151
|
Food odor, visual danger stimulus, and retrieval of an aversive memory trigger heat shock protein HSP70 expression in the olfactory lobe of the crab Chasmagnathus granulatus. Neuroscience 2011; 201:239-51. [PMID: 22100787 DOI: 10.1016/j.neuroscience.2011.10.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023]
Abstract
Although some of the neuronal substrates that support memory process have been shown in optic ganglia, the brain areas activated by memory process are still unknown in crustaceans. Heat shock proteins (HSPs) are synthesized in the CNS not only in response to traumas but also after changes in metabolic activity triggered by the processing of different types of sensory information. Indeed, the expression of citosolic/nuclear forms of HSP70 (HSC/HSP70) has been repeatedly used as a marker for increases in neural metabolic activity in several processes, including psychophysiological stress, fear conditioning, and spatial learning in vertebrates. Previously, we have shown that, in the crab Chasmagnathus, two different environmental challenges, water deprivation and heat shock, trigger a rise in the number of glomeruli of the olfactory lobes (OLs) expressing HSC/HSP70. In this study, we initially performed a morphometric analysis and identified a total of 154 glomeruli in each OL of Chasmagnathus. Here, we found that crabs exposed to food odor stimuli also showed a significant rise in the number of olfactory glomeruli expressing HSC/HSP70. In the crab Chasmagnathus, a powerful memory paradigm based on a change in its defensive strategy against a visual danger stimulus (VDS) has been extensively studied. Remarkably, the iterative presentation of a VDS caused an increase as well. This increase was triggered in animals visually stimulated using protocols that either build up a long-term memory or generate only short-term habituation. Besides, memory reactivation was sufficient to trigger the increase in HSC/HSP70 expression in the OL. Present and previous results strongly suggest that, directly or indirectly, an increase in arousal is a sufficient condition to bring about an increase in HSC/HSP70 expression in the OL of Chasmagnathus.
Collapse
|
152
|
Kalafatakis K, Triantafyllou K. Contribution of neurotensin in the immune and neuroendocrine modulation of normal and abnormal enteric function. ACTA ACUST UNITED AC 2011; 170:7-17. [DOI: 10.1016/j.regpep.2011.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 03/22/2011] [Accepted: 04/16/2011] [Indexed: 12/19/2022]
|
153
|
Lee DH, Lange AB. Crustacean cardioactive peptide in the Chagas' disease vector, Rhodnius prolixus: presence, distribution and physiological effects. Gen Comp Endocrinol 2011; 174:36-43. [PMID: 21875591 DOI: 10.1016/j.ygcen.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/27/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022]
Abstract
Crustacean cardioactive peptide (CCAP), a cyclic nonapeptide (PFCNAFTGCamide), has multifunctional roles in insects including stimulating visceral and cardiac muscle contraction, and regulating ecdysis. Previously, we have sequenced the cDNA for CCAP from Rhodnius prolixus central nervous system (CNS) and shown expression of the CCAP transcript in neurons of the CNS. In the present study, we have biochemically identified and sequenced CCAP from 5th instar R. prolixus CNS using matrix-assisted laser desorption ionization-time of flight-tandem mass spectrometry, and mapped CCAP-like immunoreactivity in the CNS and peripheral tissues of 5th instar R. prolixus. Physiologically, the hindgut of R. prolixus was found to be sensitive to CCAP, showing dose-dependent increases in contractions with threshold at 5 × 10(-9) M and maximum response at 10(-7) M CCAP. Also, CCAP was found to increase the frequency of the heartbeat in a reversible, dose-dependent manner, with threshold close to 10(-11) M and maximum response at 10(-10) M CCAP.
Collapse
Affiliation(s)
- Do Hee Lee
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6.
| | | |
Collapse
|
154
|
Simon JC, Pfrender ME, Tollrian R, Tagu D, Colbourne JK. Genomics of environmentally induced phenotypes in 2 extremely plastic arthropods. J Hered 2011; 102:512-25. [PMID: 21525179 PMCID: PMC3156564 DOI: 10.1093/jhered/esr020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/27/2011] [Accepted: 03/02/2011] [Indexed: 11/14/2022] Open
Abstract
Understanding how genes and the environment interact to shape phenotypes is of fundamental importance for resolving important issues in adaptive evolution. Yet, for most model species with mature genetics and accessible genomic resources, we know little about the natural environmental factors that shape their evolution. By contrast, animal species with deeply understood ecologies and well characterized responses to environmental cues are rarely subjects of genomic investigations. Here, we preview advances in genomics in aphids and waterfleas that may help transform research on the regulatory mechanisms of phenotypic plasticity. This insect and crustacean duo has the capacity to produce extremely divergent phenotypes in response to environmental stimuli. Sexual fate and reproductive mode are condition-dependent in both groups, which are also capable of altering morphology, physiology and behavior in response to biotic and abiotic cues. Recently, the genome sequences for the pea aphid Acyrthosiphon pisum and the waterflea Daphnia pulex were described by their respective research communities. We propose that an integrative study of genome biology focused on the condition-dependent transcriptional basis of their shared plastic traits and specialized mode of reproduction will provide broad insight into adaptive plasticity and genome by environment interactions. We highlight recent advances in understanding the genome regulation of alternative phenotypes and environmental cue processing, and we propose future research avenues to discover gene networks and epigenetic mechanisms underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Jean-Christophe Simon
- INRA, UMR BiO3P, Biologie des Organismes et des Populations appliquée à la Protection des Plantes, Le Rheu cedex, France.
| | | | | | | | | |
Collapse
|
155
|
Okamoto N, Yamanaka N, Endo Y, Kataoka H, Mizoguchi A. Spatiotemporal patterns of IGF-like peptide expression in the silkmoth Bombyx mori predict its pleiotropic actions. Gen Comp Endocrinol 2011; 173:171-82. [PMID: 21641909 DOI: 10.1016/j.ygcen.2011.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 11/28/2022]
Abstract
In vertebrates, insulin-like growth factors (IGFs) play important roles in the regulation of growth and development. Although the principal source of circulating IGFs is the liver, IGFs are also secreted by many other tissues, functioning locally through paracrine/autocrine mechanism. In the silkmoth Bombyx mori, Bommo-IGF-like peptide (BIGFLP) is the functional counterpart of vertebrate IGFs and is mainly produced by the fat body, a functional equivalent of the vertebrate liver and adipocytes. However, its production by other tissues has not yet been analyzed. In this study, we systematically surveyed the BIGFLP-producing tissues and stages by means of immunohistochemistry, in situ hybridization and real-time quantitative RT-PCR, showing that BIGFLP is also produced by the neurosecretory cells in the brain, ovariole sheath and testis sheath, in a stage-specific manner. The BIGFLP-producing cells in the brain were identical to the cells that produce bombyxins, insulin-like peptides of B. mori, but the temporal expression patterns of both peptides were totally different. The BIGFLP gene expression in the sheaths of ovariole and testis were induced by ecdysteroid in vitro, similar to the expression in the fat body. A very high BIGFLP immunoreactivity was also found in the pupal nephrocytes, a functional equivalent of the glomerular podocytes in the vertebrate kidney, without the expression of the gene, suggesting that circulating BIGFLP is taken up and degraded by these tissues. Based on the present observations, the physiological functions of BIGFLP in B. mori development are discussed.
