151
|
De Smedt M, Hoebeke I, Reynvoet K, Leclercq G, Plum J. Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 2005; 106:3498-506. [PMID: 16030192 DOI: 10.1182/blood-2005-02-0496] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Notch receptors are involved in lineage decisions in multiple developmental scenarios, including hematopoiesis. Here, we treated hybrid human-mouse fetal thymus organ culture with the gamma-secretase inhibitor 7 (N-[N-(3,5-difluorophenyl)-l-alanyl]-S-phenyl-glycine t-butyl ester) (DAPT) to establish the role of Notch signaling in human hematopoietic lineage decisions. The effect of inhibition of Notch signaling was studied starting from cord blood CD34(+) or thymic CD34(+)CD1(-), CD34(+)CD1(+), or CD4ISP progenitors. Treatment of cord blood CD34(+) cells with low DAPT concentrations results in aberrant CD4ISP and CD4/CD8 double-positive (DP) thymocytes, which are negative for intracellular T-cell receptor beta (TCRbeta). On culture with intermediate and high DAPT concentrations, thymic CD34(+)CD1(-) cells still generate aberrant intracellular TCRbeta(-) DP cells that have undergone DJ but not VDJ recombination. Inhibition of Notch signaling shifts differentiation into non-T cells in a thymic microenvironment, depending on the starting progenitor cells: thymic CD34(+)CD1(+) cells do not generate non-T cells, thymic CD34(+)CD1(-) cells generate NK cells and monocytic/dendritic cells, and cord blood CD34(+)Lin(-) cells generate B, NK, and monocytic/dendritic cells in the presence of DAPT. Our data indicate that Notch signaling is crucial to direct human progenitor cells into the T-cell lineage, whereas it has a negative impact on B, NK, and monocytic/dendritic cell generation in a dose-dependent fashion.
Collapse
Affiliation(s)
- Magda De Smedt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, University Hospital Ghent, Belgium
| | | | | | | | | |
Collapse
|
152
|
Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol 2005; 23:945-74. [PMID: 15771590 DOI: 10.1146/annurev.immunol.23.021704.115747] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Notch pathway is gaining increasing recognition as a key regulator of developmental choices, differentiation, and function throughout the hematolymphoid system. Notch controls the generation of hematopoietic stem cells during embryonic development and may affect their subsequent homeostasis. Commitment to the T cell lineage and subsequent stages of early thymopoiesis is critically regulated by Notch. Recent data indicate that Notch can also direct the differentiation and activity of peripheral T and B cells. Thus, the full spectrum of Notch effects is just beginning to be understood. In this review, we discuss this explosion of knowledge as well as current controversies and challenges in the field.
Collapse
Affiliation(s)
- Ivan Maillard
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA.
| | | | | |
Collapse
|
153
|
Abstract
The thymus manufactures new T cells throughout life but contains no self-renewing potential. Instead, replenishment depends on recruitment of bone marrow-derived progenitors that circulate in the blood. Attempts to identify thymic-homing progenitors, and to assess the degree to which they are precommitted to the T cell lineage, have led to complex and sometimes conflicting results. As described here, this probably reflects the existence of multiple distinct types of T cell lineage progenitors as well as differences in individual experimental approaches.
Collapse
|
154
|
Sambandam A, Maillard I, Zediak VP, Xu L, Gerstein RM, Aster JC, Pear WS, Bhandoola A. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 2005; 6:663-70. [PMID: 15951813 DOI: 10.1038/ni1216] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 05/17/2005] [Indexed: 12/29/2022]
Abstract
Signaling by the transmembrane receptor Notch is critical for T lineage development, but progenitor subsets that first receive Notch signals have not been defined. Here we identify an immature subset of early T lineage progenitors (ETPs) in the thymus that expressed the tyrosine kinase receptor Flt3 and had preserved B lineage potential at low progenitor frequency. Notch signaling was active in ETPs and was required for generation of the ETP population. Additionally, Notch signals contributed to the subsequent differentiation of ETPs. In contrast, multipotent hematopoietic progenitors circulated in the blood even in the absence of Notch signaling, suggesting that critical Notch signals during early T lineage development are delivered early after thymic entry.
Collapse
Affiliation(s)
- Arivazhagan Sambandam
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
van den Brandt J, Kwon SH, Hünig T, McPherson KG, Reichardt HM. Sustained Pre-TCR Expression in Notch1IC-Transgenic Rats Impairs T Cell Maturation and Selection. THE JOURNAL OF IMMUNOLOGY 2005; 174:7845-52. [PMID: 15944289 DOI: 10.4049/jimmunol.174.12.7845] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch1 is involved in directing cell fate decisions in a variety of developmental scenarios. Extending previous experiments in mice, we generated transgenic rats expressing the intracellular domain of Notch1 in the thymus. Importantly, this leads to sustained expression of the pre-TCR throughout thymocyte development, accompanied by a reduction of alphabetaTCR complexes. In addition, re-expression of RAG-1 and RAG-2 in TCRbeta(+) cells is impaired, and the Valpha repertoire is altered. Consequently, thymocytes in transgenic rats do not undergo positive selection and largely fail to progress to the single positive stage. According to our model, the previously reported effects of Notch1 on the CD4/CD8 cell fate decision may be explained by a differential sensitivity of the two lineages toward altered TCR signaling.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Apoptosis/genetics
- Apoptosis/immunology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cells, Cultured
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Female
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Lymphopenia/genetics
- Lymphopenia/immunology
- Lymphopenia/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/physiology
- Mice
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Inbred Lew
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Jens van den Brandt
- Institute for Virology and Immunobiology, Molecular Immunology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
156
|
Taghon TN, David ES, Zúñiga-Pflücker JC, Rothenberg EV. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev 2005; 19:965-78. [PMID: 15833919 PMCID: PMC1080135 DOI: 10.1101/gad.1298305] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using the OP9-DL1 system to deliver temporally controlled Notch/Delta signaling, we show that pluripotent hematolymphoid progenitors undergo T-lineage specification and B-lineage inhibition in response to Notch signaling in a delayed and asynchronous way. Highly enriched progenitors from fetal liver require > or =3 d to begin B- or T-lineage differentiation. Clonal switch-culture analysis shows that progeny of some single cells can still generate both B- and T-lineage cells, after 1 wk of continuous delivery or deprivation of Notch/Delta signaling. Notch signaling induces T-cell genes and represses B-cell genes, but kinetics of activation of lineage-specific transcription factors are significantly delayed after induction of Notch target genes and can be temporally uncoupled from the Notch response. In the cells that initiate T-cell differentiation and gene expression most slowly in response to Notch/Delta signaling, Notch target genes are induced to the same level as in the cells that respond most rapidly. Early lineage-specific gene expression is also rapidly reversible in switch cultures. Thus, while necessary to induce and sustain T-cell development, Notch/Delta signaling is not sufficient for T-lineage specification and commitment, but instead can be permissive for the maintenance and proliferation of uncommitted progenitors that are omitted in binary-choice models.
Collapse
Affiliation(s)
- Tom N Taghon
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
157
|
Abstract
The Notch signaling pathway is central to a wide array of developmental processes in a number of organ systems, including hematopoiesis, somitogenesis, vasculogenesis, and neurogenesis. These processes involve maintenance of stem cell self-renewal, proliferation, specification of cell fate or differentiation, and apoptosis. Recent studies have led to the recognition of the role of the Notch pathway in early neurodevelopment, learning, and memory, as well as late-life neurodegeneration. This review summarizes what is currently known about the role of the Notch pathway in neural stem cells, gliogenesis, learning and memory, and neurologic disease.
