151
|
Wu JT, Lin WH, Chen WY, Huang YC, Tang CY, Ho MS, Pi H, Chien CT. CSN-mediated deneddylation differentially modulates Ci(155) proteolysis to promote Hedgehog signalling responses. Nat Commun 2011; 2:182. [PMID: 21304511 PMCID: PMC3105314 DOI: 10.1038/ncomms1185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 01/11/2011] [Indexed: 01/15/2023] Open
Abstract
The Hedgehog (Hh) morphogen directs distinct cell responses according to its distinct signalling levels. Hh signalling stabilizes transcription factor cubitus interruptus (Ci) by prohibiting SCFSlimb-dependent ubiquitylation and proteolysis of Ci. How graded Hh signalling confers differential SCFSlimb-mediated Ci proteolysis in responding cells remains unclear. Here, we show that in COP9 signalosome (CSN) mutants, in which deneddylation of SCFSlimb is inactivated, Ci is destabilized in low-to-intermediate Hh signalling cells. As a consequence, expression of the low-threshold Hh target gene dpp is disrupted, highlighting the critical role of CSN deneddylation on low-to-intermediate Hh signalling response. The status of Ci phosphorylation and the level of E1 ubiquitin-activating enzyme are tightly coupled to this CSN regulation. We propose that the affinity of substrate–E3 interaction, ligase activity and E1 activity are three major determinants for substrate ubiquitylation and thereby substrate degradation in vivo. Hedgehog signalling gradients are required for proper wing formation in Drosophila, and Hedgehog is known to regulate the cubitus interruptus transcription factor. Here, the authors show that the COP9 signalosome has a critical role in translating a Hedgehog gradient into a cubitus interruptus gradient.
Collapse
Affiliation(s)
- June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3'-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
|
153
|
Seong KH, Akimaru H, Dai P, Nomura T, Okada M, Ishii S. Inhibition of the nuclear import of cubitus interruptus by roadkill in the presence of strong hedgehog signal. PLoS One 2010; 5:e15365. [PMID: 21179535 PMCID: PMC3002282 DOI: 10.1371/journal.pone.0015365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/11/2010] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) signalling plays an important role in various developmental processes by activating the Cubitus interruptus (Ci)/Glioblastoma (Gli) family of transcription factors. In the process of proper pattern formation, Ci activity is regulated by multiple mechanisms, including processing, trafficking, and degradation. However, it remains elusive how Ci distinctly recognizes the strong and moderate Hh signals. Roadkill (Rdx) induces Ci degradation in the anterior region of the Drosophila wing disc. Here, we report that Rdx inhibited Ci activity by two different mechanisms. In the region abutting the anterior/posterior boundary, which receives strong Hh signal, Rdx inhibited the nuclear import of Ci by releasing importin α3 from Ci. In this region, Rdx negatively regulated the expression of transcription factor Knot/Collier. In farther anterior regions receiving moderate levels of Hh signal, Rdx induced Ci degradation, as reported previously. Thus, two different mechanisms by which Rdx negatively regulates Ci may play an important role in the fine-tuning of Hh responses.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Hiroshi Akimaru
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Ping Dai
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Teruaki Nomura
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Masahiro Okada
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Japan
| |
Collapse
|
154
|
Abstract
In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Oral & Maxillofacial Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
155
|
Chen Y, Li S, Tong C, Zhao Y, Wang B, Liu Y, Jia J, Jiang J. G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev 2010; 24:2054-67. [PMID: 20844016 DOI: 10.1101/gad.1948710] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptor kinase 2 (Gprk2/GRK2) plays a conserved role in modulating Hedgehog (Hh) pathway activity, but its mechanism of action remains unknown. Here we provide evidence that Gprk2 promotes high-level Hh signaling by regulating Smoothened (Smo) conformation through both kinase-dependent and kinase-independent mechanisms. Gprk2 promotes Smo activation by phosphorylating Smo C-terminal tail (C-tail) at Ser741/Thr742, which is facilitated by PKA and CK1 phosphorylation at adjacent Ser residues. In addition, Gprk2 forms a dimer/oligomer and binds Smo C-tail in a kinase activity-independent manner to stabilize the active Smo conformation, and promotes dimerization/oligomerization of Smo C-tail. Gprk2 expression is induced by Hh signaling, and Gprk2/Smo interaction is facilitated by PKA/CK1-mediated phosphorylation of Smo C-tail. Thus, Gprk2 forms a positive feedback loop and acts downstream from PKA and CK1 to facilitate high-level Hh signaling by promoting the active state of Smo through direct phosphorylation and molecular scaffolding.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Julian E, Hallahan AR, Wainwright BJ. RBP-J is not required for granule neuron progenitor development and medulloblastoma initiated by Hedgehog pathway activation in the external germinal layer. Neural Dev 2010; 5:27. [PMID: 20950430 PMCID: PMC2972267 DOI: 10.1186/1749-8104-5-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 10/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background The Notch signalling pathway plays crucial roles in neural development, functioning by preventing premature differentiation and promotion of glial cell fates. In the developing cerebellum Notch pathway components are expressed in granule neuron progenitors of the external germinal layer (EGL) but the precise function of Notch in these cells is unclear. The Hedgehog pathway is also crucial in cerebellar development, mainly via control of the cell cycle, and persistent activation of the pathways leads to the cerebellar tumour medulloblastoma. Interactions between Hedgehog and Notch have been reported in normal brain development as well as in Hedgehog pathway induced medulloblastoma but the molecular details of this interaction are not known and we investigate here the role of Notch signalling in the development of the EGL and the intersection between the two pathways in cerebellar granule neuron progenitors and in medulloblastoma. Results RBP-J is the major downstream effector of all four mammalian Notch receptors and the RBP-J conditional mouse facilitates inactivation of canonical Notch signals. Patched1 is a negative regulator of Hedgehog signalling and the Patched1 conditional mouse is widely used to activate Hedgehog signalling via Patched1 deletion in specific cell types. The conditional mouse lines were crossed with a Math1-Cre line to delete the two genes in granule neuron progenitors from embryonic day 10.5. While deletion of only Patched1 as well as Patched1 together with RBP-J leads to formation of medulloblastoma concomitant with disorganisation of cell layers, loss of RBP-J from granule neuron progenitors has no obvious effect on overall cerebellar morphology or differentiation and maturation of the different cerebellar cell types. Conclusions Our results suggest that even though Notch signalling has been shown to play important roles in cerebellar development, signalling via RBP-J is surprisingly not required in granule neuron progenitors. Furthermore, RBP-J inactivation in these cells does not influence the formation of medulloblastoma initiated by Hedgehog pathway activation. This may suggest a requirement of Notch in cerebellar development at a different developmental stage or in a different cell type than examined here - for example, in the neural stem cells of the ventricular zone. In addition, it remains a possibility that, in granule neuron progenitors, Notch may signal via an alternative pathway without the requirement for RBP-J.
Collapse
Affiliation(s)
- Elaine Julian
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
157
|
Frank CL, Ge X, Xie Z, Zhou Y, Tsai LH. Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis. J Biol Chem 2010; 285:33324-33337. [PMID: 20724472 PMCID: PMC2963346 DOI: 10.1074/jbc.m110.140699] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Organogenesis is a highly integrated process with a fundamental requirement for precise cell cycle control. Mechanistically, the cell cycle is composed of transitions and thresholds that are controlled by coordinated post-translational modifications. In this study, we describe a novel mechanism controlling the persistence of the transcription factor ATF4 by multisite phosphorylation. Proline-directed phosphorylation acted additively to regulate multiple aspects of ATF4 degradation. Stabilized ATF4 mutants exhibit decreased β-TrCP degron phosphorylation, β-TrCP interaction, and ubiquitination, as well as elicit early G1 arrest. Expression of stabilized ATF4 also had significant consequences in the developing neocortex. Mutant ATF4 expressing cells exhibited positioning and differentiation defects that were attributed to early G1 arrest, suggesting that neurogenesis is sensitive to ATF4 dosage. We propose that precise regulation of the ATF4 dosage impacts cell cycle control and impinges on neurogenesis.
