151
|
Hertoghs N, Pul LV, Geijtenbeek TBH. Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors. Future Virol 2017. [DOI: 10.2217/fvl-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sexual transmission is the major route of HIV-1 infection worldwide. The interaction of HIV-1 with mucosal dendritic cells (DCs) might determine HIV-1 susceptibility as well as initial antiviral immunity controlling virus in the chronic phase. Different DC subsets reside in mucosal tissues and express specific C-type lectin receptors (CLRs) that interact with HIV-1 with different outcomes. HIV-1 has been shown to subvert CLRs for viral transmission and immune evasion, whereas CLRs can also protect against HIV-1 infection. Here, we will discuss the role of CLRs in HIV-1 transmission and adaptive immunity, and how the CLRs dictate the function of DCs in infection. Ultimately, understanding the interplay between CLRs and HIV-1 will lead to targeted approaches in the search for preventative measures.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
152
|
Abstract
Skin is the largest organ of the body with a complex network of multitude of cell types that perform plastic and dynamic cellular communication to maintain several vital processes such as inflammation, immune response including induction of tolerance and disease prevention, wound healing, and angiogenesis. Of paramount importance are immunological functions of the skin that protect from harmful exposure coming from external and internal environments. Awareness of skin immunity can provide a better comprehension of inflammation, autoimmunity, cancer, graft-versus-host disease, vaccination, and immunotherapy approaches. This paper will update on what we currently know about immune sentinels contributing to skin immunity.
Collapse
Affiliation(s)
- Agata Matejuk
- Faculty of Health Science, Wroclaw Medical University, Wrocław, Poland. .,Faculty of Science and Technology, Karkonosze College, Jelenia Góra, Poland.
| |
Collapse
|
153
|
Dyduch G, Tyrak KE, Glajcar A, Szpor J, Okoń K. CD207+/langerin positive dendritic cells in invasive and in situ cutaneous malignant melanoma. Postepy Dermatol Alergol 2017; 34:233-239. [PMID: 28670252 PMCID: PMC5471378 DOI: 10.5114/ada.2017.67845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dendritic cells are crucial for cutaneous immune response. Their role in melanoma progression is however a matter of controversy. MATERIAL AND METHODS The number of dendritic cells within epidermis and in peri- and intratumoral location was analyzed using CD207 immunostain in 17 cases of in situ and 25 case of invasive melanoma. RESULTS Average peritumoral CD207+ cells count was 22.88 for all cases, 17.94 for in situ lesions and 26.24 for invasive cases. Average epidermal CD207+ cells count was 164.47 for all cases, 183.00 for in situ lesions and 150.78 - for invasive cases. In case of invasive melanomas, peritumoral CD207+ cells count was positively correlated with Breslow stage (R = 0.59) mitotic activity within the tumor (R = 0.62). Invasive cases with regression showed higher intratumoral and epidermal CD207+ cells count than the ones without (275.00 vs. 95.32 and 173.20 vs. 148.35) but lower peritumoral CD207+ cells count (17.60 vs. 27.26). Invasive cases with ulceration showed higher intratumoral and peritumoral CD207+ cells count than the ones without ulceration (220.08 vs. 55.67 and 44.17 vs. 9.69). CONCLUSIONS CD207+ cells play a role in both progression and regression of melanoma but their exact role needs further studies.
Collapse
Affiliation(s)
- Grzegorz Dyduch
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna E Tyrak
- II Chair of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Glajcar
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Szpor
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Chair of Pathomorphology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
154
|
KRAS G12D expression in lung-resident myeloid cells promotes pulmonary LCH-like neoplasm sensitive to statin treatment. Blood 2017; 130:514-526. [PMID: 28550040 DOI: 10.1182/blood-2017-02-770149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is a rare histiocytic neoplasm associated with somatic mutations in the genes involved in the RAF/MEK/extracellular signal-regulated kinase (ERK) signaling pathway. Recently, oncogenic mutations in NRAS/KRAS, upstream regulators of the RAF/MEK/ERK pathway, have been reported in pulmonary, but not in nonpulmonary, LCH cases, suggesting organ-specific contribution of oncogenic RAS to LCH pathogenesis. Using a mouse model expressing KRASG12D in the lung by nasal delivery of adenoviral Cre recombinase (Cre), here we show that KRASG12D expression in lung-resident myeloid cells induces pulmonary LCH-like neoplasms composed of pathogenic CD11chighF4/80+CD207+ cells. The pathogenic cells were mitotically inactive, but proliferating precursors were detected in primary cultures of lung tissue. These precursors were derived, at least in part, from CD11cdimCD11bintGr1- lung-resident monocytic cells transformed by KRASG12D In contrast, BRAFV600E expression induced by the same method failed to develop LCH-like neoplasms, suggesting that each oncogene may initiate pulmonary LCH by transforming different types of lung-resident myeloid cells. In vivo treatment of the KRASG12D-induced LCH-like mouse with the cholesterol-lowering drug atorvastatin ameliorated the pathology, implicating statins as potential therapeutics against a subset of pulmonary LCH.
Collapse
|
155
|
Langerhans cells prevent subbasal nerve damage and upregulate neurotrophic factors in dry eye disease. PLoS One 2017; 12:e0176153. [PMID: 28441413 PMCID: PMC5404869 DOI: 10.1371/journal.pone.0176153] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
The functional role of Langerhans cells (LCs) in ocular surface inflammation and nerve damage in dry eye (DE) disease has yet to be determined. This study was performed to investigate this relationship through both clinical study on DE patients and in vivo mouse models with induced DE disease. In a cross-sectional case-control study (54 eyes of DE patients; 34 eyes of control patients), average cell density, area, and process length of LCs were measured using confocal microscopy. Data were analyzed to determine whether changes in LCs are correlated with subbasal nerve plexus (SNP) parameters (nerve density, beading, and tortuosity). In DE patients, SNP density marginally decreased and nerve beading and tortuosity were significantly increased compared to the control group. The total number of LCs significantly increased in DE patients, and some LCs with elongated processes were found to be attached to nerve fibers. Interestingly, nerve loss and deformation were correlated with inactivation of LCs. In an in vivo experiment to elucidate the role of LCs in ocular surface inflammation and corneal nerve loss, we used a genetically modified mouse model (CD207-DTR) that reduced the population of CD207 (Langerin) expressing cells by injection of diphtheria toxin. In CD207-depleted mice with DE disease (CD207-dDTR+DE), corneal nerves in the central region were significantly decreased, an effect that was not observed in wild-type (WT)+DE mice. In CD207-dDTR+DE mice, infiltration of CD4+, CD19+, CD45+, and CD11b+ cells into the ocular surface was increased, as confirmed by flow cytometry. Increased IL-17 and IFN-γ mRNA levels, and decreased expression of neurotrophic factors and neurotransmitters, were also found in the CD207-dDTR+DE mice. These data support a functional role for LCs in negatively regulating ocular surface inflammation and exhibiting a neuroprotective function in DE disease.
