiliation(s)
- G N Malavige
- Department of Microbiology, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Complex dynamic of dengue virus serotypes 2 and 3 in Cambodia following series of climate disasters. INFECTION GENETICS AND EVOLUTION 2012; 15:77-86. [PMID: 22677620 DOI: 10.1016/j.meegid.2012.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/13/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
Abstract
The Dengue National Control Program was established in Cambodia in 2000 and has reported between 10,000 and 40,000 dengue cases per year with a case fatality rate ranging from 0.7 to 1.7. In this study 39 DENV-2 and 57 DENV-3 viruses isolated from patients between 2000 and 2008 were fully sequenced. Five DENV2 and four DENV3 distinct lineages with different dynamics were identified. Each lineage was characterized by the presence of specific mutations with no evidence of recombination. In both DENV-2 and DENV-3 the lineages present prior to 2003 were replaced after that date by unrelated lineages. After 2003, DENV-2 lineages D2-3 and D2-4 cocirculated until 2007 when they were almost completely replaced by a lineage D2-5 which emerged from D2-3 Conversely, all DENV-3 lineages remained, diversified and cocirculated with novel lineages emerging. Years 2006 and 2007 were marked by a high prevalence of DENV-3 and 2007 with a large dengue outbreak and a high proportion of patients with severe disease. Selective sweeps in DENV-1 and DENV-2 were linked to immunological escape to a predominately DENV-3-driven immunological response. The complex dynamic of dengue in Cambodia in the last ten years has been associated with a combination of stochastic climatic events, cocirculation, coevolution, adaptation to different vector populations, and with the human population immunological landscape.
Collapse
|
189
|
Tissera HA, Ooi EE, Gubler DJ, Tan Y, Logendra B, Wahala WMPB, de Silva AM, Abeysinghe MRN, Palihawadana P, Gunasena S, Tam CC, Amarasinghe A, Letson GW, Margolis HS, De Silva AD. New dengue virus type 1 genotype in Colombo, Sri Lanka. Emerg Infect Dis 2012; 17:2053-5. [PMID: 22099096 PMCID: PMC3310553 DOI: 10.3201/eid1711.101893] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The number of cases and severity of disease associated with dengue infection in Sri Lanka has been increasing since 1989, when the first epidemic of dengue hemorrhagic fever was recorded. We identified a new dengue virus 1 strain circulating in Sri Lanka that coincided with the 2009 dengue epidemic.
Collapse
|
190
|
Barban V, Munoz-Jordan JL, Santiago GA, Mantel N, Girerd Y, Gulia S, Claude JB, Lang J. Broad neutralization of wild-type dengue virus isolates following immunization in monkeys with a tetravalent dengue vaccine based on chimeric yellow fever 17D/dengue viruses. Virology 2012; 429:91-8. [PMID: 22542002 DOI: 10.1016/j.virol.2012.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/15/2012] [Indexed: 11/16/2022]
Abstract
The objective of the study was to evaluate if the antibodies elicited after immunization with a tetravalent dengue vaccine, based on chimeric yellow fever 17D/dengue viruses, can neutralize a large range of dengue viruses (DENV). A panel of 82 DENVs was developed from viruses collected primarily during the last decade in 30 countries and included the four serotypes and the majority of existing genotypes. Viruses were isolated and minimally amplified before evaluation against a tetravalent polyclonal serum generated during vaccine preclinical evaluation in monkey, a model in which protection efficacy of this vaccine has been previously demonstrated (Guirakhoo et al., 2004). Neutralization was observed across all the DENV serotypes, genotypes, geographical origins and isolation years. These data indicate that antibodies elicited after immunization with this dengue vaccine candidate should widely protect against infection with contemporary DENV lineages circulating in endemic countries.
