151
|
Graber JJ, Dhib-Jalbut S. Biomarkers of Interferon Beta Therapy in Multiple Sclerosis. J Interferon Cytokine Res 2014; 34:600-4. [DOI: 10.1089/jir.2013.0144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jerome J. Graber
- Department of Neurology, Montefiore-Einstein Medical Center, Bronx, New York
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
152
|
Biomarker Studies in Multiple Sclerosis: From Proteins to Noncoding RNAs. Neurochem Res 2014; 39:1661-74. [DOI: 10.1007/s11064-014-1386-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022]
|
153
|
Mony JT, Khorooshi R, Owens T. Chemokine receptor expression by inflammatory T cells in EAE. Front Cell Neurosci 2014; 8:187. [PMID: 25071447 PMCID: PMC4081975 DOI: 10.3389/fncel.2014.00187] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/19/2014] [Indexed: 11/13/2022] Open
Abstract
Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 1% of CD4(+) T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8(+) T cells. CD8(+) T cells expressed CXCR3, which was also expressed by CD4(+) T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6(+) and CXCR3(+) CD4(+) T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8(+) T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.
Collapse
Affiliation(s)
- Jyothi Thyagabhavan Mony
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Reza Khorooshi
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| | - Trevor Owens
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark Odense, Denmark
| |
Collapse
|
154
|
Affiliation(s)
- Wakiro Sato
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry (NCNP); Tokyo Japan
| |
Collapse
|
155
|
|
156
|
Fingolimod attenuates splenocyte-induced demyelination in cerebellar slice cultures. PLoS One 2014; 9:e99444. [PMID: 24911000 PMCID: PMC4049809 DOI: 10.1371/journal.pone.0099444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/15/2014] [Indexed: 12/02/2022] Open
Abstract
The family of sphingosine-1-phosphate receptors (S1PRs) is G-protein-coupled, comprised of subtypes S1PR1-S1PR5 and activated by the endogenous ligand S1P. The phosphorylated version of Fingolimod (pFTY720), an oral therapy for multiple sclerosis (MS), induces S1PR1 internalisation in T cells, subsequent insensitivity to S1P gradients and sequestering of these cells within lymphoid organs, thus limiting immune response. S1PRs are also expressed in neuronal and glial cells where pFTY720 is suggested to directly protect against lysolecithin-induced deficits in myelination state in organotypic cerebellar slices. Of note, the effect of pFTY720 on immune cells already migrated into the CNS, prior to treatment, has not been well established. We have previously found that organotypic slice cultures do contain immune cells, which, in principle, could also be regulated by pFTY720 to maintain levels of myelin. Here, a mouse organotypic cerebellar slice and splenocyte co-culture model was thus used to investigate the effects of pFTY720 on splenocyte-induced demyelination. Spleen cells isolated from myelin oligodendrocyte glycoprotein immunised mice (MOG-splenocytes) or from 2D2 transgenic mice (2D2-splenocytes) both induced demyelination when co-cultured with mouse organotypic cerebellar slices, to a similar extent as lysolecithin. As expected, in vivo treatment of MOG-immunised mice with FTY720 inhibited demyelination induced by MOG-splenocytes. Importantly, in vitro treatment of MOG- and 2D2-splenocytes with pFTY720 also attenuated demyelination caused by these cells. In addition, while in vitro treatment of 2D2-splenocytes with pFTY720 did not alter cell phenotype, pFTY720 inhibited the release of the pro-inflammatory cytokines such as interferon gamma (IFNγ) and interleukin 6 (IL6) from these cells. This work suggests that treatment of splenocytes by pFTY720 attenuates demyelination and reduces pro-inflammatory cytokine release, which likely contributes to enhanced myelination state induced by pFTY720 in organotypic cerebellar slices.
Collapse
|
157
|
Levy M, Wildemann B, Jarius S, Orellano B, Sasidharan S, Weber MS, Stuve O. Immunopathogenesis of neuromyelitis optica. Adv Immunol 2014; 121:213-42. [PMID: 24388217 DOI: 10.1016/b978-0-12-800100-4.00006-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuromyelitis optica (NMO, Devic's syndrome) is a clinical syndrome characterized by optic neuritis and (mostly longitudinally extensive) myelitis. If untreated, NMO usually takes a relapsing course and often results in blindness and tetra- or paraparesis. The discovery of autoantibodies to aquaporin-4, the most abundant water channel in the CNS, in 70-80% of patients with NMO (termed NMO-IgG or AQP4-Ab) and subsequent investigations into the pathogenic impact of this new reactivity have led to the recognition of NMO as an autoimmune condition and as a disease entity in its own right, distinct from classic multiple sclerosis. Here, we comprehensively review the current knowledge on the role of NMO-IgG/AQP4-Ab, B cells, T cells, and the innate immune system in the pathogenesis of NMO.
Collapse
Affiliation(s)
- Michael Levy
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.
| | - Brigitte Wildemann
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Division of Molecular Neuroimmunology, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Benjamine Orellano
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Saranya Sasidharan
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Martin S Weber
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany; Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Olaf Stuve
- Department of Neurology & Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, Texas, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, München, Germany; Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
158
|
Human Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium in Retinal Treatment: from Bench to Bedside. Mol Neurobiol 2014; 50:597-612. [DOI: 10.1007/s12035-014-8684-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/17/2014] [Indexed: 01/23/2023]
|
159
|
Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 2014; 74:659-74. [PMID: 24740824 PMCID: PMC4003395 DOI: 10.1007/s40265-014-0212-x] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatment of multiple sclerosis (MS) is challenging: disease-modifying treatments (DMTs) must both limit unwanted immune responses associated with disease initiation and propagation (as T and B lymphocytes are critical cellular mediators in the pathophysiology of relapsing MS), and also have minimal adverse impact on normal protective immune responses. In this review, we summarize key preclinical and clinical data relating to the proposed mechanism of action of the recently approved DMT teriflunomide in MS. Teriflunomide selectively and reversibly inhibits dihydro-orotate dehydrogenase, a key mitochondrial enzyme in the de novo pyrimidine synthesis pathway, leading to a reduction in proliferation of activated T and B lymphocytes without causing cell death. Results from animal experiments modelling the immune activation implicated in MS demonstrate reductions in disease symptoms with teriflunomide treatment, accompanied by reduced central nervous system lymphocyte infiltration, reduced axonal loss, and preserved neurological functioning. In agreement with the results obtained in these model systems, phase 3 clinical trials of teriflunomide in patients with MS have consistently shown that teriflunomide provides a therapeutic benefit, and importantly, does not cause clinical immune suppression. Taken together, these data demonstrate how teriflunomide acts as a selective immune therapy for patients with MS.
