151
|
Gatti M, Giansanti MG, Bonaccorsi S. Relationships between the central spindle and the contractile ring during cytokinesis in animal cells. Microsc Res Tech 2000; 49:202-8. [PMID: 10816260 DOI: 10.1002/(sici)1097-0029(20000415)49:2<202::aid-jemt13>3.0.co;2-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During late anaphase and telophase, animal cells develop a bundle of antiparallel, interdigitating microtubules between the two daughter nuclei. Recent data indicate that this structure, called the central spindle, plays an essential role during cytokinesis. Studies in Drosophila and on vertebrate cells strongly suggest that the molecular signals for cytokinesis specifically emanate from the central spindle midzone. Moreover, the analysis of Drosophila mutants defective in cytokinesis has revealed a cooperative interaction between the central spindle microtubules and the contractile ring: when either of these structures is perturbed, the proper assembly of the other is disrupted. Based on these results we propose a model for the role of the central spindle during cytokinesis. We suggest that the interaction between central spindle microtubules and cortical actin filaments leads to two early events crucial for cytokinesis: the positioning of the contractile ring, and the stabilization of the plus ends of the interdigitating microtubules that comprise the central spindle. The latter event would provide the cell with a specialized microtubule scaffold that could mediate the translocation of plus-end-directed molecular motors to the cell's equator. Among the cargoes transported by these motors could be proteins involved in the regulation and execution of cytokinesis.
Collapse
Affiliation(s)
- M Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma "La Sapienza," P. A. Mozo 5, 00185 Roma, Italy.
| | | | | |
Collapse
|
152
|
Abstract
The small GTPase Rho, which regulates cell shape, is thought to contribute to cytokinesis. Recently, Citron was characterized as a Rho target. This large protein contains a Ser/Thr kinase domain related to that of ROCK, another Rho effector. Both endogenous Citron and recombinant Citron localize to the cleavage furrow in dividing cells and to the midbody in post-mitotic cells. Moreover, overexpression of Citron deleted from its C-terminal sequence caused abnormal contractions specifically during cytokinesis, resulting in the formation of multinucleated cells. Cell shape, F-actin, intermediate filaments, and microtubules appeared essentially normal in these cells during interphase. Thus, Citron is a Rho effector that appears to function during cytokinesis, modulating its contractile process. In brain, however, Citron is highly expressed in a subset of neurons as a brain-specific isoform that lacks a kinase domain, Citron-N. This protein accumulates in synapses and associates to the NMDA receptor via interaction with the adaptor protein PSD95, suggesting that the function of Citron is specialized in the neurons.
Collapse
Affiliation(s)
- P Madaule
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | |
Collapse
|
153
|
Goto H, Kosako H, Inagaki M. Regulation of intermediate filament organization during cytokinesis: possible roles of Rho-associated kinase. Microsc Res Tech 2000; 49:173-82. [PMID: 10816257 DOI: 10.1002/(sici)1097-0029(20000415)49:2<173::aid-jemt10>3.0.co;2-a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intermediate filaments (IFs), which form the structural framework of cytoskeleton, have been found to be dramatically reorganized during mitosis. Some protein kinases activated in mitosis are thought to control spatial and temporal IF reorganization through phosphorylation of IF proteins. Rho-associated kinase (Rho-kinase), one of the putative targets of the small GTPase Rho, does phosphorylate IF proteins, specifically at the cleavage furrow during cytokinesis. This cleavage furrow-specific phosphorylation plays an important role in the local IF breakdown and efficient separation of IF networks. Recent studies on Rho signaling pathways have introduced new models about the molecular mechanism of rearrangements of cytoskeletons including IFs during cytokinesis.
Collapse
Affiliation(s)
- H Goto
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Aichi 464-8681, Japan
| | | | | |
Collapse
|
154
|
Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 2000; 275:9725-33. [PMID: 10734125 DOI: 10.1074/jbc.275.13.9725] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Little is known about the role of Rho proteins in apoptosis produced by stimuli evolved specifically to produce apoptosis, such as granzymes from cytotoxic T lymphocytes (CTLs) and Fas. Here we demonstrate that all three Rho family members are involved in CTL- and Fas-induced killing. Dominant-negative mutants of each Rho family member and Clostridium difficile toxin B, an inhibitor of all family members, strongly inhibited the susceptibility of cells to CTL- and Fas-induced apoptosis. Fas-induced caspase-3 activation was inhibited by C. difficile toxin. Activated mutants of each GTPase increased susceptibility to apoptosis, and activation of Cdc42 increased within 5 min of Fas stimulation. In contrast, during the time required for CTL and Fas killing, no apoptosis was produced by dominant-negative or activated mutants or by C. difficile toxin alone. Inhibition of actin polymerization using latrunculin A reduced the ability of constitutively active GTPase mutants to stimulate apoptosis and blocked Fas-induced activation of caspase-3. Furthermore, the ability of Rac to enhance apoptosis was decreased by point mutations reported to block Rac induction of actin polymerization. Rho family proteins may regulate apoptosis through their effects on the actin cytoskeleton.
Collapse
Affiliation(s)
- M C Subauste
- Department of Cell Biology, Division of Virology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Prokopenko SN, Saint R, Bellen HJ. Untying the Gordian knot of cytokinesis. Role of small G proteins and their regulators. J Cell Biol 2000; 148:843-8. [PMID: 10704435 PMCID: PMC2174545 DOI: 10.1083/jcb.148.5.843] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- S N Prokopenko
- Program in Developmental Biology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
156
|
Maruta H, He H, Tikoo A, Nur-e-Kamal M. Cytoskeletal tumor suppressors that block oncogenic RAS signaling. Ann N Y Acad Sci 2000; 886:48-57. [PMID: 10667202 DOI: 10.1111/j.1749-6632.1999.tb09399.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several distinct peptides or drugs that block the Rho family GTPases-mediated pathways were found to suppress RAS-induced malignant phenotype. They include (1) C3 enzyme that selectively inactivates Rho, (2) ACK42, a peptide that blocks the interaction of CDC42 with its effectors such as ACKs, (3) PAK18, a peptide that blocks the activation of PAK and membrane ruffling, and (4) actin-binding drugs, chaetoglobosin K (CK) and MKT-077, that block membrane ruffling by capping and bundling actin filaments, respectively.
Collapse
Affiliation(s)
- H Maruta
- Ludwig Institute for Cancer Research, Melbourne, Australia.
| | | | | | | |
Collapse
|
157
|
Mandato CA, Benink HA, Bement WM. Microtubule-actomyosin interactions in cortical flow and cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 45:87-92. [PMID: 10658205 DOI: 10.1002/(sici)1097-0169(200002)45:2<87::aid-cm1>3.0.co;2-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C A Mandato
- Department of Zoology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
158
|
Cau J, Faure S, Vigneron S, Labbé JC, Delsert C, Morin N. Regulation of Xenopus p21-activated kinase (X-PAK2) by Cdc42 and maturation-promoting factor controls Xenopus oocyte maturation. J Biol Chem 2000; 275:2367-75. [PMID: 10644687 DOI: 10.1074/jbc.275.4.2367] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transduction cascades involved in regulation of the cell cycle machinery are poorly understood. In the Xenopus oocyte model, meiotic maturation is triggered by MPF, a complex of p34(cdc2)-cyclin B, which is activated in response to a progesterone signal by largely unknown mechanisms. We have previously shown that the p21-activated kinase (PAK) family negatively regulates the MPF amplification loop. In this study, we identify the endogenous PAK2 as a key enzyme in this regulation and describe the pathways by which PAK2 is regulated. We show that the small GTPase Cdc42 is required for maintenance of active endogenous X-PAK2 in resting stage VI oocytes, whereas Rac1 is not involved in this regulation. During the process of maturation, X-PAK2 phosphorylation results in its inactivation and allows maturation to proceed to completion. Activation of mitogen-activated protein kinase and cyclin B-p34(cdc2) is coincident with X-PAK2 inactivation, and purified active MPF inhibits X-PAK2, demonstrating the existence of a new positive feedback loop. Our results confirm and extend the importance of p21-activated kinases in the control of the G(2)/M transition. We hypothesize that the X-PAK2/Cdc42 pathway could link p34(cdc2) activity to the major cytoskeleton rearrangements leading to spindle migration and anchorage to the animal pole cortex.
