151
|
Jara M, Núñez C, Campoy S, Fernández de Henestrosa AR, Lovley DR, Barbé J. Geobacter sulfurreducens has two autoregulated lexA genes whose products do not bind the recA promoter: differing responses of lexA and recA to DNA damage. J Bacteriol 2003; 185:2493-502. [PMID: 12670973 PMCID: PMC152628 DOI: 10.1128/jb.185.8.2493-2502.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli LexA protein was used as a query sequence in TBLASTN searches to identify the lexA gene of the delta-proteobacterium Geobacter sulfurreducens from its genome sequence. The results of the search indicated that G. sulfurreducens has two independent lexA genes designated lexA1 and lexA2. A copy of a dinB gene homologue, which in E. coli encodes DNA polymerase IV, is present downstream of each lexA gene. Reverse transcription-PCR analyses demonstrated that, in both cases, lexA and dinB constitute a single transcriptional unit. Electrophoretic mobility shift assays with purified LexA1 and LexA2 proteins have shown that both proteins bind the imperfect palindrome GGTTN(2)CN(4)GN(3)ACC found in the promoter region of both lexA1 and lexA2. This sequence is also present upstream of the Geobacter metallireducens lexA gene, indicating that it is the LexA box of this bacterial genus. This palindrome is not found upstream of either the G. sulfurreducens or the G. metallireducens recA genes. Furthermore, DNA damage induces expression of the lexA-dinB transcriptional unit but not that of the recA gene. However, the basal level of recA gene expression is dramatically higher than that of the lexA gene. Likewise, the promoters of the G. sulfurreducens recN, ruvAB, ssb, umuDC, uvrA, and uvrB genes do not contain the LexA box and are not likely to bind to the LexA1 or LexA2 proteins. G. sulfurreducens is the first bacterial species harboring a lexA gene for which a constitutive expression of its recA gene has been described.
Collapse
Affiliation(s)
- Mónica Jara
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
152
|
Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003; 11:671-83. [PMID: 12667450 DOI: 10.1016/s1097-2765(03)00060-1] [Citation(s) in RCA: 459] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ClpXP is a protease involved in DNA damage repair, stationary-phase gene expression, and ssrA-mediated protein quality control. To date, however, only a handful of ClpXP substrates have been identified. Using a tagged and inactive variant of ClpP, substrates of E. coli ClpXP were trapped in vivo, purified, and identified by mass spectrometry. The more than 50 trapped proteins include transcription factors, metabolic enzymes, and proteins involved in the starvation and oxidative stress responses. Analysis of the sequences of the trapped proteins revealed five recurring motifs: two located at the C terminus of proteins, and three N-terminal motifs. Deletion analysis, fusion proteins, and point mutations established that sequences from each motif class targeted proteins for degradation by ClpXP. These results represent a description of general rules governing substrate recognition by a AAA+ family ATPase and suggest strategies for regulation of protein degradation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
153
|
Chattopadhyaya R, Ghosh K. A comparative three-dimensional model of the carboxy-terminal domain of the lambda repressor and its use to build intact repressor tetramer models bound to adjacent operator sites. J Struct Biol 2003; 141:103-14. [PMID: 12615536 DOI: 10.1016/s1047-8477(02)00627-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A model for residues 93-236 of the lambda repressor (1gfx) was predicted, based on the UmuD(') crystal structure, as part of four intact repressor molecules bound to two adjacent operator sites. The structure of region 136-230 in 1gfx was found to be nearly identical to the independently determined crystal structure of the 132-236 fragment, 1f39, released later by the PDB. Later, two more tetrameric models of the lambda repressor tetramer bound to two adjacent operator sites were constructed by us; in one of these, 1j5g, the N-domain and C-domain coordinates and hence monomer-monomer and dimer-dimer interactions are almost the same as in 1gfx, but the structure of the linker region is partly based on the linker region of the LexA dimer in 1jhe; in the other, 1lwq, the crystalline tetramer for region 140-236 has been coopted from the crystal structure deposited in 1kca, the operator DNA and N-domain coordinates of which are same as those in 1gfx and 1j5g, but the linker region is partly based on the LexA dimer structures 1jhe and 1jhh. Monomer-monomer interactions at the same operator site are stabilized by exposed hydrophobic side chains in beta-strands while cooperative interactions are mostly confined to beta(6) and some adjacent residues in both 1gfx and 1j5g. Mutational data, existence of a twofold axis relating two C-domains within a dimer, and minimization of DNA distortion between adjacent operator sites allow us to roughly position the C-domain with respect to the N-domain for both 1gfx and 1j5g. The study correlates these models with functional, biochemical, biophysical, and immunological data on the repressor in the literature. The oligomerization mode observed in the crystal structure of 132-236 may not exist in the intact repressor bound to the operator since it is shown to contradict several published biochemical data on the intact repressor.