Collapse
Affiliation(s)
- Joseph L Lasky
- University of California, Los Angeles School of Medicine, Department of Molecular and Medical Pharmacology, 90025, USA.
| | | |
Collapse
|
158
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
159
|
La Motte-Mohs RN, Herer E, Zúñiga-Pflücker JC. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 2005; 105:1431-9. [PMID: 15494433 DOI: 10.1182/blood-2004-04-1293] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractThe Notch signaling pathway plays a key role at several stages of T-lymphocyte differentiation. However, it remained unclear whether signals induced by the Notch ligand Delta-like 1 could support full T-cell differentiation from a defined source of human hematopoietic stem cells (HSCs) in vitro. Here, we show that human cord blood–derived HSCs cultured on Delta-like 1–expressing OP9 stromal cells undergo efficient T-cell lineage commitment and sustained T-cell differentiation. A normal stage-specific program of T-cell development was observed, including the generation of CD4 and CD8 αβ–T-cell receptor (TCR)–bearing cells. Induction of T-cell differentiation was dependent on the expression of Delta-like 1 by the OP9 cells. Stimulation of the in vitro–differentiated T cells by TCR engagement induced the expression of T-cell activation markers and costimulatory receptors. These results establish an efficient in vitro coculture system for the generation of T cells from human HSCs, providing a new avenue for the study of early T-cell differentiation and function.
Collapse
Affiliation(s)
- Ross N La Motte-Mohs
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
160
|
Murata-Ohsawa M, Tohda S, Kogoshi H, Sakano S, Nara N. The Notch ligand, Delta-1, alters retinoic acid (RA)-induced neutrophilic differentiation into monocytic and reduces RA-induced apoptosis in NB4 cells. Leuk Res 2005; 29:197-203. [PMID: 15607369 DOI: 10.1016/j.leukres.2004.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
Effects of Notch activation on retinoic acid (RA)-induced differentiation and apoptosis were investigated. NB4, an acute promyelocytic leukemia (APL) cell line, undergoes neutrophilic differentiation and apoptosis by RA. Notch activation induced by a recombinant Notch ligand, Delta-1, did not affect the growth by itself. Treatment with RA plus Delta-1 made part of NB4 cells monocyte-like shaped and reduced the apoptosis. Similar phenomenon was also observed in primary APL cells. RA treatment induced cleavage of caspase-8 and PARP in NB4. Delta-1 suppressed the RA-induced cleavage of them, which may be a possible mechanism through which Delta-1 suppressed the RA-induced apoptosis.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Apoptosis/drug effects
- Caspase 8
- Caspases/drug effects
- Caspases/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line, Tumor
- Cell Lineage/drug effects
- Flow Cytometry
- Humans
- Intracellular Signaling Peptides and Proteins
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Ligands
- Membrane Proteins/metabolism
- Membrane Proteins/pharmacology
- Monocytes/physiology
- Neutrophils/cytology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Poly(ADP-ribose) Polymerases/drug effects
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Macrophage Colony-Stimulating Factor/genetics
- Receptors, Notch
- Tretinoin/antagonists & inhibitors
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Mai Murata-Ohsawa
- Department of Laboratory Medicine, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-Ku, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
161
|
Abstract
Over the past few years, the crucial role of Notch signaling in multiple stages of T-cell development has become apparent. Recent studies have helped to define more precisely the functions and components of the Notch signaling pathway in T-cell development, including during the T versus B fate decision and in early CD4(-)CD8(-)double-negative thymocytes. In addition, new evidence points to a requirement for Notch2 in the development of marginal zone B cells. Finally, recent studies have provided our first glimpse into the complex and paradoxical roles of Notch signaling in the activation and differentiation of mature T cells.
Collapse
Affiliation(s)
- Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
162
|
Abstract
Notch signaling is required for normal T cell development. However, Notch expression must be precisely regulated as constitutive Notch signaling leads to T cell lymphomas. Recent evidence has provided insights into potential mechanisms of Notch-mediated lymphomagenesis and its relationship to T cell development. The evidence suggests that Notch likely interacts with several important cellular pathways and can cooperate with other oncogenes during lymphomagenesis. In particular, Notch appears to modulate pre-TCR signaling, inhibit the E2A pathway, and in murine leukemia models, frequently cooperates with Myc, E2A-PBX and dominant negative Ikaros dysregulation. This review will present current knowledge in these areas and explore theories on Notch-mediated T cell lymphomagenesis.
Collapse
|
163
|
Höflinger S, Kesavan K, Fuxa M, Hutter C, Heavey B, Radtke F, Busslinger M. Analysis of Notch1 Function by In Vitro T Cell Differentiation of Pax5 Mutant Lymphoid Progenitors. THE JOURNAL OF IMMUNOLOGY 2004; 173:3935-44. [PMID: 15356142 DOI: 10.4049/jimmunol.173.6.3935] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling through the Notch1 receptor is essential for T cell development in the thymus. Stromal OP9 cells ectopically expressing the Notch ligand Delta-like1 mimic the thymic environment by inducing hemopoietic stem cells to undergo in vitro T cell development. Notch1 is also expressed on Pax5-/- pro-B cells, which are clonable lymphoid progenitors with a latent myeloid potential. In this study, we demonstrate that Pax5-/- progenitors efficiently differentiate in vitro into CD4+CD8+ alphabeta and gammadelta T cells upon coculture with OP9-Delta-like1 cells. In vitro T cell development of Pax5-/- progenitors strictly depends on Notch1 function and progresses through normal developmental stages by expressing T cell markers and rearranging TCRbeta, gamma, and delta loci in the correct temporal sequence. Notch-stimulated Pax5-/- progenitors efficiently down-regulate the expression of B cell-specific genes, consistent with a role of Notch1 in preventing B lymphopoiesis in the thymus. At the same time, Notch signaling rapidly induces cell surface expression of the c-Kit receptor and transcription of the target genes Deltex1 and pre-Talpha concomitant with the activation of TCR Vbeta germline transcription and the regulatory genes GATA3 and Tcf1. These data suggest that Notch1 acts upstream of GATA3 and Tcf1 in early T cell development and regulates Vbeta-DJbeta rearrangements by controlling the chromatin accessibility of Vbeta genes at the TCRbeta locus.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Lineage/genetics
- Cell Lineage/immunology
- Clone Cells
- Coculture Techniques
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- PAX5 Transcription Factor
- Receptor, Notch1
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Stem Cells/cytology
- Stem Cells/metabolism
- Stem Cells/physiology
- Stromal Cells/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Sonja Höflinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
164
|
Tabrizifard S, Olaru A, Plotkin J, Fallahi-Sichani M, Livak F, Petrie HT. Analysis of transcription factor expression during discrete stages of postnatal thymocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 173:1094-102. [PMID: 15240698 DOI: 10.4049/jimmunol.173.2.1094] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Postnatal T lymphocyte differentiation in the thymus is a multistage process involving serial waves of lineage specification, proliferative expansion, and survival/cell death decisions. Although these are believed to originate from signals derived from various thymic stromal cells, the ultimate consequence of these signals is to induce the transcriptional changes that are definitive of each step. To help to characterize this process, high density microarrays were used to analyze transcription factor gene expression in RNA derived from progenitors at each stage of T lymphopoietic differentiation, and the results were validated by a number of appropriate methods. We find a large number of transcription factors to be expressed in developing T lymphocytes, including many with known roles in the control of differentiation, proliferation, or cell survival/death decisions in other cell types. Some of these are expressed throughout the developmental process, whereas others change substantially at specific developmental transitions. The latter are particularly interesting, because stage-specific changes make it increasingly likely that the corresponding transcription factors may be involved in stage-specific processes. Overall, the data presented here represent a large resource for gene discovery and for confirmation of results obtained through other methods.