Collapse
Affiliation(s)
- Naoki Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
156
|
Lyon P, Cohen M, Quintner J. An Evolutionary Stress-Response Hypothesis for Chronic Widespread Pain (Fibromyalgia Syndrome). PAIN MEDICINE 2011; 12:1167-78. [DOI: 10.1111/j.1526-4637.2011.01168.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
157
|
Negri I, Pellecchia M, Grève P, Daffonchio D, Bandi C, Alma A. Sex and stripping: The key to the intimate relationship between Wolbachia and host? Commun Integr Biol 2011; 3:110-5. [PMID: 20585501 DOI: 10.4161/cib.3.2.10520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
Wolbachia pipientis is known to infect only arthropods and nematodes (mainly filarial worms). A unique feature shared by the two Phyla is the ability to replace the exoskeleton, a process known as ecdysis. This shared characteristic is thought to reflect a common ancestry. Arthropod moulting is induced by the steroid hormone 20-hydroxyecdysone (20E) and a role for ecdysteroids in nematode ecdysis has also been suggested. Removing Wolbachia from filarial worms impairs the host's development. From analyses of the genome of Wolbachia harbored by the filarial nematode Brugia malayi and that of its host, the bacterium may provide a source of heme, an essential component of cytochrome P450's that are necessary for steroid hormone biosynthetic pathways.In arthropods, Wolbachia is a reproductive manipulator, inducing various phenotypic effects that may be due to differences in host physiology, in particular, endocrine-related processes governing development and reproduction. Insect steroids have well-defined roles in the coordination of multiple developmental processes, and in adults they control important aspects of reproduction, including ovarian development, oogenesis, sexual behavior, and in some taxa vitellogenin biosynthesis.According to some authors ecdysteroids may also act as sex hormones. In insects sex differentiation is generally thought to be a strictly genetic process, in which each cell decides its own sexual fate based on its sex chromosome constitution, but, surprisingly, recent data demonstrate that in Drosophila sex determination is not cell-autonomous, as it happens in mammals. Thus the presence of signals coordinating the development of a gender-specific phenotype cannot be excluded.This could explain why Wolbachia interferes with insect reproduction; and also could explain why Wolbachia interferes with insect development.Thus, is "sex (=reproduction) and stripping (=ecdysis)" the key to the intimate relationship between Wolbachia and its host?
Collapse
|
158
|
Sterkel M, Urlaub H, Rivera-Pomar R, Ons S. Functional Proteomics of Neuropeptidome Dynamics during the Feeding Process of Rhodnius prolixus. J Proteome Res 2011; 10:3363-71. [DOI: 10.1021/pr2001012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcos Sterkel
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Laboratory, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Rolando Rivera-Pomar
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Sheila Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
159
|
Kollmann M, Huetteroth W, Schachtner J. Brain organization in Collembola (springtails). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:304-316. [PMID: 21420507 DOI: 10.1016/j.asd.2011.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/05/2011] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
Arthropoda is comprised of four major taxa: Hexapoda, Crustacea, Myriapoda and Chelicerata. Although this classification is widely accepted, there is still some debate about the internal relationships of these groups. In particular, the phylogenetic position of Collembola remains enigmatic. Some molecular studies place Collembola into a close relationship to Protura and Diplura within the monophyletic Hexapoda, but this placement is not universally accepted, as Collembola is also regarded as either the sister group to Branchiopoda (a crustacean taxon) or to Pancrustacea (crustaceans + hexapods). To contribute to the current debate on the phylogenetic position of Collembola, we examined the brains in three collembolan species: Folsomia candida, Protaphorura armata and Tetrodontophora bielanensis, using antennal backfills, series of semi-thin sections, and immunostaining technique with several antisera, in conjunction with confocal laser scanning microscopy and three-dimensional reconstructions. We identified several neuroanatomical structures in the collembolan brain, including a fan-shaped central body showing a columnar organization, a protocerebral bridge, one pair of antennal lobes with 20-30 spheroidal glomeruli each, and a structure, which we interpret as a simply organized mushroom body. The results of our neuroanatomical study are consistent with the phylogenetic position of Collembola within the Hexapoda and do not contradict the hypothesis of a close relationship of Collembola, Protura and Diplura.
Collapse
Affiliation(s)
- Martin Kollmann
- Department of Biology - Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany
| | | | | |
Collapse
|
160
|
Boyan G, Williams L. Embryonic development of the insect central complex: insights from lineages in the grasshopper and Drosophila. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:334-348. [PMID: 21382507 DOI: 10.1016/j.asd.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/16/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
The neurons of the insect brain derive from neuroblasts which delaminate from the neuroectoderm at stereotypic locations during early embryogenesis. In both grasshopper and Drosophila, each developing neuroblast acquires an intrinsic capacity for neuronal proliferation in a cell autonomous manner and generates a specific lineage of neural progeny which is nearly invariant and unique. Maps revealing numbers and distributions of brain neuroblasts now exist for various species, and in both grasshopper and Drosophila four putatively homologous neuroblasts have been identified whose progeny direct axons to the protocerebral bridge and then to the central body via an equivalent set of tracts. Lineage analysis in the grasshopper nervous system reveals that the progeny of a neuroblast maintain their topological position within the lineage throughout embryogenesis. We have taken advantage of this to study the pioneering of the so-called w, x, y, z tracts, to show how fascicle switching generates central body neuroarchitecture, and to evaluate the roles of so-called intermediate progenitors as well as programmed cell death in shaping lineage structure. The novel form of neurogenesis involving intermediate progenitors has been demonstrated in grasshopper, Drosophila and mammalian cortical development and may represent a general strategy for increasing brain size and complexity. An analysis of gap junctional communication involving serotonergic cells reveals an intrinsic cellular organization which may relate to the presence of such transient progenitors in central complex lineages.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
161
|
Herbert Z, Rauser S, Williams L, Kapan N, Güntner M, Walch A, Boyan G. Developmental expression of neuromodulators in the central complex of the grasshopper Schistocerca gregaria. J Morphol 2011; 271:1509-26. [PMID: 20960464 DOI: 10.1002/jmor.10895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The central complex is a major integrative region within the insect brain with demonstrated roles in spatial orientation, the regulation of locomotor behavior, and sound production. In the hemimetabolous grasshopper, the central complex comprises the protocerebral bridge, central body (CB), ellipsoid body, noduli, and accessory lobes, and this modular organization develops entirely during embryogenesis. From a biochemical perspective, a range of neuroactive substances has been demonstrated in these modules of the adult central complex, but little is known about their developmental expression. In this study, we use matrix-assisted laser desorption/ionization-imaging mass spectrometry on single brain slices to confirm the presence of several peptide families (tachykinin, allatostatin, periviscerokinin/pyrokinin, FLRFamide, and neuropeptide F) in the adult central complex and then use immunohistochemistry and histology to examine their developmental expression, together with that of the indolamin serotonin, and the endogenous messenger nitric oxide (NO; via its synthesizing enzyme). We find that each neuromodulator is expressed according to a unique, stereotypic, pattern within the various modules making up the central complex. Neuropeptides such as tachykinin (55%) and allatostatin (65%), and the NO-synthesizing enzyme diaphorase (70%), are expressed earlier during embryonic development than the biogenic amine serotonin (80%), whereas periviscerokinin-like peptides and FLRFamide-like peptides begin to be expressed only postembryonically. Within the CB, these neuroactive substances are present in tangential projection neurons before they appear in columnar neurons. There is also no colocalization of serotonin-positive and peptide-positive projections up to the third larval instar during development, consistent with the clear dorsoventral layering of the neuropil we observe. Our results provide the first neurochemical fingerprint of the developing central complex in an hemimetabolous insect.