Collapse
Affiliation(s)
- Rajagopal Chattopadhyaya
- Department of Biochemistry, Bose Institute, P-1/12, C.I.T. Scheme VII M, Calcutta 700054, India.
| | | |
Collapse
|
154
|
Kajava AV, Zolov SN, Pyatkov KI, Kalinin AE, Nesmeyanova MA. Processing of Escherichia coli alkaline phosphatase. Sequence requirements and possible conformations of the -6 to -4 region of the signal peptide. J Biol Chem 2002; 277:50396-402. [PMID: 12393890 DOI: 10.1074/jbc.m205781200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the precursors of bacterial exported proteins revealed that those having bulky hydrophobic residues at position -5 have a high incidence of Pro residues at positions -6 and -4, Val at position -3, and Ser at positions -4 and -2. This led to a hypothesis that the previously observed inhibition of processing by bulky residues at position -5 can be suppressed by introduction of Pro, Ser, or Val in the corresponding nearby positions. Subsequent mutational analysis of Escherichia coli alkaline phosphatase showed that, as it was predicted, Pro on either side of bulky hydrophobic -5 Leu, Ile, or Tyr completely restores efficiency of the maturation. Introduction of Val at position -3 also partially suppresses the inhibition imposed by -5 Leu, while a Ser residue at position -4 or -2 does not restore processing. In addition, effective maturation of a mutant with Pro residues at positions from -6 throughout -4 proved that polyproline conformation of this region is permissive for processing. To understand the effects of the mutations, we modeled a peptide substrate into the active site of the signal peptidase using the known position of the beta-lactam inhibitor. The inhibitory effect of the -5 residue and its suppression by either Pro -6 or Pro -4 can be explained if we assume that Pro-containing -6 to -4 regions adopt a polyproline conformation whereas the region without Pro residues has a beta-conformation. These results permit us to specify sequence requirements at -6, -5, and -4 positions for efficient processing and to improve the prediction of yet unknown cleavage sites.
Collapse
Affiliation(s)
- Andrey V Kajava
- Center for Molecular Modeling, CIT, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
155
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
156
|
Fernández de Henestrosa AR, Cuñé J, Erill I, Magnuson JK, Barbé J. A green nonsulfur bacterium, Dehalococcoides ethenogenes, with the LexA binding sequence found in gram-positive organisms. J Bacteriol 2002; 184:6073-80. [PMID: 12374844 PMCID: PMC135389 DOI: 10.1128/jb.184.21.6073-6080.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides ethenogenes is a member of the physiologically diverse division of green nonsulfur bacteria. Using a TBLASTN search, the D. ethenogenes lexA gene has been identified, cloned, and expressed and its protein has been purified. Mobility shift assays revealed that the D. ethenogenes LexA protein specifically binds to both its own promoter and that of the uvrA gene, but not to the recA promoter. Our results demonstrate that the D. ethenogenes LexA binding site is GAACN(4)GTTC, which is identical to that found in gram-positive bacteria. In agreement with this fact, the Bacillus subtilis DinR protein binds specifically to the D. ethenogenes LexA operator. This constitutes the first non-gram-positive bacterium exhibiting a LexA binding site identical to that of B. subtilis.