Collapse
Affiliation(s)
- Christopher L Frank
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Xuecai Ge
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Zhigang Xie
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research; Departments of Neurosurgery and Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ying Zhou
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research
| | - Li-Huei Tsai
- From the Massachusetts Institute of Technology, Picower Institute for Learning and Memory, the Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, the Stanley Center for Psychiatric Research; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
158
|
Wilson CW, Chuang PT. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 2010; 137:2079-94. [PMID: 20530542 DOI: 10.1242/dev.045021] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hedgehog (Hh) signaling is required for embryonic patterning and postnatal physiology in invertebrates and vertebrates. With the revelation that the primary cilium is crucial for mammalian Hh signaling, the prevailing view that Hh signal transduction mechanisms are conserved across species has been challenged. However, more recent progress on elucidating the function of core Hh pathway cytosolic regulators in Drosophila, zebrafish and mice has confirmed that the essential logic of Hh transduction is similar between species. Here, we review Hh signaling events at the membrane and in the cytosol, and focus on parallel and divergent functions of cytosolic Hh regulators in Drosophila and mammals.
Collapse
Affiliation(s)
- Christopher W Wilson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
159
|
Wang C, Pan Y, Wang B. Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development 2010; 137:2001-9. [PMID: 20463034 DOI: 10.1242/dev.052126] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gli2 and Gli3 are primary transcriptional regulators that mediate hedgehog (Hh) signaling. Mechanisms that stabilize and destabilize Gli2 and Gli3 are essential for the proteins to promptly respond to Hh signaling or to be inactivated following the activation. In this study, we show that loss of suppressor of fused (Sufu; an inhibitory effector for Gli proteins) results in destabilization of Gli2 and Gli3 full-length activators but not of their C-terminally processed repressors, whereas overexpression of Sufu stabilizes them. By contrast, RNAi knockdown of Spop (a substrate-binding adaptor for the cullin3-based ubiquitin E3 ligase) in Sufu mutant mouse embryonic fibroblasts (MEFs) can restore the levels of Gli2 and Gli3 full-length proteins, but not those of their repressors, whereas introducing Sufu into the MEFs stabilizes Gli2 and Gli3 full-length proteins and rescues Gli3 processing. Consistent with these findings, forced Spop expression promotes Gli2 and Gli3 degradation and Gli3 processing. The functions of Sufu and Spop oppose each other through their competitive binding to the N- and C-terminal regions of Gli3 or the C-terminal region of Gli2. More importantly, the Gli3 repressor expressed by a Gli3 mutant allele (Gli3(Delta699)) can mostly rescue the ventralized neural tube phenotypes of Sufu mutant embryos, indicating that the Gli3 repressor can function independently of Sufu. Our study provides a new insight into the regulation of Gli2 and Gli3 stability and processing by Sufu and Spop, and reveals the unexpected Sufu-independent Gli3 repressor function.
Collapse
Affiliation(s)
- Chengbing Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
160
|
Abstract
At the cellular level, the biological processes of cell proliferation, growth arrest, differentiation and apoptosis are all tightly coupled to appropriate alterations in metabolic status. In the case of cell proliferation, this requires redirecting metabolic pathways to provide the fuel and basic components for new cells. Ultimately, the successful co-ordination of cell-specific biology with cellular metabolism underscores multicellular processes as diverse as embryonic development, adult tissue remodelling and cancer cell biology. The Wnt signalling network has been implicated in all of these areas. While each of the Wnt-dependent signalling pathways are being individually delineated in a range of experimental systems, our understanding of how they integrate and regulate cellular metabolism is still in its infancy. In the present review we reassess the roles of Wnt signalling in functionally linking cellular metabolism to tissue development and function.
Collapse
Affiliation(s)
- Jaswinder K Sethi
- Department of Clinical Biochemistry, University of Cambridge Metabolic Research Laboratories, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB20QQ, U.K.
| | | |
Collapse
|
161
|
Xu C, Kim NG, Gumbiner BM. Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 2009; 8:4032-9. [PMID: 19923896 DOI: 10.4161/cc.8.24.10111] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) plays important roles in numerous signaling pathways that regulate a variety of cellular processes including cell proliferation, differentiation, apoptosis and embryonic development. In the canonical Wnt signaling pathway, GSK3 phosphorylation mediates proteasomal targeting and degradation of beta-catenin via the destruction complex. We recently reported a biochemical screen that discovered multiple additional protein substrates whose stability is regulated by Wnt signaling and/or GSK3 and these have important implications for Wnt/GSK3 regulation of different cellular processes.(1) In this article, we also present a bio-informatics based screen for proteins whose stability may be controlled by GSK3 and beta-Trcp, the SCF E3 ubiquitin ligase that is responsible for beta-catenin degradation in the Wnt signaling pathway. Furthermore, we review various GSK3 regulated proteolysis substrates described in the literature. We propose that GSK3 phosphorylation dependent proteolysis is a widespread mechanism that the cell employs to regulate a variety of cell processes in response to signals.
Collapse
Affiliation(s)
- Chong Xu
- Graduate Program of Molecular, Cellular and Developmental Biology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
162
|
Selective GSK-3β inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells. Hear Res 2009; 257:53-62. [DOI: 10.1016/j.heares.2009.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 07/31/2009] [Accepted: 08/01/2009] [Indexed: 12/20/2022]
|
163
|
Farzan SF, Stegman MA, Ogden SK, Ascano M, Black KE, Tacchelly O, Robbins DJ. A quantification of pathway components supports a novel model of Hedgehog signal transduction. J Biol Chem 2009; 284:28874-84. [PMID: 19717563 PMCID: PMC2781433 DOI: 10.1074/jbc.m109.041608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/25/2009] [Indexed: 11/06/2022] Open
Abstract
The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Melanie A. Stegman
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Stacey K. Ogden
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Manuel Ascano
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Kendall E. Black
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Ofelia Tacchelly
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - David J. Robbins
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
- the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|
164
|
Krauß S, So J, Hambrock M, Köhler A, Kunath M, Scharff C, Wessling M, Grzeschik KH, Schneider R, Schweiger S. Point mutations in GLI3 lead to misregulation of its subcellular localization. PLoS One 2009; 4:e7471. [PMID: 19829694 PMCID: PMC2758996 DOI: 10.1371/journal.pone.0007471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 09/22/2009] [Indexed: 11/23/2022] Open
Abstract
Background Mutations in the transcription factor GLI3, a downstream target of Sonic Hedgehog (SHH) signaling, are responsible for the development of malformation syndromes such as Greig-cephalopolysyndactyly-syndrome (GCPS), or Pallister-Hall-syndrome (PHS). Mutations that lead to loss of function of the protein and to haploinsufficiency cause GCPS, while truncating mutations that result in constitutive repressor function of GLI3 lead to PHS. As an exception, some point mutations in the C-terminal part of GLI3 observed in GCPS patients have so far not been linked to loss of function. We have shown recently that protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity a of GLI3 function. Principal Findings We have shown recently that protein phosphatase 2A (PP2A) and the ubiquitin ligase MID1 regulate the nuclear localization and transcriptional activity of GLI3. Here we show mapping of the functional interaction between the MID1-α4-PP2A complex and GLI3 to a region between amino acid 568-1100 of GLI3. Furthermore we demonstrate that GCPS-associated point mutations, that are located in that region, lead to misregulation of the nuclear GLI3-localization and transcriptional activity. GLI3 phosphorylation itself however appears independent of its localization and remains untouched by either of the point mutations and by PP2A-activity, which suggests involvement of an as yet unknown GLI3 interaction partner, the phosphorylation status of which is regulated by PP2A activity, in the control of GLI3 subcellular localization and activity. Conclusions The present findings provide an explanation for the pathogenesis of GCPS in patients carrying C-terminal point mutations, and close the gap in our understanding of how GLI3-genotypes give rise to particular phenotypes. Furthermore, they provide a molecular explanation for the phenotypic overlap between Opitz syndrome patients with dysregulated PP2A-activity and syndromes caused by GLI3-mutations.