Collapse
Affiliation(s)
- Sahba Tabrizifard
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
165
|
Ciofani M, Schmitt TM, Ciofani A, Michie AM, Cuburu N, Aublin A, Maryanski JL, Zúñiga-Pflücker JC. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. THE JOURNAL OF IMMUNOLOGY 2004; 172:5230-9. [PMID: 15100261 DOI: 10.4049/jimmunol.172.9.5230] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The first checkpoint during T cell development, known as beta selection, requires the successful rearrangement of the TCR-beta gene locus. Notch signaling has been implicated in various stages during T lymphopoiesis. However, it is unclear whether Notch receptor-ligand interactions are necessary during beta selection. Here, we show that pre-TCR signaling concurrent with Notch receptor and Delta-like-1 ligand interactions are required for the survival, proliferation, and differentiation of mouse CD4(-)CD8(-) thymocytes to the CD4(+)CD8(+) stage. Furthermore, we address the minimal signaling requirements underlying beta selection and show a hierarchical positioning of key proximal signaling molecules. Collectively, our results demonstrate an essential role for Notch receptor-ligand interactions in enabling the autonomous signaling capacity of the pre-TCR complex.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Koarada S, Wu Y, Yim YS, Wakeland EW, Ridgway WM. Nonobese diabetic CD4 lymphocytosis maps outside the MHC locus on chromosome 17. Immunogenetics 2004; 56:333-7. [PMID: 15309345 DOI: 10.1007/s00251-004-0702-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Genetic control of homeostasis of peripheral CD4+ lymphocyte levels is incompletely understood. Recent genome scans have linked mouse peripheral CD4 levels to chromosome 17, with strongest linkage to the Ea region. Nonobese diabetic (NOD) mice demonstrate peripheral T-cell lymphocytosis, and previous studies also suggested that the MHC region might control this phenotype. Here we confirm that loci on Chr 17 control NOD peripheral CD4 lymphocytosis. An elevated NOD CD4:CD8 ratio maps to the same region, and we show it is due to increased numbers of CD4+ cells. However, using NOD MHC congenic mice, we demonstrate that the MHC region is excluded, and that NOD peripheral lymphocytosis is controlled by genetic intervals adjacent to the MHC region on Chr 17.
Collapse
Affiliation(s)
- Syuichi Koarada
- Division of Rheumatology and Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
167
|
Bosselut R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 2004; 4:529-40. [PMID: 15229472 DOI: 10.1038/nri1392] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
168
|
Porritt HE, Rumfelt LL, Tabrizifard S, Schmitt TM, Zúñiga-Pflücker JC, Petrie HT. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 2004; 20:735-45. [PMID: 15189738 DOI: 10.1016/j.immuni.2004.05.004] [Citation(s) in RCA: 330] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 04/01/2004] [Accepted: 04/14/2004] [Indexed: 01/26/2023]
Abstract
The nature of early T lineage progenitors in the thymus or bone marrow remains controversial. Here we assess lineage capacity and proliferative potential among five distinct components of the earliest intrathymic stage (DN1, CD25(-)44(+)). All of these express one or more hemato-lymphoid lineage markers. All can produce T lineage cells, but only two of them display kinetics of differentiation, proliferative capacity, and other traits consistent with being canonical T progenitors. The latter also appeared limited to producing cells of the T or NK lineages, while B lineage potential derived mainly from the other, less typical T progenitors. In addition to precisely defining canonical early progenitors in the thymus, this work reconciles conflicting results from numerous groups by showing that multiple progenitors with a DN1 phenotype home to the thymus and make T cells, but possess different proliferative potentials and lineage capacities.
Collapse
Affiliation(s)
- Helen E Porritt
- The University of Miami School of Medicine, Department of Microbiology and Immunology, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
169
|
Shigematsu H, Reizis B, Iwasaki H, Mizuno SI, Hu D, Traver D, Leder P, Sakaguchi N, Akashi K. Plasmacytoid Dendritic Cells Activate Lymphoid-Specific Genetic Programs Irrespective of Their Cellular Origin. Immunity 2004; 21:43-53. [PMID: 15345219 DOI: 10.1016/j.immuni.2004.06.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Revised: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
The developmental origin of type I interferon (IFN)-producing plasmacytoid dendritic cells (PDCs) is controversial. In particular, the rearrangement of immunoglobulin heavy chain (IgH) genes in murine PDCs and the expression of pre-T cell receptor alpha (pTalpha) gene by human PDCs were proposed as evidence for their "lymphoid" origin. Here we demonstrate that PDCs capable of IFN production develop efficiently from both myeloid- and lymphoid-committed progenitors. Rearranged IgH genes as well as RAG transcripts were found in both myeloid- and lymphoid-derived PDCs. The human pTalpha transgenic reporter was activated in both myeloid- and lymphoid-derived PDCs at a level comparable to pre-T cells. PDCs were the only cell population that activated murine RAG1 knockin and human pTalpha transgenic reporters outside the lymphoid lineage. These results highlight a unique developmental program of PDCs that distinguishes them from other cell types including conventional dendritic cells.
Collapse
Affiliation(s)
- Hirokazu Shigematsu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Jang MS, Miao H, Carlesso N, Shelly L, Zlobin A, Darack N, Qin JZ, Nickoloff BJ, Miele L. Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J Cell Physiol 2004; 199:418-33. [PMID: 15095289 DOI: 10.1002/jcp.10467] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Notch signaling is a potential therapeutic target for various solid and hematopoietic malignancies. We have recently shown that downregulation of Notch-1 expression has significant anti-neoplastic activity in pre-clinical models. However, the mechanisms through which Notch modulation may affect cell fate in cancer remain poorly understood. We had previously shown that Notch-1 prevents apoptosis and is necessary for pharmacologically induced differentiation in murine erythroleukemia (MEL) cells. We investigated the mechanisms of these effects using three experimental strategies: (1) MEL cells stably transfected with antisense Notch-1 or constitutively active Notch-1, (2) activation of Notch-1 by a cell-associated ligand, and (d3) activation of Notch-1 by a soluble peptide ligand. We show that: (1) downregulation of Notch-1 sensitizes MEL cells to apoptosis induced by a Ca(2+) influx or anti-neoplastic drugs; (2) Notch-1 downregulation induces phosphorylation of c-Jun N-terminal kinase (JNK) while constitutive activation of Notch-1 or prolonged exposure to a soluble Notch ligand abolishes it; (3) Notch-1 has dose- and time-dependent effects on the levels of apoptotic inhibitor Bcl-x(L) and cell cycle regulators p21(cip1/waf1), p27(kip1), and Rb; and (4) Notch-1 activation by a cell-associated ligand is accompanied by rapid and transient induction of NF-kappaB DNA-binding activity. The relative effects of Notch-1 signaling on these pathways depend on the levels of Notch-1 expression, the mechanism of activation, and the timing of activation. The relevance of these findings to the role of Notch signaling in differentiation and cancer are discussed.