Collapse
|
157
|
Campoy S, Mazón G, Fernández de Henestrosa AR, Llagostera M, Monteiro PB, Barbé J. A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3583-3597. [PMID: 12427949 DOI: 10.1099/00221287-148-11-3583] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli LexA protein is the repressor of a gene network whose members are directly involved in the repair of damaged DNA and in the survival of bacterial cells until DNA lesions have been eliminated. The lexA gene is widely present in bacteria, although the sequences of only three LexA-binding sites are known: Gram-positive, alpha Proteobacteria and some members of gamma Proteobacteria represented by E. coli. Taking advantage of the fact that the genome sequence of the plant-pathogenic bacterium Xylella fastidiosa has been determined, its lexA gene has been cloned and overexpressed in E. coli to purify its product. After demonstration that X. fastidiosa lexA and recA genes are co-transcribed, gel mobility shift assays and directed mutagenesis experiments using the promoter of the lexA-recA transcriptional unit demonstrated that the X. fastidiosa LexA protein specifically binds the imperfect palindrome TTAGN(6)TACTA. This is the first LexA binding sequence identified in the gamma Proteobacteria differing from the E. coli-like LexA box. Although a computational search has revealed the presence of TTAGN(6)TACTA-like motifs upstream of X. fastidiosa genes other than lexA, X. fastidiosa LexA only binds the promoter of one of them, XF2313, encoding a putative DNA-modification methylase. Moreover, X. fastidiosa LexA protein does not bind any of the other genes whose homologues are regulated by the LexA repressor in E. coli (uvrA, uvrB, ssb, ruvAB, ftsK, dinG, recN and ybfE). RT-PCR quantitative analysis has also demonstrated that lexA-recA and XF2313 genes, as well as the X. fastidiosa genes which are homologues to those of E. coli belonging to the LexA regulon, with the exception of ssb, are DNA damage-inducible in X. fastidiosa.
Collapse
Affiliation(s)
- Susana Campoy
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | - Gerard Mazón
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | | | - Montserrat Llagostera
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona-Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 Barcelona, Spain3
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | - Patricia Brant Monteiro
- Fundo de Defesa da Citricultura (Fundecitrus), 14807-040, VI. Melhado- C. P. 391, Araraquara, Sao Paulo, Brazil2
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona-Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 Barcelona, Spain3
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| |
Collapse
|
158
|
Shin S, Lee TH, Ha NC, Koo HM, Kim SY, Lee HS, Kim YS, Oh BH. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. EMBO J 2002; 21:2509-16. [PMID: 12032064 PMCID: PMC126024 DOI: 10.1093/emboj/21.11.2509] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A large group of hydrolytic enzymes, which contain a conserved stretch of approximately 130 amino acids designated the amidase signature (AS) sequence, constitutes a super family that is distinct from any other known hydrolase family. AS family enzymes are widespread in nature, ranging from bacteria to humans, and exhibit a variety of biological functions. Here we report the first structure of an AS family enzyme provided by the crystal structure of malonamidase E2 from Bradyrhizobium japonicum. The structure, representing a new protein fold, reveals a previously unidentified Ser-cisSer-Lys catalytic machinery that is absolutely conserved throughout the family. This family of enzymes appears to be evolutionarily distinct but has diverged to acquire a wide spectrum of individual substrate specificities, while maintaining a core structure that supports the catalytic function of the unique triad. Based of the structures of the enzyme in two different inhibited states, an unusual action mechanism of the triad is proposed that accounts for the role of the cis conformation in the triad.
