151
|
Lujambio A. To clear, or not to clear (senescent cells)? That is the question. Bioessays 2017; 38 Suppl 1:S56-64. [PMID: 27417123 DOI: 10.1002/bies.201670910] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
Cellular senescence is an anti-proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell-autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non-cell-autonomous manner. These non-cell-autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence-associated secretory phenotype. One of the key functions of the senescence-associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti-cancer and anti-aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential.
Collapse
Affiliation(s)
- Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
152
|
Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med 2017; 23:1342-1351. [PMID: 29035366 PMCID: PMC5683421 DOI: 10.1038/nm.4418] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Cross-talk among oncogenic signaling and metabolic pathways may create
opportunities for novel therapeutic strategies in cancer. Here we show that
acute inhibition of EGFR-driven glucose metabolism induces minimal cell death,
yet lowers the apoptotic threshold in a subset of patient-derived glioblastoma
(GBM) cells. Mechanistic studies revealed that, following attenuated glucose
consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis.
Consequently, pharmacological stabilization of p53 with the brain-penetrant
small molecule, Idasanutlin, in combination with targeting EGFR-driven glucose
metabolism promoted synthetic lethality in orthotopic xenograft models. Notably,
neither inhibition of EGFR signaling, nor genetic analysis of
EGFR, was sufficient to predict sensitivity to this new
therapeutic combination. Conversely, rapid changes in
18F-fluorodeoxyglucose (18F-FDG) uptake using non-invasive
positron emission tomography was an effective predictive biomarker of response
in vivo. Together, these studies identify a critical link between oncogene
signaling, glucose metabolism, and cytoplasmic p53, which could be exploited for
combination therapy in GBM and potentially, other malignancies.
Collapse
|
153
|
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell 2017; 170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Citation(s) in RCA: 1372] [Impact Index Per Article: 171.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?
Collapse
Affiliation(s)
- Edward R Kastenhuber
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
154
|
Zebrafish in Translational Cancer Research: Insight into Leukemia, Melanoma, Glioma and Endocrine Tumor Biology. Genes (Basel) 2017; 8:genes8090236. [PMID: 28930163 PMCID: PMC5615369 DOI: 10.3390/genes8090236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past 15 years, zebrafish have emerged as a powerful tool for studying human cancers. Transgenic techniques have been employed to model different types of tumors, including leukemia, melanoma, glioblastoma and endocrine tumors. These models present histopathological and molecular conservation with their human cancer counterparts and have been fundamental for understanding mechanisms of tumor initiation and progression. Moreover, xenotransplantation of human cancer cells in embryos or adult zebrafish offers the advantage of studying the behavior of human cancer cells in a live organism. Chemical-genetic screens using zebrafish embryos have uncovered novel druggable pathways and new therapeutic strategies, some of which are now tested in clinical trials. In this review, we will report on recent advances in using zebrafish as a model in cancer studies—with specific focus on four cancer types—where zebrafish has contributed to novel discoveries or approaches to novel therapies.
Collapse
|
155
|
Stanisavljevic D, Petrovic I, Vukovic V, Schwirtlich M, Gredic M, Stevanovic M, Popovic J. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line. PLoS One 2017; 12:e0184686. [PMID: 28926586 PMCID: PMC5604970 DOI: 10.1371/journal.pone.0184686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
SOX14 is a member of the SOX family of transcription factors mainly involved in the regulation of neural development. Recently, it became evident that SOX14 is one of four hypermethylated genes in cervical carcinoma, considered as a tumor suppressor candidate in this type of malignancy. In this paper we elucidated the role of SOX14 in the regulation of malignant properties of cervical carcinoma cells in vitro. Functional analysis performed in HeLa cells revealed that SOX14 overexpression decreased viability and promoted apoptosis through altering the expression of apoptosis related genes. Our results demonstrated that overexpression of SOX14 initiated accumulation of p53, demonstrating potential cross-talk between SOX14 and the p53 signaling pathway. Further analysis unambiguously showed that SOX14 triggered posttranslational modification of p53 protein, as detected by the significantly increased level of phospho-p53 (Ser-15) in SOX14-overexpressing HeLa cells. Moreover, the obtained results revealed that SOX14 activated p53 protein, which was confirmed by elevated p21Waf1/Cip1, a well known target gene of p53. This study advances our understanding about the role of SOX14 and might explain the molecular mechanism by which this transcription factor could exert tumor suppressor properties in cervical carcinoma.
Collapse
Affiliation(s)
- Danijela Stanisavljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Isidora Petrovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladanka Vukovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Gredic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Popovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
156
|
Carraro M, Minervini G, Giollo M, Bromberg Y, Capriotti E, Casadio R, Dunbrack R, Elefanti L, Fariselli P, Ferrari C, Gough J, Katsonis P, Leonardi E, Lichtarge O, Menin C, Martelli PL, Niroula A, Pal LR, Repo S, Scaini MC, Vihinen M, Wei Q, Xu Q, Yang Y, Yin Y, Zaucha J, Zhao H, Zhou Y, Brenner SE, Moult J, Tosatto SCE. Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI. Hum Mutat 2017; 38:1042-1050. [PMID: 28440912 PMCID: PMC5561474 DOI: 10.1002/humu.23235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Correct phenotypic interpretation of variants of unknown significance for cancer-associated genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to test and define the state of the art of genotype-phenotype interpretation. Here, we present the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were assessed with a variety of accuracy measures for reliability in a medical context. Different assessment measures were combined in an overall ranking to provide more robust results. The R scripts used for assessment are publicly available from a GitHub repository for future use in similar assessment exercises. Despite a limited test-set size, our findings show a variety of results, with some methods performing significantly better. Methods combining different strategies frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy function measuring protein stability with an evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects can neutralize otherwise deleterious variants.
Collapse
Affiliation(s)
- Marco Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Manuel Giollo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
- Department of Genetics, Rutgers University, Piscataway, New Jersey
- Technical University of Munich Institute for Advanced Study (TUM-IAS), Garching/Munich, Germany
| | - Emidio Capriotti
- BioFolD Unit, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Roland Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Padua, Italy
| | - Pietro Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Carlo Ferrari
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol, UK
| | - Panagiotis Katsonis
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Emanuela Leonardi
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Olivier Lichtarge
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Padua, Italy
| | - Pier Luigi Martelli
- BioFolD Unit, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Abhishek Niroula
- Protein Structure and Bioinformatics Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lipika R Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | - Susanna Repo
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, Padua, Italy
| | - Mauno Vihinen
- Protein Structure and Bioinformatics Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Qiong Wei
- Biocomputing Group, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Qifang Xu
- Biocomputing Group, Department of Biological, Geological, and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| | - Yuedong Yang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, Queensland, Australia
| | - Yizhou Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, Maryland
| | - Jan Zaucha
- Department of Computer Science, University of Bristol, Bristol, UK
| | - Huiying Zhao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Gold Coast, Queensland, Australia
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, California
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
157
|
Pérez-Guijarro E, Day CP, Merlino G, Zaidi MR. Genetically engineered mouse models of melanoma. Cancer 2017; 123:2089-2103. [PMID: 28543694 DOI: 10.1002/cncr.30684] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
Abstract
Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
158
|
Zhang R, Wu X, Xia X, Khanniche A, Song F, Zhang B, Wang Y, Ge H. OVA12 promotes tumor growth by regulating p53 expression in human cancer cells. Oncotarget 2017; 8:52854-52865. [PMID: 28881777 PMCID: PMC5581076 DOI: 10.18632/oncotarget.17501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/10/2017] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer-associated antigen 12 (OVA12) was first identified in an ovarian carcinoma complementary DNA (cDNA) expression library and has been shown to play an important role in tumor growth. Here, we found that overexpression of OVA12 accelerated tumor growth in different tumor cells, whereas OVA12 depletion was associated with the opposite effect. Moreover, knocking down OVA12 led to a significant increase in the protein levels of p53, and the overexpression of OVA12 significantly decreased endogenous p53 levels. In addition, OVA12 stimulated p53 polyubiquitination and degradation by the proteasome and promoted tumor growth at least partially through the p53 pathway. Taken together, these results indicate that OVA12 is a negative regulator of p53 and that inhibition of OVA12 expression might serve as a therapeutic target to restore tumor suppression.