Collapse
Affiliation(s)
- Mei-Shiang Jang
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
The RUNX are key regulators of lineage-specific gene expression in major developmental pathways. The expression of RUNX genes is tightly regulated, leading to a highly specific spatio/temporal expression pattern and to distinct phenotypes of gene knockouts. This review highlights the extensive structural similarities between the three mammalian RUNX genes and delineates how regulation of their expression at the levels of transcription and translation are orchestrated into the unique RUNX expression pattern.
Collapse
Affiliation(s)
- Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
172
|
Maillard I, Weng AP, Carpenter AC, Rodriguez CG, Sai H, Xu L, Allman D, Aster JC, Pear WS. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 2004; 104:1696-702. [PMID: 15187027 DOI: 10.1182/blood-2004-02-0514] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lymphoid development, Notch1 plays a critical role in the T-cell/B-cell lineage decision, while Notch2 is essential for marginal zone B-cell (MZB) development. Notch pathway activation induces translocation of intracellular Notch (ICN) to the nucleus, where it interacts with the transcription factor CSL (CBF1/RBP-Jk, Suppressor of Hairless, Lag-1). In vitro, ICN binds Mastermind-like proteins, which act as potent Notch coactivators. Three MAML family members (MAML1-3) have been identified in mammals, but their importance in vivo is unknown. To investigate the function of MAMLs in hematopoietic development, we introduced a dominant negative (DN) mutant of MAML1, capable of inhibiting Notch1-4, in murine hematopoietic stem cells. DNMAML1 resulted in early inhibition of T-cell development and the appearance of intrathymic B cells, phenotypes consistent with Notch1 inhibition. The T-cell differentiation block was as profound as that produced by enforced expression of the Notch modulator Deltex1. In DNMAML1-transduced spleen cells, a dramatic decrease in MZB cells was present, consistent with Notch2 inhibition. In contrast, Deltex1 did not decrease MZB cell numbers. These results suggest a critical role for MAMLs during Notch-mediated cell fate decisions in vivo and indicate that DNMAML1, but not Deltex1, can be used to interfere with the function of multiple Notch family members.
Collapse
Affiliation(s)
- Ivan Maillard
- Division of Hematology-Oncology, Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H, Kubo M, Honjo T. Regulation of αβ/γδ T Cell Lineage Commitment and Peripheral T Cell Responses by Notch/RBP-J Signaling. Immunity 2004; 20:611-22. [PMID: 15142529 DOI: 10.1016/s1074-7613(04)00109-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 03/03/2004] [Accepted: 03/24/2004] [Indexed: 12/19/2022]
Abstract
RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of gammadelta T cells, whereas alphabeta T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4(+) T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates gammadelta T cell generation and migration, alphabeta T cell maturation, terminal differentiation of CD4(+) T cells into Th1/Th2 cells, and activation of T cells.
Collapse
Affiliation(s)
- Kenji Tanigaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-Ku, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
The Notch family of evolutionarily conserved proteins regulates a broad spectrum of cell-fate decisions and differentiation processes during fetal and post-natal development. The best characterized role of Notch signaling during mammalian hematopoiesis and lymphopoiesis is the essential function of the Notch1 receptor in T-cell lineage commitment. More recent studies have addressed the roles of other Notch receptors and ligands, as well as their downstream targets, revealing additional novel functions of Notch signaling in intra-thymic T-cell development, B-cell development and peripheral T-cell function.
Collapse
Affiliation(s)
- Freddy Radtke
- The Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | |
Collapse
|
175
|
Huang YH, Li D, Winoto A, Robey EA. Distinct transcriptional programs in thymocytes responding to T cell receptor, Notch, and positive selection signals. Proc Natl Acad Sci U S A 2004; 101:4936-41. [PMID: 15044701 PMCID: PMC387352 DOI: 10.1073/pnas.0401133101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T cell antigen receptor (TCR) signaling is necessary but not sufficient to promote the positive selection of CD4+CD8+ thymocytes into CD4+ or CD8+ mature T cells. Notch signaling has also been implicated as a potential regulator of both CD4/CD8 T cell development and TCR signaling. However, the relationship between positive selection, TCR signaling, and Notch remains unclear. Here we use DNA microarray analysis to compare gene expression changes in CD4+CD8+ double-positive thymocytes undergoing positive selection, TCR stimulation, and Notch activation. We find that the genes induced during positive selection can be resolved into two distinct sets. One set, which we term "TCR-induced," is also induced by in vitro TCR stimulation and contains a large proportion of transcription factors. A second set, which we term "positive-selection-induced," is not induced by in vitro TCR simulation and contains a large proportion of genes involved in signal transduction pathways. Genes induced by Notch activity overlap substantially with genes induced during positive selection. We also find that Notch activity potentiates the effects of TCR stimulation on gene expression. These results help to identify TCR- and positive-selection-specific transcriptional events and help to clarify the relationship between positive selection and Notch.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Molecular and Cell Biology, Division of Immunology and Cancer Research Laboratory, 475 LSA, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
176
|
Abstract
Notch is crucial for multiple stages of T cell development, including the CD4+CD8+ double positive (DP)/CD8+ single positive (SP) transition, but regulation of Notchactivation is not well understood. p53 regulates Presenilin1 (PS1) expression, and PS1 cleaves Notch, releasing its intracellular domain (NIC), leading to the expression of downstream targets, e.g. the HES1 gene. We hypothesize that p53 regulates Notch activity during T cell development. We found that Notch1 expression and activation were negatively regulated by p53in several thymoma lines. Additionally, NIC was elevated in Trp53(-/-) thymocytes as compared to Trp53(+/+) thymocytes. To determine if elevated Notch1 activation in Trp53(-/-) thymocytes had an effect on T cell development, CD4 and CD8 expression were analyzed. The CD4+ SP/CD8+ SP T cell ratio was decreased in Trp53(-/-) splenocytes and thymocytes. This alteration in T cell development correlated with the increased Notch1 activation observed in the absence of p53. These data indicate that p53 negatively regulates Notch1 activation during T cell development. Skewing of T cell development toward CD8+SP T cells in Trp53(-/-) mice is reminiscent of the phenotype of NIC-overexpressing mice. Thus, we suggest that p53 plays a role in T cell development, in part by regulating Notch1 activation.
Collapse
Affiliation(s)
- Amy M Laws
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, USA
| | - Barbara A Osborne
- Department of Molecular and Cellular Biology, University of Massachusetts, Amherst, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
177
|
Schmitt TM, de Pooter RF, Gronski MA, Cho SK, Ohashi PS, Zúñiga-Pflücker JC. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 2004; 5:410-7. [PMID: 15034575 DOI: 10.1038/ni1055] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/27/2004] [Indexed: 12/22/2022]
Abstract
Embryonic stem cells (ESCs) have the potential to serve as a renewable source of transplantable tissue-specific stem cells. However, the molecular cues necessary to direct the differentiation of ESCs toward specific cell lineages remain obscure. Here we report the successful induction of ESC differentiation into mature functional T lymphocytes with a simple in vitro coculture system. The directed differentiation of ESCs into T cells required the engagement of Notch receptors by Delta-like 1 ligand (DL1) expressed on the OP9-DL1 stromal cell line. We found a normal program of T cell differentiation in ESC-OP9-DL1 cell cocultures. ESC-derived T cell progenitors effectively reconstituted the T cell compartment of immunodeficient mice, enabling an effective response to a viral infection. These findings provide a powerful tool for the molecular analysis of T cell development and open new avenues for the development of immunotherapeutic approaches using defined sources of stem cells.
