151
|
Dong WG, Wang F, Chen Y, Zheng XH, Xie YC, Guo WQ, Shi H. Electroacupuncture Reduces Aβ Production and BACE1 Expression in SAMP8 Mice. Front Aging Neurosci 2015; 7:148. [PMID: 26283960 PMCID: PMC4518199 DOI: 10.3389/fnagi.2015.00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/15/2015] [Indexed: 11/17/2022] Open
Abstract
Electroacupuncture (EA) has been reported to have beneficial effects on Alzheimer’s disease (AD). BACE1 (β-site amyloid precursor protein-cleaving enzyme 1) is involved in the abnormal production of amyloid-β plaque (Aβ), a hallmark of AD pathophysiology. Thus, the present study investigated the effects of EA on memory impairment, Aβ production, and BACE1 expression in senescence-accelerated mouse prone 8 (SAMP8) mice. We found that EA improved spatial learning and memory impairment of SAMP8 mice. Furthermore, EA attenuated Aβ production and repressed the expression of BACE1 in the hippocampus of SAMP8 mice. Taken together, our results suggest that EA could have a potential therapeutic application in AD and that BACE1 may be an important target of EA in the treatment of AD.
Collapse
Affiliation(s)
- Wei-Guo Dong
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| | - Feng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| | - Ye Chen
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| | - Xue-Hua Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| | - Yong-Cai Xie
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| | - Wan-Qing Guo
- The Third People's Hospital of Fujian Province , Fuzhou , China
| | - Hong Shi
- Department of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine , Fuzhou , China
| |
Collapse
|
152
|
Dorresteijn B, Rotman M, Faber D, Schravesande R, Suidgeest E, van der Weerd L, van der Maarel SM, Verrips CT, El Khattabi M. Camelid heavy chain only antibody fragment domain against β-site of amyloid precursor protein cleaving enzyme 1 inhibits β-secretase activityin vitroandin vivo. FEBS J 2015; 282:3618-31. [DOI: 10.1111/febs.13367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Bram Dorresteijn
- Biomolecular Imaging Group; Division of Cell Biology; Department of Biology; Faculty of Science; Utrecht University; The Netherlands
| | - Maarten Rotman
- Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
- Department of Human Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Dorien Faber
- Biomolecular Imaging Group; Division of Cell Biology; Department of Biology; Faculty of Science; Utrecht University; The Netherlands
| | - Ruud Schravesande
- Biomolecular Imaging Group; Division of Cell Biology; Department of Biology; Faculty of Science; Utrecht University; The Netherlands
| | - Ernst Suidgeest
- Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
| | - Louise van der Weerd
- Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
- Department of Human Genetics; Leiden University Medical Center; Leiden The Netherlands
| | | | - Cornelis T. Verrips
- Biomolecular Imaging Group; Division of Cell Biology; Department of Biology; Faculty of Science; Utrecht University; The Netherlands
- QVQ Holding BV; Utrecht The Netherlands
| | - Mohamed El Khattabi
- Biomolecular Imaging Group; Division of Cell Biology; Department of Biology; Faculty of Science; Utrecht University; The Netherlands
- QVQ Holding BV; Utrecht The Netherlands
| |
Collapse
|
153
|
Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch Pharm Res 2015; 38:2216-27. [DOI: 10.1007/s12272-015-0629-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
154
|
Swedish mutant APP-based BACE1 binding site peptide reduces APP β-cleavage and cerebral Aβ levels in Alzheimer's mice. Sci Rep 2015; 5:11322. [PMID: 26091071 PMCID: PMC4473678 DOI: 10.1038/srep11322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/14/2015] [Indexed: 11/08/2022] Open
Abstract
BACE1 initiates amyloid-β (Aβ) generation and the resultant cerebral amyloidosis, as a characteristic of Alzheimer's disease (AD). Thus, inhibition of BACE1 has been the focus of a large body of research. The most recent clinical trials highlight the difficulty involved in this type of anti-AD therapy as evidenced by side effects likely due to the ubiquitous nature of BACE1, which cleaves multiple substrates. The human Swedish mutant form of amyloid protein precursor (APPswe) has been shown to possess a higher affinity for BACE1 compared to wild-type APP (APPwt). We pursued a new approach wherein harnessing this greater affinity to modulate BACE1 APP processing activity. We found that one peptide derived from APPswe, containing the β-cleavage site, strongly inhibits BACE1 activity and thereby reduces Aβ production. This peptide, termed APPswe BACE1 binding site peptide (APPsweBBP), was further conjugated to the fusion domain of the HIV-1 Tat protein (TAT) at the C-terminus to facilitate its biomembrane-penetrating activity. APPwt and APPswe over-expressing CHO cells treated with this TAT-conjugated peptide resulted in a marked reduction of Aβ and a significant increase of soluble APPα. Intraperitoneal administration of this peptide to 5XFAD mice markedly reduced β-amyloid deposits as well as improved hippocampal-dependent learning and memory.
Collapse
|
155
|
Cuddy LK, Seah C, Pasternak SH, Rylett RJ. Differential regulation of the high-affinity choline transporter by wild-type and Swedish mutant amyloid precursor protein. J Neurochem 2015; 134:769-82. [DOI: 10.1111/jnc.13167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Leah K. Cuddy
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| | - Claudia Seah
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
| | - Stephen H. Pasternak
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Rebecca Jane Rylett
- Molecular Medicine Research Group; Robarts Research Institute; London Ontario Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada
| |
Collapse
|
156
|
Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chem Soc Rev 2015; 43:6765-813. [PMID: 24691405 DOI: 10.1039/c3cs60460h] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACE1 (β-secretase, memapsin 2, Asp2) has emerged as a promising target for the treatment of Alzheimer's disease. BACE1 is an aspartic protease which functions in the first step of the pathway leading to the production and deposition of amyloid-β peptide (Aβ). Its gene deletion showed only mild phenotypes. BACE1 inhibition has direct implications in the Alzheimer's disease pathology without largely affecting viability. However, inhibiting BACE1 selectively in vivo has presented many challenges to medicinal chemists. Since its identification in 2000, inhibitors covering many different structural classes have been designed and developed. These inhibitors can be largely classified as either peptidomimetic or non-peptidic inhibitors. Progress in these fields resulted in inhibitors that contain many targeted drug-like characteristics. In this review, we describe structure-based design strategies and evolution of a wide range of BACE1 inhibitors including compounds that have been shown to reduce brain Aβ, rescue the cognitive decline in transgenic AD mice and inhibitor drug candidates that are currently in clinical trials.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
157
|
TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 2015; 5:e562. [PMID: 25942043 PMCID: PMC4471286 DOI: 10.1038/tp.2015.55] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-)·5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-β (Aβ) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-)·5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-)·5XFAD and 5XFAD control mice in cerebral plaque loads, Aβ concentrations including total Aβ42 and soluble oligomers and β-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3β (glycogen synthase kinase-3β) were observed in TrkB(+/-)·5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3β dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Aβ in TrkB(+/-)·5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect β-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.