Collapse
Affiliation(s)
- Renfeng Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xicai Wu
- Clinical Laboratory, People's Hospital of Rizhao, Rizhao, China
| | - Xiangfeng Xia
- Department of Radiology, The Third People's Hospital of Rizhao, Rizhao, China
| | - Asma Khanniche
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifei Song
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Bingchang Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailiang Ge
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Gameiro SF, Kolendowski B, Zhang A, Barrett JW, Nichols AC, Torchia J, Mymryk JS. Human papillomavirus dysregulates the cellular apparatus controlling the methylation status of H3K27 in different human cancers to consistently alter gene expression regardless of tissue of origin. Oncotarget 2017; 8:72564-72576. [PMID: 29069809 PMCID: PMC5641152 DOI: 10.18632/oncotarget.19885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022] Open
Abstract
High-risk human papillomaviruses (HPV) cause cancer at multiple distinct anatomical locations. Regardless of the tissue of origin, most HPV positive (HPV+) cancers show highly upregulated expression of the p16 product of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene. Paradoxically, HPV+ tumor cells require continuous expression of this tumor suppressor for survival. Thus, restoration of normal p16 regulation has potential therapeutic value against HPV induced cancers. Normally, p16 transcription is tightly controlled at the epigenetic level via polycomb repressive complex-mediated tri-methylation of histone 3 lysine 27 (H3K27me3). Although a mechanism by which HPV induces p16 has been proposed based on tissue culture models, it has not been extensively validated in human tumors. In this study, we used data from over 800 human cervical and head and neck tumors from The Cancer Genome Atlas (TCGA) to test this model. We determined the impact of HPV status on expression from the CDKN2A locus, the adjacent CDKN2B locus, and transcript levels of key epigenetic regulators of these loci. As expected, HPV+ tumors from both anatomical sites exhibited high levels of p16. Furthermore, HPV+ tumors expressed higher levels of KDM6A, which demethylates H3K27me3. CpG methylation of the CDKN2A locus was also consistently altered in HPV+ tumors. This data validates previous tissue culture studies and identifies remarkable similarities between the effects of HPV on gene expression and DNA methylation in both cervical and oral tumors in large human cohorts. Furthermore, these results support a model whereby HPV-mediated dysregulation of CDKN2A transcription requires KDM6A, a potentially druggable target.
Collapse
Affiliation(s)
- Steven F Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bart Kolendowski
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Ali Zhang
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - John W Barrett
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Anthony C Nichols
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Joe Torchia
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada.,Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
160
|
Abstract
Malignant mesothelioma is a universally lethal cancer that is increasing in incidence worldwide. There is a dearth of effective therapies, with only one treatment (pemetrexed and cisplatin combination chemotherapy) approved in the past 13 years. However, the past 5 years have witnessed an exponential growth in our understanding of mesothelioma pathobiology, which is set to revolutionize therapeutic strategies. From a genomic standpoint, mesothelioma is characterized by a preponderance of tumour suppressor alterations, for which novel therapies are currently in development. Other promising antitumour agents include inhibitors against angiogenesis, mesothelin and immune checkpoints, which are at various phases of clinical trial testing.
Collapse
Affiliation(s)
- Timothy A Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joachim G Aerts
- Erasmus MC Cancer Institute, 3015 CE Rotterdam, The Netherlands
| | - Sanjay Popat
- Royal Marsden Hospital, London SW3 6JJ, UK
- National Heart and Lung Institute, Imperial College London SW3 6NP, UK
| | | |
Collapse
|
161
|
Yeom S, Kim SS, Jeong H, Jang KL. Hepatitis B virus X protein activates E3 ubiquitin ligase Siah-1 to control virus propagation via a negative feedback loop. J Gen Virol 2017; 98:1774-1784. [PMID: 28714848 DOI: 10.1099/jgv.0.000856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The seven in absentia homologue 1 (Siah-1) protein is an E3 ubiquitin ligase that induces ubiquitin-dependent proteasomal degradation of HBx, the principal regulatory protein of hepatitis B virus (HBV); however, its role in HBV propagation remains unknown. Here, we found that HBx upregulates Siah-1 levels in HepG2 but not in Hep3B cells, in which p53 is absent. For this effect, HBx sequentially activated ataxia telangiectasia mutated kinase and checkpoint kinase 2 via phosphorylation at the Ser-1981 and Thr-68 residues, respectively, which led to the activation of p53 via phosphorylation at the Ser-15 and Ser-20 residues. As a result, HBx was heavily ubiquitinated by Siah-1 and degraded by the ubiquitin-proteasome system in HepG2 cells, whereas this effect was marginal or undetectable in Hep3B cells. Knock-down of p53 in HepG2 cells downregulated Siah-1 levels and subsequently upregulated HBx levels, whereas ectopic p53 expression in Hep3B cells upregulated Siah-1 levels and subsequently downregulated HBx levels. In addition, Siah-1 knock-down impaired the ubiquitination and proteasomal degradation of HBx in HepG2 cells, whereas ectopic Siah-1 expression induced ubiquitin-dependent proteasomal degradation of HBx in Hep3B cells. The effects of HBx on p53 and Siah-1 were exactly reproduced in a 1.2-mer HBV replicon system, mimicking the natural course of HBV infection. In particular, Siah-1 knock-down upregulated the levels of HBx derived from the HBV replicon, resulting in an increase in HBV production. In conclusion, HBx modulates its own protein level via a negative feedback loop involving p53 and Siah-1 to control HBV propagation.
Collapse
Affiliation(s)
- Sujeong Yeom
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Soo Shin Kim
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
162
|
Lee S, Cho YE, Kim SH, Kim YJ, Park JH. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF. Oncotarget 2017; 8:16293-16302. [PMID: 27323397 PMCID: PMC5369963 DOI: 10.18632/oncotarget.9957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
The alternative reading frame protein (p14ARF/ARF) is a key determinant of cell fate, acting as a potent tumor suppressor through a p53/MDM2-dependent pathway or promoting apoptosis in a p53-independent manner. The ARF protein is mainly expressed in the nucleolus and sequestered by nucleophosmin (NPM), whereas ARF-binding proteins, including p53 and MDM2, predominantly reside in the nucleoplasm. This raises the question of how nucleolar ARF binds nucleoplasmic signaling proteins to suppress tumor growth or inhibit cell cycle progression. GLTSCR2 (also known as PICT-1) is a nucleolar protein involved in both tumor suppression and oncogenesis in concert with p53, NPM, and/or MYC. Here, we show that GLTSCR2 increases nucleoplasmic ARF translocation and its degradation. Specifically, GLTSCR2 bound to ARF, and GLTSCR2-ARF complexes were released to the nucleoplasm, where GLTSCR2 increased the binding affinity of ARF for ULF/TRIP12 (a nucleoplasmic E3-ubiquitin ligase of ARF) and enhanced ARF degradation through the polyubiquitination pathway. Our results demonstrate that nucleolar/nucleoplasmic GLTSCR2 is a strong candidate for promoting the subcellular localization and protein stability of ARF.
Collapse
Affiliation(s)
- Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Young-Eun Cho
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sang-Hoon Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Yong-Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Jae-Hoon Park
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
163
|
van Rooijen E, Fazio M, Zon LI. From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell Melanoma Res 2017; 30:402-412. [PMID: 28379616 PMCID: PMC6038924 DOI: 10.1111/pcmr.12592] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Melanoma is the most aggressive and deadliest form of skin cancer. A detailed knowledge of the cellular, molecular, and genetic events underlying melanoma progression is highly relevant to diagnosis, prognosis and risk stratification, and the development of new therapies. In the last decade, zebrafish have emerged as a valuable model system for the study of melanoma. Pathway conservation, coupled with the availability of robust genetic, transgenic, and chemical tools, has made the zebrafish a powerful model for identifying novel disease genes, visualizing cancer initiation, interrogating tumor-microenvironment interactions, and discovering new therapeutics that regulate melanocyte and melanoma development. In this review, we will give an overview of these studies, and highlight recent advancements that will help unravel melanoma pathogenesis and impact human disease.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- PhD program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
164
|
Small mitochondrial Arf (smArf) protein corrects p53-independent developmental defects of Arf tumor suppressor-deficient mice. Proc Natl Acad Sci U S A 2017; 114:7420-7425. [PMID: 28652370 DOI: 10.1073/pnas.1707292114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mouse p19Arf (human p14ARF) tumor suppressor protein, encoded in part from an alternative reading frame of the Ink4a (Cdkn2a) gene, inhibits the Mdm2 E3 ubiquitin ligase to activate p53. Arf is not expressed in most normal tissues of young mice but is induced by high thresholds of aberrant hyperproliferative signals, thereby activating p53 in incipient tumor cells that have experienced oncogene activation. The single Arf mRNA encodes two distinct polypeptides, including full-length p19Arf and N-terminally truncated and unstable p15smArf ("small mitochondrial Arf") initiated from an internal in-frame AUG codon specifying methionine-45. Interactions of p19Arf with Mdm2, or separately with nucleophosmin (NPM, B23) that localizes and stabilizes p19Arf within the nucleolus, require p19Arf N-terminal amino acids that are not present within p15smArf We have generated mice that produce either smARF alone or M45A-mutated (smArf-deficient) full-length p19Arf proteins. BCR-ABL-expressing pro/pre-B cells producing smArf alone are as oncogenic as their Arf-null counterparts in generating acute lymphoblastic leukemia when infused into unconditioned syngeneic mice. In contrast, smArf-deficient cells from mice of the ArfM45A strain are as resistant as wild-type Arf+/+ cells to comparable oncogenic challenge and do not produce tumors. Apart from being prone to tumor development, Arf-null mice are blind, and their male germ cells exhibit defects in meiotic maturation and sperm production. Although ArfM45A mice manifest the latter defects, smArf alone remarkably rescues both of these p53-independent developmental phenotypes.