Collapse
Affiliation(s)
- Thomas M Schmitt
- Department of Immunology, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5 Canada
| | | | | | | | | | | |
Collapse
|
178
|
Radtke F, Wilson A, Mancini SJC, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5:247-53. [PMID: 14985712 DOI: 10.1038/ni1045] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Notch proteins regulate a broad spectrum of cell fate decisions and differentiation processes during fetal and postnatal development. Mammals have four Notch receptors that bind five different ligands. The function of Notch signaling during lymphopoiesis and T cell neoplasia, based on gain-of-function and conditional loss-of-function approaches for the Notch1 receptor, indicates Notch1 is essential in T cell lineage commitment. Recent studies have addressed the involvement of other Notch receptors and ligands as well as their downstream targets, demonstrating additional functions of Notch signaling in embryonic hematopoiesis, intrathymic T cell development, B cell development and peripheral T cell function.
Collapse
Affiliation(s)
- Freddy Radtke
- The Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | |
Collapse
|
179
|
Sykes DB, Kamps MP. E2a/Pbx1 induces the rapid proliferation of stem cell factor-dependent murine pro-T cells that cause acute T-lymphoid or myeloid leukemias in mice. Mol Cell Biol 2004; 24:1256-69. [PMID: 14729970 PMCID: PMC321418 DOI: 10.1128/mcb.24.3.1256-1269.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 05/27/2003] [Accepted: 10/07/2003] [Indexed: 11/20/2022] Open
Abstract
Oncoprotein E2a/Pbx1 is produced by the t(1;19) chromosomal translocation of human pre-B acute lymphoblastic leukemia. E2a/Pbx1 blocks differentiation of primary myeloid progenitors but, paradoxically, induces apoptosis in established pre-B-cell lines, and no transforming function of E2a/Pbx1 has been reported in cultured lymphoid progenitors. Here, we demonstrate that E2a/Pbx1 induces immortal proliferation of stem cell factor (SCF)-dependent pro-T thymocytes by a mechanism dependent upon both its transactivation and DNA-binding functions. E2a-Pbx1 cooperated with cytokines or activated signaling oncoproteins to induce cell division, as inactivation of conditional E2a/Pbx1 in either factor-dependent pro-T cells or pro-T cells made factor independent by expression of Bcr/Abl resulted in pro-T-cell quiescence, while reactivation of E2a/Pbx1 restored cell division. Infusion of E2a/Pbx1 pro-T cells in mice caused T lymphoblastic leukemia and, unexpectedly, acute myeloid leukemia. The acute lymphoblastic leukemia did not evidence further maturation, suggesting that E2a/Pbx1 establishes an early block in pro-T-cell development that cannot be overcome by marrow or thymic microenvironments. In an E2a/Pbx1 pro-T thymocyte clone that induced only pro-T acute lymphoblastic leukemia, coexpression of Bcr/Abl expanded its leukemic phenotype to include acute myeloid leukemia, suggesting that unique functions of cooperating signaling oncoproteins can influence the lymphoid versus myeloid character of E2a/Pbx1 leukemia and may cooperate with E2a/Pbx1 to dictate the pre-B-cell phenotype of human leukemia containing t(1;19).
Collapse
Affiliation(s)
- David B Sykes
- Department of Pathology, University of California-San Diego, La Jolla, California 92093-0612, USA
| | | |
Collapse
|
180
|
Zhou HM, Weskamp G, Chesneau V, Sahin U, Vortkamp A, Horiuchi K, Chiusaroli R, Hahn R, Wilkes D, Fisher P, Baron R, Manova K, Basson CT, Hempstead B, Blobel CP. Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol 2004; 24:96-104. [PMID: 14673146 PMCID: PMC303363 DOI: 10.1128/mcb.24.1.96-104.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Congenital heart disease is the most common form of human birth defects, yet much remains to be learned about its underlying causes. Here we report that mice lacking functional ADAM19 (mnemonic for a disintegrin and metalloprotease 19) exhibit severe defects in cardiac morphogenesis, including a ventricular septal defect (VSD), abnormal formation of the aortic and pulmonic valves, leading to valvular stenosis, and abnormalities of the cardiac vasculature. During mouse development, ADAM19 is highly expressed in the conotruncus and the endocardial cushion, structures that give rise to the affected heart valves and the membranous ventricular septum. ADAM19 is also highly expressed in osteoblast-like cells in the bone, yet it does not appear to be essential for bone growth and skeletal development. Most adam19(-/-) animals die perinatally, likely as a result of their cardiac defects. These findings raise the possibility that mutations in ADAM19 may contribute to human congenital heart valve and septal defects.
Collapse
Affiliation(s)
- Hong-Ming Zhou
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Traver D, Akashi K. Lineage commitment and developmental plasticity in early lymphoid progenitor subsets. Adv Immunol 2004; 83:1-54. [PMID: 15135627 DOI: 10.1016/s0065-2776(04)83001-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David Traver
- Dana-Farber Cancer Institute, Boston Massachusetts 02115, USA
| | | |
Collapse
|
182
|
Witt CM, Hurez V, Swindle CS, Hamada Y, Klug CA. Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol Cell Biol 2003; 23:8637-50. [PMID: 14612407 PMCID: PMC262652 DOI: 10.1128/mcb.23.23.8637-8650.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although studies have shown that the Notch2 family member is critical for embryonic development, little is known concerning its role in hematopoiesis. In this study, we show that the effects of an activated form of Notch2 (N2IC) on the T-cell lineage are dosage related. High-level expression of N2IC results in the development of T-cell leukemias. In contrast, lower-level expression of N2IC does not lead to transformation but skews thymocyte development to the CD8 lineage. Underlying this skew is a dramatic enhancement in positive selection and CD8SP maturation. N2IC permits early B-cell development but blocks the maturation of conventional B2 cells at the pre-B stage, which is the limit of endogenous Notch2 protein expression in developing B cells. Most strikingly, while B2 B cell development is blocked at the pre-B-cell stage, N2IC promotes the selective development of LPS-responsive B1 B cells. This study implicates a role for Notch2 in the maturation of the CD8 lineage and suggests a novel function for Notch2 in the development of the B1 B-cell subset.