Collapse
Affiliation(s)
- Zsofia Herbert
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause-effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses--without affecting the number of cells--in five subsets of local interneurons of the Drosophila olfactory glomeruli and measured the behavioral effects on olfactory perception. The neuron subsets were chosen under the criteria of GABA or ChAT expression. The reduction of one subset of synapses, mostly inhibitory, converted the responses to all odorants and concentrations tested as repulsive, while the reduction of another subset, mostly excitatory, led to a shift toward attraction. However, the simultaneous reduction of both synapse subsets restored normal perception. One group of local interneurons proved unaffected by the induced synapse loss in the perception of some odorants, indicating a functional specialization of these cells. Using genetic tools for space and temporal control of synapse number decrease, we show that the perception effects are specific to the local interneurons, rather than the mushroom bodies, and are not based on major structural changes elicited during development. These findings demonstrate that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition.
Collapse
|
163
|
Huang J, Tian L, Peng C, Abdou M, Wen D, Wang Y, Li S, Wang J. DPP-mediated TGFβ signaling regulates juvenile hormone biosynthesis by activating the expression of juvenile hormone acid methyltransferase. Development 2011; 138:2283-91. [DOI: 10.1242/dev.057687] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Juvenile hormone (JH) biosynthesis in the corpus allatum (CA) is regulated by neuropeptides and neurotransmitters produced in the brain. However, little is known about how these neural signals induce changes in JH biosynthesis. Here, we report a novel function of TGFβ signaling in transferring brain signals into transcriptional changes of JH acid methyltransferase (jhamt), a key regulatory enzyme of JH biosynthesis. A Drosophila genetic screen identified that Tkv and Mad are required for JH-mediated suppression of broad (br) expression in young larvae. Further investigation demonstrated that TGFβ signaling stimulates JH biosynthesis by upregulating jhamt expression. Moreover, dpp hypomorphic mutants also induced precocious br expression. The pupal lethality of these dpp mutants was partially rescued by an exogenous JH agonist. Finally, dpp was specifically expressed in the CA cells of ring glands, and its expression profile in the CA correlated with that of jhamt and matched JH levels in the hemolymph. Reduced dpp expression was detected in larvae mutant for Nmdar1, a CA-expressed glutamate receptor. Taken together, we conclude that the neurotransmitter glutamate promotes dpp expression in the CA, which stimulates JH biosynthesis through Tkv and Mad by upregulating jhamt transcription at the early larval stages to prevent premature metamorphosis.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Ling Tian
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cheng Peng
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Mohamed Abdou
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Di Wen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Sheng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
164
|
Savić T, Janać B, Todorović D, Prolić Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med 2011; 30:108-14. [DOI: 10.3109/15368378.2011.566780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
165
|
Nagata S, Morooka N, Matsumoto S, Kawai T, Nagasawa H. Effects of neuropeptides on feeding initiation in larvae of the silkworm, Bombyx mori. Gen Comp Endocrinol 2011; 172:90-5. [PMID: 21397600 DOI: 10.1016/j.ygcen.2011.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
In insects, especially phytophagous insects, feeding behavior occurs at a regular frequency. Although a number of physiological studies have revealed various causal factors leading to feeding behavior in insects, little has been demonstrated regarding the regulatory mechanisms underlying insect feeding behavior. To confirm the presence of an endocrinological regulatory mechanism in feeding behavior, we tested the effects of several biologically active peptides on silkworm, Bombyx mori larvae feeding behaviors. To evaluate the effects of the biologically active peptides, we measured the period of latency to the first bite following sample injection into starved Bombyx larvae. Of the chemically synthesized peptides tested, myosuppressin exhibited a prolonged latency, indicating that myosuppressin is a possible inhibitory peptide in Bombyx larvae. In contrast, injections of tachykinin and short neuropeptide F, which are members of the structurally related RF-amide peptide family, had a shorter latency period, indicating that these two peptides are possible stimulatory peptides. In addition, the present study suggests that this bioassay will be advantageous for screening for peptides that regulate insect feeding behavior.
Collapse
Affiliation(s)
- Shinji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
166
|
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 2011; 6:e17274. [PMID: 21445293 PMCID: PMC3061863 DOI: 10.1371/journal.pone.0017274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The desert locust (Schistocerca gregaria) displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY We have generated 34,672 raw expressed sequence tags (EST) from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jurgen Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gert Simonet
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Roger Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnold De Loof
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
167
|
New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle. J Comp Physiol B 2011; 181:721-30. [PMID: 21409564 PMCID: PMC3140940 DOI: 10.1007/s00360-011-0563-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/17/2011] [Accepted: 02/23/2011] [Indexed: 12/01/2022]
Abstract
Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms.
Collapse
|
168
|
Iga M, Smagghe G. Relationship between larval-pupal metamorphosis and transcript expression of insulin-like peptide and insulin receptor in Spodoptera littoralis. Peptides 2011; 32:531-8. [PMID: 21056070 DOI: 10.1016/j.peptides.2010.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/26/2023]
Abstract
Insulin-like peptides (ILPs) affect a wide variety of biological events, such as metabolism, lifespan, growth and reproduction. Two ILPs (Spoli-ILP1 and Spoli-ILP2) were identified in the cotton leafworm, Spodoptera littoralis, while the functions and developmental characters are not fully understood. In the present study, we identified the partial sequence of a putative S. littoralis insulin receptor (Spoli-InR) and investigated the stage (age)- and tissue-dependent expression profile of Spoli-InR in addition to Spoli-ILPs during the last larval development and larval-pupal metamorphosis. Spoli-ILP1 and Spoli-ILP2 were specifically expressed in the brain, and their gene expressions were gradually decreased in concert with larval-pupal development. On the other hand, Spoli-InR was expressed in all the selected tissues (brain, testis, fat body, Malpighian tubules, prothoracic glands and midgut), though the gene expression pattern was different among the tissues. Interestingly, the transcript expression pattern of Spoli-InR in the fat body seemed to relate with larval-pupal development. In a parallel experiment, the juvenile hormone mimetic methoprene was able to prolong the larval period when applied before the commitment peak of ecdysteroids titer in the hemolymph, and in this case the expression of Spoli-ILPs and Spoli-InR was affected. These results demonstrated first a relationship between transcript expression of Spoli-ILPs and larval-pupal development, and second they suggested the effect of ILPs may be controlled by not only Spoli-ILPs expression but also Spoli-InR expression.
Collapse
Affiliation(s)
- Masatoshi Iga
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | |
Collapse
|
169
|
López-Arias B, Dorado B, Herrero P. Blockade of the release of the neuropeptide leucokinin to determine its possible functions in fly behavior: chemoreception assays. Peptides 2011; 32:545-52. [PMID: 20621142 DOI: 10.1016/j.peptides.2010.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 07/02/2010] [Accepted: 07/02/2010] [Indexed: 11/25/2022]
Abstract
Previous studies have revealed leucokinin (LK) expression in the brain and ventral ganglion of Drosophila CNS. One pair of protocerebrum neurons located in the lateral horn area (LHLK) surrounds the peduncles of the mushroom bodies while two pairs of subesophageal neurons (SELKs) project extended processes to the tritocerebrum and through a cervical connection to the ventral ganglion. There, axons of eight or nine pairs of abdominal (ABLK) neurons leave the CNS through the abdominal nerves and processes connecting each other ipsilaterally and contralaterally. The neural functions of LK remain largely unknown, especially those related to Drosophila behavior. Here, we have studied the role of LK in olfactory and gustatory perception by keeping the LK neurons electrically silent through targeted expression of inward rectifier K(+) channels. In order to examine the effects of LK failure, we first analyzed the dehydration response, comparing the leucokinin-silent individuals with their parents as a control. Our results showed significant differences that demonstrate the effectiveness of the method. We then tested the olfactory behavioral response to a set of odorants over a range of concentrations in a T-maze paradigm in which flies were allowed to choose between the odorant and solvent compartments. The feeding preference assays were carried out on microplates in which flies were allowed to choose between two colored tastes. Our results show that the blockade of LK release alters both olfactory and gustatory responses, and are therefore evidence that this neuropeptide also modulates chemosensory responses through LHLK and SELK neurons.