Collapse
Affiliation(s)
- Amit Bar-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Andrew Pachner
- Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Building A10 (previously Domagkstr. 13), 48149 Münster, Germany
| |
Collapse
|
160
|
Affiliation(s)
- Lawrence Steinman
- Departments of Pediatrics, Neurology and Neurological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
161
|
Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14
+
CD16
+
monocyte subset during multiple sclerosis. Immunol Cell Biol 2014; 92:509-17. [DOI: 10.1038/icb.2014.15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/24/2022]
Affiliation(s)
| | - Scott A Harding
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
- Capital Coast District Health BoardWellingtonNew Zealand
| | | | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
162
|
Kraaij MD, Vereyken EJF, Leenen PJM, van den Bosch TPP, Rezaee F, Betjes MGH, Baan CC, Rowshani AT. Human monocytes produce interferon-gamma upon stimulation with LPS. Cytokine 2014; 67:7-12. [PMID: 24680476 DOI: 10.1016/j.cyto.2014.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/09/2013] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
Representing a crucial T-helper 1 cytokine, IFN-γ acts as an important bridge between innate and adaptive immunity and is involved in many acute and chronic pathologic states, such as autoimmune diseases and solid organ transplant rejection. At present, debate still prevails about the ability of human monocytes to produce IFN-γ. We aimed to investigate whether human monocytes possess the capacity to produce IFN-γ at mRNA and protein level. Using real time PCR, flow cytometric analysis and ELISA, we investigated the capacity of freshly isolated CD14+ monocytes of healthy individuals and kidney transplant recipients to produce IFN-γ after stimulation with IFN-γ and LPS or LPS alone. We observed increased IFN-γ mRNA levels in CD14+ monocytes after stimulation as compared to the unstimulated controls in both populations. In addition, stimulation with IFN-γ and LPS or LPS alone led to a significant increase in the percentage of CD14+ monocytes producing TNF-α and IFN-γ at protein level (p<0.05). A trend towards increased secreted IFN-γ production in supernatants was also observed after LPS stimulation using ELISA. We conclude that human monocytes from healthy individuals and kidney transplant recipients possess the capacity to produce IFN-γ.
Collapse
Affiliation(s)
- Marina D Kraaij
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elly J F Vereyken
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Farhad Rezaee
- Department of Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel G H Betjes
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ajda T Rowshani
- Department of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
163
|
Menezes SM, Decanine D, Brassat D, Khouri R, Schnitman SV, Kruschewsky R, López G, Alvarez C, Talledo M, Gotuzzo E, Vandamme AM, Galvão-Castro B, Liblau R, Weyenbergh JV. CD80+ and CD86+ B cells as biomarkers and possible therapeutic targets in HTLV-1 associated myelopathy/tropical spastic paraparesis and multiple sclerosis. J Neuroinflammation 2014; 11:18. [PMID: 24472094 PMCID: PMC3922160 DOI: 10.1186/1742-2094-11-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/13/2014] [Indexed: 01/14/2023] Open
Abstract
Background Human T-cell lymphotropic virus (HTLV-1) is the causative agent of the incapacitating, neuroinflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Currently, there are no disease-modifying therapies with long-term clinical benefits or validated biomarkers for clinical follow-up in HAM/TSP. Although CD80 and CD86 costimulatory molecules play prominent roles in immune regulation and reflect disease status in multiple sclerosis (MS), data in HAM/TSP are lacking. Methods Using flow cytometry, we quantified ex vivo and in vitro expression of CD80 and CD86 in PBMCs of healthy controls, HTLV-1-infected individuals with and without HAM/TSP, and MS patients. We hypothesized ex vivo CD80 and CD86 expressions and their in vitro regulation by interferon (IFN)-α/β mirror similarities between HAM/TSP and MS and hence might reveal clinically useful biomarkers in HAM/TSP. Results Ex vivo expression of CD80 and CD86 in T and B cells increased in all HTLV-1 infected individuals, but with a selective defect for B cell CD86 upregulation in HAM/TSP. Despite decreased total B cells with increasing disease duration (p = 0.0003, r = −0.72), CD80+ B cells positively correlated with disease severity (p = 0.0017, r = 0.69) in HAM/TSP. B cell CD80 expression was higher in women with HAM/TSP, underscoring that immune markers can reflect the female predominance observed in most autoimmune diseases. In contrast to MS patients, CD80+ (p = 0.0001) and CD86+ (p = 0.0054) lymphocytes expanded upon in vitro culture in HAM/TSP patients. The expansion of CD80+ and CD86+ T cells but not B cells was associated with increased proliferation in HTLV-1 infection. In vitro treatment with IFN-β but not IFN-α resulted in a pronounced increase of B cell CD86 expression in healthy controls, as well as in patients with neuroinflammatory disease (HAM/TSP and MS), similar to in vivo treatment in MS. Conclusions We propose two novel biomarkers, ex vivo CD80+ B cells positively correlating to disease severity and CD86+ B cells preferentially induced by IFN-β, which restores defective upregulation in HAM/TSP. This study suggests a role for B cells in HAM/TSP pathogenesis and opens avenues to B cell targeting (with proven clinical benefit in MS) in HAM/TSP but also CD80-directed immunotherapy, unprecedented in both HAM/TSP and MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
164
|
|
165
|
Stüve O, Cravens PD, Eagar TN. DNA-based vaccines: the future of multiple sclerosis therapy? Expert Rev Neurother 2014; 8:351-60. [DOI: 10.1586/14737175.8.3.351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
166
|
Baker D, Lidster K, Sottomayor A, Amor S. Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies. PLoS Biol 2014; 12:e1001756. [PMID: 24409096 PMCID: PMC3883646 DOI: 10.1371/journal.pbio.1001756] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is growing concern that poor experimental design and lack of transparent reporting contribute to the frequent failure of pre-clinical animal studies to translate into treatments for human disease. In 2010, the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines were introduced to help improve reporting standards. They were published in PLOS Biology and endorsed by funding agencies and publishers and their journals, including PLOS, Nature research journals, and other top-tier journals. Yet our analysis of papers published in PLOS and Nature journals indicates that there has been very little improvement in reporting standards since then. This suggests that authors, referees, and editors generally are ignoring guidelines, and the editorial endorsement is yet to be effectively implemented.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Katie Lidster
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - Ana Sottomayor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Escola de Ciências da Saúde, Universidade do Minho, Braga, Portugal
| | - Sandra Amor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Pathology Department, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
167
|
Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:59-87. [PMID: 24507513 DOI: 10.1016/b978-0-444-52001-2.00003-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS). It is widely considered a T-cell mediated autoimmune disease that develops in genetically susceptible individuals, possibly under the influence of certain environmental trigger factors. The invasion of autoreactive CD4+ T-cells into the CNS is thought to be a central step that initiates the disease. Several other cell types, including CD8+ T-cells, B-cells and phagocytes appear to be involved in causing inflammation and eventually neurodegeneration. But inflammation is not entirely deleterious in MS. Evidence has accumulated in the recent years that show the importance of regulatory immune mechanisms which restrain tissue damage and initiate regeneration. More insight into the beneficial aspects of neuroinflammation might allow us to develop new treatment strategies for this enigmatic disease.