Collapse
Affiliation(s)
- Sybille Krauß
- Charité University Hospital, Department of Dermatology, Berlin, Germany
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Joyce So
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Melanie Hambrock
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Andrea Köhler
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Melanie Kunath
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Constance Scharff
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
| | - Martina Wessling
- Center for Human Genetics, Phillipps University, Marburg, Germany
| | | | - Rainer Schneider
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
- * E-mail:
| | - Susann Schweiger
- Max-Planck Institute for Molecular Genetics, Department of Human Molecular Genetics (Ropers), Berlin, Germany
- Ninewells Hospital, Department of Neuroscience and Pathology, Dundee, United Kingdom
| |
Collapse
|
165
|
Kise Y, Morinaka A, Teglund S, Miki H. Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun 2009; 387:569-74. [PMID: 19622347 DOI: 10.1016/j.bbrc.2009.07.087] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/17/2022]
Abstract
Hedgehog (Hh) signaling activates the transcription factor Gli by suppressing the function of the suppressor of fused (Sufu) protein in mammals. Here, a novel role of mammalian Sufu is identified where it mediates the phosphorylation of Gli3 by GSK3beta, essential for Gli3 processing to generate a transcriptional repressor for Hh-target genes. Studies using Sufu(-/-) mouse embryonic fibroblasts and siRNA targeting Sufu demonstrate the requirement of Sufu for Gli3 processing. In addition, Sufu can bind to GSK3beta as well as Gli3, and mediates formation of the trimolecular complex Gli3/Sufu/GSK3beta. Thus, Sufu stimulates Gli3 phosphorylation by GSK3beta and Gli3 processing. Furthermore, Sonic Hh stimulation dissociates the Sufu/GSK3beta complex from Gli3, resulting in the blockade of Gli3 processing. Collectively, Sufu presumably functions as a GSK3beta recruiter for Hh-dependent regulation of Gli3 processing. Such a function is very similar to that of Costal2 in Drosophila, suggesting a functional complementation through evolution.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
166
|
Mizuarai S, Kawagishi A, Kotani H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol Cancer 2009; 8:44. [PMID: 19575820 PMCID: PMC2714036 DOI: 10.1186/1476-4598-8-44] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 07/06/2009] [Indexed: 12/21/2022] Open
Abstract
Background The Hedgehog (HH) pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC). Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9) was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.
Collapse
Affiliation(s)
- Shinji Mizuarai
- Department of Oncology, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co Ltd, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
167
|
Abstract
The Drosophila tumor suppressors fat and discs overgrown (dco) function within an intercellular signaling pathway that controls growth and polarity. fat encodes a transmembrane receptor, but post-translational regulation of Fat has not been described. We show here that Fat is subject to a constitutive proteolytic processing, such that most or all cell surface Fat comprises a heterodimer of stably associated N- and C-terminal fragments. The cytoplasmic domain of Fat is phosphorylated, and this phosphorylation is promoted by the Fat ligand Dachsous. dco encodes a kinase that influences Fat signaling, and Dco is able to promote the phosphorylation of the Fat intracellular domain in cultured cells and in vivo. Evaluation of dco mutants indicates that they affect Fat's influence on growth and gene expression but not its influence on planar cell polarity. Our observations identify processing and phosphorylation as post-translational modifications of Fat, correlate the phosphorylation of Fat with its activation by Dachsous in the Fat-Warts pathway, and enhance our understanding of the requirement for Dco in Fat signaling.
Collapse
|
168
|
Identification of domains responsible for ubiquitin-dependent degradation of dMyc by glycogen synthase kinase 3beta and casein kinase 1 kinases. Mol Cell Biol 2009; 29:3424-34. [PMID: 19364825 DOI: 10.1128/mcb.01535-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we report that ubiquitin-mediated degradation of dMyc, the Drosophila homologue of the human c-myc proto-oncogene, is regulated in vitro and in vivo by members of the casein kinase 1 (CK1) family and by glycogen synthase kinase 3beta (GSK3beta). Using Drosophila S2 cells, we demonstrate that CK1alpha promotes dMyc ubiquitination and degradation with a mechanism similar to the one mediated by GSK3beta in vertebrates. Mutation of ck1alpha or -epsilon or sgg/gsk3beta in Drosophila wing imaginal discs results in the accumulation of dMyc protein, suggesting a physiological role for these kinases in vivo. Analysis of the dMyc amino acid sequence reveals the presence of conserved domains containing potential phosphorylation sites for mitogen kinases, GSK3beta, and members of the CK1 family. We demonstrate that mutations of specific residues within these phosphorylation domains regulate dMyc protein stability and confer resistance to degradation by CK1alpha and GSK3beta kinases. Expression of the dMyc mutants in the compound eye of the adult fly results in a visible defect that is attributed to the effect of dMyc on growth, cell death, and inhibition of ommatidial differentiation.
Collapse
|
169
|
Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19:1-46. [PMID: 19191755 DOI: 10.1615/critreveukargeneexpr.v19.i1.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.
Collapse
Affiliation(s)
- Carrie S Soltanoff
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
170
|
Ogden SK, Fei DL, Schilling NS, Ahmed YF, Hwa J, Robbins DJ. G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 2009; 456:967-70. [PMID: 18987629 PMCID: PMC2744466 DOI: 10.1038/nature07459] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 09/26/2008] [Indexed: 11/10/2022]
Abstract
The hedgehog (Hh) signalling pathway has an evolutionarily conserved role in patterning fields of cells during metazoan development, and is inappropriately activated in cancer. Hh pathway activity is absolutely dependent on signalling by the seven-transmembrane protein smoothened (Smo), which is regulated by the Hh receptor patched (Ptc). Smo signals to an intracellular multi-protein complex containing the Kinesin related protein Costal2 (Cos2), the protein kinase Fused (Fu) and the transcription factor Cubitus interruptus (Ci). In the absence of Hh, this complex regulates the cleavage of full-length Ci to a truncated repressor protein, Ci75, in a process that is dependent on the proteasome and priming phosphorylations by Protein kinase A (PKA). Binding of Hh to Ptc blocks Ptc-mediated Smo inhibition, allowing Smo to signal to the intracellular components to attenuate Ci cleavage. Because of its homology with the Frizzled family of G-protein-coupled receptors (GPCR), a likely candidate for an immediate Smo effector would be a heterotrimeric G protein. However, the role that G proteins may have in Hh signal transduction is unclear and quite controversial, which has led to widespread speculation that Smo signals through a variety of novel G-protein-independent mechanisms. Here we present in vitro and in vivo evidence in Drosophila that Smo activates a G protein to modulate intracellular cyclic AMP levels in response to Hh. Our results demonstrate that Smo functions as a canonical GPCR, which signals through Galphai to regulate Hh pathway activation.