Collapse
|
165
|
Madapura HS, Salamon D, Wiman KG, Lain S, Klein E, Nagy N. cMyc-p53 feedback mechanism regulates the dynamics of T lymphocytes in the immune response. Cell Cycle 2017; 15:1267-75. [PMID: 26985633 DOI: 10.1080/15384101.2016.1160975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation and proliferation of T cells are tightly regulated during the immune response. We show here that kinetics of proliferation of PHA activated T cells follows the expression of cMyc. Expression of p53 is also elevated and remains high several days after activation. To investigate the role of p53 in activated T cells, its expression was further elevated with nultin-3 treatment, a small molecule that dissociates the E3 ubiquitin protein ligase MDM2 from p53. Concomitantly, cMyc expression and proliferation decreased. At the other end of the cMyc-p53 axis, inhibition of cMyc with 10058-F4 led to down regulation of p53, likely through the lower level of cMyc induced p14ARF, which is also known to dissociate the p53-MDM2 complex. Both compounds induced cell cycle arrest and apoptosis. We conclude that the feedback regulation between cMyc and p53 is important for the T cell homeostasis. We also show that the two compounds modulating p53 and cMyc levels inhibited proliferation without abolishing the cytotoxic function, thus demonstrating the dichotomy between proliferation and cytotoxicity in activated T cells.
Collapse
Affiliation(s)
- Harsha S Madapura
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden.,b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Daniel Salamon
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Klas G Wiman
- b Department of Oncology-Pathology , Cancer Center Karolinska (CCK), Karolinska Institutet , Stockholm , Sweden
| | - Sonia Lain
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Eva Klein
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Noémi Nagy
- a Department of Microbiology , Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
166
|
Liu Y, Wang Y, Hu F, Sun H, Zhang Z, Wang X, Luo X, Zhu L, Huang R, Li Y, Li G, Li X, Lin S, Wang F, Liu Y, Rong J, Yuan H, Zhao Y. Multiple gene-specific DNA methylation in blood leukocytes and colorectal cancer risk: a case-control study in China. Oncotarget 2017; 8:61239-61252. [PMID: 28977860 PMCID: PMC5617420 DOI: 10.18632/oncotarget.18054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
The relationship between gene-specific DNA methylation in peripheral blood leukocytes and colorectal cancer (CRC) susceptibility is unclear. In this case-control study, the methylation status of a panel of 10 CRC-related genes in 428 CRC cases and 428 cancer-free controls were detected with methylation-sensitive high-resolution melting analysis. We calculated a weighted methylation risk score (MRS) that comprehensively combined the methylation status of the panel of 10 genes and found that the MRS_10 was significantly associated with CRC risk. Compared with MRS-Low group, MRS-High group and MRS-Medium group exhibited a 6.51-fold (95% CI, 3.77-11.27) and 3.85-fold (95% CI, 2.72-5.45) increased risk of CRC, respectively. Moreover, the CRC risk increased with increasing MRS_10 (Ptrend < 0.0001). Stratified analyses demonstrated that the significant association retained in both men and women, younger and older, and normal weight or underweight and overweight or obese subjects. The area under the receiver operating characteristic curves for the MRS_10 model was 69.04% (95% CI, 65.57-72.66%) and the combined EF and MRS_10 model yielded an AUC of 79.12% (95% CI, 76.22-82.15%). Together, the panel of 10 gene-specific DNA methylation in leukocytes was strongly associated with the risk of CRC and might be a useful marker of susceptibility for CRC.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yibaina Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fulan Hu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Zuoming Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xuan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xiang Luo
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Rong Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yan Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Guangxiao Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Xia Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Shangqun Lin
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Fan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yanhong Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Jiesheng Rong
- Department of Orthopedics Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Huiping Yuan
- Key Laboratory of Ophthalmology, Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin 150081, Heilongjiang Province, The People's Republic of China
| |
Collapse
|
167
|
Genetic and epigenetic alterations in meningiomas. Clin Neurol Neurosurg 2017; 158:119-125. [PMID: 28527972 DOI: 10.1016/j.clineuro.2017.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
Abstract
Meningiomas originate from the arachnoid layer of the meninges and divided histologically into three grades: benign (grade I), atypical (grade II), and malignant meningiomas (grade III). Genetic alterations in grade I meningiomas include frequent deletions of chromosomal locus 22q12 and NF2 gene mutations and uncommon somatic SMARCB1 and SMARCE1gene mutations; In grade II meningiomas, chromosomal losses occur on 1p, 22q, 14q, 18q, 10, and 6q, and gains on 20q, 12q, 15q, 1q, 9q, and 17q; In grade III meningiomas, losses have been recognized on 6q, 10, and 14q and alterations of PTEN, CDKN2A and CDKN2B genes. Epigenetic alterations in meningiomas include hypermethylation of the tumor suppressor genes p73 in grade I meningiomas and TIMP3 GSTP1, MEG3, HOXA6, HOXA9, PENK, WNK2 and UPK3A genes with an increasing frequency according to grade. Abnormal expression of IGF signaling family genes and Wnt signaling pathway is associated with meningioma progression. MiRNA expression profiling of meningiomas show downregulation of miR-29c-3p, miR-200a, miR-145 and miR- 219-5p and upregulation of miR-21 miR-335 and miR-190a levels. In conclusion, extensive genetic and epigenetic alterations exist in meningiomas that may help assessing prognosis. In addition, since miRNA expression may be modified by artificial miRNAs, new effective therapeutic strategies may be developed especially for resistant or high grade meningiomas.
Collapse
|
168
|
Lillycrop K, Murray R, Cheong C, Teh AL, Clarke-Harris R, Barton S, Costello P, Garratt E, Cook E, Titcombe P, Shunmuganathan B, Liew SJ, Chua YC, Lin X, Wu Y, Burdge GC, Cooper C, Inskip HM, Karnani N, Hopkins JC, Childs CE, Chavez CP, Calder PC, Yap F, Lee YS, Chong YS, Melton PE, Beilin L, Huang RC, Gluckman PD, Harvey N, Hanson MA, Holbrook JD, Godfrey KM. ANRIL Promoter DNA Methylation: A Perinatal Marker for Later Adiposity. EBioMedicine 2017; 19:60-72. [PMID: 28473239 PMCID: PMC5440605 DOI: 10.1016/j.ebiom.2017.03.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Experimental studies show a substantial contribution of early life environment to obesity risk through epigenetic processes. We examined inter-individual DNA methylation differences in human birth tissues associated with child's adiposity. We identified a novel association between the level of CpG methylation at birth within the promoter of the long non-coding RNA ANRIL (encoded at CDKN2A) and childhood adiposity at age 6-years. An association between ANRIL methylation and adiposity was also observed in three additional populations; in birth tissues from ethnically diverse neonates, in peripheral blood from adolescents, and in adipose tissue from adults. Additionally, CpG methylation was associated with ANRIL expression in vivo, and CpG mutagenesis in vitro inhibited ANRIL promoter activity. Furthermore, CpG methylation enhanced binding to an Estrogen Response Element within the ANRIL promoter. Our findings demonstrate that perinatal methylation at loci relevant to gene function may be a robust marker of later adiposity, providing substantial support for epigenetic processes in mediating long-term consequences of early life environment on human health.
Collapse
Affiliation(s)
- Karen Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert Murray
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
| | - Clara Cheong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Rebecca Clarke-Harris
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sheila Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Paula Costello
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Garratt
- NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eloise Cook
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Bhuvaneshwari Shunmuganathan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Samantha J Liew
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Yong-Cai Chua
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Xinyi Lin
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Yonghui Wu
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Hazel M Inskip
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - James C Hopkins
- Academic Unit of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline E Childs
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Carolina Paras Chavez
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore; Duke NUS Graduate School of Medicine, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Philip E Melton
- Centre for Genetics of Health and Disease, University of Western, Australia; Faculty of Health Science, Curtin University, Australia
| | - Lawrie Beilin
- School of Medicine and Pharmacology, University of Western Australia, Australia
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nick Harvey
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mark A Hanson
- NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), Singapore
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
169
|
Significance of Wild-Type p53 Signaling in Suppressing Apoptosis in Response to Chemical Genotoxic Agents: Impact on Chemotherapy Outcome. Int J Mol Sci 2017; 18:ijms18050928. [PMID: 28452953 PMCID: PMC5454841 DOI: 10.3390/ijms18050928] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Our genomes are subject to potentially deleterious alterations resulting from endogenous sources (e.g., cellular metabolism, routine errors in DNA replication and recombination), exogenous sources (e.g., radiation, chemical agents), and medical diagnostic and treatment applications. Genome integrity and cellular homeostasis are maintained through an intricate network of pathways that serve to recognize the DNA damage, activate cell cycle checkpoints and facilitate DNA repair, or eliminate highly injured cells from the proliferating population. The wild-type p53 tumor suppressor and its downstream effector p21WAF1 (p21) are key regulators of these responses. Although extensively studied for its ability to control cell cycle progression, p21 has emerged as a multifunctional protein capable of downregulating p53, suppressing apoptosis, and orchestrating prolonged growth arrest through stress-induced premature senescence. Studies with solid tumors and solid tumor-derived cell lines have revealed that such growth-arrested cancer cells remain viable, secrete growth-promoting factors, and can give rise to progeny with stem-cell-like properties. This article provides an overview of the mechanisms by which p53 signaling suppresses apoptosis following genotoxic stress, facilitating repair of genomic injury under physiological conditions but having the potential to promote tumor regrowth in response to cancer chemotherapy.