Collapse
Affiliation(s)
- Matthias Naegele
- Institute for Neuroimmunology and Clinical Multiple Sclerosis Research, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital, Zurich, Switzerland.
| |
Collapse
|
168
|
Abstract
This review, focused on demyelination in multiple sclerosis, is divided in two parts. The first part addresses the many and not exclusive mechanisms leading to demyelination in the central nervous system. Although the hypothesis that a primary oligodendrocyte or myelin injury induces a secondary immune response in the central nervous system is still a matter of debate, most recent advances underline the influence of a primary immune response against myelin antigen(s), with a diversity of potential targets. Whereas multiple sclerosis was long considered as a T cell-mediated disease, the role of B lymphocytes is now increasingly recognized, and the influence of antibodies on tissue damage actively investigated. The second part of the review describes the axonal consequences of demyelination. Segmental demyelination results in conduction block or slowing of conduction through adaptative responses, notably related to modifications in the distribution of voltage gated sodium channels along the denuded axon. If demyelination persists, these changes, as well as the loss of trophic and metabolic support, will lead to irreversible axonal damage and loss. In this respect, favouring early myelin repair, during a window of time when axonal damage is still reversible, might pave the way for neuroprotection.
Collapse
Affiliation(s)
- Catherine Lubetzki
- Correspondence to: Professeur Catherine Lubetzki, CRICM, UPMC/Inserm UMR_S975, GH Pitié-Salpêtrière, Bâtiment ICM, 47 Bld de l'Hôpital, 75651 Paris cedex 13, France. Tel: + 33-01-57-27-44-65
| | | |
Collapse
|
169
|
Gotts JE, Matthay MA. Treating ARDS: new hope for a tough problem. THE LANCET RESPIRATORY MEDICINE 2013; 2:84-5. [PMID: 24503258 DOI: 10.1016/s2213-2600(13)70285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeffrey E Gotts
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0624, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0624, USA.
| |
Collapse
|
170
|
Slaney CY, Toker A, Fraser JD, Harper JL, Bäckström BT. A modified superantigen rescues Ly6G- CD11b+ blood monocyte suppressor function and suppresses antigen-specific inflammation in EAE. Autoimmunity 2013; 46:269-78. [PMID: 23374140 DOI: 10.3109/08916934.2013.767893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a previous study, we showed that the Ly6G(-)CD11b(+) blood monocytes residing in naïve mice are intrinsically immunosuppressive and that loss of this suppressive function may contribute to the development of autoimmunity in experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis. Here we report that mice treated with a modified superantigen coupled to myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) peptide (DM-MOG(35-55)) suppressed the development of EAE. The treatment was associated with impaired MOG(35-55)-specific T cell proliferation and a decrease in IL-17 and IFNγ production in the draining lymph nodes. Analysis of circulating blood immune cells showed that the suppressor function of Ly6G(-)CD11b(+) blood monocytes was reduced in EAE mice, but was restored in mice treated with DM-MOG(35-55). Importantly, adoptive transfer of blood CD11b(+)Ly6G(-) cells isolated from DM-MOG(35-55)-treated mice protected recipient mice from developing EAE. Together, these results show that DM coupled to the auto-antigen MOG(35-55): 1) suppresses EAE via antigen-specific suppression of T cell responses, and 2) re-establishes suppressor function of Ly6G(-)CD11b(+) blood monocytes. Auto-antigens coupled to DM could therefore represent a new therapeutic approach for controlling inappropriate inflammation in autoimmune diseases such as multiple sclerosis by inducing antigen-specific T cell suppression.
Collapse
Affiliation(s)
- Clare Y Slaney
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
171
|
Dwivedi M, Laddha NC, Shah K, Shah BJ, Begum R. Involvement of interferon-gamma genetic variants and intercellular adhesion molecule-1 in onset and progression of generalized vitiligo. J Interferon Cytokine Res 2013; 33:646-659. [PMID: 23777204 PMCID: PMC3814581 DOI: 10.1089/jir.2012.0171] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/05/2013] [Indexed: 02/05/2023] Open
Abstract
Interferon-gamma (IFN-γ) is a paracrine inhibitor of melanocytes and genetic variability due to intron 1 polymorphisms in IFNG has been reported to be associated with increased risk for several autoimmune diseases. The aim of present study was to determine whether intron 1 +874A/T (rs2430561) and CA microsatellite (rs3138557) polymorphisms in IFNG are associated with generalized vitiligo (GV) susceptibility and expression of IFNG and intercellular adhesion molecule-1 (ICAM1) affects the disease onset and progression. Here we report that IFNG CA microsatellite but not +874A/T may be a genetic risk factor for GV; however, +874T allele plays a crucial role in increased expression of IFNG mRNA and protein levels which could affect the onset and progression of the disease. Active GV patients showed increased IFNG levels compared to stable GV patients. The genotype-phenotype analysis revealed that IFNG expression levels were higher in patients with +874 TT genotypes and 12 CA repeats. Patients with the early age of onset showed higher IFNG expression and female GV patients showed higher IFNG and ICAM1 expression implicating gender biasness and involvement of IFN-γ in early onset of the disease. Moreover, the increased IFN-γ levels in patients lead to increased ICAM1 expression, which could be a probable link between cytokines and T-cell involvement in pathogenesis of GV.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Naresh C. Laddha
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kriti Shah
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Bela J. Shah
- Department of Dermatology, STD and Leprosy, B.J. Medical College and Civil Hospital, Ahmedabad, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
172
|
Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013; 2013:413465. [PMID: 24174969 PMCID: PMC3794540 DOI: 10.1155/2013/413465] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/01/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.