Collapse
Affiliation(s)
- J Cau
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UPR 1086, 1919 Route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
159
|
Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell 2000; 5:13-25. [PMID: 10678165 DOI: 10.1016/s1097-2765(00)80399-8] [Citation(s) in RCA: 323] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have examined the role of the mouse Diaphanous-related formin (DRF) Rho GTPase binding proteins, mDia1 and mDia2, in cell regulation. The DRFs are required for cytokinesis, stress fiber formation, and transcriptional activation of the serum response factor (SRF). 'Activated' mDia1 and mDia2 variants, lacking their GTPase binding domains, cooperated with Rho-kinase or ROCK to form stress fibers but independently activated SRF. Src tyrosine kinase associated and co-localized with the DRFs in endosomes and in mid-bodies of dividing cells. Inhibition of Src also blocked cytokinesis, SRF induction by activated DRFs, and cooperative stress fiber formation with active ROCK. Our results show that the DRF proteins couple Rho and Src during signaling and the regulation of actin dynamics.
Collapse
Affiliation(s)
- T Tominaga
- University of California, San Francisco Cancer Center 94115, USA
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
Subcellular asymmetry, cell polarity, is fundamental to the diverse specialized functions of eukaryotic cells. In yeast, cell polarization is essential to division and mating. As a result, this highly accessible experimental system serves as a paradigm for deciphering the molecular mechanisms underlying the generation of polarity. Beyond yeast, cell polarity is essential to the partitioning of cell fate in embryonic development, the generation of axons and their guidance during neuronal development, and the intimate communication between lymphocytes within the immune system. The polarization of yeast cells shares many features with that of these more complex examples, including regulation by both intrinsic and extrinsic cues, conserved regulatory molecules such as Cdc42 GTPase, and asymmetry of the cytoskeleton as its centerpiece. This review summarizes the molecular pathways governing the generation of cell polarity in yeast.
Collapse
Affiliation(s)
- J Chant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
161
|
Kwak E, Gerald N, Larochelle DA, Vithalani KK, Niswonger ML, Maready M, De Lozanne A. LvsA, a protein related to the mouse beige protein, is required for cytokinesis in Dictyostelium. Mol Biol Cell 1999; 10:4429-39. [PMID: 10588668 PMCID: PMC25768 DOI: 10.1091/mbc.10.12.4429] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We isolated a Dictyostelium cytokinesis mutant with a defect in a novel locus called large volume sphere A (lvsA). lvsA mutants exhibit an unusual phenotype when attempting to undergo cytokinesis in suspension culture. Early in cytokinesis, they initiate furrow formation with concomitant myosin II localization at the cleavage furrow. However, the furrow is later disrupted by a bulge that forms in the middle of the cell. This bulge is bounded by furrows on both sides, which are often enriched in myosin II. The bulge can increase and decrease in size multiple times as the cell attempts to divide. Interestingly, this phenotype is similar to the cytokinesis failure of Dictyostelium clathrin heavy-chain mutants. Furthermore, both cell lines cap ConA receptors but form only a C-shaped loose cap. Unlike clathrin mutants, lvsA mutants are not defective in endocytosis or development. The LvsA protein shares several domains in common with the molecules beige and Chediak-Higashi syndrome proteins that are important for lysosomal membrane traffic. Thus, on the basis of the sequence analysis of the LvsA protein and the phenotype of the lvsA mutants, we postulate that LvsA plays an important role in a membrane-processing pathway that is essential for cytokinesis.
Collapse
Affiliation(s)
- E Kwak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Wünnenberg-Stapleton K, Blitz IL, Hashimoto C, Cho KW. Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. Development 1999; 126:5339-51. [PMID: 10556059 DOI: 10.1242/dev.126.23.5339] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Rho family of small GTPases regulates a variety of cellular functions, including the dynamics of the actin cytoskeleton, cell adhesion, transcription, cell growth and membrane trafficking. We have isolated the first Xenopus homologs of the Rho-like GTPases RhoA and Rnd1 and examined their potential roles in early Xenopus development. We found that Xenopus Rnd1 (XRnd1) is expressed in tissues undergoing extensive morphogenetic changes, such as marginal zone cells involuting through the blastopore, somitogenic mesoderm during somite formation and neural crest cells. XRnd1 also causes a severe loss of cell adhesion in overexpression experiments. These data and the expression pattern suggest that XRnd1 regulates morphogenetic movements by modulating cell adhesion in early embryos. Xenopus RhoA (XRhoA) is a potential XRnd1 antagonist, since overexpression of XRhoA increases cell adhesion in the embryo and reverses the disruption of cell adhesion caused by XRnd1. In addition to the potential roles of XRnd1 and XRhoA in the regulation of cell adhesion, we find a role for XRhoA in axis formation. When coinjected with dominant-negative BMP receptor (tBR) in the ventral side of the embryo, XRhoA causes the formation of head structures resembling the phenotype seen after coinjection of wnt inhibitors with dominant-negative BMP receptor. Since dominant-negative XRhoA is able to reduce the formation of head structures, we propose that XRhoA activity is essential for head formation. Thus, XRhoA may have a dual role in the embryo by regulating cell adhesion properties and pattern formation.
Collapse
Affiliation(s)
- K Wünnenberg-Stapleton
- Department of Developmental and Cell Biology, and Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
163
|
Hales KG, Bi E, Wu JQ, Adam JC, Yu IC, Pringle JR. Cytokinesis: an emerging unified theory for eukaryotes? Curr Opin Cell Biol 1999; 11:717-25. [PMID: 10600712 DOI: 10.1016/s0955-0674(99)00042-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In animal and fungal cells, cytokinesis involves an actomyosin ring that forms and contracts at the division plane. Important new details have emerged concerning the composition, assembly, and dynamics of these contractile rings. In addition, recent advances suggest that targeted membrane addition is a central feature of cytokinesis in animal cells - as it is in fungi and plants - and the coordination of actomyosin ring function with targeted exocytosis at the cleavage plane is being explored. Important new information has also emerged about the spatial and temporal regulation of cytokinesis, especially in relation to the function of the spindle midzone in animal cells and the control of cytokinesis by GTPase systems.