Collapse
|
158
|
Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Brandt Elvang A, Volbracht C, Müller MB, Jung CKE, Herms J. Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 2015; 77:729-39. [PMID: 25599931 DOI: 10.1016/j.biopsych.2014.10.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND BACE1 (beta site amyloid precursor protein cleaving enzyme 1) is the rate limiting protease in amyloid β production, hence a promising drug target for the treatment of Alzheimer's disease. Inhibition of BACE1, as the major β-secretase in vivo with multiple substrates, however is likely to have mechanism-based adverse effects. We explored the impact of long-term pharmacological inhibition of BACE1 on dendritic spine dynamics, synaptic functions, and cognitive performance of adult mice. METHODS Sandwich enzyme-linked immunosorbent assay was used to assess Aβ40 levels in brain and plasma after oral administration of BACE1 inhibitors SCH1682496 or LY2811376. In vivo two-photon microscopy of the somatosensory cortex was performed to monitor structural dynamics of dendritic spines while synaptic functions and plasticity were measured via electrophysiological recordings of excitatory postsynaptic currents and hippocampal long-term potentiation in brain slices. Finally, behavioral tests were performed to analyze the impact of pharmacological inhibition of BACE1 on cognitive performance. RESULTS Dose-dependent decrease of Aβ40 levels in vivo confirmed suppression of BACE1 activity by both inhibitors. Prolonged treatment caused a reduction in spine formation of layer V pyramidal neurons, which recovered after withdrawal of inhibitors. Congruently, the rate of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons and hippocampal long-term potentiation were reduced in animals treated with BACE1 inhibitors. These effects were not detected in Bace1(-/-) mice treated with SCH1682496, confirming BACE1 as the pharmacological target. Described structural and functional changes were associated with cognitive deficits as revealed in behavioral tests. CONCLUSIONS Our findings indicate important functions to BACE1 in structural and functional synaptic plasticity in the mature brain, with implications for cognition.
Collapse
Affiliation(s)
- Severin Filser
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Saak V Ovsepian
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany
| | - Mercè Masana
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Lidia Blazquez-Llorca
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany
| | | | | | | | - Christian K E Jung
- Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases, Ludwig Maximilian University Munich, Munich, Germany; Center for Neuropathology, Ludwig Maximilian University Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University Munich, Munich, Germany.
| |
Collapse
|
159
|
Altered theta oscillations and aberrant cortical excitatory activity in the 5XFAD model of Alzheimer's disease. Neural Plast 2015; 2015:781731. [PMID: 25922768 PMCID: PMC4398951 DOI: 10.1155/2015/781731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by impairment of memory function. The 5XFAD mouse model was analyzed and compared with wild-type (WT) controls for aberrant cortical excitability and hippocampal theta oscillations by using simultaneous video-electroencephalogram (EEG) monitoring. Seizure staging revealed that 5XFAD mice exhibited cortical hyperexcitability whereas controls did not. In addition, 5XFAD mice displayed a significant increase in hippocampal theta activity from the light to dark phase during nonmotor activity. We also observed a reduction in mean theta frequency in 5XFAD mice compared to controls that was again most prominent during nonmotor activity. Transcriptome analysis of hippocampal probes and subsequent qPCR validation revealed an upregulation of Plcd4 that might be indicative of enhanced muscarinic signalling. Our results suggest that 5XFAD mice exhibit altered cortical excitability, hippocampal dysrhythmicity, and potential changes in muscarinic signaling.
Collapse
|
160
|
Devi L, Ohno M. A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 2015; 8:19. [PMID: 25884928 PMCID: PMC4397831 DOI: 10.1186/s13041-015-0110-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/11/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates that partial inhibition of β-site APP-cleaving enzyme 1 (BACE1), which initiates amyloid-β (Aβ) production, mitigates Alzheimer's disease (AD)-like pathologies and memory deficits in a battery of transgenic mouse models. However, our previous investigations suggest that therapeutic BACE1 suppression may be beneficial only if targeted on earlier stages of AD and encounter dramatic reductions in efficacy during disease progression. This study was designed to test the possibility that a combination approach, aimed at inhibiting BACE1 and boosting neprilysin (a major Aβ-degrading enzyme) activities, may be able to mechanistically overcome the limited efficacy of anti-Aβ therapy in advanced AD. RESULTS After crossbreeding between BACE1 heterozygous knockout (BACE1(+/-)), neprilysin transgenic (NEP) and 5XFAD mice, we analyzed the resultant mice at 12 months of age when 5XFAD controls showed robust amyloid-β (Aβ) accumulation and elevation of BACE1 expression (~2 folds). Although haploinsufficiency lowered BACE1 expression by ~50% in concordance with reduction in gene copy number, profound β-amyloidosis, memory deficits and cholinergic neuron death were no longer rescued in BACE1(+/-) · 5XFAD mice concomitant with their persistently upregulated BACE1 (i.e., equivalent to wild-type control levels). Notably, neprilysin overexpression not only prevented Aβ accumulation but also suppressed the translation initiation factor eIF2α-associated elevation of BACE1 and lowered levels of the β-secretase-cleaved C-terminal fragment of APP (C99) in NEP · 5XFAD mice. Interestingly, these markers for β-amyloidogenesis in BACE1(+/-) · NEP · 5XFAD mice were further reduced to the levels reflecting a combination of single BACE1 allele ablation and the abolishment of translational BACE1 upregulation. However, since neprilysin overexpression was striking (~8-fold relative to wild-type controls), memory impairments, cholinergic neuronal loss and β-amyloidosis were similarly prevented in NEP · 5XFAD and BACE1(+/-) · NEP · 5XFAD mice. CONCLUSIONS Our findings indicate that robust overexpression of neprilysin is sufficient to ameliorate AD-like phenotypes in aged 5XFAD mice. We also found that Aβ-degrading effects of overexpressed neprilysin can block deleterious BACE1-elevating mechanisms that accelerate Aβ production, warranting further study to test whether interventions moderately activating neprilysin may be useful for boosting the limited efficacy of therapeutic BACE1 inhibition in treating AD with established Aβ pathology.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA. .,Department of Psychiatry, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
161
|
Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 2015; 287:15-26. [PMID: 25813747 DOI: 10.1016/j.bbr.2015.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023]
Abstract
The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.
Collapse
|
162
|
Kandalepas PC, Vassar R. The normal and pathologic roles of the Alzheimer's β-secretase, BACE1. Curr Alzheimer Res 2015; 11:441-9. [PMID: 24893886 DOI: 10.2174/1567205011666140604122059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/15/2014] [Accepted: 01/25/2014] [Indexed: 01/18/2023]
Abstract
As the most common neurodegenerative disease, therapeutic avenues for the treatment and prevention of Alzheimer's Disease are highly sought after. The aspartic protease BACE1 is the initiator enzyme for the formation of Aβ, a major constituent of amyloid plaques that represent one of the hallmark pathological features of this disorder. Thus, targeting BACE1 for disease-modifying AD therapies represents a rationale approach. The collective knowledge acquired from investigations of BACE1 deletion mutants and characterization of BACE1 substrates has downstream significance not only for the discovery of AD drug therapies but also for predicting side effects of BACE1 inhibition. Here we discuss the identification and validation of BACE1 as the β-secretase implicated in AD, in addition to information regarding BACE1 cell biology, localization, substrates and potential physiological functions derived from BACE1 knockout models.