Collapse
Affiliation(s)
- Stacey K Ogden
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
171
|
Kannoji A, Phukan S, Sudher Babu V, Balaji VN. GSK3beta: a master switch and a promising target. Expert Opin Ther Targets 2009; 12:1443-55. [PMID: 18851699 DOI: 10.1517/14728222.12.11.1443] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glycogen synthase kinase 3 beta (GSK3beta) is a multifunctional serine/threonine kinase, which plays a major role in various signaling pathways. More than two decades after its discovery, various pharmaceutical companies are focusing on this protein as a target of interest for various therapeutic conditions. OBJECTIVE To discuss the major developments in the area of GSK3beta as a therapeutic target globally and its role in disease physiology and give an overview of the classes of compounds designed for its inhibition. RESULTS Data generated by various workers has helped the pharmaceutical players to put GSK3beta in their portfolio. Since it is involved in various pathways of disease physiologies, understanding of the full spectrum of the role of GSK3beta in relation to its structure and function is necessary to put successful modulators into clinical use.
Collapse
Affiliation(s)
- Akanksha Kannoji
- Jubilant Biosys Ltd, Structure Directed Molecular Design, #96, Industrial Suburb, 2nd Stage, Yeshwantpur, Bangalore 560 022, India
| | | | | | | |
Collapse
|
172
|
Ninkovic J, Stigloher C, Lillesaar C, Bally-Cuif L. Gsk3beta/PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity. Development 2008; 135:3137-48. [PMID: 18725518 DOI: 10.1242/dev.020479] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal production in the midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube depends on a progenitor pool called the ;intervening zone' (IZ), located at the midbrain-hindbrain boundary. The progressive recruitment of IZ progenitors along the mediolateral (future dorsoventral) axis prefigures the earlier maturation of the MH basal plate. It also correlates with a lower sensitivity of medial versus lateral IZ progenitors to the neurogenesis inhibition process that maintains the IZ pool. This role is performed in zebrafish by the E(Spl) factors Her5 and Her11, but the molecular cascades cooperating with Her5/11, and those accounting for their reduced effect in the medial IZ, remain unknown. We demonstrate here that the kinases Gsk3beta and cAMP-dependent protein kinase A (PKA) are novel determinants of IZ formation and cooperate with E(Spl) activity in a dose-dependent manner. Similar to E(Spl), we show that the activity of Gsk3beta/PKA is sensed differently by medial versus lateral IZ progenitors. Furthermore, we identify the transcription factor Gli1, expressed in medial IZ cells, as an antagonist of E(Spl) and Gsk3beta/PKA, and demonstrate that the neurogenesis-promoting activity of Gli1 accounts for the reduced sensitivity of medial IZ progenitors to neurogenesis inhibitors and their increased propensity to differentiate. We also show that the expression and activity of Gli1 in this process are, surprisingly, independent of Hedgehog signaling. Together, our results suggest a model in which the modulation of E(Spl) and Gsk3beta/PKA activities by Gli1 underlies the dynamic properties of IZ maintenance and recruitment.
Collapse
Affiliation(s)
- Jovica Ninkovic
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Department of Zebrafish Neurogenetics, Institute of Developmental Genetics, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
173
|
Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol 2008; 326:177-89. [PMID: 19056373 DOI: 10.1016/j.ydbio.2008.11.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
In mice, Gli2 and Gli3 are the transcription factors that mediate the initial Hedgehog (Hh) signaling. In the absence of Hh signaling, the majority of the full-length Gli3 protein undergoes proteolytic processing into a repressor, while only a small fraction of the full-length Gli2 protein is processed. Gli3 processing is dependent on phosphorylation of the first four of the six protein kinase A (PKA) sites at its C-terminus. However, whether the same phosphorylation of Gli2 by PKA is required for Gli2 processing and, if so, whether such phosphorylation regulates additional Gli2 function are unknown. To address these questions, we mutated these PKA sites in the mouse Gli2 locus to create the Gli2(P1-4) allele. Gli2(P1-4) homozygous embryos die in utero and exhibit exencephaly, defects in neural tube closure, enlarged craniofacial structures, and an extra anterior digit. Analysis of spinal cord patterning shows that domains of motoneurons and V2, V1, and V0 interneurons are expanded to different degrees in both Gli2(P1-4) single and Gli2(P1-4);Shh double mutants. Furthermore, Gli2(P1-4) expression prevents massive cell death and promotes cell proliferation in Shh mutant. Analysis of Gli2(P1-4) protein in vivo reveals that the mutant protein is not processed and is twice as stable as wild type Gli2 protein. We also show that the Gli2 repressor can effectively antagonize Gli2P1-4 activity. Together, these results indicate that phosphorylation of Gli2 by PKA induces Gli2 processing and destabilization in vivo and plays an important role in the Hh-regulated mouse embryonic patterning.
Collapse
Affiliation(s)
- Yong Pan
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | | | | |
Collapse
|
174
|
Abstract
The Hedgehog (Hh) family of proteins control cell growth, survival, and fate, and pattern almost every aspect of the vertebrate body plan. The use of a single morphogen for such a wide variety of functions is possible because cellular responses to Hh depend on the type of responding cell, the dose of Hh received, and the time cells are exposed to Hh. The Hh gradient is shaped by several proteins that are specifically required for Hh processing, secretion, and transport through tissues. The mechanism of cellular response, in turn, incorporates multiple feedback loops that fine-tune the level of signal sensed by the responding cells. Germline mutations that subtly affect Hh pathway activity are associated with developmental disorders, whereas somatic mutations activating the pathway have been linked to multiple forms of human cancer. This review focuses broadly on our current understanding of Hh signaling, from mechanisms of action to cellular and developmental functions. In addition, we review the role of Hh in the pathogenesis of human disease and the possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Markku Varjosalo
- Department of Molecular Medicine, National Public Health Institute (KTL), and Genome-Scale Biology Program, Biomedicum Helsinki, Institute of Biomedicine and High Throughput Center, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | | |
Collapse
|
175
|
Evangelista M, Lim TY, Lee J, Parker L, Ashique A, Peterson AS, Ye W, Davis DP, de Sauvage FJ. Kinome siRNA Screen Identifies Regulators of Ciliogenesis and Hedgehog Signal Transduction. Sci Signal 2008; 1:ra7. [DOI: 10.1126/scisignal.1162925] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
176
|
Dekens MPS, Whitmore D. Autonomous onset of the circadian clock in the zebrafish embryo. EMBO J 2008; 27:2757-65. [PMID: 18800057 DOI: 10.1038/emboj.2008.183] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Accepted: 08/14/2008] [Indexed: 11/09/2022] Open
Abstract
On the first day of development a circadian clock becomes functional in the zebrafish embryo. How this oscillator is set in motion remains unclear. We demonstrate that zygotic period1 transcription begins independent of light exposure. Pooled embryos maintained in darkness and under constant temperature show elevated non-oscillating levels of period1 expression. Consequently, there is no maternal effect or developmental event that sets the phase of the circadian clock. Analysis of period1 transcription, at the cellular level in the absence of environmental stimuli, reveals oscillations in cells that are asynchronous within the embryo. Demonstrating an autonomous onset to rhythmic period1 expression. Transcription of clock1 and bmal1 is rhythmic in the adult, but constant during development in light-entrained embryos. Transient expression of dominant-negative DeltaCLOCK blocks period1 transcription, thus showing that endogenous CLOCK is essential for the transcriptional regulation of period1 in the embryo. We demonstrate a default mechanism in the embryo that initiates the autonomous onset of the circadian clock. This embryonic clock is differentially regulated from that in the adult, the transition coinciding with the appearance of several clock output processes.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | |
Collapse
|
177
|
Guo X, Waddell DS, Wang W, Wang Z, Liberati NT, Yong S, Liu X, Wang XF. Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-beta signaling. Oncogene 2008; 27:7235-47. [PMID: 18794808 DOI: 10.1038/onc.2008.337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-beta (TGF-beta) elicits a variety of cellular activities primarily through a signaling cascade mediated by two key transcription factors, Smad2 and Smad3. Numerous regulatory mechanisms exist to control the activity of Smad3, thereby modulating the strength and specificity of TGF-beta responses. In search for potential regulators of Smad3 through a yeast two-hybrid screen, we identified casein kinase 1 gamma 2 (CKIgamma2) as a novel Smad3-interacting protein. In mammalian cells, CKIgamma2 selectively and constitutively binds Smad3 but not Smad1, -2 or -4. Functionally, CKIgamma2 inhibits Smad3-mediated TGF-beta responses including induction of target genes and cell growth arrest, and this inhibition is dependent on CKIgamma2 kinase activity. Mechanistically, CKIgamma2 does not affect the basal levels of Smad proteins or activity of the receptors. Rather, CKIgamma2 preferentially promotes the ubiquitination and degradation of activated Smad3 through direct phosphorylation of its MH2 domain at Ser418. Importantly, mutation of Ser418 to alanine or aspartic acid causes an increase or decrease of Smad3 activity, respectively, in the presence of TGF-beta. CKIgamma2 is the first kinase known to mark activated Smad3 for destruction. Given its negative function in TGF-beta signaling and its reported overexpression in human cancers, CKIgamma2 may act as an oncoprotein during tumorigenesis.