Collapse
|
170
|
Xi S, Zhao M, Wang S, Ma L, Wang S, Cong X, Gjerset RA, Fitzgerald RC, Huang Y. IRES-Mediated Protein Translation Overcomes Suppression by the p14ARF Tumor Suppressor Protein. J Cancer 2017; 8:1082-1088. [PMID: 28529622 PMCID: PMC5436262 DOI: 10.7150/jca.17457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/06/2017] [Indexed: 11/25/2022] Open
Abstract
Internal ribosome entry sites (IRES elements) have attracted interest in cancer gene therapy because they can be used in the design of gene transfer vectors that provide bicistronic co-expression of two transgene products under the control of a single promoter. Unlike cellular translation of most mRNAs, a process that requires a post-translational 5' modification of the mRNA known as the cap structure, IRES-mediated translation is independent of the cap structure. The cellular conditions that may intervene to modulate IRES-mediated, cap-independent versus cap-dependent translation, however, remain poorly understood, although they could be critical to the choice of gene transfer vectors. Here we have compared the effects of the p14ARF (Alternate Reading Frame) tumor suppressor, a translational suppressor frequently overexpressed in cancer, on cap-dependent translation versus cap-independent translation from the EMCV viral IRES often used in bicistronic gene transfer vectors. We find that ectopic overexpression of p14ARF suppresses endogenous and ectopic cap-dependent protein translation, consistent with other studies. However, p14ARF has little or no effect on transgene translation initiated within an IRES element. This suggests that transgenes placed downstream of an IRES element will retain efficient translation of their gene products in the presence of high levels of ectopic or endogenous p14ARF, a finding that could be particularly relevant to therapeutic gene therapy strategies for cancer.
Collapse
Affiliation(s)
- Song Xi
- College of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ming Zhao
- Torrey Pines Institute for Molecular Studies, San Diego CA, USA
| | - Si Wang
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ling Ma
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Shensen Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xianling Cong
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego CA, USA
| | | | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
171
|
Leachman SA, Lucero OM, Sampson JE, Cassidy P, Bruno W, Queirolo P, Ghiorzo P. Identification, genetic testing, and management of hereditary melanoma. Cancer Metastasis Rev 2017; 36:77-90. [PMID: 28283772 PMCID: PMC5385190 DOI: 10.1007/s10555-017-9661-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several distinct melanoma syndromes have been defined, and genetic tests are available for the associated causative genes. Guidelines for melanoma genetic testing have been published as an informal "rule of twos and threes," but these guidelines apply to CDKN2A testing and are not intended for the more recently described non-CDKN2A melanoma syndromes. In order to develop an approach for the full spectrum of hereditary melanoma patients, we have separated melanoma syndromes into two types: "melanoma dominant" and "melanoma subordinate." Syndromes in which melanoma is a predominant cancer type are considered melanoma dominant, although other cancers, such as mesothelioma or pancreatic cancers, may also be observed. These syndromes are associated with defects in CDKN2A, CDK4, BAP1, MITF, and POT1. Melanoma-subordinate syndromes have an increased but lower risk of melanoma than that of other cancer(s) seen in the syndrome, such as breast and ovarian cancer or Cowden syndrome. Many of these melanoma-subordinate syndromes are associated with well-established predisposition genes (e.g., BRCA1/2, PTEN). It is likely that these predisposition genes are responsible for the increased susceptibility to melanoma as well but with lower penetrance than that observed for the dominant cancer(s) in those syndromes. In this review, we describe our extension of the "rule of twos and threes" for melanoma genetic testing. This algorithm incorporates an understanding of the spectrum of cancers and genes seen in association with melanoma to create a more comprehensive and tailored approach to genetic testing.
Collapse
Affiliation(s)
- Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Olivia M Lucero
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jone E Sampson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Pamela Cassidy
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy.
| |
Collapse
|
172
|
Qiu M, Liang Z, Chen L, Tan G, Liu L, Wang K, Chen H, Liu J. MicroRNA-200c suppresses cell growth and metastasis by targeting Bmi-1 and E2F3 in renal cancer cells. Exp Ther Med 2017; 13:1329-1336. [PMID: 28413473 PMCID: PMC5377423 DOI: 10.3892/etm.2017.4147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the functions of miR-200c in the regulation of tumor growth and metastasis in renal cancer cells, and to investigate the underlying mechanisms. In this study, miR-200c was up- and downregulated in two renal cancer cell lines, namely ACHN and A498, and the proliferation, colony formation, migration and invasion of the cells were measured. The expression levels of various mRNAs and proteins were then analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. It was found that miR-200c suppressed proliferation, migration and invasion of the renal cancer cells and, conversely, the inhibition of endogenous miR-200c resulted in increased cell proliferation and metastasis. Furthermore, a luciferase reporter assay revealed that miR-200c directly targeted the 3' untranslated regions of the oncogenes B-cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1) and E2F transcription factor 3 (E2F3) mRNAs, reduced the expression of Bmi-1 and E2F3 and regulated the expression of downstream genes, including E-cadherin, N-cadherin, vimentin, p14 and p16. These results indicate a tumor suppressor role for miR-200c in renal cancer cells via the direct targeting of Bmi-1 and E2F3.
Collapse
Affiliation(s)
- Mingning Qiu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ziji Liang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lieqian Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Guobin Tan
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Lei Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Kangning Wang
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hege Chen
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jianjun Liu
- Laboratory of Urology, Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
173
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|
174
|
Nihira NT, Ogura K, Shimizu K, North BJ, Zhang J, Gao D, Inuzuka H, Wei W. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci Signal 2017; 10:10/466/eaai8026. [PMID: 28196907 DOI: 10.1126/scisignal.aai8026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abnormal activation of the oncogenic E3 ubiquitin ligase murine double minute 2 (MDM2) is frequently observed in human cancers. By ubiquitinating the tumor suppressor p53 protein, which leads to its proteasome-mediated destruction, MDM2 limits the tumor-suppressing activity of p53. On the other hand, by ubiquitinating itself, MDM2 targets itself for destruction and promotes the p53 tumor suppressor pathway, a process that can be antagonized by the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP). We investigated the regulation of MDM2 substrate specificity and found that acetyltransferase p300-mediated acetylation and stabilization of MDM2 are molecular switches that block self-ubiquitination, thereby shifting its E3 ligase activity toward p53. In vitro and in cancer cell lines, p300-mediated acetylation of MDM2 on Lys182 and Lys185 enabled HAUSP to bind, presumably deubiquitinate, and stabilize MDM2. This acetylation within the nuclear localization signal domain decreased its interaction with the acidic domain, subsequently increased the interaction between the acidic domain and RING domain in MDM2, enabled the binding of HAUSP to the acidic domain in MDM2, and shifted MDM2 activity from autoubiquitination to p53 ubiquitination. However, upon genotoxic stress through exposure to etoposide, the deacetylase sirtuin 1 (SIRT1) deacetylated MDM2 at Lys182 and Lys185, thereby promoting self-ubiquitination and less ubiquitination and subsequent degradation of p53, thus increasing p53-dependent apoptosis. Therefore, this study indicates that dynamic acetylation is a molecular switch in the regulation of MDM2 substrate specificity, revealing further insight into the posttranslational regulation of the MDM2/p53 cell survival axis.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
175
|
Tonks ID, Mukhopadhyay P, Schroder WA, Sorolla A, Mould AW, Handoko HY, Ferguson B, Muller HK, Keith P, Hayward NK, Walker GJ, Kay GF. Melanocyte transformation requires complete loss of all pocket protein function via a mechanism that mitigates the need for MAPK pathway activation. Oncogene 2017; 36:3789-3795. [DOI: 10.1038/onc.2016.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 01/23/2023]
|
176
|
Zhou X, Cao B, Lu H. Negative auto-regulators trap p53 in their web. J Mol Cell Biol 2017; 9:62-68. [PMID: 28069666 PMCID: PMC5907828 DOI: 10.1093/jmcb/mjx001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Accepted: 01/06/2017] [Indexed: 01/07/2023] Open
Abstract
The transcriptional factor p53 activates the expression of a myriad of target genes involving a complicated signalling network, resulting in various cellular outcomes, such as growth arrest, senescence, apoptosis, and metabolic changes, and leading to consequent suppression of tumour growth and progression. Because of the profoundly adverse effect of p53 on growth and proliferation of cancer cells, several feedback mechanisms have been employed by the cells to constrain p53 activity. Two major antagonists MDM2 and MDMX (the long forms) are transcriptionally induced by p53, but in return block p53 activity, forming a negative feedback circuit and rendering chemoresistance of several cancer cells. However, they are not alone, as cancer cells also employ other proteins encoded by p53 target genes to inhibit p53 activity at transcriptional, translational, and posttranslational levels. This essay is thus composed to review a recent progress in understanding the mechanisms for how cancer cells hijack the p53 autoregulation by these proteins for their growth advantage and to discuss the clinical implications of these autoregulatory loops.