Collapse
Affiliation(s)
| | - Robert Vassar
- Northwestern University, Feinberg School of Medicine, Department of Cell & Molecular Biology, 300 E. Superior, Tarry 8-713, IL 60611, Chicago.
| |
Collapse
|
163
|
Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment. J Neurosci 2015; 34:14210-8. [PMID: 25339735 DOI: 10.1523/jneurosci.0326-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.
Collapse
|
164
|
Pooters T, Van der Jeugd A, Callaerts-Vegh Z, D'Hooge R. Telencephalic neurocircuitry and synaptic plasticity in rodent spatial learning and memory. Brain Res 2015; 1621:294-308. [PMID: 25619550 DOI: 10.1016/j.brainres.2015.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 01/14/2023]
Abstract
Spatial learning and memory in rodents represent close equivalents of human episodic declarative memory, which is especially sensitive to cerebral aging, neurodegeneration, and various neuropsychiatric disorders. Many tests and protocols are available for use in laboratory rodents, but Morris water maze and radial-arm maze remain the most widely used as well as the most valid and reliable spatial tests. Telencephalic neurocircuitry that plays functional roles in spatial learning and memory includes hippocampus, dorsal striatum and medial prefrontal cortex. Prefrontal-hippocampal circuitry comprises the major associative system in the rodent brain, and is critical for navigation in physical space, whereas interconnections between prefrontal cortex and dorsal striatum are probably more important for motivational or goal-directed aspects of spatial learning. Two major forms of synaptic plasticity, namely long-term potentiation, a lasting increase in synaptic strength between simultaneously activated neurons, and long-term depression, a decrease in synaptic strength, have been found to occur in hippocampus, dorsal striatum and medial prefrontal cortex. These and other phenomena of synaptic plasticity are probably crucial for the involvement of telencephalic neurocircuitry in spatial learning and memory. They also seem to play a role in the pathophysiology of two brain pathologies with episodic declarative memory impairments as core symptoms, namely Alzheimer's disease and schizophrenia. Further research emphasis on rodent telencephalic neurocircuitry could be relevant to more valid and reliable preclinical research on these most devastating brain disorders. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Tine Pooters
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Ann Van der Jeugd
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Leuven, 102 Tiensestraat, BE-3000 Leuven, Belgium.
| |
Collapse
|
165
|
Shah D, Blockx I, Guns PJ, De Deyn PP, Van Dam D, Jonckers E, Delgado Y Palacios R, Verhoye M, Van der Linden A. Acute modulation of the cholinergic system in the mouse brain detected by pharmacological resting-state functional MRI. Neuroimage 2015; 109:151-9. [PMID: 25583611 DOI: 10.1016/j.neuroimage.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The cholinergic system is involved in learning and memory and is affected in neurodegenerative disorders such as Alzheimer's disease. The possibility of non-invasively detecting alterations of neurotransmitter systems in the mouse brain would greatly improve early diagnosis and treatment strategies. The hypothesis of this study is that acute modulation of the cholinergic system might be reflected as altered functional connectivity (FC) and can be measured using pharmacological resting-state functional MRI (rsfMRI). MATERIAL AND METHODS Pharmacological rsfMRI was performed on a 9.4T MRI scanner (Bruker BioSpec, Germany) using a gradient echo EPI sequence. All mice were sedated with medetomidine. C57BL/6 mice (N = 15/group) were injected with either saline, the cholinergic antagonist scopolamine, or methyl-scopolamine, after which rsfMRI was acquired. For an additional group (N = 8), rsfMRI scans of the same mouse were acquired first at baseline, then after the administration of scopolamine and finally after the additional injection of the cholinergic agonist milameline. Contextual memory was evaluated with the same setup as the pharmacological rsfMRI using the passive avoidance behavior test. RESULTS Scopolamine induced a dose-dependent decrease of FC between brain regions involved in memory. Scopolamine-induced FC deficits could be recovered completely by milameline for FC between the hippocampus-thalamus, cingulate-retrosplenial, and visual-retrosplenial cortex. FC between the cingulate-rhinal, cingulate-visual and visual-rhinal cortex could not be completely recovered by milameline. This is consistent with the behavioral outcome, where milameline only partially recovered scopolamine-induced contextual memory deficits. Methyl-scopolamine administered at the same dose as scopolamine did not affect FC in the brain. CONCLUSION The results of the current study are important for future studies in mouse models of neurodegenerative disorders, where pharmacological rsfMRI may possibly be used as a non-invasive read-out tool to detect alterations of neurotransmitter systems induced by pathology or treatment.
Collapse
Affiliation(s)
- Disha Shah
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Ines Blockx
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pieter-Jan Guns
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Lindendreef 1, 2020 Antwerp, Belgium; Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | |
Collapse
|
166
|
Sadleir KR, Eimer WA, Cole SL, Vassar R. Aβ reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener 2015; 10:1. [PMID: 25567526 PMCID: PMC4297413 DOI: 10.1186/1750-1326-10-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background The β-secretase, BACE1, cleaves APP to initiate generation of the β-amyloid peptide, Aβ, that comprises amyloid plaques in Alzheimer’s disease (AD). Reducing BACE1 activity is an attractive therapeutic approach to AD, but complete inhibition of BACE1 could have mechanism-based side-effects as BACE1−/− mice show deficits in axon guidance, myelination, memory, and other neurological processes. Since BACE1+/− mice appear normal there is interest in determining whether 50% reduction in BACE1 is potentially effective in preventing or treating AD. APP transgenic mice heterozygous for BACE1 have decreased Aβ but the extent of reduction varies greatly from study to study. Here we assess the effects of 50% BACE1 reduction on the widely used 5XFAD mouse model of AD. Results 50% BACE1 reduction reduces Aβ42, plaques, and BACE1-cleaved APP fragments in female, but not in male, 5XFAD/BACE1+/− mice. 5XFAD/BACE1+/+ females have higher levels of Aβ42 and steady-state transgenic APP than males, likely caused by an estrogen response element in the transgene Thy-1 promoter. We hypothesize that higher transgenic APP level in female 5XFAD mice causes BACE1 to no longer be in excess over APP so that 50% BACE1 reduction has a significant Aβ42 lowering effect. In contrast, the lower APP level in 5XFAD males allows BACE1 to be in excess over APP even at 50% BACE1 reduction, preventing lowering of Aβ42 in 5XFAD/BACE1+/− males. We also developed and validated a dot blot assay with an Aβ42-selective antibody as an accurate and cost-effective alternative to ELISA for measuring cerebral Aβ42 levels. Conclusions 50% BACE1 reduction lowers Aβ42 in female 5XFAD mice only, potentially because BACE1 is not in excess over APP in 5XFAD females with higher transgene expression, while BACE1 is in excess over APP in 5XFAD males with lower transgene expression. Our results suggest that greater than 50% BACE1 inhibition might be necessary to significantly lower Aβ, given that BACE1 is likely to be in excess over APP in the human brain. Additionally, in experiments using the 5XFAD mouse model, or other Thy-1 promoter transgenic mice, equal numbers of male and female mice should be used, in order to avoid artifactual gender-related differences.