Collapse
|
156
|
Abstract
Juvenile xanthogranuloma is a non-Langerhans cell lesion mostly limited to the skin but occasionally presenting in extracutaneous locations or associated with systemic conditions. Lesions need to be distinguished mainly from dermatofibroma, xanthoma, Langerhans cell histiocytosis, or reticulohistiocytoma. Herein, we present a hemosiderotic variant of juvenile xanthogranuloma in a 12-year-old girl, which we have not found described in literature. The lesion presented at the back of the scalp as a slowly growing yellowish polypoid lesion showing occasional bleeding. The histopathological examination demonstrated a cellular infiltrate expanding the dermis, with a Grenz zone and with no remarkable changes in the overlying epidermis. The papule was made of mononucleated macrophages, many of which were xanthomatous. There were some Touton giant cells. The lesion was intermingled with a mild inflammatory infiltrate comprising lymphocytes, plasma cells, neutrophils, and some eosinophils. Many of the macrophages contained abundant cytoplasmic deposits of iron. The macrophages expressed CD68 and CD163, whereas they failed to express S100 protein, CD1a, and Langerin.
Collapse
|
157
|
Matsuzawa T, Ogawa Y, Moriishi K, Shimada S, Kawamura T. Immunological function of Langerhans cells in HIV infection. J Dermatol Sci 2017; 87:159-167. [PMID: 28433429 DOI: 10.1016/j.jdermsci.2017.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/02/2017] [Accepted: 03/23/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Langerhans cells (LCs) are one of the initial target cells for HIV following sexual exposure and they are productively infected by HIV. HIV-infected LCs migrate to the draining lymph nodes (dLNs) and transmit the virus to CD4+ T cells, leading to the dissemination of HIV. In contrast with the role of LCs in initial HIV acquisition, little is known about the modulation of immune responses by HIV-infected LCs. OBJECTIVE We aimed to elucidate the induction of HIV-specific CD8+ T cells and regulatory T cells (Tregs), both of which play important roles in regulating the progression of HIV infection. METHODS We examined the inducibility of HLA-A*0201 restricted HIV-specific CD8+ T cells and Tregs by HIV-primed LCs or HIV-primed dendritic cells (DCs) as a control. RESULTS The number of HIV-specific CD8+ T cells induced by HIV-primed monocyte-derived LCs (mLCs) was significantly higher than that by HIV-primed monocyte-derived DCs (mDCs). Additionally, HIV-specific CD8+ T cells induced by HIV-primed mLCs produced more IFN-γ than HIV-nonspecific CD8+ T cells. HIV-primed human epidermal LCs also induced IFN-γ-producing HIV-specific CD8+ T cells. As for the induction of Tregs, HIV-primed mLCs and human epidermal LCs significantly impaired the induction of FoxP3hiCD45RA- effector Tregs than HIV-unprimed mLCs and human epidermal LCs. CONCLUSIONS HIV-primed LCs trigger beneficial immune responses against HIV infection through the increased induction of HIV-specific CD8+ T cells and the decreased induction of effector Tregs in the initial phase of HIV infection, thereby contributing to the prolonged onset of AIDS.
Collapse
Affiliation(s)
- Takamitsu Matsuzawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
158
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
159
|
Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017; 9:E59. [PMID: 28327518 PMCID: PMC5371814 DOI: 10.3390/v9030059] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens.
Collapse
Affiliation(s)
- João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
160
|
Jiao Q, Liu C, Li W, Li W, Fang F, Qian Q, Zhang X. Programmed death-1 ligands 1 and 2 expression in cutaneous squamous cell carcinoma and their relationship with tumour- infiltrating dendritic cells. Clin Exp Immunol 2017; 188:420-429. [PMID: 28052400 DOI: 10.1111/cei.12921] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
The programmed death-1 (PD-1) receptor ligands, PD-L1 and PD-L2, are co-stimulatory molecules that contribute to the negative regulation of T lymphocyte activation. It is still unclear whether there is correlation between PD-L1 or PD-L2 and tumour-infiltrating dendritic cells (TIDCs) in cutaneous squamous cell carcinoma (CSCC). The aim of this study was to analyse PD-L1 and PD-L2 expression and dendritic cells infiltration in tumour tissue of CSCC patients and investigate their clinical significance. Immunohistochemical analysis was used to evaluate the expression of PD-L1, PD-L2, CD1a and CD83 in 61 CSCC tissues. The immunofluoresence double-labelling technique was performed to detect the co-expression of PD-L1 or PD-L2 and CD1a or CD83 in tumour tissues. We found that 25 of 61 cases CSCC (40·98%) exhibited positivity for PD-L1, whereas 37 of 61 cases CSCC (60·66%) exhibited positivity for PD-L2. A higher percentage of CD1a-positive cases were observed on both PD-L1-positive and PD-L2-positive specimens compared with that of CD83-positive cases (92·29% versus 37·60%, 83·20% versus 33·16%). The expression of PD-L1 and PD-L2 on CD1a+ cells was significantly higher than that on CD83+ cells in tumour tissues of CSCC patients. Furthermore, the expression rate of PD-L1 was associated with UICC stage, and the expression rate of PD-L2 was associated with predominant differentiation and tumour size in CSCC. Our results indicated that higher expression of PD-L1 and PD-L2 on CD1a+ cells than that on CD83+ cells in CSCC tumour tissues may contribute to negative regulation in anti-tumour immune responses.
Collapse
Affiliation(s)
- Q Jiao
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - C Liu
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Clinical Immunology Laboratory, First Affiliated Hospital, Soochow University, Suzhou, China
| | - W Li
- Biomedical Research Center, University of Rostock, Rostock, Germany
| | - W Li
- Department of Dermatology, Soochow University Affiliated Children's Hospital, Suzhou, China
| | - F Fang
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Q Qian
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China
| | - X Zhang
- Department of Dermatology, First Affiliated Hospital, Soochow University, Suzhou, China.,Department of Clinical Immunology Laboratory, First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
161
|
Erker C, Harker-Murray P, Talano JA. Usual and Unusual Manifestations of Familial Hemophagocytic Lymphohistiocytosis and Langerhans Cell Histiocytosis. Pediatr Clin North Am 2017; 64:91-109. [PMID: 27894453 DOI: 10.1016/j.pcl.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) and Langerhans cell histiocytosis (LCH) are histiocytic diseases that occur most commonly in young children. Improvements in recognition and treatment have been substantial for both diseases in the past decade, although early and late morbidity continue to be major concerns. These two diagnoses behave differently, although the clinical spectra for both diseases are diverse and can lead to confusion and delays in diagnosis and treatment. This article focuses on the clinical and genetic spectrum of FHL as well as the clinical and treatment variations of LCH.
Collapse
Affiliation(s)
- Craig Erker
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA
| | - Paul Harker-Murray
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA
| | - Julie-An Talano
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, Medical College of Wisconsin, 8701 Watertown Plank Road, MFRC 3018, Milwaukee, WI 53226, USA.
| |
Collapse
|
162
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
163
|
Abstract
mRNA vaccines elicit a potent immune response including antibodies and cytotoxic T cells. mRNA vaccines are currently evaluated in clinical trials for cancer immunotherapy applications, but also have great potential as prophylactic vaccines. Efficient delivery of mRNA vaccines will be key for their success and translation to the clinic. Among potential nonviral vectors, lipid nanoparticles are particularly promising. Indeed, lipid nanoparticles can be synthesized with relative ease in a scalable manner, protect the mRNA against degradation, facilitate endosomal escape, can be targeted to the desired cell type by surface decoration with ligands, and as needed, can be codelivered with adjuvants.