Collapse
Affiliation(s)
- Xiang Zhou
- Fudan University Shanghai Cancer Center and the Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Cao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
177
|
Cholewa BD, Ndiaye MA, Huang W, Liu X, Ahmad N. Small molecule inhibition of polo-like kinase 1 by volasertib (BI 6727) causes significant melanoma growth delay and regression in vivo. Cancer Lett 2017; 385:179-187. [PMID: 27793694 PMCID: PMC5171235 DOI: 10.1016/j.canlet.2016.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023]
Abstract
The objective of this study was to determine the therapeutic potential of polo-like kinase 1 (Plk1) inhibition in melanoma, in vivo. Employing Vectra technology, we assessed the Plk1 expression profile in benign nevi, malignant (stages I-IV) and metastatic melanomas. We found a significant elevation of Plk1 immunostaining in melanoma tissues. Further, a second generation small molecule Plk1 inhibitor, BI 6727, resulted in reductions in growth, viability and clonogenic survival, as well as an increase in apoptosis of A375 and Hs 294T melanoma cells. BI 6727 treatment also resulted in a G2/M-as well as S-phase cell cycle arrest in melanoma cells. Importantly, BI 6727 (intravenous injection; 10 and 25 mg/kg body weight) treatment resulted in significant tumor growth delay and regression in vivo in A375-and Hs 294T-implanted xenografts in athymic nude mice. These anti-melanoma effects were accompanied with a decreased cellular proliferation (Ki-67 staining) and induction of apoptosis (caspase 3 activation). In addition, BI 6727 treatment caused a marked induction of p53 and p21 in vitro as well as in vivo. Overall, we suggest that Plk1 inhibition may be a useful approach as a monotherapy as well as in combination with other existing therapeutics, for melanoma management.
Collapse
Affiliation(s)
- Brian D Cholewa
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN 47907, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; William S. Middleton VA Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
178
|
Lorenz S, Barøy T, Sun J, Nome T, Vodák D, Bryne JC, Håkelien AM, Fernandez-Cuesta L, Möhlendick B, Rieder H, Szuhai K, Zaikova O, Ahlquist TC, Thomassen GOS, Skotheim RI, Lothe RA, Tarpey PS, Campbell P, Flanagan A, Myklebost O, Meza-Zepeda LA. Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget 2017; 7:5273-88. [PMID: 26672768 PMCID: PMC4868685 DOI: 10.18632/oncotarget.6567] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022] Open
Abstract
In contrast to many other sarcoma subtypes, the chaotic karyotypes of osteosarcoma have precluded the identification of pathognomonic translocations. We here report hundreds of genomic rearrangements in osteosarcoma cell lines, showing clear characteristics of microhomology-mediated break-induced replication (MMBIR) and end-joining repair (MMEJ) mechanisms. However, at RNA level, the majority of the fused transcripts did not correspond to genomic rearrangements, suggesting the involvement of trans-splicing, which was further supported by typical trans-splicing characteristics. By combining genomic and transcriptomic analysis, certain recurrent rearrangements were identified and further validated in patient biopsies, including a PMP22-ELOVL5 gene fusion, genomic structural variations affecting RB1, MTAP/CDKN2A and MDM2, and, most frequently, rearrangements involving TP53. Most cell lines (7/11) and a large fraction of tumor samples (10/25) showed TP53 rearrangements, in addition to somatic point mutations (6 patient samples, 1 cell line) and MDM2 amplifications (2 patient samples, 2 cell lines). The resulting inactivation of p53 was demonstrated by a deficiency of the radiation-induced DNA damage response. Thus, TP53 rearrangements are the major mechanism of p53 inactivation in osteosarcoma. Together with active MMBIR and MMEJ, this inactivation probably contributes to the exceptional chromosomal instability in these tumors. Although rampant rearrangements appear to be a phenotype of osteosarcomas, we demonstrate that among the huge number of probable passenger rearrangements, specific recurrent, possibly oncogenic, events are present. For the first time the genomic chaos of osteosarcoma is characterized so thoroughly and delivered new insights in mechanisms involved in osteosarcoma development and may contribute to new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Susanne Lorenz
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Tale Barøy
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jinchang Sun
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Torfinn Nome
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodák
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Jan-Christian Bryne
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Anne-Mari Håkelien
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Lynnette Fernandez-Cuesta
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, University of Cologne, Cologne, Germany.,Genetic Cancer Susceptibility Group, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Birte Möhlendick
- Institute for Human Genetics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Harald Rieder
- Institute for Human Genetics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Olga Zaikova
- Clinic for Cancer, Surgery and Transplantation, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Terje C Ahlquist
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gard O S Thomassen
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Molecular Oncology, Institute for Cancer research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Adrienne Flanagan
- Royal National Orthopaedic Hospital, Middlesex, UK.,UCL Cancer Institute, University College London, London, UK
| | - Ola Myklebost
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway.,Norwegian Cancer Genomics Consortium, Norway
| |
Collapse
|
179
|
Zhang Y, Han D, Yu P, Huang Q, Ge P. Genome-scale transcriptional analysis reveals key genes associated with the development of type II diabetes in mice. Exp Ther Med 2017; 13:1044-1150. [PMID: 28450939 DOI: 10.3892/etm.2017.4042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/09/2016] [Indexed: 11/06/2022] Open
Abstract
Diabetes mellitus is one of the primary diseases that pose a threat to human health. The focus of the present study is type II diabetes (T2D), which is caused by obesity and is the most prevalent type of diabetes. However, genome-scale transcriptional analysis of diabetic liver in the development process of T2D is yet to be further elucidated. Microassays were performed on liver tissue samples from three-, six- and nine-week-old db/db mice with diabetes and db/m mice to investigate differentially expressed mRNA. Based on the results of genome-scale transcriptional analysis, five genes were screened in the present study: chromobox 8 (CBX8), de-etiolated homolog 1 and damage specific DNA binding protein 1 associated 1 (DDA1), Phosphoinositide-3-kinase regulatory subunit 6 (PIK3R6), WD repeat domain 41 (WDR41) and Glycine Amidinotransferase (GATM). At three weeks of age, no significant differences in levels or ratios of expression were observed. However, at six and nine weeks, expression of CBX8, DDA1, PIK3R6 and WDR41 was significantly upregulated (P<0.05) in the db/db model group compared with the control group, whereas GATM expression was significantly downregulated (P<0.05). These results suggest that T2D-related differential expression of genes becomes more marked with age, which was confirmed via reverse transcription-quantitative polymerase chain reaction. Genome-scale transcriptional analysis in diabetic mice provided a novel insight into the molecular. events associated with the role of mRNAs in T2D development, with specific emphasis upon CBX8, DDA1, PIK3R6, GATM and WDR41. The results of the present study may provide rationale for the investigation of the target genes of these mRNAs in future studies.
Collapse
Affiliation(s)
- Yuchi Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Dongwei Han
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Pengyang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Qijing Huang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Pengling Ge
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University of Chinese Ministry of Education, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
180
|
Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. ACTA ACUST UNITED AC 2017; 6:65-74. [PMID: 28713664 DOI: 10.7600/jpfsm.6.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of muscle is undertaken by muscle stem cell populations named satellite cells which are normally quiescent or at the G0 phase of the cell cycle. However, upon signals from damaged muscle, satellite cells lose their quiescence, and enter the G1 cell cycle phase to expand the population of satellite cell progenies termed myogenic precursor cells (MPCs). Eventually, MPCs stop their cell cycle and undergo terminal differentiation to form skeletal muscle fibers. Some MPCs retract to quiescent satellite cells as a self-renewal process. Therefore, cell cycle regulation, consisting of satellite cell activation, proliferation, differentiation and self-renewal, is the key event of muscle regeneration. In this review, we summarize up-to-date progress on research about cell cycle regulation of myogenic progenitor cells and muscle stem cells during embryonic myogenesis and adult muscle regeneration, aging, exercise and muscle diseases including muscular dystrophy and muscle fiber atrophy, especially focusing on cyclin-dependent kinase inhibitors (CDKIs).
Collapse
Affiliation(s)
- Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| |
Collapse
|
181
|
RUNX3 and p53: How Two Tumor Suppressors Cooperate Against Oncogenic Ras? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:321-332. [PMID: 28299666 DOI: 10.1007/978-981-10-3233-2_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RUNX family members play pivotal roles in both normal development and neoplasia. In particular, RUNX1 and RUNX2 are essential for determination of the hematopoietic and osteogenic lineages, respectively. RUNX3 is involved in lineage determination of various types of epithelial cells. Analysis of mouse models and human cancer specimens revealed that RUNX3 acts as a tumor suppressor via multiple mechanisms. p53-related pathways play central roles in tumor suppression through the DNA damage response and oncogene surveillance, and RUNX3 is involved in both processes. In response to DNA damage, RUNX3 facilitates p53 phosphorylation by the ATM/ATR pathway and p53 acetylation by p300. When oncogenes are activated, RUNX3 induces ARF, thereby stabilizing p53. Here, we summarize the molecular mechanisms underlying the p53-mediated tumor-suppressor activity of RUNX3.