Collapse
Affiliation(s)
- K G Hales
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | | | | | | | |
Collapse
|
164
|
Tatsumoto T, Xie X, Blumenthal R, Okamoto I, Miki T. Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol 1999; 147:921-8. [PMID: 10579713 PMCID: PMC2169345 DOI: 10.1083/jcb.147.5.921] [Citation(s) in RCA: 342] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Animal cells divide into two daughter cells by the formation of an actomyosin-based contractile ring through a process called cytokinesis. Although many of the structural elements of cytokinesis have been identified, little is known about the signaling pathways and molecular mechanisms underlying this process. Here we show that the human ECT2 is involved in the regulation of cytokinesis. ECT2 catalyzes guanine nucleotide exchange on the small GTPases, RhoA, Rac1, and Cdc42. ECT2 is phosphorylated during G2 and M phases, and phosphorylation is required for its exchange activity. Unlike other known guanine nucleotide exchange factors for Rho GTPases, ECT2 exhibits nuclear localization in interphase, spreads throughout the cytoplasm in prometaphase, and is condensed in the midbody during cytokinesis. Expression of an ECT2 derivative, containing the NH(2)-terminal domain required for the midbody localization but lacking the COOH-terminal catalytic domain, strongly inhibits cytokinesis. Moreover, microinjection of affinity-purified anti-ECT2 antibody into interphase cells also inhibits cytokinesis. These results suggest that ECT2 is an important link between the cell cycle machinery and Rho signaling pathways involved in the regulation of cell division.
Collapse
Affiliation(s)
- Takashi Tatsumoto
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Xiaozhen Xie
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Rayah Blumenthal
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Isamu Okamoto
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Toru Miki
- Molecular Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-4255
| |
Collapse
|
165
|
Abstract
Rho GTPases regulate many important processes in all eukaryotic cells, including the organization of the actin cytoskeleton, gene transcription, cell cycle progression, and membrane trafficking. Their activity is regulated by signals originating from different classes of surface receptors including G-protein-coupled receptors, tyrosine kinase receptors, cytokine receptors, and adhesion receptors. Recent work has identified multiple mechanisms by which receptors can signal to Rho GTPases and this will be the major focus of this review. In addition, there is growing evidence for cross-talk within the Rho GTPase family as well as between the Rho and Ras GTPase families. These signaling networks are thought to provide the cooperative and coordinated interactions that are crucial for regulating complex biological processes such as cell migration.
Collapse
Affiliation(s)
- L Kjoller
- CRC Oncogene and Signal Transduction Group, Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
166
|
Abstract
Completion of cytokinesis, abscission, has been studied little despite the intensive studies of the onset and contractile mechanism of the earlier phases of division. It has been well documented that microtubule (MT) disruption before furrow stimulation prevents furrowing, while MT disruption after furrow stimulation allows division to proceed. We have confirmed those findings using the MT inhibitors, nocodazole and demecolcine. In addition, we have found that MT disruption after furrow stimulation but before completion of division prevents abscission as evidenced by the observation that prospective daughter cells in MT-disrupted eggs maintain electrical continuity. Continued observation of eggs revealed that the furrow in MT-disrupted eggs did not result in abscission, but rather held steady until the time when controls underwent second cleavage, at which point the furrows regressed. These findings extend the recent reports that MTs are required for completion of division in mammalian tissue culture cells and frog eggs, to invertebrates, suggesting a common mechanism of abscission for animal cells.
Collapse
Affiliation(s)
- K Larkin
- Department of Biological Structure and Function, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
167
|
Maruta H, He H, Tikoo A, Vuong T, Nur-E-Kamal M. G proteins, phosphoinositides, and actin-cytoskeleton in the control of cancer growth. Microsc Res Tech 1999; 47:61-6. [PMID: 10506762 DOI: 10.1002/(sici)1097-0029(19991001)47:1<61::aid-jemt6>3.0.co;2-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Almost three decades have passed since actin-cytoskeleton (acto-myosin complex) was first discovered in non-muscle cells. A combination of cell biology, biochemistry, and molecular biology has revealed the structure and function of many actin-binding proteins and their physiological role in the regulation of cell motility, shape, growth, and malignant transformation. As molecular oncologists, we would like to review how the function of actin-cytoskeleton is regulated through Ras/Rho family GTPases- or phosphoinosites-mediated signaling pathways, and how malignant transformation is controlled by actin/phosphoinositides-binding proteins or drugs that block Rho/Rac/CDC42 GTPases-mediated signaling pathways.
Collapse
Affiliation(s)
- H Maruta
- Ludwig Institute for Cancer Research, Melbourne, Australia 3050.
| | | | | | | | | |
Collapse
|
168
|
Abstract
Recent evidence that a syntaxin is required for cytokinesis in Caenorhabditis elegans embryos suggests that the mechanism of cell division in plant and animal cells may be more similar than previously imagined.
Collapse
Affiliation(s)
- B Bowerman
- Institute of Molecular Biology, 1370 Franklin Boulevard, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
169
|
Prokopenko SN, Brumby A, O'Keefe L, Prior L, He Y, Saint R, Bellen HJ. A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev 1999; 13:2301-14. [PMID: 10485851 PMCID: PMC316993 DOI: 10.1101/gad.13.17.2301] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytokinesis ensures the successful completion of the cell cycle and distribution of chromosomes, organelles, and cytoplasm between daughter cells. It is accomplished by formation and constriction of an actomyosin contractile ring that drives the progression of a cleavage furrow. Microinjection experiments and in vitro transfection assays have suggested a requirement for small GTPases of the Rho family in cytokinesis. Yet, the identity of proteins regulating Rho signaling pathways during cytokinesis remains unknown. Here we show that in Drosophila, Pebble (Pbl), a putative exchange factor for Rho GTPases (RhoGEF), is required for the formation of the contractile ring and initiation of cytokinesis. The dynamics of Pbl expression and its distribution during mitosis, as well as structure-function analysis, indicate that it is a key regulatory component of the pathway. pbl interacts genetically with Rho1, but not with Rac1 or Cdc42, and Pbl and Rho1 proteins interact in vivo in yeast. Similar to mutations in pbl, loss of Rho1 or expression of a dominant-negative Rho1 blocks cytokinesis. Our results identify Pbl as a RhoGEF specifically required for cytokinesis and linked through Rho1 activity to the reorganization of the actin cytoskeleton at the cleavage furrow.
Collapse
Affiliation(s)
- S N Prokopenko
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030 USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Bagrodia S, Bailey D, Lenard Z, Hart M, Guan JL, Premont RT, Taylor SJ, Cerione RA. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J Biol Chem 1999; 274:22393-400. [PMID: 10428811 DOI: 10.1074/jbc.274.32.22393] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p21-activated kinases (Pak) are major targets of the small GTPases Cdc42 and Rac. We, and others, recently identified a family of proteins termed Cool/Pix, which interact with Pak3. In cells, p50(Cool-1) suppresses Pak activation by upstream activators; p85(Cool-1) has a permissive effect on Pak activation, and we now show that the closely related Cool-2 stimulates Pak kinase activity. To understand the differential regulation of Pak by Cool proteins, we screened for Cool-interacting proteins by affinity purification and microsequencing. This has led to the identification of two closely related proteins called Cat (Cool-associated, tyrosine phosphorylated), which contain a zinc finger followed by three ankyrin repeats. Cat-1 is identical to the recently identified binding partner for the beta-adrenergic receptor kinase (betaARK or GRK-2), which was shown to have Arf-GAP activity. Cat-1 and Cat-2 both bind to the COOH-terminal region of p85(Cool-1) and p85(Cool-2) but do not bind to p50(Cool-1). Cat-1 is tyrosine-phosphorylated in growing NIH 3T3 fibroblasts, and its tyrosine phosphorylation is increased following cell spreading on fibronectin, decreased in cells arrested in mitosis, and increased in the ensuing G(1) phase. Cat proteins are tyrosine-phosphorylated when co-expressed in cells with the focal adhesion kinase Fak and Src. These findings suggest that in addition to playing a role in Cool/Pak interactions, Cat proteins may serve as points of convergence between G protein-coupled receptors, integrins, Arf GTPases, cell cycle regulators, and Cdc42/Rac/Pak signaling pathways.