Collapse
Affiliation(s)
- Colleen M Witt
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | |
Collapse
|
183
|
Becherer JD, Blobel CP. Biochemical properties and functions of membrane-anchored metalloprotease-disintegrin proteins (ADAMs). Curr Top Dev Biol 2003; 54:101-23. [PMID: 12696747 DOI: 10.1016/s0070-2153(03)54006-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J David Becherer
- Department of Biochemical and Analytical Pharmacology, GlaxoSmithKline Research Inc., Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
184
|
Ilangumaran S, Ramanathan S, Ning T, La Rose J, Reinhart B, Poussier P, Rottapel R. Suppressor of cytokine signaling 1 attenuates IL-15 receptor signaling in CD8+ thymocytes. Blood 2003; 102:4115-22. [PMID: 12907450 DOI: 10.1182/blood-2003-01-0175] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SOCS1-/- mice die prematurely of increased interferon-gamma (IFNgamma) signaling with severe thymic atrophy and accelerated maturation of T cells. However, it was unclear whether the thymic defects were caused by SOCS1 deficiency or by increased IFNgamma signaling. Using SOCS1-/- IFNgamma-/- mice, we show in this study that SOCS1 deficiency skews thymocyte development toward CD8 lineage independently of IFNgamma. Fetal thymic organ cultures and intrathymic transfer of CD4-CD8- precursors into Rag1-/- mice show that the lineage skewing in SOCS1-/- mice is a T-cell autonomous defect. Interestingly, SOCS1 is not required for attenuating interleukin-7 (IL-7) signaling at the CD4-CD8- stage but is essential for regulating IL-15 and IL-2 signaling in CD8+ thymocytes. IL-15 selectively stimulates SOCS1-/- CD8+ thymocytes, inducing sustained signal transducer and activator of transcription 5 (STAT5) phosphorylation and massive proliferation. IL-15 also strongly up-regulates Bcl-xL and CD44 in CD8+ thymocytes lacking SOCS1. The SOCS1 gene is induced in CD4+ thymocytes by gammac cytokines, whereas CD8+ thymocytes constitutively express SOCS1 mRNA even in the absence of cytokine stimulation. Because many different cell types express IL-15, our results strongly suggest that SOCS1 functions as an indispensable attenuator of IL-15 receptor signaling in developing CD8+ thymocytes.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Rm 10-108, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, 610 University Ave, Toronto M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
185
|
Bhandoola A, Sambandam A, Allman D, Meraz A, Schwarz B. Early T Lineage Progenitors: New Insights, but Old Questions Remain. THE JOURNAL OF IMMUNOLOGY 2003; 171:5653-8. [PMID: 14634069 DOI: 10.4049/jimmunol.171.11.5653] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
186
|
Abstract
Notch receptors and ligands were first identified in flies and worms, where they were shown to regulate cell proliferation, cell differentiation, and, in particular, binary cell fate decisions in a variety of developmental contexts. The first mammalian Notch homolog was discovered to be a partner in a chromosomal translocation in a subset of human T-cell leukemias. Subsequent studies in mice and humans have shown that Notch signaling plays essential roles at multiple stages of hematopoiesis, and also regulates the development or homeostasis of cells in many tissues and organs. Thus, it is not surprising that mutations which disrupt Notch signaling cause a wide range of cancers and developmental disorders. Perhaps because it is so widely used, Notch signaling is subject to many unusual forms of regulation. In this review, we will first outline key aspects of Notch signaling and its regulation by endocytosis, glycosylation, and ubiquitination. We will then overview recent literature elucidating how Notch regulates cell-lineage decisions in a variety of developmental contexts. Finally, we will describe the roles of dysregulated Notch signaling in causing several types of cancer and other pathologies.
Collapse
Affiliation(s)
- J A Harper
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Immunology, University of Toronto, Rm 8104, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
187
|
Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, Gao H, Higgins MA, May PC, Ryan TP. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 2003; 278:46107-16. [PMID: 12949072 DOI: 10.1074/jbc.m307757200] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional gamma-secretase inhibitors (FGSIs) can block the cleavage of several transmembrane proteins including amyloid precursor protein (APP), and the cell fate regulator Notch-1. FGSIs, by inhibiting APP processing, block the generation of amyloid beta (Abeta) peptides and may slow the development of Alzheimer's disease. FGSIs used to inhibit APP processing may disrupt Notch processing, thus interfering with cell fate determination. Described herein is a FGSI-mediated gastrointestinal toxicity characterized by cell population changes in the ileum of rats, which are indicative of Notch signaling disruption. Microarray analysis of ileum from FGSI-treated rats revealed differential expression responses in a number of genes indicative of Notch signaling perturbation, including the serine protease adipsin. We were able to show that FGSI-treated rats had elevated levels of adipsin protein in gastrointestinal contents and feces, and by immunohistochemistry demonstrated that adipsin containing ileum crypt cells were increased in FGSI-treated rats. The mouse Adipsin proximal promoter contains a putative binding site for the Notch-induced transcriptional regulator Hes-1, which we demonstrate is able to bind Hes-1. Additional studies in 3T3-L1 preadipocytes demonstrate that this FGSI inhibits Hes-1 expression while up-regulating adipsin expression. Overexpression of Hes-1 was able to down-regulate adipsin expression and block pre-adipocyte differentiation. We propose that adipsin is a Hes-1-regulated gene that is de-repressed during FGSI-mediated disruption of Notch/Hes-1 signaling. Additionally, the aberrant expression of adipsin, and its presence in feces may serve as a noninvasive biomarker of gastrointestinal toxicity associated with perturbed Notch signaling.
Collapse
Affiliation(s)
- George H Searfoss
- Department of Lead Optimization Toxicology, Pathology, Investigative Toxicology, BioRTP and Neuroscience, Lilly Research Laboratories, Division of Eli Lilly and Company, Greenfield, Indiana 46140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22:6598-608. [PMID: 14528285 DOI: 10.1038/sj.onc.1206758] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Notch signaling controls cell fate decisions including during development and stem cell renewal and differentiation in many postnatal tissues. Increasing evidence suggests that the Notch signaling network is frequently deregulated in human malignancies and that genetic or pharmacological manipulation of Notch signaling is a novel potential strategy for the treatment of human neoplasms. This review article summarizes the most recent preclinical and clinical evidence linking Notch signaling to cancer, delineates questions that remain unanswered and explores potential biopharmacological strategies to manipulate Notch signaling in vivo.
Collapse
|
189
|
Abstract
Notch signalling participates in the development of multicellular organisms by maintaining the self-renewal potential of some tissues and inducing the differentiation of others. Involvement of Notch in cancer was first highlighted in human T-cell leukaemia, fuelling the notion that aberrant Notch signalling promotes tumorigenesis. However, there is mounting evidence that Notch signalling is not exclusively oncogenic. It can instead function as a tumour suppressor.
Collapse
Affiliation(s)
- Freddy Radtke
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
190
|
Abstract
The thymus is a complex epithelial organ in which thymocyte development is dependent upon the sequential contribution of morphologically and phenotypically distinct stromal cell compartments. It is these microenvironments that provide the unique combination of cellular interactions, cytokines, and chemokines to induce thymocyte precursors to undergo a differentiation program that leads to the generation of functional T cells. Despite the indispensable role of thymic epithelium in the generation of T cells, the mediators of this process and the differentiation pathway undertaken by the primordial thymic epithelial cells are not well defined. There is a lack of lineage-specific cell-surface-associated markers, which are needed to characterize putative thymic epithelial stem cell populations. This review explores the role of thymic stromal cells in T-cell development and thymic organogenesis, as well as the molecular signals that contribute to the growth and expansion of primordial thymic epithelial cells. It highlights recent advances in these areas, which have allowed for a lineage relationship amongst thymic epithelial cell subsets to be proposed. While many fundamental questions remain to be addressed, collectively these works have broadened our understanding of how the thymic epithelium becomes specialized in the ability to support thymocyte differentiation. They should also facilitate the development of novel, rationally based therapeutic strategies for the regeneration and manipulation of thymic function in the treatment of many clinical conditions in which defective T cells have an important etiological role.