Collapse
|
182
|
Campa D, Capurso G, Pastore M, Talar-Wojnarowska R, Milanetto AC, Landoni L, Maiello E, Lawlor RT, Malecka-Panas E, Funel N, Gazouli M, De Bonis A, Klüter H, Rinzivillo M, Delle Fave G, Hackert T, Landi S, Bugert P, Bambi F, Archibugi L, Scarpa A, Katzke V, Dervenis C, Liço V, Furlanello S, Strobel O, Tavano F, Basso D, Kaaks R, Pasquali C, Gentiluomo M, Rizzato C, Canzian F. Common germline variants within the CDKN2A/2B region affect risk of pancreatic neuroendocrine tumors. Sci Rep 2016; 6:39565. [PMID: 28008994 PMCID: PMC5180167 DOI: 10.1038/srep39565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are heterogeneous neoplasms which represent only 2% of all pancreatic neoplasms by incidence, but 10% by prevalence. Genetic risk factors could have an important role in the disease aetiology, however only a small number of case control studies have been performed yet. To further our knowledge, we genotyped 13 SNPs belonging to the pleiotropic CDKN2A/B gene region in 320 PNET cases and 4436 controls, the largest study on the disease so far. We observed a statistically significant association between the homozygotes for the minor allele of the rs2518719 SNP and an increased risk of developing PNET (ORhom = 2.08, 95% CI 1.05-4.11, p = 0.035). This SNP is in linkage disequilibrium with another polymorphic variant associated with increased risk of several cancer types. In silico analysis suggested that the SNP could alter the sequence recognized by the Neuron-Restrictive Silencer Factor (NRSF), whose deregulation has been associated with the development of several tumors. The mechanistic link between the allele and the disease has not been completely clarified yet but the epidemiologic evidences that link the DNA region to increased cancer risk are convincing. In conclusion, our results suggest rs2518719 as a pleiotropic CDKN2A variant associated with the risk of developing PNETs.
Collapse
Affiliation(s)
- Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - Manuela Pastore
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Anna Caterina Milanetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), Pancreatic and Digestive Endocrine Surgery, University of Padova, Padova, Italy
| | - Luca Landoni
- Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Evaristo Maiello
- Department of Oncology, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Rita T. Lawlor
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Ewa Malecka-Panas
- Dept of Digestive Tract Diseases, Medical University of Lodz, Poland
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School National and Kapodistrian University of Athens, Greece
| | - Antonio De Bonis
- Department of Surgery, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Harald Klüter
- Mannheim Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Maria Rinzivillo
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - Thilo Hackert
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Peter Bugert
- Mannheim Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Florence, Italy
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - Aldo Scarpa
- ARC-NET: Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christos Dervenis
- Department of Surgery, Konstantopouleion General Hospital Nea Ionia, Greece
| | - Valbona Liço
- Department of Surgery, Oncology and Gastroenterology (DISCOG), Pancreatic and Digestive Endocrine Surgery, University of Padova, Padova, Italy
| | - Sara Furlanello
- Department of Medicine (DIMED), Laboratory Medicine, University of Padova, Padova, Italy
| | - Oliver Strobel
- Department of General Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Daniela Basso
- Department of Medicine (DIMED), Laboratory Medicine, University of Padova, Padova, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology (DISCOG), Pancreatic and Digestive Endocrine Surgery, University of Padova, Padova, Italy
| | | | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
183
|
Catani JPP, Medrano RFV, Hunger A, Del Valle P, Adjemian S, Zanatta DB, Kroemer G, Costanzi-Strauss E, Strauss BE. Intratumoral Immunization by p19Arf and Interferon-β Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma. Transl Oncol 2016; 9:565-574. [PMID: 27916291 PMCID: PMC5143354 DOI: 10.1016/j.tranon.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-β (IFNβ) in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFNβ significantly induced markers of immunogenic cell death. In situ gene therapy with IFNβ, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when using microarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1α, IL1β, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFNβ acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.
Collapse
Affiliation(s)
- João Paulo Portela Catani
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Ruan F V Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Paulo Del Valle
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Sandy Adjemian
- Laboratory of Cell and Molecular Biology, Department of Immunology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Daniela Bertolini Zanatta
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; U1138, INSERM, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Eugenia Costanzi-Strauss
- Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of Sao Paulo/LIM 24, University of São Paulo School of Medicine, Brazil.
| |
Collapse
|
184
|
Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 2016; 5:707-724. [PMID: 28690977 PMCID: PMC5501481 DOI: 10.21037/tcr.2016.11.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The p53 tumor suppressor acts as a guardian of the genome in mammalian cells undergoing DNA double strand breaks induced by a various forms of cell stress, including inappropriate growth signals or ionizing radiation. Following damage, p53 protein levels become greatly elevated in cells and p53 functions primarily as a transcription factor to regulate the expression a wide variety of genes that coordinate this DNA damage response. In cells undergoing high amounts of DNA damage, p53 can promote apoptosis, whereas in cells undergoing less damage, p53 promotes senescence or transient cell growth arrest and the expression of genes involved in DNA repair, depending upon the cell type and level of damage. Failure of the damaged cell to undergo growth arrest or apoptosis, or to respond to the DNA damage by other p53-coordinated mechanisms, can lead to inappropriate cell growth and tumorigenesis. In cells that have successfully responded to genetic damage, the amount of p53 present in the cell must return to basal levels in order for the cell to resume normal growth and function. Although regulation of p53 levels and function is coordinated by many proteins, it is now widely accepted that the master regulator of p53 is Mdm2. In this review, we discuss the role(s) of p53 in the DNA damage response and in tumor suppression, and how post-translational modification of Mdm2 regulates the Mdm2-p53 signaling axis to govern p53 activities in the cell.
Collapse
Affiliation(s)
- Michael I Carr
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
185
|
Yang K, Wang M, Zhao Y, Sun X, Yang Y, Li X, Zhou A, Chu H, Zhou H, Xu J, Wu M, Yang J, Yi J. A redox mechanism underlying nucleolar stress sensing by nucleophosmin. Nat Commun 2016; 7:13599. [PMID: 27886181 PMCID: PMC5133708 DOI: 10.1038/ncomms13599] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022] Open
Abstract
The nucleolus has been recently described as a stress sensor. The nucleoplasmic translocation of nucleolar protein nucleophosmin (NPM1) is a hallmark of nucleolar stress; however, the causes of this translocation and its connection to p53 activation are unclear. Using single live-cell imaging and the redox biosensors, we demonstrate that nucleolar oxidation is a general response to various cellular stresses. During nucleolar oxidation, NPM1 undergoes S-glutathionylation on cysteine 275, which triggers the dissociation of NPM1 from nucleolar nucleic acids. The C275S mutant NPM1, unable to be glutathionylated, remains in the nucleolus under nucleolar stress. Compared with wild-type NPM1 that can disrupt the p53–HDM2 interaction, the C275S mutant greatly compromises the activation of p53, highlighting that nucleoplasmic translocation of NPM1 is a prerequisite for stress-induced activation of p53. This study elucidates a redox mechanism for the nucleolar stress sensing and may help the development of therapeutic strategies. Nucleoplasmic translocation of NPM1 is integral to nucleolar stress sensing. Here, the authors show that nucleolar oxidation is a general cellular stress response, and that oxidation-related glutathionylation of NPM1 triggers its translocation and facilitates p53 activation.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ming Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuzheng Zhao
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xuxu Sun
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xie Li
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Aiwu Zhou
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Huilin Chu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, 555 Zu Chong Zhi Road, Zhang Jiang Hi-Tech Park, Shanghai 201203, China
| | - Jianrong Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Mian Wu
- School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230022, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
186
|
NMDARs Adapt to Neurotoxic HIV Protein Tat Downstream of a GluN2A-Ubiquitin Ligase Signaling Pathway. J Neurosci 2016; 36:12640-12649. [PMID: 27810933 DOI: 10.1523/jneurosci.2980-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorder (HAND) affects approximately half of HIV-infected patients. Infected non-neuronal cells release neurotoxic factors such as the viral protein transactivator of transcription (Tat) that potentiate NMDAR function. NMDARs regulate synaptic changes observed after exposure to HIV proteins, which may underlie cognitive impairment in HAND patients. Here, we used patch-clamp recording to measure NMDAR-mediated currents in rat hippocampal cultures after exposure to Tat. Tat (4-16 h) potentiated NMDA-evoked whole-cell current and increased the NMDAR:AMPAR ratio of evoked EPSCs. Potentiated currents adapted back to baseline amplitudes after 24 h of exposure to Tat. Pharmacological inhibition of GluN2A-containing NMDARs prevented adaptation, but inhibition of GluN2B-containing NMDARs did not. Pharmacological and genetic approaches determined that potentiated NMDARs activated the kinase Akt, which then activated the E3 ubiquitin ligase Mdm2. Inhibition of protein synthesis prevented adaptation, suggesting that Mdm2 altered gene expression, possibly through its well known target p53. Expression of GFP-tagged GluN1 subunits resulted in fluorescent puncta that colocalized with synaptic markers. Tat (24 h) caused an Mdm2-dependent loss of NMDAR puncta on a timescale similar to adaption of NMDAR function. Activation of the Mdm2 pathway degrades PSD-95, a scaffolding protein that clusters NMDARs at the synapse and enhances their function. Adaptation to the continued presence of excitotoxins that potentiate NMDARs such as HIV Tat may protect from excessive NMDAR activation while also contributing to the synaptic loss that correlates with cognitive decline in HAND. SIGNIFICANCE STATEMENT Synaptodendritic damage correlates with cognitive decline in HIV-associated neurocognitive disorder (HAND). In a cell culture model, we show that the HIV protein transactivator of transcription (Tat) initially potentiates NMDARs that then adapt to the presence of the toxin. Adaptation of NMDAR function was mediated by a GluN2A/Akt/Mdm2 pathway not previously linked to neuroinflammatory disorders such as HAND. Activation of this pathway caused a loss of synaptic NMDAR clusters. Decreased NMDAR function may result from a homeostatic response gone awry and underlie impaired synaptic function in HAND.