Collapse
Affiliation(s)
- S Bagrodia
- Department of Molecular Medicine, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Umeda M, Emoto K. Membrane phospholipid dynamics during cytokinesis: regulation of actin filament assembly by redistribution of membrane surface phospholipid. Chem Phys Lipids 1999; 101:81-91. [PMID: 10810927 DOI: 10.1016/s0009-3084(99)00057-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.
Collapse
Affiliation(s)
- M Umeda
- Department of Molecular Biodynamics, The Tokyo Metropolitan Institute of Medical Science (RINSHOKEN), Japan.
| | | |
Collapse
|
172
|
Jantsch-Plunger V, Glotzer M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol 1999; 9:738-45. [PMID: 10421575 DOI: 10.1016/s0960-9822(99)80333-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND During cytokinesis, the plasma membrane of the parent cell is resolved into the two plasma membranes of the daughter cells. Membrane fusion events mediated by the machinery that participates in intracellular vesicle trafficking might contribute to this process. Two classes of molecules that are required for membrane fusion are the t-SNAREs and the v-SNAREs. The t-SNAREs (syntaxins) comprise a multi-gene family that has been suggested to mediate, at least in part, selective membrane fusion events in the cell. RESULTS We have analyzed the genome of Caenorhabditis elegans and identified eight syntaxin genes. RNA-mediated interference (RNAi) was used to produce embryos deficient in individual syntaxins and these embryos were phenotypically characterized. Embryos deficient in one syntaxin, Syn-4, became multinucleate because of defects in karyomere fusion and cytokinesis. Syn-4 localized both to ingressing cleavage furrows and to punctate structures surrounding nuclei as they reformed during interphase. CONCLUSIONS Our analyses indicate that both cytokinesis and reformation of the nuclear envelope are dependent on SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- V Jantsch-Plunger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| | | |
Collapse
|
173
|
Kodama A, Takaishi K, Nakano K, Nishioka H, Takai Y. Involvement of Cdc42 small G protein in cell-cell adhesion, migration and morphology of MDCK cells. Oncogene 1999; 18:3996-4006. [PMID: 10435623 DOI: 10.1038/sj.onc.1202773] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Rho small G protein family consists of the Rho, Rac, and Cdc42 subfamilies and regulates various cell functions through reorganization of the actin cytoskeleton. We previously showed that the Rho subfamily regulates the formation of stress fibers and focal adhesions whereas the Rac subfamily regulates the E-cadherin-based cell-cell adhesion in MDCK cells. We studied here the function of the Cdc42 subfamily, consisting of two members, Cdc42Hs and G25k, in cell adhesion, migration, and morphology of MDCK cells. For this purpose, we made and used MDCK cell lines stably expressing each of dominant active mutants of Cdc42Hs (sMDCK-Cdc42HsDA) and G25K (sMDCK-G25KDA). Actin filaments at the cell-cell adhesion sites increased in both sMDCK-Cdc42HsDA and -G25KDA cells. Both E-cadherin and beta-catenin, adherens junctional proteins, at the cell-cell adhesion sites also increased in both sMDCK-Cdc42HsDA and -G25KDA cells. Electron microscopic analysis revealed that sMDCK-Cdc42HsDA cells tightly contacted with each other throughout the lateral membranes. Moreover, both the HGF- and TPA-induced disruption of the cadherin-based cell-cell adhesion and the subsequent cell migration were inhibited in both sMDCK-Cdc42HsDA and -G25KDA cells. Co-expression of the dominant negative mutant of Rac1, a member of the Rac subfamily, with the dominant active mutant of Cdc42Hs did not inhibit the increased accumulation of actin filaments at the cell-cell adhesion sites. These results suggest that the Cdc42 subfamily is involved in the cadherin-based cell-cell adhesion in a manner independent of the Rac subfamily. Furthermore, the cells were frequently enveloped by the large multinuclear cells in both sMDCK-Cdc42HsDA and -G25KDA cells. Video microscopic analysis revealed that the cells were engulfed by the large cells during cytokinesis.
Collapse
Affiliation(s)
- A Kodama
- Department of Molecular Biology and Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | |
Collapse
|
174
|
Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1999; 1:136-43. [PMID: 10559899 DOI: 10.1038/11056] [Citation(s) in RCA: 684] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The small GTPase Rho induces the formation of actin stress fibres and mediates the formation of diverse actin structures. However, it remains unclear how Rho regulates its effectors to elicit such functions. Here we show that GTP-bound Rho activates its effector mDia1 by disrupting mDia1's intramolecular interactions. Active mDia1 induces the formation of thin actin stress fibres, which are disorganized in the absence of activity of the Rho-associated kinase ROCK. Moreover, active mDia1 transforms ROCK-induced condensed actin fibres into structures reminiscent of Rho-induced stress fibres. Thus mDia1 and ROCK work concurrently during Rho-induced stress-fibre formation. Intriguingly, mDia1 and ROCK, depending on the balance of the two activities, induce actin fibres of various thicknesses and densities. Thus Rho may induce the formation of different actin structures affected by the balance between mDia1 and ROCK signalling.
Collapse
Affiliation(s)
- N Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | |
Collapse
|
175
|
Olenik C, Aktories K, Meyer DK. Differential expression of the small GTP-binding proteins RhoA, RhoB, Cdc42u and Cdc42b in developing rat neocortex. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:9-17. [PMID: 10381538 DOI: 10.1016/s0169-328x(99)00121-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies with cultured cells indicate that small GTPases of the Rho family may be involved in cell proliferation, differentiation, as well as migration. Therefore, we have studied the expression of four members of this protein family, i.e., RhoA, RhoB, the ubiquitous Cdc42u, and brain specific Cdc42b, during the embryonic and early postnatal development of rat neocortex. A clear isoform specificity of expression was found during the prenatal development. Thus, RhoA and Cdc42u were present in the proliferation zone while RhoB and Cdc42b were expressed only in the cortical plate where neural cells settle and differentiate. After birth, this isoform specificity quickly disappeared so that already at postnatal day 8 the adult pattern of expression was present. Our findings of a differential expression of the small GTP-binding proteins RhoA, RhoB, Cdc42u and Cdc42b in developing brain neocortex suggest isoform specific functions during neurogenesis and differentiation.