Collapse
|
164
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
165
|
Zhang Y, Luo Y, Li W, Liu J, Chen M, Gu H, Wang B, Yao X. DC-SIGN promotes allergen uptake and activation of dendritic cells in patients with atopic dermatitis. J Dermatol Sci 2016; 84:128-136. [PMID: 27554335 DOI: 10.1016/j.jdermsci.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease, concomitant with allergic reactions to allergens. However, the exact mechanisms of allergen-induced immune responses in AD are not clear. The aim of this study is to explore the role of DC-SIGN in capturing and processing glycan-containing allergens and in the subsequent DC activation and T helper cell polarization in AD patients. METHODS DC-SIGN expression on DCs from AD patients was analysed by confocal microscopy and flow cytometry. DC-SIGN binding to common allergens was determined by ELISA. Activation of monocyte-derived dendritic cells (Mo-DCs) by allergens was analysed by evaluation of pro-inflammatory cytokines production, and their impact on T-cell responses was investigated by a DC-T cell coculture. RESULTS DC-SIGN expression was higher on DCs in the lesional skin of AD patients compared with that of healthy controls and was correlated with disease severity. DC-SIGN could bind to many common allergens including house dust mite allergen (Der p2) and egg white allergen (Gal d2). Mo-DCs showed measurable expression of DC-SIGN and a concentration-dependent uptake of Der p2 and Gal d2, which was inhibited by mannan and anti-DC-SIGN Abs. Der p2 and Gal d2 induced the production of pro-inflammatory cytokines, including TNF-α and IL-6, by DCs from AD patients and facilitated Th2 and Th22 cell polarization. CONCLUSIONS Binding of common allergens by DC-SIGN on DCs may initiate allergen sensitization of AD or provoke the relapse of AD. Regulating the allergen-DC-SIGN interaction might be a promising strategy to prevent or intervene in the progress of AD.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - Y Luo
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - W Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - J Liu
- Department of Dermatology, The Affiliated Drumtower Hospital of Nanjing University, Nanjing 210008, PR China
| | - M Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - H Gu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - B Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China.
| | - X Yao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China.
| |
Collapse
|
166
|
Kordon AO, Scott MA, Ibrahim I, Abdelhamed H, Ahmed H, Baumgartner W, Karsi A, Pinchuk LM. Identification of Langerhans-like cells in the immunocompetent tissues of channel catfish, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:253-258. [PMID: 27645905 DOI: 10.1016/j.fsi.2016.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/19/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs) that have a critical role in bridging innate and adaptive immune responses in vertebrates. Dendritic cells have been characterized morphologically and functionally in the teleost fish models such as rainbow trout, salmonids, medaka, and zebrafish. The presence of DCs with remarkable similarities to human Langerhans cells (LCs) has been described in the spleen and anterior kidney of salmonids and rainbow trout. However, there is no evidence of the presence of DCs and their role in channel catfish immunity. In this study, we assessed DC-like cells in the immunocompetent tissues of channel catfish by immunohistochemistry (IHC), flow cytometry and transmission electron microscopy (TEM). We identified Langerin/CD207+ (L/CD207+) cells in the channel catfish anterior kidney, spleen and gill by IHC. Moreover, we described the cells that resembled mammal LC DCs containing Birbeck-like (BL) granules in channel catfish spleen, anterior and posterior kidneys and gill by TEM. Our data suggest that cells with DC-like morphology in the immune related organs of catfish may share morphological and functional properties with previously reported DCs in teleost fish and mammals. More detailed knowledge of the phenotype and the function of catfish DCs will not only help gain insight into the evolution of the vertebrate adaptive immune system but will also provide valuable information for development and optimization of immunotherapies and vaccination protocols for aquaculture use.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | - Matthew A Scott
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | - Iman Ibrahim
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA; Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | - Hamada Ahmed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA; Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Wes Baumgartner
- Department of Pathobiology and Population Medicine, Collage of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA.
| |
Collapse
|
167
|
Subramaniam S, Cao D, Tian D, Cao QM, Overend C, Yugo DM, Matzinger SR, Rogers AJ, Heffron CL, Catanzaro N, Kenney SP, Opriessnig T, Huang YW, Labarque G, Wu SQ, Meng XJ. Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs. Virus Res 2016; 227:212-219. [PMID: 27784629 PMCID: PMC7114527 DOI: 10.1016/j.virusres.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/27/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4posCD8pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerinpos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dianjun Cao
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Debin Tian
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Qian M Cao
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christopher Overend
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Danielle M Yugo
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shannon R Matzinger
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Adam J Rogers
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C Lynn Heffron
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicholas Catanzaro
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Scott P Kenney
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| | - Yao-Wei Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geoffrey Labarque
- Elanco Biological R&D, Eli Lilly and Company, Greenfield, IN 46140, USA
| | - Stephen Q Wu
- Elanco Biological R&D, Eli Lilly and Company, Greenfield, IN 46140, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
168
|
Lommatzsch M, Bratke K, Stoll P, Mülleneisen N, Prall F, Bier A, Virchow JC. Bronchoalveolar lavage for the diagnosis of Pulmonary Langerhans cell histiocytosis. Respir Med 2016; 119:168-174. [PMID: 27692140 DOI: 10.1016/j.rmed.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The histologic diagnosis of Pulmonary Langerhans cell histiocytosis (PLCH) is invasive and can cause complications. To confirm the diagnosis of PLCH, guidelines therefore recommend measuring CD1a-positive bronchoalveolar lavage fluid (BALF) cells despite its poor sensitivity and specificity. Thus, an improved diagnostic accuracy of BALF cell analysis would be desirable. METHODS Using four-colour flow cytometry, plasmacytoid and myeloid dendritic cells (DCs) were analysed in BALF of 10 newly diagnosed, untreated, smoking patients with PLCH, and compared with BALF DCs from 40 asymptomatic smokers and 21 never-smokers. RESULTS Compared with controls, myeloid DCs (median: 0.79% of BALF leukocytes) and their subpopulation of Langerhans cells (median: 0.44% of BALF leukocytes) were not increased in PLCH. Patients with PLCH displayed a normal expression of the maturity marker CD83 on BALF myeloid DCs. However, the expression of the co-signaling molecule CD80 on BALF myeloid DCs was significantly lower than in both control groups, with the lowest expression found in more severe disease (presence of cysts > 2 cm in diameter). Based on receiver operating characteristic (ROC) curve analysis, a cut-off of 53% CD80-positive BALF myeloid DCs was optimal for the diagnosis of PLCH, yielding a sensitivity of 0.90 and a specificity of 0.90. CONCLUSIONS BALF Langerhans cells are not increased in PLCH. However, PLCH is characterised by a low expression of CD80 on BALF myeloid DCs. Due to its considerably higher sensitivity and specificity, this marker appears to be more appropriate to diagnose PLCH than the currently recommended marker CD1a.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Dep. of Pneumology and Critical Care Medicine, University of Rostock, Germany.