Collapse
Affiliation(s)
- Sejeong Shin
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Tae-Hee Lee
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Nam-Chul Ha
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Hyun Min Koo
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - So-yeon Kim
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Heung-Soo Lee
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Yu Sam Kim
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| | - Byung-Ha Oh
- National Creative Research Initiative Center for Biomolecular Recognition, Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749 and Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Korea Corresponding author e-mail: or
| |
Collapse
|
159
|
Shepotinovskaya IV, Freymann DM. Conformational change of the N-domain on formation of the complex between the GTPase domains of Thermus aquaticus Ffh and FtsY. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:107-14. [PMID: 12009409 PMCID: PMC3543699 DOI: 10.1016/s0167-4838(02)00287-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structural basis for the GTP-dependent co-translational targeting complex between the signal recognition particle (SRP) and its receptor is unknown. The complex has been shown to have unusual kinetics of formation, and association in vivo is likely to be dependent on catalysis by the SRP RNA. We have determined conditions for RNA-independent association of the 'NG' GTPase domains of the prokaryotic homologs of the SRP components, Ffh and FtsY, from Thermus aquaticus. Consistent with previous studies of the Escherichia coli proteins, the kinetics of association and dissociation are slow. The T. aquaticus FtsY is sensitive to an endogenous proteolytic activity that cleaves at two sites--the first in a lengthy linker peptide that spans the interface between the N and G domains, and the second near the N-terminus of the N domain of FtsY. Remarkably, this second cleavage occurs only on formation of the Ffh/FtsY complex. The change in protease sensitivity of this region, which is relatively unstructured in the FtsY but not in the Ffh NG domain, implies that it undergoes conformational change on formation of the complex between the two proteins. The N domain, therefore, participates in the interactions that mediate the GTP-dependent formation of the targeting complex.
Collapse
Affiliation(s)
| | - Douglas M. Freymann
- Corresponding author. Tel.: +1-312-503-1877; fax: +1-312-503-5349. (D.M. Freymann)
| |
Collapse
|
160
|
Bandyopadhyay S, Deb S, Bose S, Roy S. Half-of-the-sites reactivity of F235C lambda-repressor: implications for the structure of the whole repressor. Protein Eng Des Sel 2002; 15:393-401. [PMID: 12034859 DOI: 10.1093/protein/15.5.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A site-directed mutation, F235C, was created at the penultimate residue of the lambda-repressor. Measurement of dimer-monomer dissociation constant suggested that dimer-monomer dissociation of the mutant repressor is similar to that of the wild-type. Affinity towards a single operator O(R)1 is also similar to that of the wild-type repressor. The mutant repressor gene in a multi-copy plasmid confers immunity towards infection by a cI(-) lambda phage, suggesting preservation of functional integrity. Far-UV circular dichroism spectra show no major change in the secondary structure. Fluorescence quenching experiments, however, suggest increased exposure of some tryptophan residues. The urea denaturation profile indicates decreased stability of a part of the C-terminal domain. Under non-denaturing conditions, cysteine-235 shows half-of-the-sites reactivity, i.e. on average only one out of two cysteine-235 residues in the dimer shows reactivity towards sulfhydryl reagents. Fluorescence energy transfer between randomly labeled donor and acceptor fluorescent probes indicates that only one sulfhydryl per dimer is reactive, suggesting true half-of-the-sites reactivity. The structural role of the C-terminal tail in the whole repressor dimer is discussed.
Collapse
Affiliation(s)
- Sumita Bandyopadhyay
- Department of Biophysics, Bose Institute, P-1/12 C.I.T. Scheme VII M, Calcutta 700 054, India
| | | | | | | |
Collapse
|
161
|
Tapias A, Fernández S, Alonso JC, Barbé J. Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 2002; 30:1539-46. [PMID: 11917014 PMCID: PMC101838 DOI: 10.1093/nar/30.7.1539] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcription of the Rhodobacter sphaeroides recA promoter (P(recA)) is induced upon DNA damage in a lexA-dependent manner. In vivo experiments demonstrate that LexA protein represses and might also activate transcription of P(recA). Purified R.sphaeroides LexA protein specifically binds the SOS boxes located within the P(recA) region. In vitro transcription analysis, using Escherichia coli RNA polymerase (RNAP), indicated that the presence of LexA may stimulate and repress transcription of P(recA). EMSA and DNase I footprinting experiments show that LexA and RNAP can bind simultaneously to P(recA). At low LexA concentrations it enhances RNAP binding to P(recA), stimulates open complex formation and strand separation beyond the transcription start site. At high LexA concentrations, however, RNAP-promoted strand separation is not observed beyond the +5 region. LexA might repress transcription by interfering with the clearance process instead of blocking the access of RNAP to the promoter region. Based on these findings we propose that the R.sphaeroides LexA protein performs fine tuning of the SOS response, which might provide a physiological advantage by enhancing transcription of SOS genes and delaying full activation of the response.