Collapse
Affiliation(s)
- C Olenik
- Institut für Pharmakologie der Albert-Ludwigs-Universität Freiburg, Hermann-Herderstr. 5, D-79104, Freiburg, Germany
| | | | | |
Collapse
|
176
|
Moreau J, Lebreton S, Iouzalen N, Mechali M. Characterization of Xenopus RalB and its involvement in F-actin control during early development. Dev Biol 1999; 209:268-81. [PMID: 10328920 DOI: 10.1006/dbio.1999.9254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the characterization and a functional analysis in Xenopus development of RalB, a small G protein. RalB RNA and protein are detectable during oogenesis and early development, but the gene is expressed only weakly in adult tissues. The RalB transcripts are processed by poly(A) extension during oocyte maturation and up to the gastrulation stage. Microinjection of wild-type or mutant RalB RNAs was performed in fertilized eggs in order to gain insight into the function of RalB during development. We show that during cleavage stages the activated GTP form of RalB specifically induces a cortical reaction that affects the localization of pigment granules. The use of different drugs suggests that this reaction is dependent on the outer cortical actin array. The relation between F-actin and RalB was shown by confocal analysis. Injection of mRNAs encoding the mutated activated form of RalB leads, at dependent doses, to a blocking of gastrulation or defects in closing of neural folding structures. In contrast, the inactivated form blocks only the closing of neural tube. Altogether, these observations suggest that RalB is part of a regulatory pathway that may affect the blastomere cytoskeleton and take part in early development.
Collapse
Affiliation(s)
- J Moreau
- Laboratoire d'Etude des Mécanismes Moléculaires du Développement, Institut Jacques Monod, CNRS, Université Paris VI-VII, 2 Place Jussieu, Paris Cedex 05, 75251, France.
| | | | | | | |
Collapse
|
177
|
Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M, Tomono Y, Okigaki T, Odai H, Kaibuchi K, Inagaki M. Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene 1999; 18:2783-8. [PMID: 10348354 DOI: 10.1038/sj.onc.1202633] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The small GTPase Rho and one of its targets, Rho-associated kinase (Rho-kinase), are implicated in a wide spectrum of cellular functions, including cytoskeletal rearrangements, transcriptional activation and smooth muscle contraction. Since Rho also plays an essential role in cytokinesis, Rho-kinase may possibly mediate some biological aspects of cytokinesis. Here, using a series of monoclonal antibodies that can specifically recognize distinct phosphorylated sites on glial fibrillary acidic protein (GFAP) and vimentin, phosphorylation sites by Rho-kinase in vitro were revealed to be identical to in vivo phosphorylation sites on these intermediate filament (IF) proteins at the cleavage furrow in dividing cells. We then found, by preparing two types of anti-Rho-kinase antibodies, that Rho-kinase accumulated highly and circumferentially at the cleavage furrow in various cell lines. This subcellular distribution during cytokinesis was very similar to that of ezrin/radixin/moesin (ERM) proteins and Ser19-phosphorylated myosin light chain. These results raise the possibility that Rho-kinase might be involved in the formation of the contractile ring by modulating these F-actin-binding proteins during cytokinesis and in the phosphorylation and regulation of IF proteins at the cleavage furrow.
Collapse
Affiliation(s)
- H Kosako
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K, Endo T. Small GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 1999; 18:2431-40. [PMID: 10229194 DOI: 10.1038/sj.onc.1202604] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rho family small GTPases regulate organization of the actin cytoskeleton. Among them, RhoA plays essential roles in the formation of the actin stress fibers, the associated focal adhesions, and the contractile rings necessary for cytokinesis. Recently, RhoD, a novel member of Rho family has been identified. The amino acid sequences of its effector domain is distinct from those of the other Rho family proteins, suggesting its unique cellular functions. Introduction of the constitutively active form of RhoD(G26V) into fibroblasts by microinjection or transfection resulted in disassembly of the actin stress fibers and the focal adhesions, whereas the dominant negative form of RhoD(T31K) did not affect these structures. The degree of cell migration assessed by the phagokinetic tracks on a substrate covered with gold particles was diminished by the expression of RhoD(G26V) but not by RhoD(T31K). Thus, cytoskeletal alterations including the loss of stress fibers and focal adhesions by RhoD seems to lead to the retardation of cell migration. Transfection of RhoD(G26V) cDNA into cultured cells also induced multinucleation. Moreover, RhoD(G26V) microinjected into fertilized eggs and embryos of Xenopus laevis caused cleavage arrest only in the injected cells, and the uncleaved cells contained multiple nuclei. These results imply that RhoD does not affect nuclear division but can interfere with cytokinesis presumably by preventing the formation of the actin-based contractile ring. Enhancement of the stress fibers by RhoA or RhoA-activating lysophosphatidic acid was reversed by the transfection of RhoD cDNA. Accordingly, the cellular functions of RhoD are likely to be antagonistic to those of RhoA.
Collapse
Affiliation(s)
- K Tsubakimoto
- Department of Biology, Faculty of Sciences, Chiba University, Yayoicho, Inageku, Japan
| | | | | | | | | | | | | |
Collapse
|
179
|
Ridley AJ. Rho family proteins and regulation of the actin cytoskeleton. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:1-22. [PMID: 10081062 DOI: 10.1007/978-3-642-58591-3_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A J Ridley
- Ludwig Institute for Cancer Research, London, UK
| |
Collapse
|
180
|
Stam JC, Collard JG. The DH protein family, exchange factors for Rho-like GTPases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 1999; 22:51-83. [PMID: 10081065 DOI: 10.1007/978-3-642-58591-3_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J C Stam
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
181
|
O'Connell CB, Wheatley SP, Ahmed S, Wang YL. The small GTP-binding protein rho regulates cortical activities in cultured cells during division. J Cell Biol 1999; 144:305-13. [PMID: 9922456 PMCID: PMC2132903 DOI: 10.1083/jcb.144.2.305] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Revised: 12/01/1998] [Indexed: 11/22/2022] Open
Abstract
We have investigated the role of the small GTP-binding protein Rho in cytokinesis by microinjecting an inhibitor, C3 ribosyltransferase, into cultured cells. Microinjection of C3 into prometaphase or metaphase normal rat kidney epithelial cells induced immediate and global cortical movement of actin toward the metaphase plate, without an apparent effect on the mitotic spindle. During anaphase, concentrated cortical actin filaments migrated with separating chromosomes, leaving no apparent concentration of actin filaments along the equator. Myosin II in injected epithelial cells showed a diffuse distribution throughout cell division. All treated, well-adherent cells underwent cleavage-like activities and most of them divided successfully. However, cytokinesis became abnormal, generating irregular ingressions and ectopic cleavage sites even when mitosis was blocked with nocodazole. The effects of C3 appeared to be dependent on cell adhesion; less adherent 3T3 fibroblasts exhibited irregular cortical ingression only when cells started to increase attachment during respreading, but managed to complete cytokinesis. Poorly adherent HeLa cells showed neither ectopic cleavage nor completion of cytokinesis. Our results indicate that Rho does not simply activate actin-myosin II interactions during cytokinesis, but regulates the spatial pattern of cortical activities and completion of cytokinesis possibly through modulating the mechanical strength of the cortex.