| | - Kai Bratke
- Dep. of Pneumology and Critical Care Medicine, University of Rostock, Germany
| | - Paul Stoll
- Dep. of Pneumology and Critical Care Medicine, University of Rostock, Germany
| | | | | | - Andrea Bier
- Dep. of Pneumology and Critical Care Medicine, University of Rostock, Germany
| | - J Christian Virchow
- Dep. of Pneumology and Critical Care Medicine, University of Rostock, Germany
| |
Collapse
|
169
|
Wamhoff EC, Hanske J, Schnirch L, Aretz J, Grube M, Varón Silva D, Rademacher C. (19)F NMR-Guided Design of Glycomimetic Langerin Ligands. ACS Chem Biol 2016; 11:2407-13. [PMID: 27458873 DOI: 10.1021/acschembio.6b00561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-type lectin receptors (CLRs) play a pivotal role in pathogen defense and immune homeostasis. Langerin, a CLR predominantly expressed on Langerhans cells, represents a potential target receptor for the development of anti-infectives or immunomodulatory therapies. As mammalian carbohydrate binding sites typically display high solvent exposure and hydrophilicity, the recognition of natural monosaccharide ligands is characterized by low affinities. Consequently, glycomimetic ligand design poses challenges that extend to the development of suitable assays. Here, we report the first application of (19)F R2-filtered NMR to address these challenges for a CLR, i.e., Langerin. The homogeneous, monovalent assay was essential to evaluating the in silico design of 2-deoxy-2-carboxamido-α-mannoside analogs and enabled the implementation of a fragment screening against the carbohydrate binding site. With the identification of both potent monosaccharide analogs and fragment hits, this study represents an important advancement toward the design of glycomimetic Langerin ligands and highlights the importance of assay development for other CLRs.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Jonas Hanske
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Lennart Schnirch
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Jonas Aretz
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Maurice Grube
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Daniel Varón Silva
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Christoph Rademacher
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14424 Potsdam, Germany
- Freie Universität Berlin, Department of
Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| |
Collapse
|
170
|
Hanske J, Aleksić S, Ballaschk M, Jurk M, Shanina E, Beerbaum M, Schmieder P, Keller BG, Rademacher C. Intradomain Allosteric Network Modulates Calcium Affinity of the C-Type Lectin Receptor Langerin. J Am Chem Soc 2016; 138:12176-86. [DOI: 10.1021/jacs.6b05458] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas Hanske
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Stevan Aleksić
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Martin Ballaschk
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcel Jurk
- Department
of Bioinformatics, Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Elena Shanina
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Monika Beerbaum
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Bettina G. Keller
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
- Institute
of Chemistry and Biochemistry, Department of Biology, Chemistry, and
Pharmacy, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|
171
|
Zhao J, Liu X, Kao C, Zhang E, Li Q, Zhang F, Linhardt RJ. Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin. Biochemistry 2016; 55:4552-9. [PMID: 27447199 DOI: 10.1021/acs.biochem.6b00555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Langerin, a C-type lectin, is expressed in Langerhans cells. It was reported that langerin binds sulfated glycans, which is an important initial step for its role in blocking human immunodeficiency virus (HIV) transmission by capturing HIV pathogens and mediating their internalization into Birbeck granules for their elimination. It is fundamentally important to understand these interactions at the molecular level for the design of new highly specific therapeutic agents for HIV. Surface plasmon resonance (SPR), which allows for the real-time, direct, quantitative analysis of the label-free molecular interactions, has been used successfully for biophysical characterization of glycosaminoglycan (GAG)-protein interactions. In this study, we report kinetics, structural analysis, and the effects of physiological conditions (e.g., pH, salt concentration, and Ca(2+) and Zn(2+)concentrations) on the interactions between GAGs and langerin using SPR. SPR results revealed that langerin binds to heparin with high affinity (KD ∼ 2.4 nM) and the oligosaccharide length required for the interactions is larger than a tetrasaccharide. This heparin/heparan sulfate-binding protein also interacts with other GAGs, including dermatan sulfate, chondroitin sulfates C-E and KS. In addition, liquid chromatography-mass spectrometry analysis was used to characterize the structure of sulfated glycans that bound to langerin.
Collapse
Affiliation(s)
- Jing Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University (CAU) , Beijing 100083, China
| | | | | | | | - Quanhong Li
- College of Food Science & Nutritional Engineering, China Agricultural University (CAU) , Beijing 100083, China
| | | | - Robert J Linhardt
- Departments of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
172
|
Vorobjova T, Ress K, Luts K, Uibo O, Uibo R. The impact of langerin (CD207)+ dendritic cells and FOXP3+ Treg cells in the small bowel mucosa of children with celiac disease and atopic dermatitis in comparison to children with functional gastrointestinal disorders. APMIS 2016; 124:689-696. [PMID: 27200487 DOI: 10.1111/apm.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
In the present study we aimed to evaluate the impact of langerin (CD207)+ dendritic cells (DCs) and FOXP3+ Treg cells in the intestinal mucosa of children with celiac disease (CD) and atopic dermatitis (AD) in comparison to children with functional gastrointestinal disorders (FGD). Seventy-five children (37 male, mean age 8.4 ± 4.8 years), who randomly underwent small bowel biopsy, were studied. The CD was diagnosed in 14 children, including five persons with concomitant AD (all positive for anti-tissue transglutaminase IgA antibodies and with small bowel atrophy). Normal small bowel mucosa was found in eight patients with AD and in 53 patients with FGD. The sera of all patients were tested for total and specific IgE antibodies to food allergen panels. Staining for CD11c+, langerin (CD207+) DCs, CD4+, and FOXP3+ Treg cells was performed on paraffin-embedded sections of bioptates using immunohistochemistry. The density of CD11c+ DCs, CD4+, and FOXP3+ Treg cells was higher in the CD patients compared to the AD and FGD patients (p = 0.02; p = 0.001). In AD, significantly higher density of CD11c+ DCs was detected in patients positive for specific IgE to food allergen panels (p = 0.02). The FGD patients with elevated total IgE had increased density of langerin (CD207)+ DCs compared to the patients with normal total IgE levels (p = 0.01). The increased density of FOXP3+ Treg cells, CD4+, cells and CD11c+ DCs was associated with CD but not with AD. The elevated level of total IgE or specific IgE to food allergens was associated with more pronounced expression of DCs, indicating a possible link between the presence of these cells in small bowel mucosa with elevated level of serum IgE.
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Krista Ress
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- East-Tallinn Central Hospital, Tallinn, Estonia
| | - Katrin Luts
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Oivi Uibo
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
173
|
Roden AC, Yi ES. Pulmonary Langerhans Cell Histiocytosis: An Update From the Pathologists' Perspective. Arch Pathol Lab Med 2016; 140:230-40. [PMID: 26927717 DOI: 10.5858/arpa.2015-0246-ra] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Pulmonary Langerhans cell histiocytosis (PLCH) is a rare histiocytic disorder that almost exclusively affects the lungs of smokers. PLCH is characterized by bronchiolocentric nodules and/or cysts in an upper and mid lung distribution with sparing of the costophrenic angles. The diagnosis can be challenging and often requires transbronchial biopsy or surgical lung biopsy. Pulmonary hypertension is a relatively common and sometimes severe complication of PLCH. The pathogenesis of PLCH is still debated. Recently, BRAF V600E mutation and BRAF expression have been identified in some patients with PLCH, suggesting that at least a subset of PLCH has a clonal proliferation. While smoking cessation is the first-line treatment of PLCH, some patients might require additional treatment and eventually transplant. Given that the lesional cells of PLCH express BRAF in some patients, MAPKinase pathway-targeted treatment might be useful for therapy-resistant patients. OBJECTIVE To present the more recently recognized clinical and pathologic aspects of PLCH, including pulmonary hypertension in PLCH, pathogenesis, and treatment, as well as the basic diagnostic approach to PLCH. DATA SOURCES Authors' own research, and search of literature database (PubMed) and UpToDate. CONCLUSIONS Despite the recent progress, more studies are needed to elucidate the biology of PLCH for identification of prognostic factors and appropriate treatment options, especially for therapy-refractory PLCH cases.