Collapse
Affiliation(s)
- Jason Gill
- Department of Pathology and Immunology, Monash University, Faculty of Medicine, Nursing and Health Sciences, Alfred Medical Research and Education Precinct, Prahran, Australia.
| | | | | | | | | | | |
Collapse
|
191
|
Adler SH, Chiffoleau E, Xu L, Dalton NM, Burg JM, Wells AD, Wolfe MS, Turka LA, Pear WS. Notch signaling augments T cell responsiveness by enhancing CD25 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2896-903. [PMID: 12960312 DOI: 10.4049/jimmunol.171.6.2896] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch receptors signal through a highly conserved pathway to influence cell fate decisions. Notch1 is required for T lineage commitment; however, a role for Notch signaling has not been clearly defined for the peripheral T cell response. Notch gene expression is induced, and Notch1 is activated in primary CD4(+) T cells following specific peptide-Ag stimulation. Notch activity contributes to the peripheral T cell response, as inhibition of endogenous Notch activation decreases the proliferation of activated T cells in a manner associated with the diminished production of IL-2 and the expression of the high affinity IL-2R (CD25). Conversely, forced expression of a constitutively active Notch1 in primary T cells results in increased surface expression of CD25, and renders these cells more sensitive to both cognate Ag and IL-2, as measured by cell division. These data suggest an important role for Notch signaling during CD4(+) T cell responses, which operates through augmenting a positive feedback loop involving IL-2 and its high affinity receptor.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Division/genetics
- Cell Division/immunology
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Down-Regulation/genetics
- Down-Regulation/immunology
- Growth Inhibitors/antagonists & inhibitors
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/genetics
- Growth Inhibitors/physiology
- Interleukin-2/pharmacology
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Lymphocyte Activation/genetics
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptor, Notch1
- Receptors, Cell Surface
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/physiology
- Receptors, Notch
- Retroviridae/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transcription Factors
- Transduction, Genetic
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Scott H Adler
- Departments of Medicine, Institute for Medicine and Engineering, The Abramson Family Cancer Research Institute, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Huang EY, Gallegos AM, Richards SM, Lehar SM, Bevan MJ. Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2296-304. [PMID: 12928374 DOI: 10.4049/jimmunol.171.5.2296] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Notch1 plays a critical role in regulating T lineage commitment during the differentiation of lymphoid precursors. The physiological relevance of Notch1 signaling during subsequent stages of T cell differentiation has been more controversial. This is due in part to conflicting data from studies examining the overexpression or targeted deletion of Notch1 and to difficulties in distinguishing between the activities of multiple Notch family members and their ligands, which are expressed in the thymus. We employed a polyclonal antiserum against the extracellular domain of Notch1 to study surface expression during thymopoiesis. We found high levels of Notch1 on the cell surface only on double negative (DN) stage 2 through the immature single-positive stage of thymocyte development, before the double-positive (DP) stage. The Notch signaling pathway, as read out by Deltex1 expression levels, is highly active in DN thymocytes. When an active Notch1 transgene, Notch1IC, is exogenously introduced into thymocytes of recombinase-activating gene 2-deficient mice, it promotes proliferation and development to the DP stage following anti-CD3 treatment without apparently affecting the intensity of pre-TCR signaling. In addition, a stromal cell line expressing the Notch ligand, Delta-like-1, promotes the in vitro expansion of wild-type DN3 thymocytes in vitro. Consistent with other recent reports, these data suggest a role for Notch1 during the DN to DP stage of thymocyte maturation and suggest a cellular mechanism by which Notch1IC oncogenes could contribute to thymoma development and maintenance.
Collapse
Affiliation(s)
- Eugene Y Huang
- Department of Immunology, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
193
|
Tsuji H, Ishii-Ohba H, Ukai H, Katsube T, Ogiu T. Radiation-induced deletions in the 5' end region of Notch1 lead to the formation of truncated proteins and are involved in the development of mouse thymic lymphomas. Carcinogenesis 2003; 24:1257-68. [PMID: 12807718 DOI: 10.1093/carcin/bgg071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Notch1 protein is a transmembrane receptor that directs various cell fate decisions. Active forms of Notch1 consisting of a transmembrane domain and an intracellular domain (Notch1TM) or only an intracellular domain (Notch1IC) function as oncoproteins. To elucidate the effect of Notch1 abnormalities in radiation-induced lymphomagenesis, we determined the structure of the Notch1 gene and examined the frequency and the sites of Notch1 rearrangements in radiation-induced mouse thymic lymphomas. The Notch1 gene consists of 37 exons, including three exons upstream of the previously reported exon 1. The transcript starting from exon 1 was the major transcript whereas the transcripts read upstream from exon 1a, in which amino acid sequences in the N-terminal region were changed, were minor. More than 50% of radiation-induced thymic lymphomas exhibited Notch1 rearrangements, suggesting that Notch1 acts as a major oncogene in radiation-induced lymphomagenesis. We identified three rearranged sites: novel sites in the 5' end region encompassing exons 1 and 2, the previously identified juxtamembrane extracellular region, and the 3' end region. The 5' deletion and the insertion of murine leukemia virus in the juxtamembrane region led to the production of abnormal transcripts starting from cryptic transcription start sites located halfway through the Notch1 gene and resulted in transcripts lacking most of the extracellular domain. As a result of these rearrangements, truncated Notch1 polypeptides resembling Notch1TM or Notch1IC were formed. In contrast, the 3' deletion led to the production of a C-terminal PEST motif-deleted transcript. The downstream target gene Hes1 was transcribed in a lymphoma with insertion of murine leukemia virus, but not in a lymphoma with a 5' deletion. These results indicate that in addition to Hes1 expression, other Notch1 pathway(s) have a role in thymic lymphomagenesis and suggest the presence of a novel mechanism for oncogenic activation of Notch1 by 5' deletion.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Cell Transformation, Viral/genetics
- DNA/radiation effects
- DNA Primers/chemistry
- DNA, Neoplasm/metabolism
- Gene Deletion
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement/genetics
- Homeodomain Proteins
- Lymphoma/genetics
- Lymphoma/virology
- Membrane Proteins/genetics
- Mice
- Mice, Inbred ICR
- Mice, SCID
- Molecular Sequence Data
- Morphogenesis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutagenesis, Insertional
- Neoplasms, Radiation-Induced/genetics
- RNA, Messenger/analysis
- RNA, Messenger/chemistry
- RNA, Neoplasm/metabolism
- Receptor, Notch1
- Receptors, Cell Surface
- Reverse Transcriptase Polymerase Chain Reaction
- Thymus Neoplasms/genetics
- Thymus Neoplasms/virology
- Transcription Factor HES-1
- Transcription Factors
Collapse
Affiliation(s)
- Hideo Tsuji
- Low Dose Radiation Effects Research Project Group, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
194
|
Yun TJ, Bevan MJ. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5834-41. [PMID: 12794108 DOI: 10.4049/jimmunol.170.12.5834] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have characterized the function of Notch-regulated ankyrin-repeat protein (Nrarp) in mouse cell lines and in hematopoietic stem cells (HSCs). Nrarp overexpression is able to block Notch-induced activation of CBF-1. In AKR1010 thymoma cells, Nrarp overexpression blocks CBF-1-dependent transcriptional activation of Notch-responsive genes and inhibits phenotypic changes associated with Notch activation. Enforced expression of Nrarp in mouse HSCs results in a profound block in T lineage commitment and progression through early stages of thymocyte maturation. In contrast, Deltex-1 overexpression in HSCs can also block T lineage commitment but not progression through the early double negative stages of thymocyte maturation. The different effects of Deltex-1 and Nrarp overexpression suggest that alternate Notch signaling pathways mediate T vs B lineage commitment and thymocyte maturation.