Collapse
Affiliation(s)
- Veronique Barban
- Research Department, Sanofi Pasteur Campus Merieux, 1541 avenue Marcel Merieux, 69680 Marcy l'Etoile, France.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
|
192
|
Wilder-Smith A, Renhorn KE, Tissera H, Abu Bakar S, Alphey L, Kittayapong P, Lindsay S, Logan J, Hatz C, Reiter P, Rocklöv J, Byass P, Louis VR, Tozan Y, Massad E, Tenorio A, Lagneau C, L'Ambert G, Brooks D, Wegerdt J, Gubler D. DengueTools: innovative tools and strategies for the surveillance and control of dengue. Glob Health Action 2012; 5:GHA-5-17273. [PMID: 22451836 PMCID: PMC3312611 DOI: 10.3402/gha.v5i0.17273] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/24/2012] [Indexed: 11/14/2022] Open
Abstract
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change.The consortium comprises 12 work packages to address a set of research questions in three areas:Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring.Research area 2: Develop novel strategies to prevent dengue in children.Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change.In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Department of Public Health and Clinical Medicine, Epidemiology and Global Health, Umeå University, Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Intra-genotypic variation of predominant genotype II strains of dengue type-3 virus isolated during different epidemics in Thailand from 1973 to 2001. Virus Genes 2012; 46:203-18. [PMID: 22411105 DOI: 10.1007/s11262-012-0720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
The prevalence of all four dengue virus (DENV) serotypes has increased dramatically in recent years in many tropical and sub-tropical countries accompanied by an increase in genetic diversity within each serotype. This expansion in genetic diversity is expected to give rise to viruses with altered antigenicity, virulence, and transmissibility. We previously demonstrated the co-circulation of multiple DENV genotypes in Thailand and identified a predominant genotype for each serotype. In this study, we performed a comparative analysis of the complete genomic sequences of 28 DENV-3 predominant genotype II strains previously collected during different DENV-3 epidemics in Thailand from 1973 to 2001 with the goal to define mutations that might correlate with virulence, transmission frequency, and epidemiological impact. The results revealed (1) 37 amino acid and six nucleotide substitutions adopted and fixed in the virus genome after their initial substitutions over nearly 30-year-sampling period, (2) the presence of more amino acid and nucleotide substitutions in recent virus isolates compared with earlier isolates, (3) six amino acid substitutions in capsid (C), pre-membrane (prM), envelope (E), and nonstructural (NS) proteins NS4B and NS5, which appeared to be associated with periods of high DENV-3 epidemic activity, (4) the highest degree of conservation in C, NS2B and the 5'-untranslated region (UTR), and (5) the highest percentage of amino acid substitutions in NS2A protein.
Collapse
|
194
|
Chakravarti A, Arora R, Luxemburger C. Fifty years of dengue in India. Trans R Soc Trop Med Hyg 2012; 106:273-82. [PMID: 22357401 DOI: 10.1016/j.trstmh.2011.12.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most important mosquito-borne, human viral disease in many tropical and sub-tropical areas. In India the disease has been essentially described in the form of case series. We reviewed the epidemiology of dengue in India to improve understanding of its evolution in the last 50 years and support the development of effective local prevention and control measures. Early outbreak reports showed a classic epidemic pattern of transmission with sporadic outbreaks, with low to moderate numbers of cases, usually localized to urban centres and neighbouring regions, but occasionally spreading and causing larger epidemics. Trends in recent decades include: larger and more frequent outbreaks; geographic expansion of endemic transmission; spread of the disease from urban to peri-urban and rural areas; an increasing proportion of severe cases and deaths; and progression to hyperendemicity, particularly in large urban areas. The global picture of dengue in India is currently that of a largely endemic country. Understanding demographic differences in infection rates and severity of dengue has important implications for the planning and implementation of effective public health prevention and control measures and targeting of future vaccination campaigns.
Collapse
Affiliation(s)
- Anita Chakravarti
- Maulana Azad Medical College, Bahadur Shah Zafar Marg, New Delhi, Delhi, 10002, India
| | | | | |
Collapse
|
195
|
Recent emergence of dengue virus serotype 4 in French Polynesia results from multiple introductions from other South Pacific Islands. PLoS One 2011; 6:e29555. [PMID: 22216313 PMCID: PMC3247278 DOI: 10.1371/journal.pone.0029555] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/30/2011] [Indexed: 12/01/2022] Open
Abstract
Background Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. Methodology/Principal Findings Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009–2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. Conclusions/Significance This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs.
Collapse
|
196
|
Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 2011; 86:1853-61. [PMID: 22130539 DOI: 10.1128/jvi.06458-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events.
Collapse
|
197
|
The human antibody response to dengue virus infection. Viruses 2011; 3:2374-95. [PMID: 22355444 PMCID: PMC3280510 DOI: 10.3390/v3122374] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 12/11/2022] Open
Abstract
Dengue viruses (DENV) are the causative agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs) to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a “multi-hit” phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E) protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE), which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here we review results from human, animal and cell culture studies relevant to the ADE hypothesis. By understanding how human antibodies neutralize or enhance DENV, it will be possible to better evaluate existing vaccines and develop the next generation of novel vaccines.