Collapse
Affiliation(s)
| | | | | | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60605, USA.
| |
Collapse
|
167
|
Abstract
Many lines of evidence support that β-amyloid (Aβ) peptides play an important role in Alzheimer's disease (AD), the most common cause of dementia. But despite much effort the molecular mechanisms of how Aβ contributes to AD remain unclear. While Aβ is generated from its precursor protein throughout life, the peptide is best known as the main component of amyloid plaques, the neuropathological hallmark of AD. Reduction in Aβ has been the major target of recent experimental therapies against AD. Unfortunately, human clinical trials targeting Aβ have not shown the hoped-for benefits. Thus, doubts have been growing about the role of Aβ as a therapeutic target. Here we review evidence supporting the involvement of Aβ in AD, highlight the importance of differentiating between various forms of Aβ, and suggest that a better understanding of Aβ's precise pathophysiological role in the disease is important for correctly targeting it for potential future therapy.
Collapse
Affiliation(s)
- Gunnar K. Gouras
- />Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas T. Olsson
- />Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Hansson
- />Clinical Memory Research Unit, Clinical Sciences Malmö, Lund University, Lund, Sweden
- />Memory Clinic, Skåne University Hospital, Skåne, Sweden
| |
Collapse
|
168
|
Abstract
β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the β-secretase enzyme required for the production of the neurotoxic β-amyloid (Aβ) peptide that is widely considered to have a crucial early role in the etiology of Alzheimer’s disease (AD). As a result, BACE1 has emerged as a prime drug target for reducing the levels of Aβ in the AD brain, and the development of BACE1 inhibitors as therapeutic agents is being vigorously pursued. It has proven difficult for the pharmaceutical industry to design BACE1 inhibitor drugs that pass the blood–brain barrier, however this challenge has recently been met and BACE1 inhibitors are now in human clinical trials to test for safety and efficacy in AD patients and individuals with pre-symptomatic AD. Initial results suggest that some of these BACE1 inhibitor drugs are well tolerated, although others have dropped out because of toxicity and it is still too early to know whether any will be effective for the prevention or treatment of AD. Additionally, based on newly identified BACE1 substrates and phenotypes of mice that lack BACE1, concerns have emerged about potential mechanism-based side effects of BACE1 inhibitor drugs with chronic administration. It is hoped that a therapeutic window can be achieved that balances safety and efficacy. This review summarizes the current state of progress in the development of BACE1 inhibitor drugs and the evaluation of their therapeutic potential for AD.
Collapse
|
169
|
BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Arch Pharm Res 2014; 38:1178-87. [PMID: 25300425 DOI: 10.1007/s12272-014-0492-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/03/2014] [Indexed: 01/26/2023]
Abstract
The aim of the present study was to evaluate the comparative anti-Alzheimer's disease (AD) activities of different parts of Nelumbo nucifera (leaves, de-embryo seeds, embryos, rhizomes, and stamens) in order to determine the selectivity and efficient use of its individual components. Anti-AD activities of different parts of N. nucifera were evaluated via inhibitory activities on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) along with scavenging activity on peroxynitrite (ONOO(-)). Among the evaluated parts of N. nucifera, the embryo extract exhibited significant inhibitory potential against BACE1 and BChE as well as scavenging activity against ONOO(-). Thus, the embryo extract was selected for detailed investigation on anti-AD activity using BACE1- and ChEs-inhibitory assays. Among the different solvent-soluble fractions, the dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol (n-BuOH) fractions showed promising ChEs and BACE1 inhibitory activities. Repeated column chromatography of the CH2Cl2, EtOAc and n-BuOH fractions yielded compounds 1-5, which were neferine (1), liensinine (2), vitexin (3), quercetin 3-O-glucoside (4) and northalifoline (5). Compound 2 exhibited potent inhibitory activities on BACE1, AChE, and BChE with respective IC50 values of 6.37 ± 0.13, 0.34 ± 0.02, and 9.96 ± 0.47 µM. Likewise, compound 1 showed potent inhibitory activities on BACE1, AChE, and BChE with IC50 values of 28.51 ± 4.04, 14.19 ± 1.46, and 37.18 ± 0.59 µM, respectively; the IC50 values of 3 were 19.25 ± 3.03, 16.62 ± 1.43, and 11.53 ± 2.21 µM, respectively. In conclusion, we identified potent ChEs- and BACE1-inhibitory activities of N. nucifera as well as its isolated constituents, which may be further explored to develop therapeutic and preventive agents for AD and oxidative stress related diseases.
Collapse
|
170
|
Yu CJ, Liu W, Chen HY, Wang L, Zhang ZR. BACE1 RNA interference improves spatial memory and attenuates Aβburden in a streptozotocin-induced tau hyperphosphorylated rat model. Cell Biochem Funct 2014; 32:590-6. [PMID: 25230339 DOI: 10.1002/cbf.3055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Chun-Jiang Yu
- Department of Neurology; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Wei Liu
- Department of Neurology; Haidian Hospital; Beijing 100080 China
| | - Hong-Yuan Chen
- Department of Neurology; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Li Wang
- Department of Geriatrics; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Zhi-Ren Zhang
- Department of Pharmacy; Second Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| |
Collapse
|
171
|
Galeano P, Martino Adami PV, Do Carmo S, Blanco E, Rotondaro C, Capani F, Castaño EM, Cuello AC, Morelli L. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease. Front Behav Neurosci 2014; 8:321. [PMID: 25278855 PMCID: PMC4165352 DOI: 10.3389/fnbeh.2014.00321] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/29/2014] [Indexed: 11/13/2022] Open
Abstract
Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg+/−) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg+/− rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg+/− rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in early AD.
Collapse
Affiliation(s)
- Pablo Galeano
- Laboratorio de Amiloidosis y Neurodegeneración, Instituto de Investigaciones Bioquímicas de Buenos Aires, Fundación Instituto Leloir, CONICET Ciudad Autónoma de Buenos Aires, Argentina ; Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires and CONICET Ciudad Autónoma de Buenos Aires, Argentina
| | - Pamela V Martino Adami
- Laboratorio de Amiloidosis y Neurodegeneración, Instituto de Investigaciones Bioquímicas de Buenos Aires, Fundación Instituto Leloir, CONICET Ciudad Autónoma de Buenos Aires, Argentina
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultatd'Educació, Psicologia i Treball Social, Universitat de Lleida Lleida, Spain
| | - Cecilia Rotondaro
- Laboratorio de Amiloidosis y Neurodegeneración, Instituto de Investigaciones Bioquímicas de Buenos Aires, Fundación Instituto Leloir, CONICET Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco Capani
- Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Universidad de Buenos Aires and CONICET Ciudad Autónoma de Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratorio de Amiloidosis y Neurodegeneración, Instituto de Investigaciones Bioquímicas de Buenos Aires, Fundación Instituto Leloir, CONICET Ciudad Autónoma de Buenos Aires, Argentina
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración, Instituto de Investigaciones Bioquímicas de Buenos Aires, Fundación Instituto Leloir, CONICET Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
172
|
Tagalakis AD, Lee DHD, Bienemann AS, Zhou H, Munye MM, Saraiva L, McCarthy D, Du Z, Vink CA, Maeshima R, White EA, Gustafsson K, Hart SL. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 2014; 35:8406-15. [PMID: 24985735 DOI: 10.1016/j.biomaterials.2014.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5' RACE-PCR and Western blot analysis of protein.