Collapse
Affiliation(s)
- C B O'Connell
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
182
|
Ma L, Rohatgi R, Kirschner MW. The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci U S A 1998; 95:15362-7. [PMID: 9860974 PMCID: PMC28048 DOI: 10.1073/pnas.95.26.15362] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small GTP-binding protein Cdc42 is thought to induce filopodium formation by regulating actin polymerization at the cell cortex. Although several Cdc42-binding proteins have been identified and some of them have been implicated in filopodium formation, the precise role of Cdc42 in modulating actin polymerization has not been defined. To understand the biochemical pathways that link Cdc42 to the actin cytoskeleton, we have reconstituted Cdc42-induced actin polymerization in Xenopus egg extracts. Using this cell-free system, we have developed a rapid and specific assay that has allowed us to fractionate the extract and isolate factors involved in this activity. We report here that at least two biochemically distinct components are required, based on their chromatographic behavior and affinity for Cdc42. One component is purified to homogeneity and is identified as the Arp2/3 complex, a protein complex that has been shown to nucleate actin polymerization. However, the purified complex alone is not sufficient to mediate the activity; a second component that binds Cdc42 directly and mediates the interaction between Cdc42 and the complex also is required. These results establish an important link between a signaling molecule, Cdc42, and a complex that can directly modulate actin networks in vitro. We propose that activation of the Arp2/3 complex by Cdc42 and other signaling molecules plays a central role in stimulating actin polymerization at the cell surface.
Collapse
Affiliation(s)
- L Ma
- Department of Cell Biology, Harvard Medical School, Boston, MA 0211, USA
| | | | | |
Collapse
|
183
|
Abstract
We isolated the urho1 (urchin rho in English or uni rho in Japanese) gene from the sea urchin cDNA library which encodes a Rho GTPase. Anti-URho1 antibodies specifically recognized a 22 kDa protein in the extracts of echinoderm eggs. URho1 was concentrated in the cortices from both unfertilized and fertilized eggs as judged by immunoblot analysis. URho1 may bind directly to the cell membrane but not be a component of the cortical layer. Immunofluorescence microscopy revealed that URho1 is localized to the cleavage furrow and the midbody during cytokinesis.
Collapse
Affiliation(s)
- Y Nishimura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
184
|
Crawford JM, Harden N, Leung T, Lim L, Kiehart DP. Cellularization in Drosophila melanogaster is disrupted by the inhibition of rho activity and the activation of Cdc42 function. Dev Biol 1998; 204:151-64. [PMID: 9851849 DOI: 10.1006/dbio.1998.9061] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of cytoskeletal dynamics is essential for cell shape change and morphogenesis. Drosophila melanogaster embryos offer a well-defined system for observing alterations in the cytoskeleton during the process of cellularization, a specialized form of cytokinesis. During cellularization, the actomyosin cytoskeleton forms a hexagonal array and drives invagination of the plasma membrane between the nuclei located at the cortex of the syncytial blastoderm. Rho, Rac, and Cdc42 proteins are members of the Rho subfamily of Ras-related G proteins that are involved in the formation and maintenance of the actin cytoskeleton throughout phylogeny and in D. melanogaster. To investigate how Rho subfamily activity affects the cytoskeleton during cellularization stages, embryos were microinjected with C3 exoenzyme from Clostridium botulinum or with wild-type, constitutively active, or dominant negative versions of Rho, Rac, and Cdc42 proteins. C3 exoenzyme ADP-ribosylates and inactivates Rho with high specificity, whereas constitutively active dominant mutations remain in the activated GTP-bound state to activate downstream effectors. Dominant negative mutations likely inhibit endogenous small G protein activity by sequestering exchange factors. Of the 10 agents microinjected, C3 exoenzyme, constitutively active Cdc42, and dominant negative Rho have a specific and indistinguishable effect: the actomyosin cytoskeleton is disrupted, cellularization halts, and embryogenesis arrests. Time-lapse video records of DIC imaged embryos show that nuclei in injected regions move away from the cortex of the embryo, thereby phenocopying injections of cytochalasin or antimyosin. Rhodamine phalloidin staining reveals that the actin-based hexagonal array normally seen during cellularization is disrupted in a dose-dependent fashion. Additionally, DNA stain reveals that nuclei in the microinjected embryos aggregate in regions that correspond to actin disruption. These embryos halt in cellularization and do not proceed to gastrulation. We conclude that Rho activity and Cdc42 regulation are required for cytoskeletal function in actomyosin-driven furrow canal formation and nuclear positioning.
Collapse
Affiliation(s)
- J M Crawford
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710-7599, USA
| | | | | | | | | |
Collapse
|
185
|
Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H, Saya H, Kaibuchi K, Inagaki M. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Biophys Biochem Cytol 1998; 143:1249-58. [PMID: 9832553 PMCID: PMC2133074 DOI: 10.1083/jcb.143.5.1249] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, regulates formation of stress fibers and focal adhesions, myosin fiber organization, and neurite retraction through the phosphorylation of cytoskeletal proteins, including myosin light chain, the ERM family proteins (ezrin, radixin, and moesin) and adducin. Rho-kinase was found to phosphorylate a type III intermediate filament (IF) protein, glial fibrillary acidic protein (GFAP), exclusively at the cleavage furrow during cytokinesis. In the present study, we examined the roles of Rho-kinase in cytokinesis, in particular organization of glial filaments during cytokinesis. Expression of the dominant-negative form of Rho-kinase inhibited the cytokinesis of Xenopus embryo and mammalian cells, the result being production of multinuclei. We then constructed a series of mutant GFAPs, where Rho-kinase phosphorylation sites were variously mutated, and expressed them in type III IF-negative cells. The mutations induced impaired segregation of glial filament (GFAP filament) into postmitotic daughter cells. As a result, an unusually long bridge-like cytoplasmic structure formed between the unseparated daughter cells. Alteration of other sites, including the cdc2 kinase phosphorylation site, led to no remarkable defect in glial filament separation. These results suggest that Rho-kinase is essential not only for actomyosin regulation but also for segregation of glial filaments into daughter cells which in turn ensures correct cytokinetic processes.
Collapse
Affiliation(s)
- Y Yasui
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-0021, Japan
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Demeter J, Sazer S. imp2, a new component of the actin ring in the fission yeast Schizosaccharomyces pombe. J Biophys Biochem Cytol 1998; 143:415-27. [PMID: 9786952 PMCID: PMC2132827 DOI: 10.1083/jcb.143.2.415] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytokinesis is the part of the cell cycle in which the cell is cleaved to form two daughter cells. The unicellular yeast, Schizosaccharomyces pombe is an excellent model organism in which to study cell division, since it shows the general features of eukaryotic cell division and is amenable to genetic analysis. In this manuscript we describe the isolation and characterization of a new protein, imp2, which is required for normal septation in fission yeast. imp2, which colocalizes with the medial ring during septation, is structurally similar to a group of proteins including the S. pombe cdc15 and the mouse PSTPIP that are localized to, and thought to be involved in actin ring organization. Cells in which the imp2 gene is deleted or overexpressed have septation and cell separation defects. An analysis of the actin cytoskeleton shows the lack of a medial ring in septating cells that overexpress imp2, and the appearance of abnormal medial ring structures in septated cells that lack imp2. These observations suggest that imp2 destabilizes the medial ring during septation. imp2 also shows genetic interactions with several, previously characterized septation genes, strengthening the conclusion that it plays a role in normal fission yeast septation.
Collapse
Affiliation(s)
- J Demeter
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
187
|
Weissbach L, Bernards A, Herion DW. Binding of myosin essential light chain to the cytoskeleton-associated protein IQGAP1. Biochem Biophys Res Commun 1998; 251:269-76. [PMID: 9790945 DOI: 10.1006/bbrc.1998.9371] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 190 kD human IQGAP1 protein, by virtue of its N-terminal calponin-homology domain, is found associated with the actin cytoskeleton, and is capable of cross-linking actin filaments. IQGAP1 complexes with several proteins, including the Rho family GTPases Cdc42 and Rac, as well as calmodulin. It was previously noted that one of the IQ motifs of IQGAP1 displays significant similarity to a myosin heavy chain IQ motif responsible for binding the calmodulin-related myosin essential light chain (ELC). Employing the yeast two-hybrid methodology as well as in vitro binding experiments, we present evidence that a truncated version of IQGAP1 can interact with the myosin ELC. This interaction may have significant consequences for various cellular processes that involve actomyosin contractility, and suggests that the biological targets of the ELC may not be restricted to the myosin heavy chain.