Collapse
Affiliation(s)
- Begoña López-Arias
- Departamento de Biología, C/Darwin 1, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | |
Collapse
|
170
|
Lee DH, Paluzzi JP, Orchard I, Lange AB. Isolation, cloning and expression of the Crustacean Cardioactive Peptide gene in the Chagas' disease vector, Rhodnius prolixus. Peptides 2011; 32:475-82. [PMID: 20624439 DOI: 10.1016/j.peptides.2010.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/20/2022]
Abstract
The blood-gorging bug, Rhodnius prolixus, is a major vector of Chagas' disease in Central and South America. We have cloned and characterized the crustacean cardioactive peptide (CCAP) gene in R. prolixus. The RhoprCCAP gene contains five exons and four introns, and encodes a 129 amino acid prepropeptide, which following post-translation processing, produces CCAP. The predicted RhoprCCAP amino acid sequence is identical to CCAP of crustaceans and other insects, i.e. it is highly conserved. RhoprCCAP mRNA is observed in the central nervous system (CNS) using reverse transcriptase (RT) PCR, but not in the gut and salivary glands. In situ hybridization reveals that the expression of CCAP mRNA is localized to a small number of dorsally situated bilaterally paired neurons within the CNS.
Collapse
Affiliation(s)
- D H Lee
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6.
| | | | | | | |
Collapse
|
171
|
Te Brugge V, Paluzzi JP, Neupert S, Nachman RJ, Orchard I. Identification of kinin-related peptides in the disease vector, Rhodnius prolixus. Peptides 2011; 32:469-74. [PMID: 20934474 DOI: 10.1016/j.peptides.2010.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022]
Abstract
We have used an in silico approach to identify a gene from the blood-gorging vector, Rhodnius prolixus, that is predicted to produce an insect kinin prepropeptide. The prepropeptide is 398 amino acids in length and can potentially produce a large number of kinin-related peptides following post-translational processing. A comparison with other insect kinin precursor sequences demonstrates greatest conservation at the C-terminal region of the kinin peptides. Multiple peptides predicted from the kinin gene are phenotypically expressed in R. prolixus, as revealed by MALDI-TOF MS MS, including 12 kinins and one kinin precursor peptide (KPP). Six of these peptides are characterized by the typical insect kinin C-terminal motif FX(1)X(2)WGamide and five of these are also found as truncated forms. Five peptides were identified with an atypical, though similar, FX(1)X(2)WAamide C-terminus. There is also peptide with a C-terminal DDNGamide motif and a number of non-amidated peptides.
Collapse
Affiliation(s)
- Victoria Te Brugge
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | | | |
Collapse
|
172
|
Abstract
In a search for more environmentally benign alternatives to chemical pesticides, insect neuropeptides have been suggested as ideal candidates. Neuropeptides are neuromodulators and/or neurohormones that regulate most major physiological and behavioral processes in insects. The major neuropeptide structures have been identified through peptide purification in insects (peptidomics) and insect genome projects. Neuropeptide receptors have been identified and characterized in Drosophila and similar receptors are being targeted in other insects considered to be economically detrimental pests in agriculture and forestry. Defining neuropeptide action in different insect systems has been more challenging and as a consequence, identifying unique targets for potential pest control is also a challenge. In this chapter, neuropeptide biosynthesis as well as select physiological processes are examined with a view to pest control targets. The application of molecular techniques to transform insects with neuropeptide or neuropeptide receptor genes, or knockout genes to identify potential pest control targets, is a relatively new area that offers promise to insect control. Insect immune systems may also be manipulated through neuropeptides which may aid in compromising the insects ability to defend against foreign invasion.
Collapse
|
173
|
Huang Y, Crim JW, Nuss AB, Brown MR. Neuropeptide F and the corn earworm, Helicoverpa zea: a midgut peptide revisited. Peptides 2011; 32:483-92. [PMID: 20869419 DOI: 10.1016/j.peptides.2010.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/10/2010] [Accepted: 09/10/2010] [Indexed: 01/06/2023]
Abstract
The neuropeptide Y family of peptides is implicated in the regulation of feeding across a broad range of animals, including insects. Among vertebrates, neuropeptide Y exerts its actions mainly centrally, whereas peptide YY and pancreatic polypeptide arise from digestive tissues. Among invertebrates, neuropeptide F (NPF) is the sole counterpart of the NPY family. Shared features of NPF sequences derived for Lepidoptera indicate that the midgut peptide (Hez-MP-I) of the corn earworm, Helicoverpa zea, characterized more than a decade ago, is a carboxyl fragment of a full-length NPF. An antibody to Hez-MP-I was used to characterize the peptide's distribution in tissues of larvae, pupae, and adults. Immunostaining demonstrated NPF-related material both in nervous tissues and in abundant endocrine cells of the midgut. Radioimmunoassay of Hez-MP-I in the head, midgut and hemolymph of fifth instar larvae revealed concentration changes corresponding to development and feeding state. As with the vertebrate homologs, NPF may arise both centrally and peripherally to modulate the physiology of feeding and digestion of Lepidoptera.
Collapse
Affiliation(s)
- Yongqin Huang
- Department of Cellular Biology, University of Georgia, 302B Franklin House, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
174
|
Ons S, Sterkel M, Diambra L, Urlaub H, Rivera-Pomar R. Neuropeptide precursor gene discovery in the Chagas disease vector Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2011; 20:29-44. [PMID: 20958806 DOI: 10.1111/j.1365-2583.2010.01050.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We show a straightforward workflow combining homology search in Rhodnius prolixus genome sequence with cloning by rapid amplification of cDNA ends and mass spectrometry. We have identified 32 genes and their transcripts that encode a number of neuropeptide precursors leading to 194 putative peptides. We validated by mass spectrometry 82 of those predicted neuropeptides in the brain of R. prolixus to achieve the first comprehensive genomic, transcriptomic and neuropeptidomic analysis of an insect disease vector. Comparisons of available insect neuropeptide sequences revealed that the R. prolixus genome contains most of the conserved neuropeptides in insects, many of them displaying specific features at the sequence level. Some gene families reported here are identified for the first time in the order Hemiptera, a highly biodiverse group of insects that includes many human, animal and plant disease agents.
Collapse
Affiliation(s)
- S Ons
- Laboratorio de Genética y Genómica Funcional, Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
175
|
Ierusalimsky VN, Balaban PM. Family of CNP neuropeptides: common morphology in various invertebrates. Cell Tissue Res 2011; 343:483-97. [PMID: 21271258 DOI: 10.1007/s00441-010-1119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
Neuropeptides expressed in the command neurons for withdrawal behavior were originally detected in the the central nervous system (CNS) of the terrestrial snail Helix (command neurons peptides, CNP). The family of CNP-like neuropeptides bears a C-terminal signature sequence Tyr-Pro-Arg-X. Using antisera against two of them, we have studied the CNS of various invertebrates belonging to the phyla of mollusks, annelids and insects. The immunoreactive neurons were detected in all studied species. Stained neurons were either interneurons projecting along the CNS ganglia chain, or sensory neurons, or neurohormonal cells. Beyond common morphological features, the immunoreactive cells had another similarity: the level of CNP expression depended on the functional state of the animal. Thus, the homologous neuropeptides in evolutionary distant invertebrate species possess some common morphological and functional features.