Collapse
Affiliation(s)
- Anja C Roden
- From the Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Rochester, Minnesota
| | | |
Collapse
|
174
|
Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, Kast WM. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS 2016; 30:291-306. [PMID: 27410493 DOI: 10.1089/apc.2016.0100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Collapse
Affiliation(s)
- Andrew W. Woodham
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Joseph G. Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Adriana M. Sanna
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Julia R. Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| |
Collapse
|
175
|
Abstract
Pathogen recognition by C-type lectin receptors (CLRs) expressed by dendritic cells is important not only for antigen presentation, but also for the induction of appropriate adaptive immune responses via T helper (TH) cell differentiation. CLRs act either by themselves or in cooperation with other receptors, such as other CLRs, Toll-like receptors and interferon receptors, to induce signalling pathways that trigger specialized cytokine programmes for polarization of TH cell differentiation. In this Review, we discuss how triggering of the prototypical CLRs leads to distinct pathogen-tailored TH cell responses and how we can harness our expanding knowledge for vaccine design and the treatment of inflammatory and malignant diseases.
Collapse
|
176
|
De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V, Maryanski JL, Segura E, Doglio A. CD1c-Related DCs that Express CD207/Langerin, but Are Distinguishable from Langerhans Cells, Are Consistently Present in Human Tonsils. Front Immunol 2016; 7:197. [PMID: 27252701 PMCID: PMC4879127 DOI: 10.3389/fimmu.2016.00197] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022] Open
Abstract
Several subsets of dendritic cells (DCs) are present in the oropharyngeal tonsillar tissues and are thought to behave as major actors in development and regulation of immunity by acting as a first line of recognition for airborne and alimentary antigens. We previously discovered in human adult tonsils infected with Epstein–Barr virus (EBV), a subset of DCs that expressed langerin/CD207, a lectin usually recognized as a hallmark of epidermal Langerhans cells (LCs). In the present study, we analyzed the content of several child and adult tonsils in order to characterize in more detail the phenotype of these tonsillar CD207-expressing DCs (tCD207 DCs) and to compare it with that of other human DC subsets. We showed that all the human tonsils studied (n = 12) contained significant proportions of tCD207 DCs among tonsillar cells expressing HLA-DR. Moreover, the presence of tCD207 DCs in tonsils from young children free of EBV infection indicated that these cells could be established early in the tonsil independently of EBV infection. We also showed that tCD207 DCs, that were found mainly located within the tonsillar lymphoid stroma, were distinguishable from LCs by the level of expression of CD1a and EpCAM, and also from human inflammatory DCs by the lack of CD1a, CD206, and CD14 expression. Detailed analysis of cell surface DC markers showed that tCD207 DCs were unrelated to CD141+ DCs or macrophages, but defined a subtype of tonsillar DCs closely related to myeloid resident CD1c DCs. Since it was established that blood CD1c myeloid DCs exhibit plasticity and are capable of expressing CD207 notably in the presence of inflammatory cytokines, it is tempting to speculate that CD207+ CD1c+ DCs may play a specific immune role.
Collapse
Affiliation(s)
- Anne De Monte
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France; Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet, Nice, France
| | - Charles-Vivien Olivieri
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | - Sébastien Vitale
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Sonanda Bailleux
- Department of Pediatric Otorhinolaryngology, Hôpitaux pédiatriques de Nice CHU-Lenval , Nice , France
| | - Laurent Castillo
- Department of Otorhinolaryngology, Institut Universitaire de la Face et du Cou , Nice , France
| | - Valérie Giordanengo
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Janet L Maryanski
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | | | - Alain Doglio
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| |
Collapse
|
177
|
Stenfeldt C, Diaz-San Segundo F, de Los Santos T, Rodriguez LL, Arzt J. The Pathogenesis of Foot-and-Mouth Disease in Pigs. Front Vet Sci 2016; 3:41. [PMID: 27243028 PMCID: PMC4876306 DOI: 10.3389/fvets.2016.00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/05/2022] Open
Abstract
The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or to predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV) infection via exposure of the upper gastrointestinal tract (oropharynx) than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in contrast to ruminants, there is no subclinical persistence of FMDV in pigs. The aim of this review is to provide an overview of knowledge gained from experimental investigations of FMD pathogenesis, transmission, and host response in pigs. Details of the temporo-anatomic progression of infection are discussed in relation to specific pathogenesis events and the likelihood of transmission. Additionally, relevant aspects of the host immune response are discussed within contexts of conventional and novel intervention strategies of vaccination and immunomodulation.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fayna Diaz-San Segundo
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT, USA
| | - Teresa de Los Santos
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Luis L Rodriguez
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Jonathan Arzt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| |
Collapse
|
178
|
Gennari A, Pelliccia M, Donno R, Kimber I, Tirelli N. Mannosylation Allows for Synergic (CD44/C-Type Lectin) Uptake of Hyaluronic Acid Nanoparticles in Dendritic Cells, but Only upon Correct Ligand Presentation. Adv Healthc Mater 2016; 5:966-76. [PMID: 26865006 DOI: 10.1002/adhm.201500941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/31/2015] [Indexed: 12/17/2022]
Abstract
The selective targeting of dendritic cells (DCs) can lead to more efficacious vaccines. Here, materials have been designed for a synergic DC targeting: interacting with CD44 through the use of hyaluronic acid (HA), and with mannose-binding lectins (typical DC pattern recognition receptors) through HA mannosylation. Negatively charged, HA-displaying nanoparticles are produced via polyelectrolyte complexation of (mannosylated) HA and high- or low- molecular-weight chitosan (CS, 36 and 656 kDa). Using CS36, HA is better exposed and the particles have a higher affinity for HA receptors; this means a higher number of receptors clustered around each particle and, due to the rather limited CD44 availability, an overall lower uptake per cell. Employing Langerhans-like XS106 cells, all particles show negligible toxicity or inflammatory activation. The cellular uptake kinetics are qualitatively similar to other leukocytic models and thus considered to be CD44-dominated; the uptake increases with increasing HA mannosylation and with the use of adjuvants (LPS, mannan) for CS36/HA but not for CS656//HA particles; this indicates that the interactions with mannose-binding receptors requires a correct ligand presentation, and only in that case can they be enhanced by appropriate adjuvants. In summary, mannose-binding receptors can be used to enhance the internalization of HA-based carriers, although this positive synergy depends on the mode of ligand presentation.