Collapse
Affiliation(s)
- L Weissbach
- Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.
| | | | | |
Collapse
|
188
|
Swan KA, Severson AF, Carter JC, Martin PR, Schnabel H, Schnabel R, Bowerman B. cyk-1: a C. elegans FH gene required for a late step in embryonic cytokinesis. J Cell Sci 1998; 111 ( Pt 14):2017-27. [PMID: 9645949 DOI: 10.1242/jcs.111.14.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A maternally expressed Caenorhabditis elegans gene called cyk-1 is required for polar body extrusion during meiosis and for a late step in cytokinesis during embryonic mitosis. Other microfilament- and microtubule-dependent processes appear normal in cyk-1 mutant embryos, indicating that cyk-1 regulates a specific subset of cytoskeletal functions. Because cytokinesis initiates normally and cleavage furrows ingress extensively in cyk-1 mutant embryos, we propose that the wild-type cyk-1 gene is required for a late step in cytokinesis. Cleavage furrows regress after completion of mitosis in cyk-1 mutants, leaving multiple nuclei in a single cell. Positional cloning and sequence analysis of the cyk-1 gene reveal that it encodes an FH protein, a newly defined family of proteins that appear to interact with the cytoskeleton during cytokinesis and in the regulation of cell polarity. Consistent with cyk-1 function being required for a late step in embryonic cytokinesis, we show that the CYK-1 protein co-localizes with actin microfilaments as a ring at the leading edge of the cleavage furrow, but only after extensive furrow ingression. We discuss our findings in the context of other studies suggesting that FH genes in yeast and insects function early in cytokinesis to assemble a cleavage furrow.
Collapse
Affiliation(s)
- K A Swan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Madaule P, Eda M, Watanabe N, Fujisawa K, Matsuoka T, Bito H, Ishizaki T, Narumiya S. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 1998; 394:491-4. [PMID: 9697773 DOI: 10.1038/28873] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During mitosis, a ring containing actin and myosin appears beneath the equatorial surface of animal cells. This ring then contracts, forms a cleavage furrow and divides the cell, a step known as cytokinesis. The two daughter cells often remain connected by an intercellular bridge which contains a refringent structure known as the midbody. How the appearance of this ring is regulated is unclear, although the small GTPase Rho, which controls the formation of actin structures, is known to be essential. Protein kinases are also thought to participate in cytokinesis. We now show that a splice variant of a Rho target protein, named citron, contains a protein kinase domain that is related to the Rho-associated kinases ROCK14 and ROK, which regulate myosin-based contractility. Citron kinase localizes to the cleavage furrow and midbody of HeLa cells; Rho is also localized in the midbody. We find that overexpression of citron mutants results in the production of multinucleate cells and that a kinase-active mutant causes abnormal contraction during cytokinesis. We propose that citron kinase regulates cytokinesis at a step after Rho in the contractile process.
Collapse
Affiliation(s)
- P Madaule
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Liu BP, Chrzanowska-Wodnicka M, Burridge K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. CELL ADHESION AND COMMUNICATION 1998; 5:249-55. [PMID: 9762466 DOI: 10.3109/15419069809040295] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microtubule depolymerization has multiple consequences that include actin stress fiber and focal adhesion assembly, increased tyrosine phosphorylation and DNA synthesis. Similar effects induced by serum, or agents such as lysophosphatidic acid, have previously been shown to be mediated by the GTP-binding protein Rho. We have investigated whether the effects of microtubule depolymerization are similarly mediated by Rho and show that they are blocked by the specific Rho inhibitor, C3 transferase. Because microtubule depolymerization induces these effects in quiescent cells, in which Rho is largely inactive, we conclude that microtubule depolymerization leads to activation of Rho. The activation of Rho in response to microtubule depolymerization and the consequent stimulation of contractility suggest a mechanism by which microtubules may regulate microfilament function in various motile phenomena. These range from growth cone extension to the development of the contractile ring during cytokinesis, in which there are interactions between the microtubule and microfilament systems.
Collapse
Affiliation(s)
- B P Liu
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
191
|
Eng K, Naqvi NI, Wong KC, Balasubramanian MK. Rng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body. Curr Biol 1998; 8:611-21. [PMID: 9635188 DOI: 10.1016/s0960-9822(98)70248-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND An actomyosin-based contractile ring plays a pivotal role in cytokinesis. Despite the identification of many components of the ring, the steps involved in its assembly are unknown. The fission yeast Schizosaccharomyces pombe is an attractive organism in which to study cytokinesis because its cell cycle has been well characterized; it divides by medial fission using an actomyosin ring; and a number of S. pombe mutants defective in actomyosin ring assembly have been isolated. Here, we have characterized one such mutant, rng2. RESULTS Temperature-sensitive rng2 mutants accumulated F-actin cables in the medial region of the cell but failed to organize the cables into a ring. In rng2-null mutants, only a spot-like structure containing F-actin was detected. The rng2+ gene encodes a protein related to human IQGAP1, a protein that binds actin and calmodulin and is a potential effector for the Rho family of GTPases. Rng2p localized to the actomyosin ring and to the spindle pole body (SPB) of interphase and mitotic cells. Localization of Rng2p to the actomyosin ring but not the SPB required F-actin. Rng2p interacted with calmodulin, a component of the SPB and the actomyosin ring. The rng2 gene showed genetic interactions with three other actomyosin ring assembly mutants, cdc4, cdc12, and rng5. CONCLUSIONS The S. pombe IQGAP-related protein Rng2p is a component of the actomyosin ring and the SPB and is required for actomyosin ring construction following assembly of F-actin at the division site.
Collapse
Affiliation(s)
- K Eng
- Cell Division Laboratory, Institute of Molecular Agrobiology, National University of Singapore
| | | | | | | |
Collapse
|
192
|
Abstract
In vitro actin based motility assays with bacterial pathogens have provided powerful systems to both understand and dissect actin dynamics as well as cell motility. Taking advantage of endogenous membrane vesicles in Xenopus extracts we have developed an in vitro assay to study membrane dependent actin polymerization. Our results demonstrate that membrane dependent actin polymerization, in contrast to Listeria stimulated actin filament assembly, is dependent on small GTPases of the Rho family. Using a combination of depletion and reconstitution experiments we have shown that Cdc42 but not Rac or Rho is required to stimulate actin polymerization from membranes. The in vitro system we have described here is amenable to identification of the downstream effectors of Cdc42 required for membrane dependent actin polymerization.