Collapse
Affiliation(s)
- Victor N Ierusalimsky
- Institute of Higher Nervous Activity and Neurophysiology RAS, 5A Butlerova Str, Moscow 117485, Russia.
| | | |
Collapse
|
176
|
Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 2011; 343:559-77. [PMID: 21229364 PMCID: PMC3046342 DOI: 10.1007/s00441-010-1091-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
Lesion and transplantation studies in the cockroach, Leucophaea maderae, have located its bilaterally symmetric circadian pacemakers necessary for driving circadian locomotor activity rhythms to the accessory medulla of the optic lobes. The accessory medulla comprises a network of peptidergic neurons, including pigment-dispersing factor (PDF)-expressing presumptive circadian pacemaker cells. At least three of the PDF-expressing neurons directly connect the two accessory medullae, apparently as a circadian coupling pathway. Here, the PDF-expressing circadian coupling pathways were examined for peptide colocalization by tracer experiments and double-label immunohistochemistry with antisera against PDF, FMRFamide, and Asn13-orcokinin. A fourth group of contralaterally projecting medulla neurons was identified, additional to the three known groups. Group one of the contralaterally projecting medulla neurons contained up to four PDF-expressing cells. Of these, three medium-sized PDF-immunoreactive neurons coexpressed FMRFamide and Asn13-orcokinin immunoreactivity. However, the contralaterally projecting largest PDF neuron showed no further peptide colocalization, as was also the case for the other large PDF-expressing medulla cells, allowing the easy identification of this cell group. Although two-thirds of all PDF-expressing medulla neurons coexpressed FMRFamide and orcokinin immunoreactivity in their somata, colocalization of PDF and FMRFamide immunoreactivity was observed in only a few termination sites. Colocalization of PDF and orcokinin immunoreactivity was never observed in any of the terminals or optic commissures. We suggest that circadian pacemaker cells employ axonal peptide sorting to phase-control physiological processes at specific times of the day.
Collapse
|
177
|
Ilijin L, Vlahović M, Mrdaković M, Mirčić D, Prolić Z, Lazarević J, Perić-Mataruga V. The effects of acute exposure to magnetic fields on morphometric characteristics of bombyxin-producing neurosecretory neurons in gypsy moth caterpillars. Int J Radiat Biol 2011; 87:461-71. [PMID: 21219112 DOI: 10.3109/09553002.2011.542544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To examine the effects of acute exposure to strong static magnetic fields and extremely low frequency magnetic fields, on neurosecretory neurons which synthesise insulin-like neurohormone. MATERIALS AND METHODS Immunocytochemical detection of bombyxin-like material in the protocerebral neurosecretory neurons of Lymantria dispar caterpillars was performed using a monoclonal antibody directed against a synthetic dekapeptide corresponding to the N-terminus of the bombyxin A-chain. Caterpillars were exposed to strong static magnetic fileds (235 mT) and extremely low frequency magnetic fields (2 mT) for three days after moulting into the 4th instar. RESULTS We report the presence of immunoreactive molecules in A2 type of medial neurosecretory neurons (nsn) in caterpillars' brain of L. dispar. The three-day exposure of caterpillars to stresogenic external magnetic fields changed the size of A2 type nsn, their nuclei and the intensity of protein band in the region of bombyxin molecular mass (4-6 kD) after exposure to extremely low frequency magnetic fields in comparison to control group and group treated by strong static magnetic fields. CONCLUSION These are the first data on the influence of external magnetic fields on the polyphagous phytophagous forest pest L. dispar L. (Lepidoptera: Lymantridae) indicating an intensive synthesis of insulin-like neurosecretory material.
Collapse
Affiliation(s)
- Larisa Ilijin
- Department of Insect Physiology and Biochemistry, University of Belgrade, Institute for Biological Research Siniša Stanković, Belgrade, Serbia.
| | | | | | | | | | | | | |
Collapse
|
178
|
Orchard I, Lee DH, da Silva R, Lange AB. The Proctolin Gene and Biological Effects of Proctolin in the Blood-Feeding Bug, Rhodnius prolixus. Front Endocrinol (Lausanne) 2011; 2:59. [PMID: 22654816 PMCID: PMC3356076 DOI: 10.3389/fendo.2011.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is expressed in the central nervous system (CNS) and some peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a possible proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive tissues, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically important bug.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- *Correspondence: Ian Orchard, Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6. e-mail:
| | - Do Hee Lee
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Rosa da Silva
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| |
Collapse
|
179
|
A novel wide-field neuron with branches in the lamina of the Drosophila visual system expresses myoinhibitory peptide and may be associated with the clock. Cell Tissue Res 2010; 343:357-69. [PMID: 21174124 DOI: 10.1007/s00441-010-1100-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Although neuropeptides are widespread throughout the central nervous system of the fruifly Drosophila, no records exist of peptidergic neurons in the first synaptic region of the visual system, the lamina. Here, we describe a novel type of neuron that has wide-field tangential arborizations just distal to the lamina neuropil and that expresses myoinhibitory peptide (MIP). The cell bodies of these neurons, designated lateral MIP-immunoreactive optic lobe (LMIo) neurons, lie anteriorly at the base of the medulla of the optic lobe. The LMIo neurons also arborize in several layers of the medulla and in the dorso-lateral and lateral protocerebrum. Since the LMIo resemble LN(v) clock neurons, we have investigated the relationships between these two sets of neurons by combining MIP-immunolabeling with markers for two of the clock genes, viz., Cryptochrome and Timeless, or with antisera to two peptides expressed in clock neurons, viz., pigment-dispersing factor and ion transport peptide. LMIo neurons do not co-express any of these clock neuron markers. However, branches of LMIo and clock neurons overlap in several regions. Furthermore, the varicose lamina branches of LMIo neurons superimpose those of two large bilateral serotonergic neurons. The close apposition of the terminations of MIP- and serotonin-producing neurons distal to the lamina suggests that they have the same peripheral targets. Our data indicate that the LMIo neurons are not bona fide clock neurons, but they may be associated with the clock system and regulate signaling peripherally in the visual system.
Collapse
|
180
|
Carlsson MA, Diesner M, Schachtner J, Nässel DR. Multiple neuropeptides in the Drosophila antennal lobe suggest complex modulatory circuits. J Comp Neurol 2010; 518:3359-80. [PMID: 20575072 DOI: 10.1002/cne.22405] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fruitfly, Drosophila, is dependent on its olfactory sense in food search and reproduction. Processing of odorant information takes place in the antennal lobes, the primary olfactory center in the insect brain. Besides classical neurotransmitters, earlier studies have indicated the presence of a few neuropeptides in the olfactory system. In the present study we made an extensive analysis of the expression of neuropeptides in the Drosophila antennal lobes by direct profiling using matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry and immunocytochemistry. Neuropeptides from seven different precursor genes were unambiguously identified and their localization in neurons was subsequently revealed by immunocytochemistry. These were short neuropeptide F, tachykinin related peptide, allatostatin A, myoinhibitory peptide, SIFamide, IPNamide, and myosuppressin. The neuropeptides were expressed in subsets of olfactory sensory cells and different populations of local interneurons and extrinsic (centrifugal) neurons. In some neuron types neuropeptides were colocalized with classical neurotransmitters. Our findings suggest a huge complexity in peptidergic signaling in different circuits of the antennal lobe.