Collapse
Affiliation(s)
- X Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Wang Y, Price MA. A unique protection signal in Cubitus interruptus prevents its complete proteasomal degradation. Mol Cell Biol 2008; 28:5555-68. [PMID: 18625727 PMCID: PMC2546926 DOI: 10.1128/mcb.00524-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 07/02/2008] [Indexed: 11/20/2022] Open
Abstract
The limited proteolysis of Cubitus interruptus (Ci), the transcription factor for the developmentally and medically important Hedgehog (Hh) signaling pathway, triggers a critical switch between transcriptional repressor and activator forms. Ci repressor is formed when the C terminus of full-length Ci is degraded by the ubiquitin-proteasome pathway, an unusual reaction since the proteasome typically completely degrades its substrates. We show that several regions of Ci are required for generation of the repressor form: the zinc finger DNA binding domain, a single lysine residue (K750) near the degradation end point, and a 163-amino-acid region at the C terminus. Unlike other proteins that are partially degraded by the proteasome, dimerization is not a key feature of Ci processing. Using a pulse-chase assay in cultured Drosophila cells, we distinguish between regions required for initiation of degradation and those required for the protection of the Ci N terminus from degradation. We present a model whereby the zinc finger region and K750 together form a unique protection signal that prevents the complete degradation of Ci by the proteasome.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
179
|
The role of kinases in the Hedgehog signalling pathway. EMBO Rep 2008; 9:330-6. [PMID: 18379584 DOI: 10.1038/embor.2008.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 02/21/2008] [Indexed: 11/08/2022] Open
Abstract
The Hedgehog (Hh) signalling pathway has a crucial role in several developmental processes and is aberrantly activated in a variety of cancers. In Drosophila, many of the canonical Hh pathway components are phosphorylated, yet the precise role of these phosphorylation events in the regulation of Hh signal transduction is unclear. Furthermore, the Hh pathway receives input from several kinases that have well-described roles in other cellular functions, some of which have both positive and negative effects on Hh signalling. Several recent studies have characterized the role of specific phosphorylation events in the Hh pathway, and have begun to shed light on how phosphorylation of Hh signalling components affects their subcellular location, stability and activity to mediate the transcriptional response to the Hh gradient.
Collapse
|
180
|
Ma YC, Song MR, Park JP, Henry Ho HY, Hu L, Kurtev MV, Zieg J, Ma Q, Pfaff SL, Greenberg ME. Regulation of motor neuron specification by phosphorylation of neurogenin 2. Neuron 2008; 58:65-77. [PMID: 18400164 DOI: 10.1016/j.neuron.2008.01.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/08/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The mechanisms by which proneural basic helix-loop-helix (bHLH) factors control neurogenesis have been characterized, but it is not known how they specify neuronal cell-type identity. Here, we provide evidence that two conserved serine residues on the bHLH factor neurogenin 2 (Ngn2), S231 and S234, are phosphorylated during motor neuron differentiation. In knockin mice in which S231 and S234 of Ngn2 were mutated to alanines, neurogenesis occurs normally, but motor neuron specification is impaired. The phosphorylation of Ngn2 at S231 and S234 facilitates the interaction of Ngn2 with LIM homeodomain transcription factors to specify motor neuron identity. The phosphorylation-dependent cooperativity between Ngn2 and homeodomain transcription factors may be a general mechanism by which the activities of bHLH and homeodomain proteins are temporally and spatially integrated to generate the wide diversity of cell types that are a hallmark of the nervous system.
Collapse
Affiliation(s)
- Yong-Chao Ma
- F.M. Kirby Neurobiology Center, Children's Hospital, and Departments of Neurology and Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Varjosalo M, Björklund M, Cheng F, Syvänen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg HG, He WW, Ojala P, Taipale J. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell 2008; 133:537-48. [PMID: 18455992 DOI: 10.1016/j.cell.2008.02.047] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 01/24/2008] [Accepted: 02/19/2008] [Indexed: 01/12/2023]
Abstract
To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all screens, many kinases had a modest but significant effect, apparently due to crosstalk between signaling pathways. However, the strongest effects were found with known regulators and novel components, such as MAP3K10 and DYRK2, which we identified in a mammalian Hedgehog (Hh) signaling screen. DYRK2 directly phosphorylated and induced the proteasome-dependent degradation of the key Hh pathway-regulated transcription factor, GLI2. MAP3K10, in turn, affected GLI2 indirectly by modulating the activity of DYRK2 and the known Hh pathway component, GSK3beta. Our results establish kinome expression screening as a highly effective way to identify physiological signaling pathway components and genes involved in pathological signaling crosstalk.
Collapse
Affiliation(s)
- Markku Varjosalo
- Department of Molecular Medicine, National Public Health Institute (KTL), FI00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling. Genes Dev 2008; 22:106-20. [PMID: 18172167 DOI: 10.1101/gad.1590908] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The broad range of biological responses elicited by transforming growth factor-beta (TGF-beta) in various types of tissues and cells is mainly determined by the expression level and activity of the effector proteins Smad2 and Smad3. It is not fully understood how the baseline properties of Smad3 are regulated, although this molecule is in complex with many other proteins at the steady state. Here we show that nonactivated Smad3, but not Smad2, undergoes proteasome-dependent degradation due to the concerted action of the scaffolding protein Axin and its associated kinase, glycogen synthase kinase 3-beta (GSK3-beta). Smad3 physically interacts with Axin and GSK3-beta only in the absence of TGF-beta. Reduction in the expression or activity of Axin/GSK3-beta leads to increased Smad3 stability and transcriptional activity without affecting TGF-beta receptors or Smad2, whereas overexpression of these proteins promotes Smad3 basal degradation and desensitizes cells to TGF-beta. Mechanistically, Axin facilitates GSK3-beta-mediated phosphorylation of Smad3 at Thr66, which triggers Smad3 ubiquitination and degradation. Thr66 mutants of Smad3 show altered protein stability and hence transcriptional activity. These results indicate that the steady-state stability of Smad3 is an important determinant of cellular sensitivity to TGF-beta, and suggest a new function of the Axin/GSK3-beta complex in modulating critical TGF-beta/Smad3-regulated processes during development and tumor progression.