Collapse
Affiliation(s)
- Aristides D Tagalakis
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Do Hyang D Lee
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Alison S Bienemann
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Haiyan Zhou
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Mustafa M Munye
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Luisa Saraiva
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - David McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zixiu Du
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Conrad A Vink
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Ruhina Maeshima
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Edward A White
- Functional Neurosurgery Research Group, School of Clinical Sciences, AMBI Labs, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Kenth Gustafsson
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Stephen L Hart
- Molecular Immunology Unit, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
173
|
Mori T, Koyama N, Segawa T, Maeda M, Maruyama N, Kinoshita N, Hou H, Tan J, Town T. Methylene blue modulates β-secretase, reverses cerebral amyloidosis, and improves cognition in transgenic mice. J Biol Chem 2014; 289:30303-30317. [PMID: 25157105 DOI: 10.1074/jbc.m114.568212] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Amyloid precursor protein (APP) proteolysis is required for production of amyloid-β (Aβ) peptides that comprise β-amyloid plaques in the brains of patients with Alzheimer disease (AD). Here, we tested whether the experimental agent methylene blue (MB), used for treatment of methemoglobinemia, might improve AD-like pathology and behavioral deficits. We orally administered MB to the aged transgenic PSAPP mouse model of cerebral amyloidosis and evaluated cognitive function and cerebral amyloid pathology. Beginning at 15 months of age, animals were gavaged with MB (3 mg/kg) or vehicle once daily for 3 months. MB treatment significantly prevented transgene-associated behavioral impairment, including hyperactivity, decreased object recognition, and defective spatial working and reference memory, but it did not alter nontransgenic mouse behavior. Moreover, brain parenchymal and cerebral vascular β-amyloid deposits as well as levels of various Aβ species, including oligomers, were mitigated in MB-treated PSAPP mice. These effects occurred with inhibition of amyloidogenic APP proteolysis. Specifically, β-carboxyl-terminal APP fragment and β-site APP cleaving enzyme 1 protein expression and activity were attenuated. Additionally, treatment of Chinese hamster ovary cells overexpressing human wild-type APP with MB significantly decreased Aβ production and amyloidogenic APP proteolysis. These results underscore the potential for oral MB treatment against AD-related cerebral amyloidosis by modulating the amyloidogenic pathway.
Collapse
Affiliation(s)
- Takashi Mori
- Departments of Biomedical Sciences and Saitama Medical Center and University, Kawagoe, Saitama 350-8550, Japan; Departments of Pathology, Saitama Medical Center and University, Kawagoe, Saitama 350-8550, Japan,.
| | - Naoki Koyama
- Departments of Biomedical Sciences and Saitama Medical Center and University, Kawagoe, Saitama 350-8550, Japan
| | - Tatsuya Segawa
- Immuno-Biological Laboratories Co., Ltd., Fujioka, Gunma 375-0005, Japan
| | - Masahiro Maeda
- Immuno-Biological Laboratories Co., Ltd., Fujioka, Gunma 375-0005, Japan
| | - Nobuhiro Maruyama
- Immuno-Biological Laboratories Co., Ltd., Fujioka, Gunma 375-0005, Japan
| | - Noriaki Kinoshita
- Immuno-Biological Laboratories Co., Ltd., Fujioka, Gunma 375-0005, Japan
| | - Huayan Hou
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and University of South Florida, Tampa, Florida 33613
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center and University of South Florida, Tampa, Florida 33613; Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Neurosciences, Morsoni College of Medicine, University of South Florida, Tampa, Florida 33613, and
| | - Terrence Town
- Zilkha Neurogenetic Institute, Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2821.
| |
Collapse
|
174
|
Guo J, Chang L, Zhang X, Pei S, Yu M, Gao J. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp Ther Med 2014; 8:1271-1274. [PMID: 25187838 PMCID: PMC4151796 DOI: 10.3892/etm.2014.1885] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/25/2014] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effect of ginsenoside compound K on β-amyloid (Aβ) peptide clearance in primary astrocytes. Aβ degradation in primary astrocytes was determined using an intracellular Aβ clearance assay. Aggregated LC3 in astrocyte cells, which is a marker for the level of autophagy, was detected using laser scanning confocal microscope. The effect of compound K on the mammalian target of rapamycin (mTOR)/autophagy pathway was determined using western blot analysis, and an enzyme-linked immunosorbent assay was used for Aβ detection. The results demonstrated that compound K promoted the clearance of Aβ and enhanced autophagy in primary astrocytes. In addition, it was found that phosphorylation of mTOR was inhibited by compound K, which may have contributed to the enhanced autophagy. In conclusion, compound K promotes Aβ clearance by enhancing autophagy via the mTOR signaling pathway in primary astrocytes.
Collapse
Affiliation(s)
- Jinhui Guo
- Department of Pharmaceutics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Li Chang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xin Zhang
- Department of Pharmaceutics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Sujuan Pei
- Department of Pharmaceutics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Meishuang Yu
- Department of Pharmaceutics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianlian Gao
- Department of Pharmaceutics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
175
|
Menting KW, Claassen JAHR. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 2014; 6:165. [PMID: 25100992 PMCID: PMC4104928 DOI: 10.3389/fnagi.2014.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ) stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ cerebral spinal fluids (CSF) levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, β-site APP cleaving enzyme 1 (BACE1) inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.
Collapse
Affiliation(s)
- Kelly Willemijn Menting
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| |
Collapse
|
176
|
Neuman KM, Molina-Campos E, Musial TF, Price AL, Oh KJ, Wolke ML, Buss EW, Scheff SW, Mufson EJ, Nicholson DA. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons. Brain Struct Funct 2014; 220:3143-65. [PMID: 25031178 DOI: 10.1007/s00429-014-0848-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 07/09/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity.
Collapse
Affiliation(s)
- Krystina M Neuman
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Elizabeth Molina-Campos
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Andrea L Price
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Malerie L Wolke
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Stephen W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Elliott J Mufson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Harrison Street, Chicago, IL, 60612, USA.
| |
Collapse
|
177
|
Potential therapeutic strategies for Alzheimer's disease targeting or beyond β-amyloid: insights from clinical trials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:837157. [PMID: 25136630 PMCID: PMC4124758 DOI: 10.1155/2014/837157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease.