Collapse
Affiliation(s)
- Mikael A Carlsson
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | | | | | | |
Collapse
|
181
|
Benito-Sipos J, Estacio-Gómez A, Moris-Sanz M, Baumgardt M, Thor S, Díaz-Benjumea FJ. A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development 2010; 137:3327-36. [PMID: 20823069 DOI: 10.1242/dev.052233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.
Collapse
Affiliation(s)
- Jonathan Benito-Sipos
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-C.S.I.C., Madrid, Spain
| | | | | | | | | | | |
Collapse
|
182
|
Boyan G, Herbert Z, Williams L. Cell death shapes embryonic lineages of the central complex in the grasshopper Schistocerca gregaria. J Morphol 2010; 271:949-59. [PMID: 20623625 DOI: 10.1002/jmor.10847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have investigated cell death in identified lineages of the central complex in the embryonic brain of the grasshopper Schistocerca gregaria. Progeny from these lineages lie in the pars intercerebralis and direct projections to the protocerebral bridge and then the central body via the w, x, y, z tracts. Osmium-ethyl gallate staining reveals pycnotic cells exclusively in cortical regions, and concentrated specifically within the lineages of the W, X, Y, Z neuroblasts. Minimal cell death occurs in a sporadic, nonpatterned manner, in other protocerebral regions. Immunohistochemistry reveals pycnotic cells express the enzyme cleaved Caspase-3 in their cytoplasm and are therefore undergoing programmed cell death (apoptosis). The number of pycnotic bodies in lineages of the pars intercerebralis varies with age: small numbers are present in the Y, Z lineages early in embryogenesis (42%), the number peaks at 67-80%, and then declines and disappears late in embryogenesis. Cell death may encompass up to 20% of a lineage at mid-embryogenesis. Peak cell death occurs shortly after maximum neurogenesis in the Y, Z lineages, and is maintained after neurogenesis has ceased in these lineages. Cell death within a lineage is patterned. Apoptosis is more pronounced among older cells and almost absent among younger cells. This suggests that specific subsets of progeny will be culled from these lineages, and we speculate about the effect of apoptosis on the biochemical profile of such lineages.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
183
|
Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, Hartenstein V. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 2010; 8:e1000502. [PMID: 20957184 PMCID: PMC2950124 DOI: 10.1371/journal.pbio.1000502] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/19/2010] [Indexed: 11/18/2022] Open
Abstract
The analysis of microcircuitry (the connectivity at the level of individual neuronal processes and synapses), which is indispensable for our understanding of brain function, is based on serial transmission electron microscopy (TEM) or one of its modern variants. Due to technical limitations, most previous studies that used serial TEM recorded relatively small stacks of individual neurons. As a result, our knowledge of microcircuitry in any nervous system is very limited. We applied the software package TrakEM2 to reconstruct neuronal microcircuitry from TEM sections of a small brain, the early larval brain of Drosophila melanogaster. TrakEM2 enables us to embed the analysis of the TEM image volumes at the microcircuit level into a light microscopically derived neuro-anatomical framework, by registering confocal stacks containing sparsely labeled neural structures with the TEM image volume. We imaged two sets of serial TEM sections of the Drosophila first instar larval brain neuropile and one ventral nerve cord segment, and here report our first results pertaining to Drosophila brain microcircuitry. Terminal neurites fall into a small number of generic classes termed globular, varicose, axiform, and dendritiform. Globular and varicose neurites have large diameter segments that carry almost exclusively presynaptic sites. Dendritiform neurites are thin, highly branched processes that are almost exclusively postsynaptic. Due to the high branching density of dendritiform fibers and the fact that synapses are polyadic, neurites are highly interconnected even within small neuropile volumes. We describe the network motifs most frequently encountered in the Drosophila neuropile. Our study introduces an approach towards a comprehensive anatomical reconstruction of neuronal microcircuitry and delivers microcircuitry comparisons between vertebrate and insect neuropile.
Collapse
Affiliation(s)
- Albert Cardona
- Institute of Neuroinformatics, ETH/University of Zürich, Zürich, Switzerland
| | - Stephan Saalfeld
- Max Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephan Preibisch
- Max Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benjamin Schmid
- Lehrstuhl für Genetik und Neurobiologie, University of Würzburg, Würzburg, Germany
| | - Anchi Cheng
- Automated Molecular Imaging Group, The Scripps Research Institute (TSRI), San Diego, California, United States of America
| | - Jim Pulokas
- Automated Molecular Imaging Group, The Scripps Research Institute (TSRI), San Diego, California, United States of America
| | - Pavel Tomancak
- Max Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
184
|
Mykles DL, Adams ME, Gäde G, Lange AB, Marco HG, Orchard I. Neuropeptide action in insects and crustaceans. Physiol Biochem Zool 2010; 83:836-46. [PMID: 20550437 PMCID: PMC3844688 DOI: 10.1086/648470] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.
Collapse
Affiliation(s)
- Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
185
|
Brezina V. Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos Trans R Soc Lond B Biol Sci 2010; 365:2363-74. [PMID: 20603357 PMCID: PMC2894954 DOI: 10.1098/rstb.2010.0105] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the computations performed by the nervous system, its 'wiring diagram'--the map of its neurons and synaptic connections--is dynamically modified and supplemented by multiple actions of neuromodulators that can be so complex that they can be thought of as constituting a biochemical network that combines with the neuronal network to perform the computation. Thus, the neuronal wiring diagram alone is not sufficient to specify, and permit us to understand, the computation that underlies behaviour. Here I review how such modulatory networks operate, the problems that their existence poses for the experimental study and conceptual understanding of the computations performed by the nervous system, and how these problems may perhaps be solved and the computations understood by considering the structural and functional 'logic' of the modulatory networks.
Collapse
Affiliation(s)
- Vladimir Brezina
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
186
|
Kahsai L, Kapan N, Dircksen H, Winther ÅME, Nässel DR. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides. PLoS One 2010; 5:e11480. [PMID: 20628603 PMCID: PMC2900207 DOI: 10.1371/journal.pone.0011480] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/15/2010] [Indexed: 12/02/2022] Open
Abstract
In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a): Drosophila tachykinin (DTK), short neuropeptide F (sNPF) and ion transport peptide (ITP). These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.
Collapse
Affiliation(s)
- Lily Kahsai
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Neval Kapan
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
187
|
Rhea JM, Wegener C, Bender M. The proprotein convertase encoded by amontillado (amon) is required in Drosophila corpora cardiaca endocrine cells producing the glucose regulatory hormone AKH. PLoS Genet 2010; 6:e1000967. [PMID: 20523747 PMCID: PMC2877730 DOI: 10.1371/journal.pgen.1000967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/21/2010] [Indexed: 12/01/2022] Open
Abstract
Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)–producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH–producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones. Peptide hormones are important signaling molecules that coordinate physiology, behavior, and development. A key step in production of peptide hormones is the proteolytic cleavage of larger inactive precursors by prohormone convertases (PCs). Studies in a variety of organisms, including humans, have shown that deficiencies in PC genes lead to complex and detrimental changes. We used fruitfly genetics to dissect the function of Drosophila PC2, encoded by the amon gene, in the regulation of carbohydrate metabolism. We found that amon is expressed in endocrine cells of the corpora cardiaca that produce the sugar-mobilizing adipokinetic hormone (AKH), a functional analog of vertebrate glucagon. Previous studies suggest that the AKH–producing cells are homologs of the glucagon-producing islet alpha-cells in the pancreas. We found that flies with amon deficiency had significantly reduced hemolymph (insect “blood”) sugar levels. Using cell-type specific inactivation and rescue experiments, we show that amon expression in the AKH cells is necessary and sufficient for normal sugar regulation. We also demonstrate that AKH production is inhibited in amon mutants. Our results indicate that amon is necessary to maintain normal hemolymph sugar levels by activating AKH and suggest a conservation of PC2 function in processing peptide hormones between flies and mammals.