Collapse
|
183
|
Microarray data mining using landmark gene-guided clustering. BMC Bioinformatics 2008; 9:92. [PMID: 18267003 PMCID: PMC2262871 DOI: 10.1186/1471-2105-9-92] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 02/11/2008] [Indexed: 11/23/2022] Open
Abstract
Background Clustering is a popular data exploration technique widely used in microarray data analysis. Most conventional clustering algorithms, however, generate only one set of clusters independent of the biological context of the analysis. This is often inadequate to explore data from different biological perspectives and gain new insights. We propose a new clustering model that can generate multiple versions of different clusters from a single dataset, each of which highlights a different aspect of the given dataset. Results By applying our SigCalc algorithm to three yeast Saccharomyces cerevisiae datasets we show two results. First, we show that different sets of clusters can be generated from the same dataset using different sets of landmark genes. Each set of clusters groups genes differently and reveals new biological associations between genes that were not apparent from clustering the original microarray expression data. Second, we show that many of these new found biological associations are common across datasets. These results also provide strong evidence of a link between the choice of landmark genes and the new biological associations found in gene clusters. Conclusion We have used the SigCalc algorithm to project the microarray data onto a completely new subspace whose co-ordinates are genes (called landmark genes), known to belong to a Biological Process. The projected space is not a true vector space in mathematical terms. However, we use the term subspace to refer to one of virtually infinite numbers of projected spaces that our proposed method can produce. By changing the biological process and thus the landmark genes, we can change this subspace. We have shown how clustering on this subspace reveals new, biologically meaningful clusters which were not evident in the clusters generated by conventional methods. The R scripts (source code) are freely available under the GPL license. The source code is available [see Additional File 1] as additional material, and the latest version can be obtained at . The code is under active development to incorporate new clustering methods and analysis.
Collapse
|
184
|
A screen for modifiers of hedgehog signaling in Drosophila melanogaster identifies swm and mts. Genetics 2008; 178:1399-413. [PMID: 18245841 DOI: 10.1534/genetics.107.081638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway-patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn(+) finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity.
Collapse
|
185
|
Smelkinson MG, Zhou Q, Kalderon D. Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation. Dev Cell 2008; 13:481-95. [PMID: 17925225 DOI: 10.1016/j.devcel.2007.09.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/08/2007] [Accepted: 09/12/2007] [Indexed: 11/29/2022]
Abstract
Hedgehog (Hh) proteins signal by inhibiting the proteolytic processing of Ci/Gli family transcription factors and by increasing Ci/Gli-specific activity. When Hh is absent, phosphorylation of Ci/Gli triggers binding to SCF ubiquitin ligase complexes and consequent proteolysis. Here we show that multiple successively phosphorylated CK1 sites on Ci create an atypical extended binding site for the SCF substrate recognition component Slimb. GSK3 enhances binding primarily through a nearby region of Ci, which might contact an SCF component other than Slimb. Studies of Ci variants with altered CK1 and GSK3 sites suggest that the large number of phosphorylation sites that direct SCF(Slimb) binding confers a sensitive and graded proteolytic response to Hh, which collaborates with changes in Ci-specific activity to elicit a morphogenetic response. We also show that when Ci proteolysis is compromised, its specific activity is limited principally by Su(fu), and not by Cos2 cytoplasmic tethering or PKA phosphorylation.
Collapse
|
186
|
Abstract
Cilia function as critical sensors of extracellular information, and ciliary dysfunction underlies diverse human disorders including situs inversus, polycystic kidney disease, retinal degeneration, and Bardet-Biedl syndrome. Importantly, mammalian primary cilia have recently been shown to mediate transduction of Hedgehog (Hh) signals, which are involved in a variety of developmental processes. Mutations in several ciliary components disrupt the patterning of the neural tube and limb bud, tissues that rely on precisely coordinated gradients of Hh signal transduction. Numerous components of the Hh pathway, including Patched, Smoothened, and the Gli transcription factors, are present within primary cilia, indicating that key steps of Hh signaling may occur within the cilium. Because dysregulated Hh signaling promotes the development of a variety of human tumors, cilia may also have roles in cancer. Together, these findings have shed light on one mechanism by which primary cilia transduce signals critical for both development and disease.
Collapse
Affiliation(s)
- Sunny Y Wong
- Department of Biochemistry, Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | |
Collapse
|
187
|
Hervás-Aguilar A, Rodríguez JM, Tilburn J, Arst HN, Peñalva MA. Evidence for the Direct Involvement of the Proteasome in the Proteolytic Processing of the Aspergillus nidulans Zinc Finger Transcription Factor PacC. J Biol Chem 2007; 282:34735-47. [PMID: 17911112 DOI: 10.1074/jbc.m706723200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 72-kDa zinc finger transcription factor PacC, distantly related to Ci/Gli developmental regulators, undergoes two-step proteolytic processing in response to alkaline ambient pH. "Signaling protease" cleavage of PacC(72) removes a processing-inhibitory C-terminal domain, making its truncated PacC(53) product accessible to a second "processing" protease, yielding PacC(27). Features of the processing proteolysis suggested the proteasome as a candidate protease. We constructed, using gene replacements, two missense active site mutations in preB, the Aspergillus nidulans orthologue of Saccharomyces cerevisiae PRE2 encoding the proteasome beta5 subunit. preB1(K101A) is lethal. Viable preB2(K101R) impairs growth and, like its equivalent pre2(K108R) in yeast, impairs chymotryptic activity. pre2(K108R) and preB2(K101R) active site mutations consistently shift position of the scissile bonds when PacC is processed in S. cerevisiae and A. nidulans, respectively, indicating that PacC must be a direct substrate of the proteasome. preB2(K101R) leads to a 2-3-fold elevation in NimE mitotic cyclin levels but appears to result in PacC instability, suggesting an altered balance between processing and degradation. preB2(K101R) compensates the marked impairment in PacC(27) formation resulting from deletion of the processing efficiency determinant in PacC, further indicating direct proteasomal involvement in the formation of PacC(27). Deletion of a Gly-Pro-Ala-rich region within this processing efficiency determinant markedly destabilizes PacC. Arg substitutions of Lys residues within this efficiency determinant and nearby show that they cooperate to promote PacC processing. A quadruple Lys-to-Arg substitution (4K-->R) impairs formation of PacC(27) and leads to persistence of PacC(53). Wild-type PacC(53) becomes multiply phosphorylated upon alkaline pH exposure. Processing-impaired 4K-->R PacC(53) becomes excessively phosphorylated.
Collapse
Affiliation(s)
- América Hervás-Aguilar
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | | | | | | | | |
Collapse
|
188
|
Kiselyov AS, Tkachenko SE, Balakin KV, Ivachtchenko AV. Small-molecule modulators of Hh and Wnt signaling pathways. Expert Opin Ther Targets 2007; 11:1087-101. [PMID: 17665980 DOI: 10.1517/14728222.11.8.1087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hedgehog (Hh) and Wnt signaling pathways play key roles in growth and patterning during embryonic development and in the postembryonic regulation of stem cell number in the epithelia. Numerous studies link aberrant modulation of these pathways to specific human diseases. This article focuses on general aspects of Hh and Wnt signal transduction and biologic molecules involved in the respective signaling cascades. Specifically, the authors summarize small-molecule modulators of both pathways that show promise as therapeutic modalities.