Collapse
|
173
|
Kaltsonoudis E, Voulgari PV, Konitsiotis S, Drosos AA. Demyelination and other neurological adverse events after anti-TNF therapy. Autoimmun Rev 2013; 13:54-8. [PMID: 24035809 DOI: 10.1016/j.autrev.2013.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor (TNF) α inhibitors are an essential therapeutic option for several inflammatory diseases, like rheumatoid arthritis, spondyloarthropathies and inflammatory bowel diseases. As TNFα antagonists have become increasingly utilized, there have been a number of reports of neurological adverse events in patients receiving anti-TNFα therapy. The frequency of central nervous system adverse events after initiation of anti-TNFα therapy is unknown. However, questions have been raised about a possible causal association. Although several hypotheses have been proposed in an attempt to explain the possible relationship between TNFα antagonist and demyelination, none is considered to be adequate. Thus, in this report we deal with the implication of TNFα in multiple sclerosis and we discuss the possible relationship of TNFα antagonist and demyelinating diseases.
Collapse
Affiliation(s)
- Evripidis Kaltsonoudis
- Rheumatology Clinic, Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | |
Collapse
|
174
|
Abstract
It is widely accepted that the main common pathogenetic pathway in multiple sclerosis (MS) involves an immune-mediated cascade initiated in the peripheral immune system and targeting CNS myelin. Logically, therefore, the therapeutic approaches to the disease include modalities aiming at downregulation of the various immune elements that are involved in this immunologic cascade. Since the introduction of interferons in 1993, which were the first registered treatments for MS, huge steps have been made in the field of MS immunotherapy. More efficious and specific immunoactive drugs have been introduced and it appears that the increased specificity for MS of these new treatments is paralleled by greater efficacy. Unfortunately, this seemingly increased efficacy has been accompanied by more safety issues. The immunotherapeutic modalities can be divided into two main groups: those affecting the acute stages (relapses) of the disease and the long-term treatments that are aimed at preventing the appearance of relapses and the progression in disability. Immunomodulating treatments may also be classified according to the level of the 'immune axis' where they exert their main effect. Since, in MS, a neurodegenerative process runs in parallel and as a consequence of inflammation, early immune intervention is warranted to prevent progression of relapses of MS and the accumulation of disability. The use of neuroimaging (MRI) techniques that allow the detection of silent inflammatory activity of MS and neurodegeneration has provided an important tool for the substantiation of the clinical efficacy of treatments and the early diagnosis of MS. This review summarizes in detail the existing information on all the available immunotherapies for MS, old and new, classifies them according to their immunologic mechanisms of action and proposes a structured algorithm/therapeutic scheme for the management of the disease.
Collapse
|
175
|
Naves R, Singh SP, Cashman KS, Rowse AL, Axtell RC, Steinman L, Mountz JD, Steele C, De Sarno P, Raman C. The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:2967-77. [PMID: 23960239 DOI: 10.4049/jimmunol.1300419] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type I IFNs (IFN-α and IFN-β) and type II IFN (IFN-γ) mediate both regulation and inflammation in multiple sclerosis, neuromyelitis optica, and in experimental autoimmune encephalomyelitis (EAE). However, the underlying mechanism for these Janus-like activities of type I and II IFNs in neuroinflammation remains unclear. Although endogenous type I IFN signaling provides a protective response in neuroinflammation, we find that when IFN-γ signaling is ablated, type I IFNs drive inflammation, resulting in exacerbated EAE. IFN-γ has a disease stage-specific opposing function in EAE. Treatment of mice with IFN-γ during the initiation phase of EAE leads to enhanced severity of disease. In contrast, IFN-γ treatment during the effector phase attenuated disease. This immunosuppressive activity of IFN-γ required functional type I IFN signaling. In IFN-α/β receptor-deficient mice, IFN-γ treatment during effector phase of EAE exacerbated disease. Using an adoptive transfer EAE model, we found that T cell-intrinsic type I and II IFN signals are simultaneously required to establish chronic EAE by encephalitogenic Th1 cells. However, in Th17 cells loss of either IFN signals leads to the development of a severe chronic disease. The data imply that type I and II IFN signals have independent but nonredundant roles in restraining encephalitogenic Th17 cells in vivo. Collectively, our data show that type I and II IFNs function in an integrated manner to regulate pathogenesis in EAE.
Collapse
Affiliation(s)
- Rodrigo Naves
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Salou M, Elong Ngono A, Garcia A, Michel L, Laplaud DA. Immunité adaptative et physiopathologie de la sclérose en plaques. Rev Med Interne 2013; 34:479-86. [DOI: 10.1016/j.revmed.2013.03.327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/19/2013] [Indexed: 11/17/2022]
|
177
|
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic, progressive central nervous system (CNS) disease with unknown cause. Considerable evidence supports an autoimmune origin with an important role for cellular immune responses in its pathogenesis. METHODS We have reviewed the current literature dealing with lymphocyte responses and their interactions as it relates to MS and present supporting evidence from animal models. RESULTS Issues regarding CD4+ T-cell subpopulations, their functional differentiation and regulatory interactions as they relate to their presumed role in MS-related pathology have been updated with references to the current literature. DISCUSSION The evidence reviewed supports an important role of CD4+ T-cells in the immunopathogenesis of MS. The successful outcome of blocking CD4 cells entry into the CNS of animals with experimental demyelinating disease and humans with MS is a strong support for other evidence of an important role of these cell populations in the pathogenesis of MS. The understanding of the specific roles of CD4+ T-cells in the development of MS is crucial for better disease management and the prevention of neurological disability.