Collapse
Affiliation(s)
- Angels Tapias
- Departamento de Genética y Microbiología, Universitat Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
162
|
Silva JL, Oliveira AC, Gomes AMO, Lima LMTR, Mohana-Borges R, Pacheco ABF, Foguel D. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:250-65. [PMID: 11983400 DOI: 10.1016/s0167-4838(01)00348-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein-nucleic acid interactions are crucial for a variety of fundamental biological processes such as replication, transcription, restriction, translation and virus assembly. The molecular basis of protein-DNA and protein-RNA recognition is deeply related to the thermodynamics of the systems. We review here how protein-nucleic acid interactions can be approached in the same way as protein-protein interactions involved in protein folding and protein assembly, using hydrostatic pressure as the primary tool and employing several spectroscopic techniques, especially fluorescence, circular dichroism and high-resolution nuclear magnetic resonance. High pressure has the unique property of stabilizing partially folded states or molten-globule states of a protein. The competition between correct folding and misfolding, which in many proteins leads to formation of insoluble aggregates is an important problem in the biotechnology industry and in human diseases such as amyloidosis, Alzheimer's, prion and tumor diseases. The pressure studies reveal that a gradient of partially folded (molten globule) conformations is present between the unfolded and fully folded structure of several bacteria, plant and mammalian viruses. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is substantial evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.
Collapse
Affiliation(s)
- Jerson L Silva
- Programa de Biologia Estrutural, Departamento de Bioquímica Médica - ICB, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
163
|
Paetzel M, Dalbey RE, Strynadka NCJ. Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser-Lys dyad mechanism. J Biol Chem 2002; 277:9512-9. [PMID: 11741964 DOI: 10.1074/jbc.m110983200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the x-ray crystal structure of a soluble catalytically active fragment of the Escherichia coli type I signal peptidase (SPase-(Delta2-75)) in the absence of inhibitor or substrate (apoenzyme). The structure was solved by molecular replacement and refined to 2.4 A resolution in a different space group (P4(1)2(1)2) from that of the previously published acyl-enzyme inhibitor-bound structure (P2(1)2(1)2) (Paetzel, M., Dalbey, R.E., and Strynadka, N.C.J. (1998) Nature 396, 186-190). A comparison with the acyl-enzyme structure shows significant side-chain and main-chain differences in the binding site and active site regions, which result in a smaller S1 binding pocket in the apoenzyme. The apoenzyme structure is consistent with SPase utilizing an unusual oxyanion hole containing one side-chain hydroxyl hydrogen (Ser-88 OgammaH) and one main-chain amide hydrogen (Ser-90 NH). Analysis of the apoenzyme active site reveals a potential deacylating water that was displaced by the inhibitor. It has been proposed that SPase utilizes a Ser-Lys dyad mechanism in the cleavage reaction. A similar mechanism has been proposed for the LexA family of proteases. A structural comparison of SPase and members of the LexA family of proteases reveals a difference in the side-chain orientation for the general base lysine, both of which are stabilized by an adjacent hydroxyl group. To gain insight into how signal peptidase recognizes its substrates, we have modeled a signal peptide into the binding site of SPase. The model is built based on the recently solved crystal structure of the analogous enzyme LexA (Luo, Y., Pfuetzner, R. A., Mosimann, S., Paetzel, M., Frey, E. A., Cherney, M., Kim, B., Little, J. W., and Strynadka, N. C. J. (2001) Cell 106, 1-10) with its bound cleavage site region.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | | | | |
Collapse
|
164
|
Abstract
In the September 7, 2001 issue of Cell, Luo et al. describe the structure of LexA protein in two states, cleavable and noncleavable. This structure offers new insights into how LexA and other structurally related proteins, such as lambda and UmuD, undergo autocatalytic cleavage using a Ser-Lys dyad.
Collapse
Affiliation(s)
- G C Walker
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge 02139, MA, USA
| |
Collapse
|