Collapse
Affiliation(s)
- V Moreau
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
193
|
Goto H, Kosako H, Tanabe K, Yanagida M, Sakurai M, Amano M, Kaibuchi K, Inagaki M. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem 1998; 273:11728-36. [PMID: 9565595 DOI: 10.1074/jbc.273.19.11728] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found that vimentin, the most widely expressed intermediate filament protein, served as an excellent substrate for Rho-associated kinase (Rho-kinase) and that vimentin phosphorylated by Rho-kinase lost its ability to form filaments in vitro. Two amino-terminal sites on vimentin, Ser38 and Ser71, were identified as the major phosphorylation sites for Rho-kinase, and Ser71 was the most favored and unique phosphorylation site for Rho-kinase in vitro. To analyze the vimentin phosphorylation by Rho-kinase in vivo, we prepared an antibody GK71 that specifically recognizes the phosphorylation of vimentin-Ser71. Ectopic expression of constitutively active Rho-kinase in COS-7 cells induced phosphorylation of vimentin at Ser71, followed by the reorganization of vimentin filament networks. During the cell cycle, the phosphorylation of vimentin-Ser71 occurred only at the cleavage furrow in late mitotic cells but not in interphase or early mitotic cells. This cleavage furrow-specific phosphorylation of vimentin-Ser71 was observed in the various types of cells we examined. All these accumulating observations increase the possibility that Rho-kinase may have a definite role in governing regulatory processes in assembly-disassembly and turnover of vimentin filaments at the cleavage furrow during cytokinesis.
Collapse
Affiliation(s)
- H Goto
- Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Aichi 464, Japan
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Gerald N, Dai J, Ting-Beall HP, De Lozanne A. A role for Dictyostelium racE in cortical tension and cleavage furrow progression. J Cell Biol 1998; 141:483-92. [PMID: 9548725 PMCID: PMC2148450 DOI: 10.1083/jcb.141.2.483] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Revised: 02/18/1998] [Indexed: 02/07/2023] Open
Abstract
The small GTPase racE is essential for cytokinesis in Dictyostelium. We found that this requirement is restricted to cells grown in suspension. When attached to a substrate, racE null cells form an actomyosin contractile ring and complete cytokinesis normally. Nonetheless, racE null cells fail completely in cytokinesis when in suspension. To understand this conditional requirement for racE, we developed a method to observe cytokinesis in suspension. Using this approach, we found that racE null cells attempt cytokinesis in suspension by forming a contractile ring and cleavage furrow. However, the cells form multiple blebs and fail in cytokinesis by regression of the cleavage furrow. We believe this phenotype is caused by the extremely low level of cortical tension found in racE null cells compared to wild-type cells. The reduced cortical tension of racE null cells is not caused by a decrease in their content of F-actin. Instead, mitotic racE null cells contain abnormal F-actin aggregates. These results suggest that racE is essential for the organization of the cortical cytoskeleton to maintain proper cortical integrity. This function of racE is independent of attachment to a substrate, but can be bypassed by other signaling pathways induced by adhesion to a substrate.
Collapse
Affiliation(s)
- N Gerald
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
195
|
Affiliation(s)
- L M Machesky
- MRC Laboratory for Cell Biology, University College London, UK.
| |
Collapse
|
196
|
Abstract
Regulation of cell shape is a poorly understood yet central issue in cell biology. Recent experiments indicate that FH proteins link cellular signalling pathways to changes in cell shape. Members of the FH protein family play essential roles in cytokinesis and in driving alterations in cell polarity. This review discusses the structure and function of these proteins and examines the evidence that they interact specifically with Rho GTPases and profilin to organize the actin-based cytoskeleton.
Collapse
Affiliation(s)
- S Wasserman
- Dept of Molecular Biology and Oncology, UT Southwestern Medical Center, Dallas 75235-9148, USA.
| |
Collapse
|
197
|
Danilchik MV, Funk WC, Brown EE, Larkin K. Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos. Dev Biol 1998; 194:47-60. [PMID: 9473331 DOI: 10.1006/dbio.1997.8815] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In cleaving Xenopus eggs, exposure to nocodazole or cold shock prevents the addition of new plasma membrane to the cleavage plane and causes furrows to recede, suggesting a specific role for microtubules in cytokinesis. Whole-mount confocal immunocytochemistry reveals a ring of radially arranged, acetylated microtubule bundles at the base of all advancing cleavage furrows, from the first cleavage through the midblastula stage. We hypothesize that this novel microtubular structure is involved in transporting maternal stores of membrane in the subcortex to a site of membrane addition near the leading edge of the furrow.
Collapse
Affiliation(s)
- M V Danilchik
- Department of Biological Structure and Function, Oregon Health Sciences University, Portland, Oregon 97201-3097, USA
| | | | | | | |
Collapse
|
198
|
Lippincott J, Li R. Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 1998; 140:355-66. [PMID: 9442111 PMCID: PMC2132585 DOI: 10.1083/jcb.140.2.355] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Revised: 11/10/1997] [Indexed: 02/05/2023] Open
Abstract
We have identified a Saccharomyces cerevisiae protein, Cyk1p, that exhibits sequence similarity to the mammalian IQGAPs. Gene disruption of Cyk1p results in a failure in cytokinesis without affecting other events in the cell cycle. Cyk1p is diffused throughout most of the cell cycle but localizes to a ring structure at the mother-bud junction after the initiation of anaphase. This ring contains filamentous actin and Myo1p, a myosin II homologue. In vivo observation with green fluorescent protein-tagged Myo1p showed that the ring decreases drastically in size during cell division and therefore may be contractile. These results indicate that cytokinesis in budding yeast is likely to involve an actomyosin-based contractile ring. The assembly of this ring occurs in temporally distinct steps: Myo1p localizes to a ring that overlaps the septins at the G1-S transition slightly before bud emergence; Cyk1p and actin then accumulate in this ring after the activation of the Cdc15 pathway late in mitosis. The localization of myosin is abolished by a mutation in Cdc12p, implicating a role for the septin filaments in the assembly of the actomyosin ring. The accumulation of actin in the cytokinetic ring was not observed in cells depleted of Cyk1p, suggesting that Cyk1p plays a role in the recruitment of actin filaments, perhaps through a filament-binding activity similar to that demonstrated for mammalian IQGAPs.
Collapse
Affiliation(s)
- J Lippincott
- Department of Cell Biology, Harvard Medical School, Boston, Massachussetts 02115, USA
| | | |
Collapse
|
199
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Collapse
Affiliation(s)
- A Hall
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
200
|
Stapleton G, Nguyen CP, Lease KA, Hille MB. Phosphorylation of protein kinase C-related kinase PRK2 during meiotic maturation of starfish oocytes. Dev Biol 1998; 193:36-46. [PMID: 9466886 DOI: 10.1006/dbio.1997.8791] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The resumption of meiosis in the developing starfish oocyte is the result of intracellular signaling events initiated by 1-methyladenine stimulation. One of the earliest detectable kinase activities during meiotic maturation of starfish oocytes is a protein kinase C or PKC-like activity. In this study, several isoforms of protein kinase C were cloned from the oocyte; however, the most abundant PKC-like maternal transcript corresponds to protein kinase C-related kinase 2 (PRK2). PRK2 is expressed in the immature oocyte and at least until germinal vesicle breakdown. Subcellular localization of PRK2 revealed a cytoplasmic distribution in the immature oocyte, which, during meiotic maturation, remained in the cytoplasm but also localized to the disintegrating germinal vesicle. Significantly, PRK2 is phosphorylated in vivo in response to 1-methyladenine which precedes MPF activation, making PRK2 a candidate regulator of early signaling events of meiotic maturation.
Collapse
Affiliation(s)
- G Stapleton
- Department of Zoology, University of Washington, Seattle 98195-1800, USA
| | | | | | | |
Collapse
|