Collapse
|
198
|
Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, Rantam FA, Soegijanto S, Konishi E. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PLoS One 2011; 6:e27322. [PMID: 22087290 PMCID: PMC3210158 DOI: 10.1371/journal.pone.0027322] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022] Open
Abstract
Indonesia has annually experienced approximately 100,000 reported cases of dengue fever (DF) and dengue hemorrhagic fever (DHF) in recent years. However, epidemiological surveys of dengue viruses (DENVs) have been limited in this country. In Surabaya, the second largest city, a single report indicated that dengue virus type 2 (DENV2) was the predominant circulating virus in 2003–2005. We conducted three surveys in Surabaya during: (i) April 2007, (ii) June 2008 to April 2009, and (iii) September 2009 to December 2010. A total of 231 isolates were obtained from dengue patients and examined by PCR typing. We found that the predominant DENV shifted from type 2 to type 1 between October and November 2008. Another survey using wild-caught mosquitoes in April 2009 confirmed that dengue type 1 virus (DENV1) was the predominant type in Surabaya. Phylogenetic analyses of the nucleotide sequences of the complete envelope gene of DENV1 indicated that all 22 selected isolates in the second survey belonged to genotype IV and all 17 selected isolates in the third survey belonged to genotype I, indicating a genotype shift between April and September 2009. Furthermore, in December 2010, isolates were grouped into a new clade of DENV1 genotype I, suggesting clade shift between September and December 2010. According to statistics reported by the Surabaya Health Office, the proportion of DHF cases among the total number of dengue cases increased about three times after the type shift in 2008. In addition, the subsequent genotype shift in 2009 was associated with the increased number of total dengue cases. This indicates the need for continuous surveillance of circulating viruses to predict the risk of DHF and DF.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Circulation of different lineages of dengue virus type 2 in Central America, their evolutionary time-scale and selection pressure analysis. PLoS One 2011; 6:e27459. [PMID: 22076162 PMCID: PMC3208639 DOI: 10.1371/journal.pone.0027459] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is caused by any of the four serotypes of dengue virus (DENV-1 to 4). Each serotype is genetically distant from the others, and each has been subdivided into different genotypes based on phylogenetic analysis. The study of dengue evolution in endemic regions is important since the diagnosis is often made by nucleic acid amplification tests, which depends upon recognition of the viral genome target, and natural occurring mutations can affect the performance of these assays. Here we report for the first time a detailed study of the phylogenetic relationships of DENV-2 from Central America, and report the first fully sequenced DENV-2 strain from Guatemala. Our analysis of the envelope (E) protein and of the open reading frame of strains from Central American countries, between 1999 and 2009, revealed that at least two lineages of the American/Asian genotype of DENV-2 have recently circulated in that region. In occasions the co-circulation of these lineages may have occurred and that has been suggested to play a role in the observed increased severity of clinical cases. Our time-scale analysis indicated that the most recent common ancestor for Central American DENV-2 of the American/Asian genotype existed about 19 years ago. Finally, we report positive selection in DENV-2 from Central America in codons of the genes encoding for C, E, NS2A, NS3, and NS5 proteins. Some of these identified codons are novel findings, described for the first time for any of the DENV-2 genotypes.
Collapse
|
200
|
Lee KS, Lo S, Tan SSY, Chua R, Tan LK, Xu H, Ng LC. Dengue virus surveillance in Singapore reveals high viral diversity through multiple introductions and in situ evolution. INFECTION GENETICS AND EVOLUTION 2011; 12:77-85. [PMID: 22036707 DOI: 10.1016/j.meegid.2011.10.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
Abstract
Dengue fever, a vector-borne disease, has caused tremendous burden to countries in the tropics and sub tropics. Over the past 20 years, dengue epidemics have become more widespread, severe and frequent. This study aims to understand the dynamics of dengue viruses in cosmopolitan Singapore. Envelope protein gene sequences of all four dengue serotypes (DENV-1-DENV-4) obtained from human sera in Singapore (2008-2010) revealed that constant viral introductions and in situ evolution contribute to viral diversity in Singapore and play important roles in shaping the epidemiology of dengue in the island state. The diversity of dengue viruses reported here could be a reflection of the on-going dengue situation in the region given Singapore's location in a dengue hyperendemic region and its role as the regional hub for travels and trade. Though cosmopolitan genotype of DENV-2 has remained as the predominant strain circulating in Singapore, we uncovered evidence of in situ evolution which could possibly result in viruses with improved fitness. While we have previously shown that a switch in the predominant dengue serotype could serve as a warning for an impending outbreak, our current data shows that a replacement of a predominant viral clade, even in the absence of a switch in predominant serotype, could signal a possible increase in dengue transmission. The circulating dengue viruses in Singapore are highly diverse, a situation which could offer ample opportunities for selection of strains of higher fitness, thus increasing the risk of outbreaks despite a low Aedes population.
Collapse
Affiliation(s)
- Kim-Sung Lee
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05/08 Helios Block, Singapore 138667, Singapore
| | | | | | | | | | | | | |
Collapse
|