Collapse
Affiliation(s)
- Arianna Gennari
- Centre for Tissue Injury and Repair; Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; The University of Manchester; Manchester M13 9PT UK
| | - Maria Pelliccia
- Centre for Tissue Injury and Repair; Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; The University of Manchester; Manchester M13 9PT UK
| | - Roberto Donno
- NorthWest Centre of Advanced Drug Delivery (NoWCADD); Manchester Pharmacy School; Faculty of Medical and Human Sciences; The University of Manchester; Manchester M13 9PT UK
| | - Ian Kimber
- Faculty of Life Sciences; The University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- Centre for Tissue Injury and Repair; Institute of Inflammation and Repair; Faculty of Medical and Human Sciences; The University of Manchester; Manchester M13 9PT UK
- NorthWest Centre of Advanced Drug Delivery (NoWCADD); Manchester Pharmacy School; Faculty of Medical and Human Sciences; The University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
179
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
180
|
Kaleem TA, Schild MH, Miller D, Jha A, Cortese C, Attia S, Miller RC. Langerhan's Cell Sarcoma: Two Case Reports. Rare Tumors 2016; 8:6140. [PMID: 27134713 PMCID: PMC4827650 DOI: 10.4081/rt.2016.6140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 12/13/2022] Open
Abstract
Langerhan’s cell sarcoma (LCS) is a rare neoplasm with a poor prognosis. To our knowledge, only sixty-six cases have been published. We discuss two patients who presented very differently with LCS, as well as a recently published review of all sixty-six cases. Our first case had a complicated history of metastatic, high-grade myxofibrosarcomas and presented with a single skin lesion of LCS which was treated with resection to a positive margin and adjuvant radiotherapy. The LCS recurred locoregionally and was again resected. The patient is alive two years after initial diagnosis. The second case presented with bone marrow and splenic involvement, leukocytosis, and thrombocytopenia. This patient had an excellent response to etoposide, prednisone, oncovorin, cyclophosphamide, and adriamycin, with normalization of the complete blood count, negative bone marrow biopsy at follow up, and splenectomy without viable neoplasm. This patient is alive without signs of disease at 16 months after initial diagnosis.
Collapse
Affiliation(s)
- Tasneem A Kaleem
- Department of Radiation Oncology, Mayo Clinic Florida , Jacksonville, FL, USA
| | - Michael H Schild
- Department of Radiation Oncology, Mayo Clinic Florida , Jacksonville, FL, USA
| | - Daniel Miller
- Department of Radiation Oncology, Mayo Clinic Florida , Jacksonville, FL, USA
| | - Asit Jha
- Department of Oncology, Mayo Clinic Health System in Waycross , Waycross, GA, USA
| | - Cherise Cortese
- Department of Pathology, Mayo Clinic Florida , Jacksonville, FL, USA
| | - Steven Attia
- Department of Oncology, Mayo Clinic Florida , Jacksonville, FL, USA
| | - Robert C Miller
- Department of Radiation Oncology, Mayo Clinic Florida , Jacksonville, FL, USA
| |
Collapse
|
181
|
Santra A, Yu H, Tasnima N, Muthana MM, Li Y, Zeng J, Kenyond NJ, Louie AY, Chen X. Systematic Chemoenzymatic Synthesis of O-Sulfated Sialyl Lewis x Antigens. Chem Sci 2016; 7:2827-2831. [PMID: 28138383 PMCID: PMC5269574 DOI: 10.1039/c5sc04104j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
O-Sulfated sialyl Lewis x antigens play important roles in nature. However, due to their structural complexity, they are not readily accessible by either chemical or enzymatic synthetic processes. Taking advantage of a bacterial sialyltransferase mutant that can catalyze the transfer of different sialic acid forms from the corresponding sugar nucleotide donors to Lewis x antigens which are fucosylated glycans as well as an efficient one-pot multienzyme (OPME) sialylation system, O-sulfated sialyl Lewis x antigens containing different sialic acid forms and O-sulfation at different locations were systematically synthesized by chemoenzymatic methods.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Hai Yu
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Musleh M Muthana
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Yanhong Li
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Jie Zeng
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA) ; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003 (China)
| | - Nicholas J Kenyond
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, CA 95616 (USA)
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA 95616 (USA)
| | - Xi Chen
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| |
Collapse
|
182
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
183
|
Picarda G, Chéneau C, Humbert JM, Bériou G, Pilet P, Martin J, Duteille F, Perrot P, Bellier-Waast F, Heslan M, Haspot F, Guillon F, Josien R, Halary FA. Functional Langerinhigh-Expressing Langerhans-like Cells Can Arise from CD14highCD16−Human Blood Monocytes in Serum-Free Condition. THE JOURNAL OF IMMUNOLOGY 2016; 196:3716-28. [DOI: 10.4049/jimmunol.1501304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
184
|
Pater LE, Breneman J. Rare Pediatric Tumors. CLINICAL RADIATION ONCOLOGY 2016:1486-1500.e4. [DOI: 10.1016/b978-0-323-24098-7.00075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
185
|
Abstract
C-type lectins, originally defined as proteins binding carbohydrates in a Ca2+-dependent manner, form a large family containing soluble and membrane-bound proteins. Among them, those expressed on phagocytes and working as pathogen pattern-recognition receptors were designated as C-type lectin receptors (CLRs), in accordance with Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I–like receptors (RLRs). Most of the genes for CLRs are clustered in human chromosome 12 close to the natural killer gene complex. Similar to the killer lectin-like receptors whose genes are clustered in this complex, most of the CLRs induce activating or regulatory signal cascades in response to distinct pathogen- or self-derived components, through the immunoreceptor tyrosine-based activating or inhibitory motif, respectively. In this chapter, some representative CLRs are picked up and their structural features leading to the functional consequences are discussed, especially on the signaling cascades and pathogen interactions, including some impacts on cutaneous pathophysiology. These CLRs should provide targets to develop effective vaccination and therapeutics for distinct infectious and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Dermatology, Kyoto University Grad Sch of Med., Sakyo-ku, Kyoto, Japan
| |
Collapse
|
186
|
Ng WC, Londrigan SL, Nasr N, Cunningham AL, Turville S, Brooks AG, Reading PC. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus. J Virol 2016; 90:206-21. [PMID: 26468543 PMCID: PMC4702526 DOI: 10.1128/jvi.01447-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/04/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin.
Collapse
Affiliation(s)
- Wy Ching Ng
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Najla Nasr
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L Cunningham
- Westmead Millennium Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
187
|
Ribeiro CMS, Sarrami-Forooshani R, Geijtenbeek TBH. HIV-1 border patrols: Langerhans cells control antiviral responses and viral transmission. Future Virol 2015. [DOI: 10.2217/fvl.15.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Langerhans cells (LCs) reside in the mucosal epithelia and are refractory to HIV-1 infection; HIV-1 capture by C-type lectin receptor langerin and subsequent targeting to Birbeck granules prevents infection. Furthermore, LCs restrict transmission of CXCR4-using HIV-1 variants, which underscores the role of immature LCs as gatekeepers in the selection of HIV-1 variants. Interaction of langerin on LCs with hyaluronic acid on dendritic cells facilitates cross-presentation of HIV-1 to CD8+ T cells. Activation of LCs upon inflammation bypasses the langerin-dependent barrier, which favors cross-presentation and increases susceptibility of LCs to HIV-1 infection. These recent developments not only highlight the plasticity of LCs but also define an important role for LC-dendritic cell crosstalk at the periphery in directing adaptive immune responses to viruses.