Collapse
|
187
|
|
188
|
Hernández-Monge J, Rousset-Roman AB, Medina-Medina I, Olivares-Illana V. Dual function of MDM2 and MDMX toward the tumor suppressors p53 and RB. Genes Cancer 2016; 7:278-287. [PMID: 28050229 PMCID: PMC5115168 DOI: 10.18632/genesandcancer.120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The orchestrated crosstalk between the retinoblastoma (RB) and p53 pathways contributes to preserving proper homeostasis within the cell. The deregulation of one or both pathways is a common factor in the development of most types of human cancer. The proto-oncoproteins MDMX and MDM2 are the main regulators of the well- known tumor suppressor p53 protein. Under normal conditions, MDM2 and MDMX inhibit p53, either via repression of its transcriptional activity by protein-protein interaction, or via polyubiquitination as a result of MDM2-E3 ubiquitin ligase activity, for which MDM2 needs to dimerize with MDMX. Under genotoxic stress conditions, both become positive regulators of p53. The ATM-dependent phosphorylation of MDM2 and MDMX allow them to bind p53 mRNA, these interactions promote p53 translation. MDM2 and MDMX are also being revealed as effective regulators of the RB protein. MDM2 is able to degrade RB by two different mechanisms, that is, by ubiquitin dependent and independent pathways. MDMX enhances the ability of MDM2 to bind and degrade RB protein. However, MDMX also seems to stabilize RB through interaction and competition with MDM2. Here, we will contextualize the findings that suggest that the MDM2 and MDMX proteins have a dual function on both p53 and RB.
Collapse
Affiliation(s)
- Jesús Hernández-Monge
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Adriana Berenice Rousset-Roman
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Ixaura Medina-Medina
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| | - Vanesa Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Av Manuel Nava No 6 Zona Universitaria CP 78290. SLP, México
| |
Collapse
|
189
|
Azzopardi S, Pang S, Klimstra DS, Du YCN. p53 and p16 Ink4a/p19 Arf Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells. Neoplasia 2016; 18:610-617. [PMID: 27664376 PMCID: PMC5035259 DOI: 10.1016/j.neo.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 12/19/2022] Open
Abstract
In human studies and mouse models, the contributions of p53 and p16Ink4a/p19Arf loss are well established in pancreatic ductal adenocarcinoma (PDAC). Although loss of functional p53 pathway and loss of Ink4a/Arf in human pancreatic acinar cell carcinoma (PACC) and pancreatic neuroendocrine tumor (PanNET) are identified, their direct roles in tumorigenesis of PACC and PanNET remain to be determined. Using transgenic mouse models expressing the viral oncogene polyoma middle T antigen (PyMT), we demonstrate that p53 loss in pancreatic Pdx1+ progenitor cells results in aggressive PACC, whereas Ink4a/Arf loss results in PanNETs. Concurrent loss of p53 and Ink4a/Arf resembles loss of p53 alone, suggesting that Ink4a/Arf loss has no additive effect to PACC progression. Our results show that specific tumor suppressor genotypes provocatively influence the tumor biological phenotypes in pancreatic progenitor cells. Additionally, in a mouse model of β-cell hyperplasia, we demonstrate that p53 and Ink4a/Arf play cooperative roles in constraining the progression of PanNETs.
Collapse
Affiliation(s)
- Stephanie Azzopardi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sharon Pang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
190
|
Liu S, Tackmann NR, Yang J, Zhang Y. Disruption of the RP-MDM2-p53 pathway accelerates APC loss-induced colorectal tumorigenesis. Oncogene 2016; 36:1374-1383. [PMID: 27617574 PMCID: PMC5693310 DOI: 10.1038/onc.2016.301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022]
Abstract
Inactivation of the adenomatous polyposis coli (APC) tumor suppressor is frequently found in colorectal cancer. Loss of APC function results in deregulation of the Wnt/β-catenin signaling pathway causing overexpression of the c-MYC oncogene. In lymphoma, both p19ARF and ribosomal proteins RPL11 and RPL5 respond to c-MYC activation to induce p53. Their role in c-MYC-driven colorectal carcinogenesis is unclear, as p19ARF deletion does not accelerate APC loss-triggered intestinal tumorigenesis. To determine the contribution of the RP-MDM2-p53 pathway to APC loss-induced tumorigenesis, we crossed mice bearing MDM2C305F mutation, which disrupts RPL11- and RPL5-MDM2 binding, with Apcmin/+ mice, which are prone to intestinal tumor formation. Interestingly, loss of RP-MDM2 binding significantly accelerated colorectal tumor formation while having no discernable effect on small intestinal tumor formation. Mechanistically, APC loss leads to overexpression of c-MYC, RPL11 and RPL5 in mouse colonic tumor cells irrespective of MDM2C305F mutation. However, notable p53 stabilization and activation were observed only in Apcmin/+;Mdm2+/+ but not Apcmin/+;Mdm2C305F/C305F colon tumors. These data establish that the RP-MDM2-p53 pathway, in contrast to the p19ARF-MDM2-p53 pathway, is a critical mediator of colorectal tumorigenesis following APC loss.
Collapse
Affiliation(s)
- S Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N R Tackmann
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Yang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Y Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
191
|
Abstract
Malignant melanoma is a rare, often fatal form of skin cancer with a complex multigenic etiology. The incidence of melanoma is increasing at an alarming rate. A number of heritable factors contribute to a patient's overall melanoma risk, including response to ultraviolet light, nevus number, and pigmentation characteristics, such as eye and hair color. Approximately 5%-10% of melanoma cases are familial, yet the majority of familial cases lack identifiable germ-line mutations in known susceptibility genes. Additionally, most familial melanomas lack germ-line mutations in genes that are commonly mutated in sporadic melanoma. Candidate and systematic genome-wide association studies have led to an improved understanding of the risk factors for melanoma and the identification of susceptibility genes. In this review, we provide an overview of the major risk factors and known genes implicated in familial melanoma susceptibility.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Amanda Truong
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Laurence J Meyer
- Department of Dermatology, University of Utah, Salt Lake City, UT; Veterans Administration Hospital, Salt Lake City, UT.