Collapse
|
178
|
Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130:4-28. [PMID: 24646365 PMCID: PMC4086641 DOI: 10.1111/jnc.12715] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell and Molecular Biology, Feinberg University School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Adolf-Butenandt Institute, Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Matthew E. Kennedy
- Neurosciences, Merck Research Labs, Boston, Massachusetts, USA
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Graduate programs of the Zurich Center for Integrative Human Physiology and Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Philip C. Wong
- Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
179
|
Upregulation of SET expression by BACE1 and its implications in Down syndrome. Mol Neurobiol 2014; 51:781-90. [PMID: 24935721 DOI: 10.1007/s12035-014-8782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/09/2014] [Indexed: 01/18/2023]
Abstract
Down syndrome (DS) is one of the most common genetic diseases. Patients with DS display growth delay and intellectual disabilities and develop Alzheimer's disease (AD) neuropathology after middle age, including neuritic plaques and neurofibrillary tangles. Beta-site amyloid β precursor protein (APP) cleaving enzyme 1 (BACE1), essential for Aβ production and neuritic plaque formation, is elevated in DS patients. However, its homolog, β-site APP cleaving enzyme 2 (BACE2), functions as θ-secretase and plays a differential role in plaque formation. In this study, by using Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) and LC-MS/MS proteomic profiling analysis, we found that the SET oncogene protein (SET) expression was associated with BACE1 but not BACE2. SET protein was increased in BACE1 overexpressing cells and was markedly reduced in the BACE1 knockout mice. We found that the overexpression of BACE1 or SET significantly inhibited cell proliferation. Moreover, knockdown of SET in BACE1 overexpression cells significantly rescued BACE1-induced cell growth suppression. Furthermore, both BACE1 and SET protein levels were increased in Down syndrome patients. It suggests that BACE1 overexpression-induced SET upregulation may contribute to growth delay and cognitive impairment in DS patients. Our work provides a new insight that BACE1 overexpression not only promotes neuritic plaque formation but may also potentiate neurodegeneration mediated by SET elevation in Alzheimer-associated dementia in DS.
Collapse
|
180
|
Ribeiro FM, Camargos ERDS, de Souza LC, Teixeira AL. Animal models of neurodegenerative diseases. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35 Suppl 2:S82-91. [PMID: 24271230 DOI: 10.1590/1516-4446-2013-1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), increases with age, and the number of affected patients is expected to increase worldwide in the next decades. Accurately understanding the etiopathogenic mechanisms of these diseases is a crucial step for developing disease-modifying drugs able to preclude their emergence or at least slow their progression. Animal models contribute to increase the knowledge on the pathophysiology of neurodegenerative diseases. These models reproduce different aspects of a given disease, as well as the histopathological lesions and its main symptoms. The purpose of this review is to present the main animal models for AD, PD, and Huntington's disease.
Collapse
Affiliation(s)
- Fabíola Mara Ribeiro
- Neurobiochemistry Laboratory, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo HorizonteMG, Brazil
| | | | | | | |
Collapse
|
181
|
Bilkei-Gorzo A. Genetic mouse models of brain ageing and Alzheimer's disease. Pharmacol Ther 2014; 142:244-57. [DOI: 10.1016/j.pharmthera.2013.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
|
182
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
183
|
Wang H, Megill A, Wong PC, Kirkwood A, Lee HK. Postsynaptic target specific synaptic dysfunctions in the CA3 area of BACE1 knockout mice. PLoS One 2014; 9:e92279. [PMID: 24637500 PMCID: PMC3956924 DOI: 10.1371/journal.pone.0092279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Beta-amyloid precursor protein cleaving enzyme 1 (BACE1), a major neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is considered one of the key therapeutic targets that can prevent the progression of Alzheimer's disease (AD). Although a complete ablation of BACE1 gene prevents Aβ formation, we previously reported that BACE1 knockouts (KOs) display presynaptic deficits, especially at the mossy fiber (MF) to CA3 synapses. Whether the defect is specific to certain inputs or postsynaptic targets in CA3 is unknown. To determine this, we performed whole-cell recording from pyramidal cells (PYR) and the stratum lucidum (SL) interneurons in the CA3, both of which receive excitatory MF terminals with high levels of BACE1 expression. BACE1 KOs displayed an enhancement of paired-pulse facilitation at the MF inputs to CA3 PYRs without changes at the MF inputs to SL interneurons, which suggests postsynaptic target specific regulation. The synaptic dysfunction in CA3 PYRs was not restricted to excitatory synapses, as seen by an increase in the paired-pulse ratio of evoked inhibitory postsynaptic currents from SL to CA3 PYRs. In addition to the changes in evoked synaptic transmission, BACE1 KOs displayed a reduction in the frequency of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) in CA3 PYRs without alteration in mEPSCs recorded from SL interneurons. This suggests that the impairment may be more global across diverse inputs to CA3 PYRs. Our results indicate that the synaptic dysfunctions seen in BACE1 KOs are specific to the postsynaptic target, the CA3 PYRs, independent of the input type.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Andrea Megill
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Philip C. Wong
- Department of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alfredo Kirkwood
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hey-Kyoung Lee
- Department of Neuroscience, Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
184
|
Girard SD, Jacquet M, Baranger K, Migliorati M, Escoffier G, Bernard A, Khrestchatisky M, Féron F, Rivera S, Roman FS, Marchetti E. Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse model of Alzheimer's disease. Hippocampus 2014; 24:762-72. [DOI: 10.1002/hipo.22267] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Marlyse Jacquet
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
- APHM; CHU La Timone; Département de Neurologie et de Neuropsychologie; Marseille France
| | | | - Guy Escoffier
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Anne Bernard
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | | | - François Féron
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN, UMR7259; Marseille France
| | | | | |
Collapse
|
185
|
Toyn JH, Ahlijanian MK. Interpreting Alzheimer's disease clinical trials in light of the effects on amyloid-β. ALZHEIMERS RESEARCH & THERAPY 2014; 6:14. [PMID: 25031632 PMCID: PMC4014014 DOI: 10.1186/alzrt244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The failure of several potential Alzheimer’s disease therapeutics in mid- to late-stage clinical development has provoked significant discussion regarding the validity of the amyloid hypothesis. In this review, we propose a minimum criterion of 25% for amyloid-β (Aβ) lowering to achieve clinically meaningful slowing of disease progression. This criterion is based on genetic, risk factor, clinical and preclinical studies. We then compare this minimum criterion with the degree of Aβ lowering produced by the potential therapies that have failed in clinical trials. If the proposed minimum Aβ lowering criterion is used, then the amyloid hypothesis has yet to be adequately tested in the clinic. Therefore, we believe that the amyloid hypothesis remains valid and remains to be confirmed or refuted in future clinical trials.