Collapse
Affiliation(s)
- Carla MS Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ramin Sarrami-Forooshani
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
188
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
189
|
Leleux J, Atalis A, Roy K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Control Release 2015; 219:610-621. [PMID: 26489733 DOI: 10.1016/j.jconrel.2015.09.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
Abstract
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses.
Collapse
Affiliation(s)
- Jardin Leleux
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Alexandra Atalis
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
190
|
Chabrol E, Thépaut M, Dezutter-Dambuyant C, Vivès C, Marcoux J, Kahn R, Valladeau-Guilemond J, Vachette P, Durand D, Fieschi F. Alteration of the langerin oligomerization state affects Birbeck granule formation. Biophys J 2015; 108:666-77. [PMID: 25650933 DOI: 10.1016/j.bpj.2014.10.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Cell Line
- Chromatography, High Pressure Liquid
- Cross-Linking Reagents/pharmacology
- Crystallography, X-Ray
- Cytoplasmic Granules/metabolism
- Fibroblasts/metabolism
- Fibroblasts/ultrastructure
- HIV Envelope Protein gp120/metabolism
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/metabolism
- Mannans/metabolism
- Mannose-Binding Lectins/chemistry
- Mannose-Binding Lectins/metabolism
- Mice
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Protein Binding/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Tertiary
- Scattering, Small Angle
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Eric Chabrol
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Michel Thépaut
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | | | - Corinne Vivès
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Julien Marcoux
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Richard Kahn
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Jenny Valladeau-Guilemond
- Centre Léon Bérard-UMR INSERM 1052-CNRS 5286, Centre de recherche en Cancérologie de Lyon, Lyon, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France.
| | - Franck Fieschi
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
191
|
Abstract
Langerhans cell histiocytosis (LCH) is heterogeneous disease characterized by common histology of inflammatory lesions containing Langerin(+) (CD207) histiocytes. Emerging data support a model in which MAPK activation in self-renewing hematopoietic progenitors may drive disseminated high-risk disease, whereas MAPK activation in more differentiated committed myeloid populations may induce low-risk LCH. The heterogeneous clinical manifestations with shared histology may represent the final common pathway of an acquired defect of differentiation, initiated at more than one point. Implications of this model include re-definition of LCH as a myeloid neoplasia and re-focusing therapeutic strategies on the cells and lineages of origin.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth L McClain
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carl E Allen
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
192
|
Stoitzner P, Schaffenrath S, Tripp CH, Reider D, Komenda K, Del Frari B, Djedovic G, Ebner S, Romani N. Human skin dendritic cells can be targeted in situ by intradermal injection of antibodies against lectin receptors. Exp Dermatol 2015; 23:909-15. [PMID: 25346475 PMCID: PMC4282089 DOI: 10.1111/exd.12573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Skin dendritic cells (DC) express C-type lectin receptors for the recognition of pathogens. Langerhans cells (LC) express the receptor Langerin/CD207, whereas DEC-205/CD205 is mainly expressed by dermal DC, but can also be detected at low levels on LC. In this study, we tested an ex vivo approach for targeting DC in situ with monoclonal antibodies (mAb) against Langerin and DEC-205. The targeting mAb was injected intradermally into human skin biopsies or added to the medium during skin explant culture. Corresponding to the expression patterns of these lectin receptors on skin DC, Langerin mAb was detected merely in LC in the epidermis and DEC-205 mainly in dermal DC in human skin explants, regardless of the application route. Migratory skin DC bound and carried targeting mAb from skin explants according to their lectin receptor expression profiles. In contrast to the very selective transport of Langerin mAb by LC, DEC-205 mAb was more widely distributed on all CD1a+ skin DC subsets but almost absent in CD14+ dermal DC. As effective vaccination requires the addition of adjuvant, we co-administered the toll-like receptor (TLR)-3 ligand poly I:C with the mAb. This adjuvant enhanced binding of DEC-205 mAb to all skin DC subsets, whereas Langerin targeting efficacy remained unchanged. Our findings demonstrate that LC can be preferentially targeted by Langerin mAb. In contrast, DEC-205 mAb can be bound by all CD1a+ skin DC subsets. The efficacy of DEC-205 mAb targeting strategy can be boosted by addition of poly I:C underlining the potential of this combination for immunotherapeutical interventions.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology & Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Matsui K, Mori A, Ikeda R. Langerhans cell-like dendritic cells stimulated with an adjuvant direct the development of Th1 and Th2 cells in vivo. Clin Exp Immunol 2015; 182:101-7. [PMID: 26084192 DOI: 10.1111/cei.12671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/14/2022] Open
Abstract
It is well known that Langerhans cells (LCs) work as the primary orchestrators in the polarization of immune responses towards a T helper type 1 (Th1) or Th2 milieu. In this study, we attempted to generate LCs from murine bone marrow cells and elicit a Th1- or Th2-prone immune response through the LCs after stimulation with Th1 or Th2 adjuvant. LCs were generated from murine bone marrow cells using granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4 and transforming growth factor (TGF)-β, and were obtained as I-A(d) positive cells. Mice were primed with Th1/Th2 adjuvant- and ovalbumin (OVA)-pulsed LCs and then given a booster injection of OVA 2 days later via the hind footpad. Five days after the OVA injection, the cytokine response in the draining popliteal lymph nodes was investigated by reverse transcription-polymerase chain reaction (RT-PCR) flow cytometry and enzyme-linked immunosorbent assay (ELISA). The generated LCs expressed typical LC surface markers, E-cadherin and Langerin, and were classified accordingly as LC-like dendritic cells (LDCs). Administration of Th1 adjuvant, cytosine-phosphate-guanosine (CpG)-DNA- and OVA-pulsed LDCs into the hind footpads of mice induced a Th1-prone immune response, as represented by up-regulation of IFN-γ production and down-regulation of IL-4 production in the lymph node cells. Conversely, Th2 adjuvant, histamine-pulsed LDCs induced a Th2-prone immune response, as represented by up-regulation of IL-4 production and down-regulation of IFN-γ production. These results suggest that LDCs may be used as a substitute for LCs and have the ability to induce the development of Th1 and Th2 cells in vivo. Our experimental system would therefore be useful for screening of inhibitors of Th1/Th2 differentiation in order to control allergic disease.
Collapse
Affiliation(s)
- K Matsui
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo, Japan
| | - A Mori
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo, Japan
| | - R Ikeda
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Tokyo, Japan
| |
Collapse
|
194
|
van den Berg LM, Cardinaud S, van der Aar AMG, Sprokholt JK, de Jong MAWP, Zijlstra-Willems EM, Moris A, Geijtenbeek TBH. Langerhans Cell-Dendritic Cell Cross-Talk via Langerin and Hyaluronic Acid Mediates Antigen Transfer and Cross-Presentation of HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1763-73. [PMID: 26170391 DOI: 10.4049/jimmunol.1402356] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Human epidermal and mucosal Langerhans cells (LCs) express the C-type lectin receptor langerin that functions as a pattern recognition receptor. LCs are among the first immune cells to interact with HIV-1 during sexual transmission. In this study, we demonstrate that langerin not only functions as a pattern recognition receptor but also as an adhesion receptor mediating clustering between LCs and dendritic cells (DCs). Langerin recognized hyaluronic acid on DCs and removal of these carbohydrate structures partially abrogated LC-DC clustering. Because LCs did not cross-present HIV-1-derived Ags to CD8(+) T cells in a cross-presentation model, we investigated whether LCs were able to transfer Ags to DCs. LC-DC clustering led to maturation of DCs and facilitated Ag transfer of HIV-1 to DCs, which subsequently induced activation of CD8(+) cells. The rapid transfer of Ags to DCs, in contrast to productive infection of LCs, suggests that this might be an important mechanism for induction of anti-HIV-1 CD8(+) T cells. Induction of the enzyme hyaluronidase-2 by DC maturation allowed degradation of hyaluronic acid and abrogated LC-DC interactions. Thus, we have identified an important function of langerin in mediating LC-DC clustering, which allows Ag transfer to induce CTL responses to HIV-1. Furthermore, we showed this interaction is mediated by hyaluronidase-2 upregulation after DC maturation. These data underscore the importance of LCs and DCs in orchestrating adaptive immunity to HIV-1. Novel strategies might be developed to harness this mechanism for vaccination.