Collapse
Affiliation(s)
- Alex S Kiselyov
- Small Molecule Drug Discovery, ChemDiv, Inc., San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
189
|
Doble BW, Woodgett JR. Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs 2007; 185:73-84. [PMID: 17587811 DOI: 10.1159/000101306] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epithelial cells usually exist as sheets of immotile, tightly packed, well-coupled, polarized cells with distinct apical, basal and lateral surfaces. Remarkably, these cells can dramatically alter their morphology to become motile, fibroblast-like mesenchymal cells in a process of epithelial-mesenchymal transition (EMT). This process and the reverse, mesenchymal-epithelial transition, occur repeatedly during normal embryonic development. A phenomenon similar to physiological EMT occurs during the pathophysiological progression of some cancers. Tumours of epithelial origin, as they transform to malignancy, appear to exploit the innate plasticity of epithelial cells, with EMT conferring increased invasiveness and metastatic potential. Key to the maintenance of epithelial cell identity is the expression of E-cadherin, a protein that is required for tight intercellular adhesion along the lateral surfaces of adjacent epithelial cells. Loss of functional E-cadherin is a critical event in EMT. An important regulator of E-cadherin expression is the protein Snail, a zinc-finger transcriptional repressor. Snail contains several consensus sites for the kinase, glycogen synthase kinase-3 (GSK-3), and accumulating evidence indicates that it is a GSK-3 substrate. Phosphorylation of Snail by GSK-3 facilitates its proteasomal degradation. Conversely, inhibition of GSK-3 leads to Snail accumulation, E-cadherin downregulation, and development of EMT in cultured epithelial cells. Several signalling pathways implicated in the progression of EMT, including the Wnt and phosphoinositide 3-kinase pathways, use GSK-3 to mediate their responses. In these pathways, GSK-3's regulation of other transcriptional effectors like beta-catenin works in concert with changes in Snail to orchestrate the EMT process. This review focuses on the emerging role of GSK-3 as a modulator of cell fate and EMT in the contexts of development, in vitro cell culture and cancer.
Collapse
|
190
|
Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 2007; 282:23645-54. [PMID: 17562708 DOI: 10.1074/jbc.m703269200] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tau in Alzheimer disease brain is highly phosphorylated and aggregated into paired helical filaments comprising characteristic neurofibrillary tangles. Here we have analyzed insoluble Tau (PHF-tau) extracted from Alzheimer brain by mass spectrometry and identified 11 novel phosphorylation sites, 10 of which were assigned unambiguously to specific amino acid residues. This brings the number of directly identified sites in PHF-tau to 39, with an additional six sites indicated by reactivity with phosphospecific antibodies to Tau. We also identified five new phosphorylation sites in soluble Tau from control adult human brain, bringing the total number of reported sites to nine. To assess which kinases might be responsible for Tau phosphorylation, we used mass spectrometry to determine which sites were phosphorylated in vitro by several kinases. Casein kinase 1delta and glycogen synthase kinase-3beta were each found to phosphorylate numerous sites, and each kinase phosphorylated at least 15 sites that are also phosphorylated in PHF-tau from Alzheimer brain. A combination of casein kinase 1delta and glycogen synthase kinase-3beta activities could account for over three-quarters of the serine/threonine phosphorylation sites identified in PHF-tau, indicating that casein kinase 1delta may have a role, together with glycogen synthase kinase-3beta, in the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Diane P Hanger
- MRC Centre for Neurodegeneration Research, Department of Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ou CY, Wang CH, Jiang J, Chien CT. Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol 2007; 308:106-19. [PMID: 17559828 DOI: 10.1016/j.ydbio.2007.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 02/04/2023]
Abstract
Cullin-RING ubiquitin ligases ubiquitinate protein substrates and control their levels through degradation. Here we show that cullin3 (Cul3) suppresses Hedgehog (Hh) signaling through downregulating the level of the signaling pathway effector cubitus interruptus (Ci). High-level Hh signaling promotes Cul3-dependent Ci degradation, leading to the downregulation of Hh signaling. This process is manifested in controlling cell proliferation during Drosophila retinal development. In Cul3 mutants, the population of interommatidial cells is increased, which can be mimicked by overexpression of Ci and suppressed by depleting endogenous Ci. Hh also regulates the population of interommatidial cells in the pupal stage. Alterations in the interommatidial cell population correlate with alterations in precursor proliferation in the second mitotic wave of larval eye discs. Taken together, these results suggest that Cul3 downregulates Ci levels to modulate Hh signaling activity, thus ensuring proper cell proliferation during retinal development.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Taiwan International Graduate Program, Graduate Institute of Life Science, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
192
|
Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. FRONT BIOSCI-LANDMRK 2007; 12:3068-92. [PMID: 17485283 PMCID: PMC3571113 DOI: 10.2741/2296] [Citation(s) in RCA: 441] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuying Yang
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Jianzhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Ping Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Department of Cytokine Biology, Forsyth Institute, Harvard School of Dental Medicine, Boston, Massachusetts
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
193
|
Peñas MM, Hervás-Aguilar A, Múnera-Huertas T, Reoyo E, Peñalva MA, Arst HN, Tilburn J. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. EUKARYOTIC CELL 2007; 6:960-70. [PMID: 17416893 PMCID: PMC1951515 DOI: 10.1128/ec.00047-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Aspergillus nidulans pH-responsive transcription factor PacC is modulated by limited, two-step proteolysis. The first, pH-regulated cleavage occurs in the 24-residue highly conserved "signaling protease box" in response to the alkaline pH signal. This is transduced by the Pal signaling pathway, containing the predicted calpain-like cysteine protease and likely signaling protease, PalB. In this work, we carried out classical mutational analysis of the putative signaling protease PalB, and we describe 9 missense and 18 truncating loss-of-function (including null) mutations. Mutations in the region of and affecting directly the predicted catalytic cysteine strongly support the deduction that PalB is a cysteine protease. Truncating and missense mutations affecting the C terminus highlight the importance of this region. Analysis of three-hemagglutinin-tagged PalB in Western blots demonstrates that PalB levels are independent of pH and Pal signal transduction. We have followed the processing of MYC(3)-tagged PacC in Western blots. We show unequivocally that PalB is essential for signaling proteolysis and is definitely not the processing protease. In addition, we have replaced 15 residues of the signaling protease box of MYC(3)-tagged PacC (pacC900) with alanine. The majority of these substitutions are silent. Leu481Ala, Tyr493Ala, and Gln499Ala result in delayed PacC processing in response to shifting from acidic to alkaline medium, as determined by Western blot analysis. Leu498Ala reduces function much more markedly, as determined by plate tests and processing recalcitrance. Excepting Leu498, this demonstrates that PacC signaling proteolysis is largely independent of sequence in the cleavage region.
Collapse
Affiliation(s)
- María M Peñas
- Department of Molecular Microbiology and Infection, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
194
|
Melichar H, Kang J. Integrated morphogen signal inputs in gammadelta versus alphabeta T-cell differentiation. Immunol Rev 2007; 215:32-45. [PMID: 17291277 DOI: 10.1111/j.1600-065x.2006.00469.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Morphogens, a class of secreted proteins that regulate gene expression in a concentration-dependent manner, are responsible for directing nearly all lineage fate choices during embryogenesis. In the thymus, morphogen signal pathways consisting of WNT, Hedgehog, and the transforming growth factor-beta superfamily are active and have been implicated in various developmental processes including proliferation, survival, and differentiation of maturing thymocytes. Intriguingly, it has been inferred that some of these morphogen signal pathways differentially affect gammadelta and alphabeta T-cell development or maintenance, but their role in T-cell lineage commitment has not been directly probed. We have recently identified a modulator of morphogen signaling that significantly influences binary gammadelta versus alphabeta T-cell lineage diversification. In this review, we summarize functions of morphogens in the thymus and provide a highly speculative model of integrated morphogen signals, potentially directing the gammadelta versus alphabeta T-cell fate determination process.