Collapse
Affiliation(s)
- Jeremy H Toyn
- Bristol-Myers Squibb Research and Development, Neuroscience Biology, 5 Research Parkway, Wallingford, Connecticut 06492, USA
| | - Michael K Ahlijanian
- Bristol-Myers Squibb Research and Development, Neuroscience Biology, 5 Research Parkway, Wallingford, Connecticut 06492, USA
| |
Collapse
|
186
|
Stancu IC, Ris L, Vasconcelos B, Marinangeli C, Goeminne L, Laporte V, Haylani LE, Couturier J, Schakman O, Gailly P, Pierrot N, Kienlen-Campard P, Octave JN, Dewachter I. Tauopathy contributes to synaptic and cognitive deficits in a murine model for Alzheimer's disease. FASEB J 2014; 28:2620-31. [PMID: 24604080 DOI: 10.1096/fj.13-246702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tau alterations are now considered an executor of neuronal demise and cognitive dysfunction in Alzheimer's disease (AD). Mouse models combining amyloidosis and tauopathy and their parental counterparts are important tools to further investigate the interplay of abnormal amyloid-β (Aβ) and Tau species in pathogenesis, synaptic and neuronal dysfunction, and cognitive decline. Here, we crossed APP/PS1 mice with 5 early-onset familial AD mutations (5xFAD) and TauP301S (PS19) transgenic mice, denoted F(+)/T(+) mice, and phenotypically compared them to their respective parental strains, denoted F(+)/T(-) and F(-)/T(+) respectively, as controls. We found dramatically aggravated tauopathy (~10-fold) in F(+)/T(+) mice compared to the parental F(-)/T(+) mice. In contrast, amyloidosis was unaltered compared to the parental F(+)/T(-) mice. Tauopathy was invariably and very robustly aggravated in hippocampal and cortical brain regions. Most important, F(+)/T(+) displayed aggravated cognitive deficits in a hippocampus-dependent spatial navigation task, compared to the parental F(+)/T(-) strain, while parental F(-)/T(+) mice did not display cognitive impairment. Basal synaptic transmission was impaired in F(+)/T(+) mice compared to nontransgenic mice and the parental strains (≥40%). Finally, F(+)/T(+) mice displayed a significant hippocampal atrophy (~20%) compared to nontransgenic mice, in contrast to the parental strains. Our data indicate for the first time that pathological Aβ species (or APP/PS1) induced changes in Tau contribute to cognitive deficits correlating with synaptic deficits and hippocampal atrophy in an AD model. Our data lend support to the amyloid cascade hypothesis with a role of pathological Aβ species as initiator and pathological Tau species as executor.
Collapse
Affiliation(s)
| | - Laurence Ris
- Department of Neurosciences, University of Mons, Mons, Belgium
| | | | | | | | | | | | | | - Olivier Schakman
- Department of Cell Physiology, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium; and
| | - Philippe Gailly
- Department of Cell Physiology, Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium; and
| | | | | | | | | |
Collapse
|
187
|
Baptista FI, Henriques AG, Silva AMS, Wiltfang J, da Cruz e Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem Neurosci 2014; 5:83-92. [PMID: 24328060 DOI: 10.1021/cn400213r] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease is characterized by pathological aggregation of protein tau and amyloid-β peptides, both of which are considered to be toxic to neurons. Naturally occurring dietary flavonoids have received considerable attention as alternative candidates for Alzheimer's therapy taking into account their antiamyloidogenic, antioxidative, and anti-inflammatory properties. Experimental evidence supports the hypothesis that certain flavonoids may protect against Alzheimer's disease in part by interfering with the generation and assembly of amyloid-β peptides into neurotoxic oligomeric aggregates and also by reducing tau aggregation. Several mechanisms have been proposed for the ability of flavonoids to prevent the onset or to slow the progression of the disease. Some mechanisms include their interaction with important signaling pathways in the brain like the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and progression of Alzheimer's disease and to promote cognitive performance. Nevertheless, further studies are needed to give additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Filipa I. Baptista
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana G. Henriques
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jens Wiltfang
- Department
of Psychiatry and Psychotherapy, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Odete A. B. da Cruz e Silva
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
188
|
Abstract
The β secretase, widely known as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), initiates the production of the toxic amyloid β (Aβ) that plays a crucial early part in Alzheimer's disease pathogenesis. BACE1 is a prime therapeutic target for lowering cerebral Aβ concentrations in Alzheimer's disease, and clinical development of BACE1 inhibitors is being intensely pursued. Although BACE1 inhibitor drug development has proven challenging, several promising BACE1 inhibitors have recently entered human clinical trials. The safety and efficacy of these drugs are being tested at present in healthy individuals and patients with Alzheimer's disease, and will soon be tested in individuals with presymptomatic Alzheimer's disease. Although hopes are high that BACE1 inhibitors might be efficacious for the prevention or treatment of Alzheimer's disease, concerns have been raised about potential mechanism-based side-effects of these drugs. The potential of therapeutic BACE1 inhibition might prove to be a watershed in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Riqiang Yan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
189
|
Thomas AA, Hunt KW, Volgraf M, Watts RJ, Liu X, Vigers G, Smith D, Sammond D, Tang TP, Rhodes SP, Metcalf AT, Brown KD, Otten JN, Burkard M, Cox AA, Do MKG, Dutcher D, Rana S, DeLisle RK, Regal K, Wright AD, Groneberg R, Scearce-Levie K, Siu M, Purkey HE, Lyssikatos JP, Gunawardana IW. Discovery of 7-tetrahydropyran-2-yl chromans: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors that reduce amyloid β-protein (Aβ) in the central nervous system. J Med Chem 2014; 57:878-902. [PMID: 24397738 DOI: 10.1021/jm401635n] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using structure-based design, substitutions to improve binding to both the S3 and S2' sites of BACE1 were explored. An acyl guanidine moiety provided the most potent analogues. These compounds demonstrated 10-420 fold selectivity for BACE1 vs CatD, and were highly potent in a cell assay measuring Aβ1-40 production (5-99 nM). They also suffered from high efflux. Despite this undesirable property, two of the acyl guanidines achieved free brain concentrations (Cfree,brain) in a guinea pig PD model sufficient to cover their cell IC50s. Moreover, a significant reduction of Aβ1-40 in guinea pig, rat, and cyno CSF (58%, 53%, and 63%, respectively) was observed for compound 62.