Collapse
Affiliation(s)
- Jeanne M. Rhea
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Christian Wegener
- Emmy Noether Neuropeptide Group, Department of Animal Physiology, Philipps University, Marburg, Germany
| | - Michael Bender
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
188
|
Al-Anzi B, Armand E, Nagamei P, Olszewski M, Sapin V, Waters C, Zinn K, Wyman RJ, Benzer S. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr Biol 2010; 20:969-78. [PMID: 20493701 DOI: 10.1016/j.cub.2010.04.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/12/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Total food intake is a function of meal size and meal frequency, and adjustments to these parameters allow animals to maintain a stable energy balance in changing environmental conditions. The physiological mechanisms that regulate meal size have been studied in blowflies but have not been previously examined in Drosophila. RESULTS Here we show that mutations in the leucokinin neuropeptide (leuc) and leucokinin receptor (lkr) genes cause phenotypes in which Drosophila adults have an increase in meal size and a compensatory reduction in meal frequency. Because mutant flies take larger but fewer meals, their caloric intake is the same as that of wild-type flies. The expression patterns of the leuc and lkr genes identify small groups of brain neurons that regulate this behavior. Leuc-containing presynaptic terminals are found close to Lkr neurons in the brain and ventral ganglia, suggesting that they deliver Leuc peptide to these neurons. Lkr neurons innervate the foregut. Flies in which Leuc or Lkr neurons are ablated have defects identical to those of leucokinin pathway mutants. CONCLUSIONS Our data suggest that the increase in meal size in leuc and lkr mutants is due to a meal termination defect, perhaps arising from impaired communication of gut distension signals to the brain. Leucokinin and the leucokinin receptor are homologous to vertebrate tachykinin and its receptor, and injection of tachykinins reduces food consumption. Our results suggest that the roles of the tachykinin system in regulating food intake might be evolutionarily conserved between insects and vertebrates.
Collapse
Affiliation(s)
- Bader Al-Anzi
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Bland ML, Lee RJ, Magallanes JM, Foskett JK, Birnbaum MJ. AMPK supports growth in Drosophila by regulating muscle activity and nutrient uptake in the gut. Dev Biol 2010; 344:293-303. [PMID: 20478298 DOI: 10.1016/j.ydbio.2010.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
Abstract
The larval phase of the Drosophila life cycle is characterized by constant food intake, resulting in a two hundred-fold increase in mass over four days. Here we show that the conserved energy sensor AMPK is essential for nutrient intake in Drosophila. Mutants lacking dAMPKalpha are small, with low triglyceride levels, small fat body cells and early pupal lethality. Using mosaic analysis, we find that dAMPKalpha functions as a nonautonomous regulator of cell growth. Nutrient absorption is impaired in dAMPKalpha mutants, and this defect stems not from altered gut epithelial cell polarity but from impaired peristaltic activity. Expression of a wild-type dAMPKalpha transgene or an activated version of the AMPK target myosin regulatory light chain (MRLC) in the dAMPKalpha mutant visceral musculature restores gut function and growth. These data suggest strongly that AMPK regulates visceral smooth muscle function through phosphorylation of MRLC. Furthermore, our data show that in Drosophila, AMPK performs an essential cell-nonautonomous function, serving the needs of the organism by promoting activity of the visceral musculature and, consequently, nutrient intake.
Collapse
Affiliation(s)
- Michelle L Bland
- Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
190
|
MARCINIAK PAWEŁ, ROSIŃSKI GRZEGORZ. Comparison of proctolin and FMRFamide actions on the motility of male and female beetle reproductive tracts. INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
191
|
Wang S, Liu S, Liu H, Wang J, Zhou S, Jiang RJ, Bendena WG, Li S. 20-hydroxyecdysone Reduces Insect Food Consumption Resulting in Fat Body Lipolysis During Molting and Pupation. J Mol Cell Biol 2010; 2:128-38. [DOI: 10.1093/jmcb/mjq006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
192
|
Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJP. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 2010; 285:10736-47. [PMID: 20068045 PMCID: PMC2856281 DOI: 10.1074/jbc.m109.045369] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/04/2009] [Indexed: 11/06/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin receptors and, vice versa, AKH and corazonin do not activate the ACP receptor, showing that the ACP/receptor couple is an independent and so far unknown peptidergic signaling system. Because ACP is structurally intermediate between AKH and corazonin and the ACP receptor between the AKH and corazonin receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera), the honeybee Apis mellifera (Hymenoptera), the pea aphid Acyrthosiphon pisum (Hemiptera), the body louse Pediculus humanus (Phthiraptera), and the crustacean Daphnia pulex, indicating that it has been lost several times during arthropod evolution. In particular, this frequent loss of hormonal systems is unique for arthropods compared with vertebrates.
Collapse
Affiliation(s)
- Karina K. Hansen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Elisabeth Stafflinger
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martina Schneider
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Frank Hauser
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Giuseppe Cazzamali
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Michael Williamson
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| | - Martin Kollmann
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Joachim Schachtner
- the Department of Animal Physiology, University of Marburg, D-35032 Marburg, Germany
| | - Cornelis J. P. Grimmelikhuijzen
- From the Center for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark and
| |
Collapse
|
193
|
Kodrík D, Bártů I, Socha R. Adipokinetic hormone (Pyrap-AKH) enhances the effect of a pyrethroid insecticide against the firebug Pyrrhocoris apterus. PEST MANAGEMENT SCIENCE 2010; 66:425-431. [PMID: 20013955 DOI: 10.1002/ps.1894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Adipokinetic hormones (AKHs) are insect neuropetides controlling stress situations including those elicited by insecticide treatment. The effect of Pyrap-AKH on the mortality of the firebug Pyrrhocoris apterus (L.) treated with the insecticide permethrin (Ambush 25 EC) was studied. RESULTS Coinjection of 50 ng permethrin with 80 pmol Pyrap-AKH induced a significant 2.3-fold increase in bug mortality compared with the insecticide alone. The results were confirmed by topical coapplication of both agents (400 ng and 80 pmol respectively). Injections of 50 and 100 ng permethrin elicited a significant increase in the AKH level in CNS and the haemolymph. The results indicate an involvement of AKH in stress response to permethrin. The enhanced effect of insecticide by AKH treatments probably results from the stimulatory role in bug metabolism: carbon dioxide production was increased 3.5- and 2.5-fold respectively 1 and 3 h after permethrin treatment, and 4.3- and 3.4-fold after the permethrin plus AKH cotreatment, compared with the control. CONCLUSION The elevation of metabolism could intensify the permethrin action by its faster penetration into tissues and by stimulation of biochemically active cells, and could be a reason for enhanced action of permethrin after its cotreatment with Pyrap-AKH.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, Academy of Sciences, CZ-370 05 Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
194
|
Zralá J, Kodrík D, Zahradnícková H, Zemek R, Socha R. A novel function of red pigment-concentrating hormone in crustaceans: Porcellio scaber (Isopoda) as a model species. Gen Comp Endocrinol 2010; 166:330-6. [PMID: 19925802 DOI: 10.1016/j.ygcen.2009.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/21/2009] [Accepted: 11/10/2009] [Indexed: 11/21/2022]
Abstract
The RP HPLC and LC/MS QTOF analyses of the methanolic CNS extract from isopod crustacean the woodlouse, Porcellio scaber revealed a presence of the red pigment-concentrating hormone (Panbo-RPCH) in this species. It has been shown that this neuropeptide plays a role in mobilization of energy stores: topical treatments of P. scaber individuals by Panbo-RPCH in a concentration 20 pmol/microl increased the level of glucose in haemolymph about 4 times, while the level of trehalose was only doubled. The results demonstrated that glucose was the main carbohydrate mobilized by the Panbo-RPCH treatment: glucose was responsible for about 97% of total carbohydrate increasing. Despite the demonstration of hyperglycaemic activity of Panbo-RPCH, no stimulatory effect of this hormone on the locomotory activity of P. scaber was observed. The present study is the first discovery of an occurrence of Panbo-RPCH and its hyperglycaemic activity in the representative of the isopod crustaceans. The relationship of the function of Panbo-RPCH in P. scaber to the role of this neuropeptide and adipokinetic hormones in insects is discussed.