Collapse
Affiliation(s)
- Heather Melichar
- Department of Pathology University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
195
|
Zhang N, Jiang Y, Zou J, Zhuang S, Jin H, Yu Q. Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of GSK3β-axin complex: Role of packing hydrophobic residues. Proteins 2007; 67:941-9. [PMID: 17380482 DOI: 10.1002/prot.21359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycogen synthase kinase 3beta (GSK 3beta) is a key component of several cellular processes including Wnt and insulin signalling pathways. The interaction of GSK3beta with scaffolding peptide axin is thought to be responsible for the effective phosphorylation of beta-catenin, the core effector of Wnt signaling, which has been linked with the occurrence of colon cancer and melanoma. It has been demonstrated that the binding of axin to GSK3beta is abolished by the single-point mutation of Val267 to Gly (V267G) in GSK3beta or Leu392 to Pro (L392P) in axin. Molecular dynamics (MD) simulations were performed on wild type (WT), V267G mutant and L392P one to elucidate the two unbinding mechanisms that occur through different pathways. Besides, rough energy and residue-based energy decomposition were calculated by MM_GBSA (molecular mechanical Generalized_Born surface area) approach to illuminate the instability of the two mutants. The MD simulations of the two mutants and WT reveal that the structure of GSK3beta remains unchanged, while axin moves away from the interfacial hydrophobic pockets in both two mutants. Axin exhibits positional shift in V267G mutant, whereas, losing the hydrogen bonds that are indispensable for stabilizing the helix structure of wild type axin, the helix of axin is distorted in L392P mutant. To conclude, both two mutants destroy the hydrophobic interaction that is essential to the stability of GSK3beta-axin complex.
Collapse
Affiliation(s)
- Na Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | | | | | | | | | | |
Collapse
|
196
|
Hosking CR, Ulloa F, Hogan C, Ferber EC, Figueroa A, Gevaert K, Birchmeier W, Briscoe J, Fujita Y. The transcriptional repressor Glis2 is a novel binding partner for p120 catenin. Mol Biol Cell 2007; 18:1918-27. [PMID: 17344476 PMCID: PMC1855037 DOI: 10.1091/mbc.e06-10-0941] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In epithelial cells, p120 catenin (p120) localizes at cell-cell contacts and regulates adhesive function of the cadherin complex. In addition, p120 has been reported to localize in the nucleus, although the nuclear function of p120 is not fully understood. Here, we report the identification of Gli-similar 2 (Glis2) as a novel binding protein for p120. Glis2 is a Krüppel-like transcriptional repressor with homology to the Gli family, but its physiological function has not been well characterized. In this study, we show that coexpression of Glis2 and Src induces nuclear translocation of p120. Furthermore, p120 induces the C-terminal cleavage of Glis2, and this cleavage is further enhanced by Src. The cleaved form of Glis2 loses one of its five zinc finger domains, but it is still able to bind DNA. Functional studies in chick neural tube indicate that full-length Glis2 can affect neuronal differentiation, whereas the cleaved form requires coexpression of p120 to have a similar effect. These data indicate that p120 has additional novel functions in the nucleus together with Glis2.
Collapse
Affiliation(s)
- Catherine Rose Hosking
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Fausto Ulloa
- Division of Developmental Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Catherine Hogan
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Emma C. Ferber
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Angélica Figueroa
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| | - Kris Gevaert
- Department of Medical Protein Research, Proteome Analysis and Bioinformatics Unit, Flanders Interuniversity Institute for Biotechnology, Faculty of Medicine and Health Sciences, Ghent University, B9000 Gent, Belgium; and
| | | | - James Briscoe
- Division of Developmental Neurobiology, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Yasuyuki Fujita
- *Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, and Department of Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
197
|
Abstract
Intense research over the past four years has led to the discovery and characterization of a novel signalling network, known as the Salvador-Warts-Hippo (SWH) pathway, involved in tissue growth control in Drosophila melanogaster. At present, eleven proteins have been implicated as members of this pathway, and several downstream effector genes have been characterized. The importance of this pathway is emphasized by its evolutionary conservation, and by increasing evidence that its deregulation occurs in human tumours. Here, we review the main findings from Drosophila and the implications that these have for tumorigenesis in mammals.
Collapse
Affiliation(s)
- Kieran Harvey
- Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002 Australia.
| | | |
Collapse
|
198
|
Pan Y, Wang B. A novel protein-processing domain in Gli2 and Gli3 differentially blocks complete protein degradation by the proteasome. J Biol Chem 2007; 282:10846-52. [PMID: 17283082 DOI: 10.1074/jbc.m608599200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome usually completely degrades its target proteins, but it can also degrade a handful of proteins in a limited and site-specific manner. The molecular mechanism for such limited degradation is unknown. The repressor forms of Gli2 and Gli3 transcription factors are generated from their full-length proteins through limited proteasome-mediated protein degradation. In this study, we have taken advantage of the fact that Gli3 is efficiently processed, whereas Gli2 is not, and identified a region of approximately 200 residues in their C termini that determine differential processing of the two proteins. This region, named processing determinant domain, functions as a signal for protein processing in the context of not only Gli2 and Gli3 protein sequences but also a heterologous hybrid protein, which would otherwise be completely degraded by the proteasome. Thus, the processing determinant domain constitutes a novel domain that functions independently. Our findings explain, at the molecular level, why Gli2 and Gli3 are differentially processed and, more importantly, may help understand a probably general mechanism by which the proteasome degrades some of its target proteins partially rather than completely.
Collapse
Affiliation(s)
- Yong Pan
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
199
|
Busson D, Pret AM. GAL4/UAS targeted gene expression for studying Drosophila Hedgehog signaling. Methods Mol Biol 2007; 397:161-201. [PMID: 18025721 DOI: 10.1007/978-1-59745-516-9_13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The GAL4/upstream activating sequence (UAS) system is one of the most powerful tools for targeted gene expression. It is based on the properties of the yeast GAL4 transcription factor which activates transcription of its target genes by binding to UAS cis-regulatory sites. In Drosophila, the two components are carried in separate lines allowing for numerous combinatorial possibilities. The driver lines provide tissue-specific GAL4 expression and the responder lines carry the coding sequence for the gene of interest under the control of UAS sites. In this chapter, the basic GAL4/UAS system and its extensions, namely those allowing precise temporal control and reversible expression, are described. In addition, a list of GAL4 and UAS lines and schematic maps of GAL4 and UAS vectors useful in the study of Hedgehog (Hh) signaling is given. Finally, uses of the GAL4/UAS system to resolve some of the questions addressed in the study of the Hh pathway are presented.
Collapse
|
200
|
Abstract
Hedgehog signaling coordinates a variety of patterning processes during early embryonic development. Drosophila hedgehog and its vertebrate orthologs, Sonic hedgehog, Indian hedgehog, and Desert hedgehog, share a generally conserved signal transduction cascade. However, the particular mechanisms by which the lipid-modified molecules specify embryonic tissues differ substantially. Vertebrate skeletal patterning is one of the most intensively studied biological processes. During skeletogenesis, Sonic and Indian hedgehog provide positional information and initiate or maintain cellular differentiation programs regulating the formation of cartilage and bone. They either signal directly to adjacent cells or form tightly regulated gradients that act over long distances to pattern the axial and appendicular skeleton and regulate crucial steps during endochondral ossification. As a consequence, malfunction of the hedgehog signaling network can cause severe skeletal disorders and tumors.
Collapse
Affiliation(s)
- Harald W A Ehlen
- University of Duisburg-Essen, Center for Medical Biotechnology, Essen, Germany
| | | | | |
Collapse
|