Collapse
Affiliation(s)
- Allen A Thomas
- Array BioPharma , 3200 Walnut Street, Boulder, Colorado 80301, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
191
|
Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 2014; 9:6. [PMID: 24410826 PMCID: PMC3891995 DOI: 10.1186/1750-1326-9-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
The β-amyloid (Aβ) peptide has been postulated to be a key determinant in the pathogenesis of Alzheimer’s disease (AD). Aβ is produced through sequential cleavage of the β-amyloid precursor protein (APP) by β- and γ-secretases. APP and relevant secretases are transmembrane proteins and traffic through the secretory pathway in a highly regulated fashion. Perturbation of their intracellular trafficking may affect dynamic interactions among these proteins, thus altering Aβ generation and accelerating disease pathogenesis. Herein, we review recent progress elucidating the regulation of intracellular trafficking of these essential protein components in AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun-wu Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
192
|
Léger GC, Massoud F. Novel disease-modifying therapeutics for the treatment of Alzheimer’s disease. Expert Rev Clin Pharmacol 2014; 6:423-42. [DOI: 10.1586/17512433.2013.811237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
193
|
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2014; 9:661-79. [DOI: 10.1586/ern.09.24] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
194
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
195
|
Shahani N, Pryor W, Swarnkar S, Kholodilov N, Thinakaran G, Burke RE, Subramaniam S. Rheb GTPase regulates β-secretase levels and amyloid β generation. J Biol Chem 2013; 289:5799-808. [PMID: 24368770 DOI: 10.1074/jbc.m113.532713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (β-secretase, BACE1) initiates amyloidogenic processing of APP to generate amyloid β (Aβ), which is a hallmark of Alzheimer disease (AD) pathology. Cerebral levels of BACE1 are elevated in individuals with AD, but the molecular mechanisms are not completely understood. We demonstrate that Rheb GTPase (Ras homolog enriched in brain), which induces mammalian target of rapamycin (mTOR) activity, is a physiological regulator of BACE1 stability and activity. Rheb overexpression depletes BACE1 protein levels and reduces Aβ generation, whereas the RNAi knockdown of endogenous Rheb promotes BACE1 accumulation, and this effect by Rheb is independent of its mTOR signaling. Moreover, GTP-bound Rheb interacts with BACE1 and degrades it through proteasomal and lysosomal pathways. Finally, we demonstrate that Rheb levels are down-regulated in the AD brain, which is consistent with an increased BACE1 expression. Altogether, our study defines Rheb as a novel physiological regulator of BACE1 levels and Aβ generation, and the Rheb-BACE1 circuitry may have a role in brain biology and disease.
Collapse
Affiliation(s)
- Neelam Shahani
- From the Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458
| | | | | | | | | | | | | |
Collapse
|
196
|
Majláth Z, Tajti J, Vécsei L. Kynurenines and other novel therapeutic strategies in the treatment of dementia. Ther Adv Neurol Disord 2013; 6:386-97. [PMID: 24228074 DOI: 10.1177/1756285613494989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dementia is a common neuropsychological disorder with an increasing incidence. The most prevalent type of dementia is Alzheimer's disease. The underlying pathophysiological features of the cognitive decline are neurodegenerative processes, a cerebrovascular dysfunction and immunological alterations. The therapeutic approaches are still limited, although intensive research is being conducted with the aim of finding neuroprotective strategies. The widely accepted cholinesterase inhibitors and glutamate antagonists did not meet expectations of preventing disease progression, and research is therefore currently focusing on novel targets. Nonsteroidal anti-inflammatory drugs, secretase inhibitors and statins are promising drug candidates for the prevention and management of different forms of dementia. The kynurenine pathway has been associated with various neurodegenerative disorders and cerebrovascular diseases. This pathway is also closely related to neuroinflammatory processes and it has been implicated in the pathomechanisms of certain kinds of dementia. Targeting the kynurenine system may be of therapeutic value in the future.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
197
|
Lee YS, Kim HY, Youn HM, Seo JH, Kim Y, Shin KJ. 2-Phenylbenzofuran derivatives alleviate mitochondrial damage via the inhibition of β-amyloid aggregation. Bioorg Med Chem Lett 2013; 23:5882-6. [DOI: 10.1016/j.bmcl.2013.08.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022]
|
198
|
The Alzheimer's β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 2013; 126:329-52. [PMID: 23820808 PMCID: PMC3753469 DOI: 10.1007/s00401-013-1152-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/20/2013] [Indexed: 01/18/2023]
Abstract
β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the β-secretase that initiates Aβ production in Alzheimer’s disease (AD). BACE1 levels are increased in AD, which could contribute to pathogenesis, yet the mechanism of BACE1 elevation is unclear. Furthermore, the normal function of BACE1 is poorly understood. We localized BACE1 in the brain at both the light and electron microscopic levels to gain insight into normal and pathophysiologic roles of BACE1 in health and AD, respectively. Our findings provide the first ultrastructural evidence that BACE1 localizes to vesicles (likely endosomes) in normal hippocampal mossy fiber terminals of both non-transgenic and APP transgenic (5XFAD) mouse brains. In some instances, BACE1-positive vesicles were located near active zones, implying a function for BACE1 at the synapse. In addition, BACE1 accumulated in swollen dystrophic autophagosome-poor presynaptic terminals surrounding amyloid plaques in 5XFAD cortex and hippocampus. Importantly, accumulations of BACE1 and APP co-localized in presynaptic dystrophies, implying increased BACE1 processing of APP in peri-plaque regions. In primary cortical neuron cultures, treatment with the lysosomal protease inhibitor leupeptin caused BACE1 levels to increase; however, exposure of neurons to the autophagy inducer trehalose did not reduce BACE1 levels. This suggests that BACE1 is degraded by lysosomes but not by autophagy. Our results imply that BACE1 elevation in AD could be linked to decreased lysosomal degradation of BACE1 within dystrophic presynaptic terminals. Elevated BACE1 and APP levels in plaque-associated presynaptic dystrophies could increase local peri-plaque Aβ generation and accelerate amyloid plaque growth in AD.
Collapse
|
199
|
Yonezawa S, Fujiwara K, Yamamoto T, Hattori K, Yamakawa H, Muto C, Hosono M, Tanaka Y, Nakano T, Takemoto H, Arisawa M, Shuto S. Conformational restriction approach to β-secretase (BACE1) inhibitors III: effective investigation of the binding mode by combinational use of X-ray analysis, isothermal titration calorimetry and theoretical calculations. Bioorg Med Chem 2013; 21:6506-22. [PMID: 24051074 DOI: 10.1016/j.bmc.2013.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
For further investigation of BACE1 inhibitors using conformational restriction with sp(3) hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1'R,2'R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ∼0.5kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring.
Collapse
Affiliation(s)
- Shuji Yonezawa
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd, Kita-21 Nishi-11 Kita-ku, Sapporo 001-0021, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J Neurosci 2013; 33:9408-19. [PMID: 23719809 DOI: 10.1523/jneurosci.2700-12.2013] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DiGeorge syndrome chromosomal region 8 (Dgcr8), a candidate gene for 22q11.2 deletion-associated schizophrenia, encodes an essential component for microRNA (miRNA) biosynthesis that plays a pivotal role in hippocampal learning and memory. Adult neurogenesis is known to be important in hippocampus-dependent memory, but the role and molecular mechanisms of adult neurogenesis in schizophrenia remain unclear. Here, we show that Dgcr8 heterozygosity in mice leads to reduced cell proliferation and neurogenesis in adult hippocampus, as well as impaired hippocampus-dependent learning. Several schizophrenia-associated genes were downregulated in the hippocampus of Dgcr8(+/-) mice, and one of them, insulin-like growth factor 2 (Igf2), rescued the proliferation of adult neural stem cells both in vitro and in vivo. Furthermore, IGF2 improved the spatial working memory deficits in Dgcr8(+/-) mice. These data suggest that defective adult neurogenesis contributes to the cognitive impairment observed in 22q11.2 deletion-associated schizophrenia and could be rectified by IGF2.
Collapse
|