Collapse
Affiliation(s)
- Sylvia Delgado
- Multiple Sclerosis Center, University of Miami Miller School of Medicine, FL 33136, USA
| | | |
Collapse
|
178
|
Saha PK, Sharma PK, Sharma SK, Singh A, Mitra DK. Recruitment of Th1 effector cells in human tuberculosis: hierarchy of chemokine receptor(s) and their ligands. Cytokine 2013; 63:43-51. [PMID: 23643185 DOI: 10.1016/j.cyto.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/01/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
Selective recruitment of IFN-γ biased Th1 effector cells at the pathologic site(s) determines the local immunity of tuberculosis (TB). We observed the enrichment of CXCR3, CCR5 and CD11a(high) T cells in the peripheral blood, pleural fluid and bronchoalveolar lavage of TB pleural effusion (TB-PE) and miliary tuberculosis (MTB) patients respectively. CXCR3(+)CCR5(+) T cells were significantly high at the local disease site(s) in both the forms of TB and their frequency was highest among activated lymphocytes in TB-PE. Interestingly, all CCR5(+) cells were invariably positive for CXCR3 but all CXCR3(+) cells did not co-express CCR5 in pleural fluid whereas the situation was reverse in bronchoalveolar lavage. These CXCR3(+)CCR5(+) cells dominantly produced IFN-γ in response to Mycobacterium tuberculosis antigen. In vitro chemotaxis assay indicates dominant role of RANTES and IP-10 in the selective recruitment of CXCR3(+)CCR5(+)cells at the tubercular pathologic sites.
Collapse
Affiliation(s)
- Pradip K Saha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat K Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Surendra K Sharma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Amar Singh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipendra K Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
179
|
Side effects of TNF-α blockers in patients with psoriatic arthritis: evidences from literature studies. Clin Rheumatol 2013; 32:743-53. [PMID: 23588881 DOI: 10.1007/s10067-013-2252-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/13/2022]
Abstract
Psoriatic arthritis is an inflammatory rheumatic disorder, which occurs in patients with skin and/or nail psoriasis. In psoriatic arthritis, the importance of biologic mediators modulating inflammatory reaction, such as tumor necrosis factor, and the knowledge on their role in the pathogenesis of psoriatic arthritis influence the therapeutic choices. In the last years, the introduction of biologic drugs has greatly changed the treatment of psoriasis and psoriatic arthritis. In fact, tumor necrosis factor-α blockers demonstrated an effective action in the treatment of both skin and joint manifestations of psoriatic arthritis, but they have some adverse effects. The aim of this review is to revisit the literature data on adverse effects of tumor necrosis factor-α blockers in patients with psoriatic arthritis.
Collapse
|
180
|
McPherson RC, Anderton SM. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013; 8:774-90. [PMID: 23568718 DOI: 10.1007/s11481-013-9453-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual's autoimmune response.
Collapse
Affiliation(s)
- Rhoanne C McPherson
- Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
181
|
Murta V, Ferrari CC. Influence of Peripheral inflammation on the progression of multiple sclerosis: Evidence from the clinic and experimental animal models. Mol Cell Neurosci 2013; 53:6-13. [DOI: 10.1016/j.mcn.2012.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 06/14/2012] [Accepted: 06/26/2012] [Indexed: 12/21/2022] Open
|
182
|
Betulinic acid regulates generation of neuroinflammatory mediators responsible for tissue destruction in multiple sclerosis in vitro. Acta Pharmacol Sin 2013; 34:424-31. [PMID: 23377550 DOI: 10.1038/aps.2012.181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM To investigate the influences of betulinic acid (BA), a triterpenoid isolated from birch bark, on neuroinflammatory mediators involved in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis in vitro. METHODS Encephalitogenic T cells were prepared from draining lymph nodes and spinal cords of Dark Agouti rats 8 to 10 d after immunization with myelin basic protein (MBP) and complete Freund's adjuvant. Macrophages were isolated from the peritoneal cavity of adult untreated rats. Astrocytes were isolated from neonatal rat brains. The cells were cultured and then treated with different agents. IFN-γ, IL-17, iNOS and CXCL12 mRNA levels in the cells were analyzed with RT-PCR. iNOS and CXCL12 protein levels were detected using immunoblot. NO and ROS generation was measured using Griess reaction and flow cytometry, respectively. RESULTS In encephalitogenic T cells stimulated with MBP (10 μg/mL), addition of BA inhibited IL-17 and IFN-γ production in a dose-dependent manner. The estimated IC(50) values for IL-17 and IFN γ were 11.2 and 63.8 μmol/L, respectively. When the macrophages were stimulated with LPS (10 ng/mL), addition of BA (50 μmol/L) significantly increased ROS generation, and suppressed NO generation. The astrocytes were stimulated with ConASn containing numerous inflammatory mediators, which mimicked the inflammatory milieu within CNS; addition of BA (50 μmol/L) significantly increased ROS generation, and blocked ConASn-induced increases in iNOS and CXCL12 mRNA levels, but did not affect iNOS and CXCL12 protein levels. Importantly, in both the macrophages and astrocytes, addition of BA (50 μmol/L) inhibited lipid peroxidation. CONCLUSION Besides inhibiting encephalitogenic T cell cytokines and reducing NO generation, BA induces tissue-damaging ROS generation within CNS.
Collapse
|
183
|
Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler's virus. Prog Neurobiol 2013; 101-102:46-64. [PMID: 23201558 PMCID: PMC7117056 DOI: 10.1016/j.pneurobio.2012.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 11/02/2022]
Abstract
Multiple sclerosis (MS) is a complex inflammatory disease of unknown etiology that affects the central nervous system (CNS) white matter, and for which no effective cure exists. Indeed, whether the primary event in MS pathology affects myelin or axons of the CNS remains unclear. Animal models are necessary to identify the immunopathological mechanisms involved in MS and to develop novel therapeutic and reparative approaches. Specifically, viral models of chronic demyelination and axonal damage have been used to study the contribution of viruses in human MS, and they have led to important breakthroughs in our understanding of MS pathology. The Theiler's murine encephalomyelitis virus (TMEV) model is one of the most commonly used MS models, although other viral models are also used, including neurotropic strains of mouse hepatitis virus (MHV) that induce chronic inflammatory demyelination with similar histological features to those observed in MS. This review will discuss the immunopathological mechanisms involved in TMEV-induced demyelinating disease (TMEV-IDD). The TMEV model reproduces a chronic progressive disease due to the persistence of the virus for the entire lifespan in susceptible mice. The evolution and significance of the axonal damage and neuroinflammation, the importance of epitope spread from viral to myelin epitopes, the presence of abortive remyelination and the existence of a brain pathology in addition to the classical spinal cord demyelination, are some of the findings that will be discussed in the context of this TMEV-IDD model. Despite their limitations, viral models remain an important tool to study the etiology of MS, and to understand the clinical and pathological variability associated with this disease.