| |
Collapse
|
192
|
Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, Neoptolemos JP, Niesen W, Vodicka P, Fave GD, Bueno-de-Mesquita HB, Gazouli M, Pacetti P, Di Leo M, Ito H, Klüter H, Soucek P, Corbo V, Yamao K, Hosono S, Kaaks R, Vashist Y, Gioffreda D, Strobel O, Shimizu Y, Dijk F, Andriulli A, Ivanauskas A, Bugert P, Tavano F, Vodickova L, Zambon CF, Lovecek M, Landi S, Key TJ, Boggi U, Pezzilli R, Jamroziak K, Mohelnikova-Duchonova B, Mambrini A, Bambi F, Busch O, Pazienza V, Valente R, Theodoropoulos GE, Hackert T, Capurso G, Cavestro GM, Pasquali C, Basso D, Sperti C, Matsuo K, Büchler M, Khaw KT, Izbicki J, Costello E, Katzke V, Michalski C, Stepien A, Rizzato C, Canzian F. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk. Oncotarget 2016; 7:57011-57020. [PMID: 27486979 PMCID: PMC5302969 DOI: 10.18632/oncotarget.10935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/13/2016] [Indexed: 02/05/2023] Open
Abstract
The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
Collapse
Affiliation(s)
- Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Pastore
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Gentiluomo
- Department of Biology, University of Pisa, Pisa, Italy
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Juozas Kupcinskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - John P. Neoptolemos
- Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Willem Niesen
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - H. Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Pacetti
- Oncological Department Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Milena Di Leo
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hidemi Ito
- Division Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg – Hessen gGmbH, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Pavel Soucek
- Laboratory of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Vincenzo Corbo
- ARC-Net Research Centre, and Department of Diagnostics and Public Health University and Hospital Trust of Verona, Verona, Italy
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Satoyo Hosono
- Division Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Frederike Dijk
- Department of Pathology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Angelo Andriulli
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Audrius Ivanauskas
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg – Hessen gGmbH, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Ludmila Vodickova
- Institute of Biology and Medical Genetics, 1 Medical Faculty, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | | | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Timothy J. Key
- Epidemiology Unit Nuffield Department of Population Health University of Oxford, Oxford, UK
| | - Ugo Boggi
- Division of General and Transplant Surgery, Pisa University Hospital, Pisa, Italy
| | - Raffaele Pezzilli
- Pancreas Unit, Department of Digestive System, Dant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Beatrice Mohelnikova-Duchonova
- Laboratory of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Andrea Mambrini
- Oncological Department Massa Carrara Azienda USL Toscana Nord Ovest, Carrara, Italy
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero Universitaria Meyer, Florence, Italy
| | - Olivier Busch
- Department of Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Valerio Pazienza
- Division of Gastroenterology and Research Laboratory, IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Italy
| | - Roberto Valente
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - George E. Theodoropoulos
- Colorectal Unit, First Department of Propaedeutic Surgery, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, ‘Sapienza’ University of Rome, Rome, Italy
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Pasquali
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy
| | - Daniela Basso
- Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Cosimo Sperti
- Department of Surgery, Oncology and Gastroenterology-DiSCOG, University of Padova, Padova, Italy
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, Addenbrooke's Hospital, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Jakob Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eithne Costello
- Institute for Health Research Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Michalski
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Stepien
- Laboratory of Clinical, Transplant Immunology and Genetics, Copernicus Memorial Hospital, Lodz, Poland
| | - Cosmeri Rizzato
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
193
|
Wasylishen AR, Lozano G. Attenuating the p53 Pathway in Human Cancers: Many Means to the Same End. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026211. [PMID: 27329033 DOI: 10.1101/cshperspect.a026211] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 pathway is perturbed in the majority of human cancers. Although this most frequently occurs through the direct mutation or deletion of p53 itself, there are a number of other alterations that can attenuate the pathway and contribute to tumorigenesis. For example, amplification of important negative regulators, MDM2 and MDM4, occurs in a number of cancers. In this work, we will review both the normal regulation of the p53 pathway and the different mechanisms of pathway inhibition in cancer, discuss these alterations in the context of the global genomic analyses that have been conducted across tumor types, and highlight the translational implications for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
194
|
Zhou X, Hao Q, Liao P, Luo S, Zhang M, Hu G, Liu H, Zhang Y, Cao B, Baddoo M, Flemington EK, Zeng SX, Lu H. Nerve growth factor receptor negates the tumor suppressor p53 as a feedback regulator. eLife 2016; 5. [PMID: 27282385 PMCID: PMC4943851 DOI: 10.7554/elife.15099] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
Cancer develops and progresses often by inactivating p53. Here, we unveil nerve growth factor receptor (NGFR, p75NTR or CD271) as a novel p53 inactivator. p53 activates NGFR transcription, whereas NGFR inactivates p53 by promoting its MDM2-mediated ubiquitin-dependent proteolysis and by directly binding to its central DNA binding domain and preventing its DNA-binding activity. Inversely, NGFR ablation activates p53, consequently inducing apoptosis, attenuating survival, and reducing clonogenic capability of cancer cells, as well as sensitizing human cancer cells to chemotherapeutic agents that induce p53 and suppressing mouse xenograft tumor growth. NGFR is highly expressed in human glioblastomas, and its gene is often amplified in breast cancers with wild type p53. Altogether, our results demonstrate that cancers hijack NGFR as an oncogenic inhibitor of p53. DOI:http://dx.doi.org/10.7554/eLife.15099.001 Cancer often develops as a result of alterations to “tumor suppressor” genes within cells. This results in the cells growing and dividing too much, which causes a tumor to form. One of the most important tumor suppressor genes produces a protein called p53, which is lost or mutated in roughly half of all human cancers. In the other half of cancers p53 itself is normal, but is often disabled by proteins that promote tumor growth. One of the remaining challenges in the field of cancer research is to identify which proteins inhibit p53 directly. Identifying these proteins would help clarify why many human cancers, such as some brain cancers, breast and skin cancers, often maintain a normal form of the p53 tumor suppressor protein. Zhou et al. now provide evidence that shows that a protein called nerve growth factor receptor (NGFR) is one such protein. NGFR was known to be important for the healthy development of the brain and nervous system. Unexpectedly, however, Zhou et al. found that NGFR binds directly to p53 and disables it in several types of human cancer cells. This finding is likely to be important because NGFR is produced in abnormally high amounts in several human cancer types, including skin, breast, bone and some brain cancers. Reducing the levels of NGFR in cancer cells caused the cells to become more sensitive to some anti-cancer drugs. Overall, the results presented by Zhou et al. suggest that developing new drugs that target NGFR could produce new treatments for human cancers that have a normal form of the gene that produces p53. More experiments are also needed to find out whether NGFR has other ways of promoting the development of cancerous tumors. DOI:http://dx.doi.org/10.7554/eLife.15099.002
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Qian Hao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minhong Zhang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongbing Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Yiwei Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
195
|
Nickerson ML, Witte N, Im KM, Turan S, Owens C, Misner K, Tsang SX, Cai Z, Wu S, Dean M, Costello JC, Theodorescu D. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response. Oncogene 2016; 36:35-46. [PMID: 27270441 PMCID: PMC5140783 DOI: 10.1038/onc.2016.172] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022]
Abstract
The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44% and SYNE1–SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study the pharmacogenomics of BCa.
Collapse
Affiliation(s)
- M L Nickerson
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - N Witte
- Computational Bioscience Program, University of Colorado, Aurora, CO, USA
| | - K M Im
- Data Science for Genomics, LLC, Ellicott City, MD, USA
| | - S Turan
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - C Owens
- Department of Surgery (Urology), University of Colorado, Aurora, CO, USA
| | - K Misner
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Z Cai
- Shenzhen Second People's Hospital, Shenzhen, China
| | - S Wu
- Shenzhen Second People's Hospital, Shenzhen, China
| | - M Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - J C Costello
- Computational Bioscience Program, University of Colorado, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - D Theodorescu
- Department of Surgery (Urology), University of Colorado, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| |
Collapse
|
196
|
Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells Int 2016; 2016:3631764. [PMID: 27366153 PMCID: PMC4913005 DOI: 10.1155/2016/3631764] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.
Collapse
|
197
|
Classification of cancers based on copy number variation landscapes. Biochim Biophys Acta Gen Subj 2016; 1860:2750-5. [PMID: 27266344 DOI: 10.1016/j.bbagen.2016.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Genomic alterations in DNA can cause human cancer. DNA copy number variants (CNV), as one of the types of DNA mutations, have been considered to be associated with various human cancers. CNVs vary in size from 1bp up to one complete chromosome arm. In order to understand the difference between different human cancers on CNVs, in this study, we developed a method to computationally classify six human cancer types by using only CNV level values. The CNVs of 23,082 genes were used as features to construct the classifier. Then the features are carefully selected by mRMR (minimum Redundancy Maximum Relevance Feature Selection) and IFS (Incremental Feature Selection) methods. An accuracy of over 0.75 was reached by using only the CNVs of 19 genes based on Dagging method in 10-fold cross validation. It was indicated that these 19 genes may play important roles in differentiating cancer types. We also analyzed the biological functions of several top genes within the 19 gene list. The statistical results and biological analysis of these genes from this work might further help understand different human cancer types and provide guidance for related validation experiments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
198
|
Petrakis TG, Komseli ES, Papaioannou M, Vougas K, Polyzos A, Myrianthopoulos V, Mikros E, Trougakos IP, Thanos D, Branzei D, Townsend P, Gorgoulis VG. Exploring and exploiting the systemic effects of deregulated replication licensing. Semin Cancer Biol 2016; 37-38:3-15. [PMID: 26707000 DOI: 10.1016/j.semcancer.2015.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
Maintenance and accurate propagation of the genetic material are key features for physiological development and wellbeing. The replication licensing machinery is crucial for replication precision as it ensures that replication takes place once per cell cycle. Thus, the expression status of the components comprising the replication licensing apparatus is tightly regulated to avoid re-replication; a form of replication stress that leads to genomic instability, a hallmark of cancer. In the present review we discuss the mechanistic basis of replication licensing deregulation, which leads to systemic effects, exemplified by its role in carcinogenesis and a variety of genetic syndromes. In addition, new insights demonstrate that above a particular threshold, the replication licensing factor Cdc6 acts as global transcriptional regulator, outlining new lines of exploration. The role of the putative replication licensing factor ChlR1/DDX11, mutated in the Warsaw Breakage Syndrome, in cancer is also considered. Finally, future perspectives focused on the potential therapeutic advantage by targeting replication licensing factors, and particularly Cdc6, are discussed.
Collapse
Affiliation(s)
- Theodoros G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Eirini-Stavroula Komseli
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Marilena Papaioannou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | - Kostas Vougas
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paul Townsend
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
199
|
Abstract
It is now clear that functional p53 is critical to protect the genome from alterations that lead to tumorigenesis. However, with the myriad of cellular stresses and pathways linked to p53 activation, much remains unknown about how p53 maintains genome stability and the proteins involved. The current understanding of the multiple ways p53 contributes to genome stability and how two of its negative regulators, Mdm2 and Mdmx, induce genome instability will be described.
Collapse
Affiliation(s)
- Christine M Eischen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212
| |
Collapse
|
200
|
Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription. Cancer Lett 2016; 375:9-19. [DOI: 10.1016/j.canlet.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|