Collapse
Affiliation(s)
- Jana Zralá
- Institute of Entomology, Biology Centre, Academy of Sciences, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
195
|
Boerjan B, Verleyen P, Huybrechts J, Schoofs L, De Loof A. In search for a common denominator for the diverse functions of arthropod corazonin: a role in the physiology of stress? Gen Comp Endocrinol 2010; 166:222-33. [PMID: 19748506 DOI: 10.1016/j.ygcen.2009.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/04/2009] [Indexed: 02/01/2023]
Abstract
Corazonin (Crz) is an 11 amino acid C-terminally amidated neuropeptide that has been identified in most arthropods examined with the notable exception of beetles and an aphid. The Crz-receptor shares sequence similarity to the GnRH-AKH receptor family thus suggesting an ancestral function related to the control of reproduction and metabolism. In 1989, Crz was purified and identified as a potent cardioaccelerating agent in cockroaches (hence the Crz name based on "corazon", the Spanish word for "heart"). Since the initial assignment as a cardioacceleratory peptide, additional functions have been discovered, ranging from pigment migration in the integument of crustaceans and in the eye of locusts, melanization of the locust cuticle, ecdysis initiation and in various aspects of gregarization in locusts. The high degree of structural conservation of Crz, its well-conserved (immuno)-localization, mainly in specific neurosecretory cells in the pars lateralis, and its many functions, suggest that Crz is vital. Yet, Crz-deficient insects develop normally. Upon reexamining all known effects of Crz, a hypothesis was developed that the evolutionary ancient function of Crz may have been "to prepare animals for coping with the environmental stressors of the day". This function would then complement the role of pigment-dispersing factor (PDF), the prime hormonal effector of the clock, which is thought "to set a coping mechanism for the night".
Collapse
Affiliation(s)
- Bart Boerjan
- Functional Genomics and Proteomics, Department of Biology, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
196
|
Walker RJ, Papaioannou S, Holden-Dye L. A review of FMRFamide- and RFamide-like peptides in metazoa. INVERTEBRATE NEUROSCIENCE 2010; 9:111-53. [PMID: 20191373 DOI: 10.1007/s10158-010-0097-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/01/2010] [Indexed: 12/13/2022]
Abstract
Neuropeptides are a diverse class of signalling molecules that are widely employed as neurotransmitters and neuromodulators in animals, both invertebrate and vertebrate. However, despite their fundamental importance to animal physiology and behaviour, they are much less well understood than the small molecule neurotransmitters. The neuropeptides are classified into families according to similarities in their peptide sequence; and on this basis, the FMRFamide and RFamide-like peptides, first discovered in molluscs, are an example of a family that is conserved throughout the animal phyla. In this review, the literature on these neuropeptides has been consolidated with a particular emphasis on allowing a comparison between data sets in phyla as diverse as coelenterates and mammals. The intention is that this focus on the structure and functional aspects of FMRFamide and RFamide-like neuropeptides will inform understanding of conserved principles and distinct properties of signalling across the animal phyla.
Collapse
Affiliation(s)
- Robert J Walker
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | | |
Collapse
|
197
|
Multipotent neuroblasts generate a biochemical neuroarchitecture in the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 2010; 340:13-28. [DOI: 10.1007/s00441-009-0922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/17/2009] [Indexed: 12/20/2022]
|
198
|
Inosaki A, Yasuda A, Shinada T, Ohfune Y, Numata H, Shiga S. Mass spectrometric analysis of peptides in brain neurosecretory cells and neurohemal organs in the adult blowfly, Protophormia terraenovae. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:190-9. [DOI: 10.1016/j.cbpa.2009.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 01/03/2023]
|
199
|
Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, O'Connor MB, Mizoguchi A. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Dev Cell 2010; 17:885-91. [PMID: 20059957 DOI: 10.1016/j.devcel.2009.10.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/14/2009] [Accepted: 10/21/2009] [Indexed: 01/13/2023]
Abstract
Members of the insulin family of peptides have conserved roles in the regulation of growth and metabolism in a wide variety of metazoans. Here we show that Drosophila insulin-like peptide 6 (DILP6), which is structurally similar to vertebrate insulin-like growth factor (IGF), is predominantly expressed in the fat body, a functional equivalent of the vertebrate liver and adipocytes. This expression occurs during the postfeeding stage under the direct regulation of ecdysteroid. We further reveal that dilp6 mutants show growth defects during the postfeeding stage, which results in reduced adult body size through a decrease in cell number. This phenotype is rescued by fat body-specific expression of dilp6. These data indicate that DILP6 is a functional, as well as a structural, counterpart of vertebrate IGFs. Our data provide in vivo evidence for a role of ILPs in determining adult body size through the regulation of postfeeding growth.
Collapse
Affiliation(s)
- Naoki Okamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
200
|
Geary TG. Nonpeptide ligands for peptidergic G protein-coupled receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:10-26. [PMID: 21189672 DOI: 10.1007/978-1-4419-6902-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptides play essential roles in many physiological systems in vertebrates and invertebrates. Peptides per se are difficult to use as therapeutic agents, as they are generally very unstable in biological fluid environments and cross biological membranes poorly. Recognition that nonpeptide ligands for peptide receptors have clinical utility came from the discovery that opiates (such as morphine) act by binding to G protein-coupled receptors (GPCRs) for which the endogenous ligands are a family of neuropeptides (enkephalins and endorphins). Basic research has revealed a very large number of distinct neuropeptides that influence virtually every aspect of mammalian physiology and considerable effort has been expended in the pursuit of new drugs that act through peptidergic signaling systems. Although useful drugs have been found to affect various aspects ofneuropeptide biology, most work has been devoted to the discovery of nonpeptide ligands that act as agonists or antagonists at peptidergic GPCRs. Similar opportunities are apparent for the discovery of nonpeptide ligands that act on invertebrate GPCRs. A consideration of the knowledge gained from the process as conducted for mammalian peptidergic systems can inform and illuminate promising strategies for the discovery of new drugs for the treatment and control of pests and parasites.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|