Collapse
Key Words
- ab, antibody
- ag, antigen
- apc, antigen presenting cell
- bbb, blood–brain barrier
- cns, central nervous system
- cox-2, cyclooxygenase-2
- ctl, cytotoxic t lymphocytes
- dpi, days post-infection
- da, daniels strain of theiler's virus
- eae, experimental autoimmune encephalomyelitis
- galc, galactocerebroside
- mbp, myelin basic protein
- mnc, mononuclear cells
- mhc, major histocompatibility complex
- mhv, mouse hepatitis virus
- mog, myelin oligodendrocyte glycoprotein
- ms, multiple sclerosis
- naa, n-acetylaspartate
- no, nitric oxide
- pcr, polymerase chain reaction
- plp, myelin proteolipid protein
- pprs, pattern recognition receptors
- sfv, semliki forest virus
- sv, sindbis virus
- tmev, theiler's murine encephalomyelitis virus
- tmev-idd, theiler's murine encephalomyelitis virus-induced demyelinating disease
- tregs, regulatory t cells
- theiler's virus
- multiple sclerosis
- demyelination
- axonal damage
- neuroinflammation
- spinal cord pathology
- brain pathology
Collapse
Affiliation(s)
| | | | | | | | - Carmen Guaza
- Neuroimmunology Group, Functional and System Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda Dr Arce 37, 28002 Madrid, Spain
| |
Collapse
|
184
|
Stępień A, Chalimoniuk M, Lubina-Dąbrowska N, Chrapusta SJ, Galbo H, Langfort J. Effects of interferon β-1a and interferon β-1b monotherapies on selected serum cytokines and nitrite levels in patients with relapsing-remitting multiple sclerosis: a 3-year longitudinal study. Neuroimmunomodulation 2013; 20:213-22. [PMID: 23711618 DOI: 10.1159/000348701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/06/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Interferon (IFN)β treatment is a mainstay of relapsing-remitting multiple sclerosis (RRMS) immunotherapy. Its efficacy is supposedly a consequence of impaired trafficking of inflammatory cells into the central nervous system and modification of the proinflammatory/antiinflammatory cytokine balance. However, the effects of long-term monotherapy using various IFNβ preparations on cytokine profiles and the relevance of these effects for the therapy outcome have not yet been elucidated. METHODS Changes were compared in serum levels of TNFα, IFNγ, interleukin (IL)-6, IL-10 and nitrite between RRMS patients given 3-year treatment with intramuscular IFNβ-1a (30 μg once a week) or subcutaneous IFNβ-1b (250 μg every other day). Only the data from patients who completed the 3-year study (n = 20 and n = 18, respectively) were analyzed. RESULTS Three-year IFNβ-1a or IFNβ-1b monotherapy reduced serum nitrite levels by 77 and 71%, respectively, lowered multiple sclerosis relapse annual rate by 70 and 71%, respectively, and significantly and similarly lowered Expanded Disability Status Scale scores in both study groups (by 0.9 on average). The two monotherapies showed little if any effect on cytokine levels and cytokine level ratios after the first year, but exerted diverging effects on these indices later on; the only exception was the IFNγ/IL-6 ratio that showed a monotonous rise in both study groups over the entire study period. CONCLUSION During long-term IFNβ monotherapy, the levels of the studied cytokines show no relevance to the course of RRMS and neurological status of patients, whereas there seems to be a link between these clinical indices and the activity of nitric oxide-mediated pathways.
Collapse
Affiliation(s)
- Adam Stępień
- Department of Neurology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
185
|
Abstract
Interferon beta and glatiramer acetate have been mainstays of treatment in relapsingremitting multiple sclerosis for two decades. Remarkable advances in our understanding of immune function and dysfunction as well as increasingly sophisticated clinical trial design have stemmed from efforts to better understand these drugs. In this chapter, we review the history of their development and elaborate on known and theorized mechanisms of action. We describe the pivotal clinical trials that have led to their widespread use. We evaluate the clinical use of the drugs including tolerability, side effects, and efficacy measures. Finally, we look to the future of interferon beta and glatiramer acetate in the context of an ever growing armamentarium of treatments for relapsing remitting multiple sclerosis.
Collapse
Affiliation(s)
- Corey A McGraw
- Department of Neurology, Albert Einstein College of Medicine, Division of Multiple Sclerosis, Montefiore Medical Center, 111 E 210th St, Bronx, NY 10467, USA.
| | | |
Collapse
|
186
|
Kvarnström M, Ydrefors J, Ekerfelt C, Vrethem M, Ernerudh J. Longitudinal interferon-β effects in multiple sclerosis: differential regulation of IL-10 and IL-17A, while no sustained effects on IFN-γ, IL-4 or IL-13. J Neurol Sci 2012; 325:79-85. [PMID: 23273903 DOI: 10.1016/j.jns.2012.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent studies in experimental models and in vitro indicate lowering of IL-17/Th17 as an important mechanism of interferon-beta (IFN-β) treatment in multiple sclerosis (MS). MATERIAL AND METHODS In this longitudinal study of MS patients (n=25), spontaneous and myelin antigen-induced secretion of IL-4, IFN-γ and IL-10 (ELISPOT), mitogen stimulated secretion of IL-13 and IL-17A (ELISA) and circulating cytokine levels (Luminex) were recorded at inclusion and after 1.5, 3, 6 and 12months of IFN-β treatment. RESULTS Early changes were noted for IL-4, while after one year of treatment the only recorded significant effects were a decrease in secreted IL-17A levels and an increase in IL-10 secreting cells. While IL-17A levels tended to be higher in non-responders (n=8), the decrease in IL-17A levels seemed to be more pronounced in responders (n=17) showing significantly lower IL-17A levels after one year as compared with non-responders. CONCLUSION IFN-β treatment seems to mainly affect IL-17/IL-10-associated pathways rather than the IFN-γ/IL-4 axis.