Collapse
|
195
|
Schroeder T, Kohlhof H, Rieber N, Just U. Notch signaling induces multilineage myeloid differentiation and up-regulates PU.1 expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5538-48. [PMID: 12759431 DOI: 10.4049/jimmunol.170.11.5538] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hemopoietic commitment is initiated by and depends on activation of transcription factors. However, it is unclear whether activation of lineage-affiliated transcription factors is extrinsically regulated by to date unknown agents or is the result of a cell autonomous program. Here we show that signaling by the Notch1 transmembrane receptor instructively induces myeloid differentiation of multipotent hemopoietic progenitor cells and concomitantly up-regulates the expression of the transcription factor PU.1. Transient activation of Notch1 signaling is sufficient to irreversibly reduce self-renewal of multipotent progenitor cells accompanied by increased and accelerated differentiation along the granulocyte, macrophage, and dendritic cell lineages. Activated Notch1 has no direct influence on apoptosis of multipotent progenitor cells, shows a weak inhibition of proliferation, and does not substitute for survival and proliferation signals provided by cytokines. Activated Notch1 directly increases PU.1 RNA levels, leading to a high concentration of PU.1 protein, which has been shown to direct myeloid differentiation. These findings identify Notch as an extrinsic regulator of myeloid commitment, and the lineage-affiliated transcription factor PU.1 as a specific direct target gene of Notch.
Collapse
Affiliation(s)
- Timm Schroeder
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for Environment and Health, Munich, Germany
| | | | | | | |
Collapse
|
196
|
Liu P, Keller JR, Ortiz M, Tessarollo L, Rachel RA, Nakamura T, Jenkins NA, Copeland NG. Bcl11a is essential for normal lymphoid development. Nat Immunol 2003; 4:525-32. [PMID: 12717432 DOI: 10.1038/ni925] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/11/2003] [Indexed: 12/11/2022]
Abstract
Bcl11a (also called Evi9) functions as a myeloid or B cell proto-oncogene in mice and humans, respectively. Here we show that Bcl11a is essential for postnatal development and normal lymphopoiesis. Bcl11a mutant embryos lack B cells and have alterations in several types of T cells. Phenotypic and expression studies show that Bcl11a functions upstream of the transcription factors Ebf1 and Pax5 in the B cell pathway. Transplantation studies show that these defects in Bcl11a mutant mice are intrinsic to fetal liver precursor cells. Mice transplanted with Bcl11a-deficient cells died from T cell leukemia derived from the host. Thus, Bcl11a may also function as a non-autonomous T cell tumor suppressor gene.
Collapse
Affiliation(s)
- Pentao Liu
- Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 2003; 3:551-64. [PMID: 12842084 DOI: 10.1016/s1535-6108(03)00137-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T cell acute lymphoblastic leukemia (T-ALL) results in the aberrant expression of the intracellular domain of Notch (N(ic)). Consistent with the current multistep model for tumorigenesis, mice that express N(ic) in T cell progenitors develop a T-ALL-like disease with a lengthened latency. Proviral insertional mutagenesis greatly accelerated the onset of leukemia in N(ic) transgenic mice. We demonstrate that the Ikaros (Ik) locus is a common target of proviral integration in N(ic) transgenic mice, which results in the loss of Ik DNA binding activity through altered isoform expression. We propose that cooperative leukemogenesis occurs in cells that have constitutive N(ic) and altered Ik isoform expression because genes normally repressed by Ik become activated by N(ic)/CSL.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Transformation, Neoplastic
- DNA Primers/chemistry
- DNA, Viral/genetics
- DNA-Binding Proteins
- Gene Expression Regulation, Neoplastic
- Humans
- Ikaros Transcription Factor
- Leukemia Virus, Murine/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Protein Isoforms
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured/transplantation
- Virus Integration
- Zinc Fingers
Collapse
Affiliation(s)
- Levi J Beverly
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
198
|
Hozumi K, Abe N, Chiba S, Hirai H, Habu S. Active form of Notch members can enforce T lymphopoiesis on lymphoid progenitors in the monolayer culture specific for B cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4973-9. [PMID: 12734340 DOI: 10.4049/jimmunol.170.10.4973] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The in vitro induction of T lymphopoiesis needs the precise stereoscopic structure of thymus tissues as seen in fetal thymus organ culture. In this study, we demonstrated for the first time that the introduction of the intracellular region of Notch1 can induce T cells expressing TCR without any thymic environment. In the coculture on the monolayer of OP-9, which was originally known to support B cell specific development, hemopoietic progenitors developed into Thy-1(+)CD25(+) T lineage cells if the progenitor cells were infected with the retrovirus containing Notch1 intracellular domains. The Thy-1(+) cells progressed to a further developmental stage, CD4 and CD8 double-positive cells expressing TCR on the cell surface, if they were further cultured on OP-9 or in the thymus. However, T cell induction by intracellular Notch1 failed unless both OP-9 and IL-7 were present. It is notable that Notch2 and Notch3 showed an effect on T lymphopoiesis similar to that of Notch1. These results indicate that in vitro T lymphopoiesis is inducible by signaling via Notch family members in a lineage-specific manner but shares other stroma-derived factors including IL-7 with B lymphopoiesis.
Collapse
Affiliation(s)
- Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
199
|
Abstract
Notch signaling regulates many cell fate decisions during development of multi-cellular organisms. Signals initiated by Notch influence a wide variety of processes that include lineage specification, cell survival and proliferation, and border formation. During development of the immune system, Notch has been shown to influence the fate of both hematopoietic stem cells (HSCs) and committed progenitors. Notch appears to play an especially important role in the development of cells that mediate acquired immunity where Notch influences multiple aspects of T and B cell development. In this review, we will focus on the potential functions of Notch signaling during lymphoid development.
Collapse
Affiliation(s)
- Warren S Pear
- Department of Pathology, Institute for Medicine and Engineering, Abramson Family Cancer Research Institute, University of Pennsylvania, 611 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104-3111, USA.
| | | |
Collapse
|
200
|
Abstract
The differentiation of B- and T-cells in primary lymphoid organs depends on, or is strongly influenced by, signals provided by stromal cells, extracellular matrix components as well as by direct contacts between differentiating lymphocytes and distinct environmental cells. Notch receptors and their ligands mediate intercellular contacts and are crucially important for the development of T- and B-cell lineages. Here we start by reviewing current knowledge on the expression patterns of Notch receptors and their ligands in primary lymphoid organs and the effects induced by their functional interactions. Then we shall attempt to discuss how those interactions may regulate not only lymphopoiesis per se but also morphogenesis and the functional compartmentalization of lymphopoietic organs during development.
Collapse
Affiliation(s)
- Leonor Parreira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisbon, Portugal.
| | | | | |
Collapse
|