Collapse
Affiliation(s)
- M Kvarnström
- Department of Clinical and Experimental Medicine, Clinical Immunology, Faculty of Health Sciences, Linköping University, S-58185 Linköping, Sweden
| | | | | | | | | |
Collapse
|
187
|
Arellano B, Hussain R, Zacharias T, Yoon J, David C, Zein S, Steinman L, Forsthuber T, Greenberg BM, Lambracht-Washington D, Ritchie AM, Bennett JL, Stüve O. Human aquaporin 4281-300 is the immunodominant linear determinant in the context of HLA-DRB1*03:01: relevance for diagnosing and monitoring patients with neuromyelitis optica. ACTA ACUST UNITED AC 2012; 69:1125-31. [PMID: 22751865 DOI: 10.1001/archneurol.2012.1300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To identify linear determinants of human aquaporin 4 (hAQP4) in the context of HLA-DRB1*03:01. DESIGN In this controlled study with humanized experimental animals, HLA-DRB1*03:01 transgenic mice were immunized with whole-protein hAQP4 emulsified in complete Freund adjuvant. To test T-cell responses, lymph node cells and splenocytes were cultured in vitro with synthetic peptides 20 amino acids long that overlap by 10 amino acids across the entirety of hAQP4. The frequency of interferon γ, interleukin (IL) 17, granulocyte-macrophage colony-stimulating factor, and IL-5-secreting CD4+ T cells was determined by the enzyme-linked immunosorbent sport assay. Quantitative immunofluorescence microscopy was performed to determine whether hAQP4281-300 inhibits the binding of anti-hAQP4 recombinant antibody to surface full-length hAQP4. SETTING Academic neuroimmunology laboratories. SUBJECTS Humanized HLA-DRB1*03:01+/+ H-2b-/- transgenic mice on a B10 background. RESULTS Peptide hAQP4281-300 generated a significantly (P <.01) greater TH1 and TH17 immune response than any of the other linear peptides screened. This 20mer peptide contains 2 dominant immunogenic 15mer peptides. hAQP4284-298 induced predominantly an IL-17 and granulocyte-macrophage colony-stimulating factor TH cell phenotype, whereas hAQP4285-299 resulted in a higher frequency of TH1 cells. hAQP4281-300 did not interfere with recombinant AQP4 autoantibody binding. CONCLUSIONS hAQP4281-330 is the dominant linear immunogenic determinant of hAQP4 in the context of HLA-DRB1*03:01. Within hAQP4281-330 are 2 dominant immunogenic determinants that induce differential TH phenotypes. hAQP4 determinants identified in this study can serve as diagnostic biomarkers in patients with neuromyelitis optica and may facilitate the monitoring of treatment responses to pharmacotherapies.
Collapse
|
188
|
|
189
|
|
190
|
|
191
|
|
192
|
Sato W, Tomita A, Ichikawa D, Lin Y, Kishida H, Miyake S, Ogawa M, Okamoto T, Murata M, Kuroiwa Y, Aranami T, Yamamura T. CCR2(+)CCR5(+) T cells produce matrix metalloproteinase-9 and osteopontin in the pathogenesis of multiple sclerosis. THE JOURNAL OF IMMUNOLOGY 2012; 189:5057-65. [PMID: 23071279 DOI: 10.4049/jimmunol.1202026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS that is presumably mediated by CD4(+) autoimmune T cells. Although both Th1 and Th17 cells have the potential to cause inflammatory CNS pathology in rodents, the identity of pathogenic T cells remains unclear in human MS. Given that each Th cell subset preferentially expresses specific chemokine receptors, we were interested to know whether T cells defined by a particular chemokine receptor profile play an active role in the pathogenesis of MS. In this article, we report that CCR2(+)CCR5(+) T cells constitute a unique population selectively enriched in the cerebrospinal fluid of MS patients during relapse but not in patients with other neurologic diseases. After polyclonal stimulation, the CCR2(+)CCR5(+) T cells exhibited a distinct ability to produce matrix metalloproteinase-9 and osteopontin, which are involved in the CNS pathology of MS. Furthermore, after TCR stimulation, the CCR2(+)CCR5(+) T cells showed a higher invasive potential across an in vitro blood-brain barrier model compared with other T cells. Of note, the CCR2(+)CCR5(+) T cells from MS patients in relapse are reactive to myelin basic protein, as assessed by production of IFN-γ. We also demonstrated that the CCR6(-), but not the CCR6(+), population within CCR2(+)CCR5(+) T cells was highly enriched in the cerebrospinal fluid during MS relapse (p < 0.0005) and expressed higher levels of IFN-γ and matrix metalloproteinase-9. Taken together, we propose that autoimmune CCR2(+)CCR5(+)CCR6(-) Th1 cells play a crucial role in the pathogenesis of MS.
Collapse
Affiliation(s)
- Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Kim JS, Jordan MS. Diversity of IL-17-producing T lymphocytes. Cell Mol Life Sci 2012; 70:2271-90. [PMID: 23052209 DOI: 10.1007/s00018-012-1163-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/31/2012] [Accepted: 09/06/2012] [Indexed: 12/14/2022]
Abstract
Interleukin (IL)-17 is a pro-inflammatory cytokine that plays critical roles in host defense against extracellular bacteria and fungi and also in the pathogenesis of autoimmune diseases. While CD4+ TCRαβ+ T helper (Th) 17 cells are the best-described cellular source of IL-17, many innate-like T cells are in fact potent producers of IL-17. Given the increasing interest in therapeutic modulation of the IL-17 axis, it is crucial to better understand the cellular origins of IL-17 in various infection and diseases settings. While the diverse population of IL-17-producing T cells share many common characteristics, notable differences also exist. In this review, we discuss the heterogeneity of IL-17-producing T cell types focusing on their development, regulation, and function.
Collapse
Affiliation(s)
- Jiyeon S Kim
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
194
|
Reljic R, Paul MJ, Arias MA. Cytokine therapy of tuberculosis at the crossroads. Expert Rev Respir Med 2012; 3:53-66. [PMID: 20477282 DOI: 10.1586/17476348.3.1.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug treatment is the key strategy in TB control. However, the treatment course lasts 6-9 months because the current anti-TB drugs are poorly effective against nondividing (i.e., persistent) bacilli. As a result, completion rates are unsatisfactory, leading to emergence and spread of multidrug-resistant infection. It would, therefore, be very desirable to design a form of complementary treatment that could speed up the recovery process for people afflicted with TB and reduce the relapse rates. With the advancement of our understanding of the immunopathogenesis of TB, it has become increasingly possible to develop novel adjunctive immunotherapies for both drug-susceptible and drug-resistant TB. Notably, cytokines probably offer the most promising prospect of such a therapy being introduced in routine clinical practice. However, in many ways, the cytokine therapy of TB has reached a crossroad, since, although the initial promise failed to live up to expectations, sufficient encouraging evidence exists to warrant further exploration. There are clear arguments in favor as well as against such treatments. This review aims to provide a rationale for cytokine treatment of TB, to describe the current status of several cytokines that have been considered for that purpose and, ultimately, to make a case for the need for further clinical trials.
Collapse
Affiliation(s)
- Rajko Reljic
- Department of Cellular and Molecular Medicine, St George's, University of London, 43 Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
195
|
Romme Christensen J, Börnsen L, Hesse D, Krakauer M, Sørensen PS, Søndergaard HB, Sellebjerg F. Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis. J Neuroinflammation 2012; 9:215. [PMID: 22978757 PMCID: PMC3503813 DOI: 10.1186/1742-2094-9-215] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022] Open
Abstract
Background Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce. Methods We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4+, CD8+T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND). Results RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression. Conclusions Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS.
Collapse
Affiliation(s)
- Jeppe Romme Christensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen, 2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
196
|
Spanier JA, Nashold FE, Olson JK, Hayes CE. The Ifng gene is essential for Vdr gene expression and vitamin D₃-mediated reduction of the pathogenic T cell burden in the central nervous system in experimental autoimmune encephalomyelitis, a multiple sclerosis model. THE JOURNAL OF IMMUNOLOGY 2012; 189:3188-97. [PMID: 22896638 DOI: 10.4049/jimmunol.1102925] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Compelling evidence suggests that vitamin D3 insufficiency may contribute causally to multiple sclerosis (MS) risk. Experimental autoimmune encephalomyelitis (EAE) research firmly supports this hypothesis. Vitamin D3 supports 1,25-dihydroxyvitamin D3 (1,25-[OH]2D3) synthesis in the CNS, initiating biological processes that reduce pathogenic CD4+ T cell longevity. MS is prevalent in Sardinia despite high ambient UV irradiation, challenging the vitamin D-MS hypothesis. Sardinian MS patients frequently carry a low Ifng expresser allele, suggesting that inadequate IFN-γ may undermine vitamin D3-mediated inhibition of demyelinating disease. Testing this hypothesis, we found vitamin D3 failed to inhibit EAE in female Ifng knockout (GKO) mice, unlike wild-type mice. The two strains did not differ in Cyp27b1 and Cyp24a1 gene expression, implying equivalent vitamin D3 metabolism in the CNS. The 1,25-(OH)2D3 inhibited EAE in both strains, but 2-fold more 1,25-(OH)2D3 was needed in GKO mice, causing hypercalcemic toxicity. Unexpectedly, GKO mice had very low Vdr gene expression in the CNS. Injecting IFN-γ intracranially into adult mice did not increase Vdr gene expression. Correlating with low Vdr expression, GKO mice had more numerous pathogenic Th1 and Th17 cells in the CNS, and 1,25-(OH)2D3 reduced these cells in GKO and wild-type mice without altering Foxp3+ regulatory T cells. Thus, the Ifng gene was needed for CNS Vdr gene expression and vitamin D3-dependent mechanisms that inhibit EAE. Individuals with inadequate Ifng expression may have increased MS risk despite high ambient UV irradiation because of low Vdr gene expression and a high encephalitogenic T cell burden in the CNS.
Collapse
Affiliation(s)
- Justin A Spanier
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
197
|
Minagar A, Maghzi AH, McGee JC, Alexander JS. Emerging roles of endothelial cells in multiple sclerosis pathophysiology and therapy. Neurol Res 2012; 34:738-45. [PMID: 22828184 DOI: 10.1179/1743132812y.0000000072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although multiple sclerosis (MS) has traditionally been viewed and researched as an immune-mediated demyelinating and neurodegenerative disease of the human central nervous system (CNS), its highly complex pathogenesis clearly includes a significant vascular inflammatory component and many therapeutic approaches achieve benefit by direct or indirect effects on cerebrovascular endothelial cells. Cerebral endothelial cells create and separate the compartments of the peripheral circulation and CNS creating the blood-brain barrier (BBB), a selectively permeable boundary layer between these spaces. Interactions between activated leukocytes and cerebral endothelium play essential roles in mediating their trans-BBB diapedesis during normal immune surveillance and during pathogenesis of neuroinflammatory diseases like MS. Extravasation of activated and committed leukocytes from the peripheral circulation through the endothelial layer of the BBB into the CNS milieu is the most fundamental step in formation of MS lesions. During MS pathogenesis, once the activated leukocytes enter the CNS environment, they propagate a massive wave of destruction which culminates in the loss of both myelin/oligodendrocyte complex and neurodegeneration. Multiple clinical and basic scientific observations support endothelial cell 'stress' and apoptosis as a hallmark characteristic of MS. The manipulation of the endothelial biology aiming to block trans-endothelial migration of activated immune cells into the CNS is a potent form of treatment for MS achieving significant reductions in disease activity and new lesion formation. In particular, endothelial microparticles are now well-recognized as important biomarkers and mediators of this type of stress. In this review, we discuss recent findings and new advances in our knowledge regarding leukocyte migration through the endothelial frontier of the BBB and how this can be exploited toward treating MS patients.
Collapse
|
198
|
Abstract
In multiple sclerosis, type I interferon (IFN) is considered immune-modulatory, and recombinant forms of IFN-β are the most prescribed treatment for this disease. This is in contrast to most other autoimmune disorders, because type I IFN contributes to the pathologies. Even within the relapsing-remitting multiple sclerosis (RRMS) population, 30-50% of MS patients are non-responsive to this treatment, and it consistently worsens neuromyelitis optica, a disease similar to RRMS. In this article, we discuss the recent advances in the field of autoimmunity and introduce the theory explain how type I IFNs can be pro-inflammatory in disease that is predominantly driven by a Th17 response and are therapeutic when disease is predominantly Th1.
Collapse
Affiliation(s)
- Robert C Axtell
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305-5316, USA.
| | | |
Collapse
|
199
|
Interferon-γ modulates the functional profile of in-vitro-cultured porcine microglia. Neuroreport 2012; 23:519-24. [DOI: 10.1097/wnr.0b013e32835349e4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
200
|
Scolding N. We are about to cure multiple sclerosis in the next 10 years, even though we do not know its cause: Yes. Mult Scler 2012; 18:782-3. [DOI: 10.1177/1352458512446521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proposal Never underestimate the pervasive, powerful influence of constructive chaos in medical progress
Collapse
Affiliation(s)
- Neil Scolding
- University of Bristol Institute of Clinical Neurosciences, Department of Neurology, Frenchay Hospital, Bristol, UK
| |
Collapse
|