Collapse
Affiliation(s)
- Linda M van den Berg
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections-Paris, University Pierre and Marie Curie Paris 06, University Sorbonne, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, INSERM, U1135, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, French National Centre for Scientific Research, ERL 8255, F-75013 Paris, France
| | - Angelic M G van der Aar
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Marein A W P de Jong
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | | | - Arnaud Moris
- Center for Immunology and Microbial Infections-Paris, University Pierre and Marie Curie Paris 06, University Sorbonne, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, INSERM, U1135, F-75013 Paris, France; Center for Immunology and Microbial Infections-Paris, French National Centre for Scientific Research, ERL 8255, F-75013 Paris, France; Department of Immunology, AP-HP University Medical Center Paris Area, F-75013 Paris, France
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
195
|
Abstract
Aptamers, as a novel class of molecular probes for diagnosis, imaging and targeting therapy, have attracted increasing attention in recent years. Aptamers are generated from libraries of single-stranded nucleic acids against different molecules via the "systematic evolution of ligands by exponential enrichment" (SELEX) method. SELEX is a repetitive process of a sequential selection procedure in which a DNA or RNA library pool is incubated separately with target and control molecules to select specific oligonucleotide aptamers with high affinities and specificities. Cell-SELEX is a modified version of the SELEX process in which whole living cells are used as targets for the aptamers. Dendritic cell (DC) targeting, as a new therapeutic approach, can improve the efficiency of immunotherapy in the treatment of allergies and cancers. DCs use various receptors to continuously induce adaptive immunity via capture and presentation of antigens to naïve T cells. DCs are considered as the best targets in modulating immune responses against cancer, autoimmunity, allergy and transplantation. Aptamers, as a new agent, can be applied in DC targeting. The purpose of this review is to present some general concepts of aptamer production and DC targeting by aptamer molecules.
Collapse
Affiliation(s)
- A Ganji
- a Student Research Committee , Mashhad University of Medical Sciences , Mashhad , Iran .,b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| | - A Varasteh
- c Allergy Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran
| | - M Sankian
- b Immunology Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad , Iran , and
| |
Collapse
|
196
|
Unifocal Langerhans Cell Histiocytosis of the Superior Oblique Muscle. Ophthalmic Plast Reconstr Surg 2015; 31:e60-1. [DOI: 10.1097/iop.0000000000000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
197
|
Affiliation(s)
- Clare L Bennett
- Institute of Immunity and Transplantation and Cancer Institute, University College London, United Kingdom
| |
Collapse
|
198
|
UV Radiation Induces the Epidermal Recruitment of Dendritic Cells that Compensate for the Depletion of Langerhans Cells in Human Skin. J Invest Dermatol 2015; 135:2058-2067. [PMID: 25806853 DOI: 10.1038/jid.2015.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/04/2015] [Accepted: 03/07/2015] [Indexed: 01/29/2023]
Abstract
UVR causes skin injury and inflammation, resulting in impaired immune function and increased skin cancer risk. Langerhans cells (LCs), the immune sentinels of the epidermis, are depleted for several days following a single UVR exposure and can be reconstituted from circulating monocytes. However, the differentiation pathways leading to the recovery of a normal pool of LCs is still unclear. To study the dynamic changes in human skin with UV injury, we exposed a cohort of 29 healthy human volunteers to a clinically relevant dose of UVR and analyzed sequential epidermal biopsies for changes in leukocyte and dendritic cell (DC) subsets. UV-induced depletion of CD1a(high) LC was compensated by sequential appearance of various epidermal leukocytes. CD14(+) monocytes were recruited as early as D1 post exposure, followed by recruitment of two inflammatory DC subsets that may represent precursors of LCs. These CD1a(low) CD207(-) and the heretofore unknown CD1a(low) CD207(+) DCs appeared at day 1 and day 4 post UVR, respectively, and were endowed with T-cell-activating properties similar to those of LCs. We conclude that recruitment of monocytes and inflammatory DCs appear as a physiological response of the epidermis in order to repair UVR-induced LC depletion associated with immune suppression.
Collapse
|
199
|
Muñoz-García JC, Chabrol E, Vivès RR, Thomas A, de Paz JL, Rojo J, Imberty A, Fieschi F, Nieto PM, Angulo J. Langerin–Heparin Interaction: Two Binding Sites for Small and Large Ligands As Revealed by a Combination of NMR Spectroscopy and Cross-Linking Mapping Experiments. J Am Chem Soc 2015; 137:4100-10. [DOI: 10.1021/ja511529x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan C. Muñoz-García
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro
de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Eric Chabrol
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Romain R. Vivès
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Aline Thomas
- CERMAV
UPR5301, CNRS and Université Grenoble Alpes, BP 53, 38041 Grenoble cedex 9, France
| | - José L. de Paz
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro
de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro
de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Anne Imberty
- CERMAV
UPR5301, CNRS and Université Grenoble Alpes, BP 53, 38041 Grenoble cedex 9, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Pedro M. Nieto
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro
de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Jesús Angulo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro
de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
- School of
Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
200
|
Koutsonanos DG, Esser ES, McMaster SR, Kalluri P, Lee JW, Prausnitz MR, Skountzou I, Denning TL, Kohlmeier JE, Compans RW. Enhanced immune responses by skin vaccination with influenza subunit vaccine in young hosts. Vaccine 2015; 33:4675-82. [PMID: 25744228 PMCID: PMC5757502 DOI: 10.1016/j.vaccine.2015.01.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/03/2014] [Accepted: 01/14/2015] [Indexed: 11/26/2022]
Abstract
Skin has gained substantial attention as a vaccine target organ due to its immunological properties, which include a high density of professional antigen presenting cells (APCs). Previous studies have demonstrated the effectiveness of this vaccination route not only in animal models but also in adults. Young children represent a population group that is at high risk from influenza infection. As a result, this group could benefit significantly from influenza vaccine delivery approaches through the skin and the improved immune response it can induce. In this study, we compared the immune responses in young BALB/c mice upon skin delivery of influenza vaccine with vaccination by the conventional intramuscular route. Young mice that received 5 μg of H1N1 A/Ca/07/09 influenza subunit vaccine using MN demonstrated an improved serum antibody response (IgG1 and IgG2a) when compared to the young IM group, accompanied by higher numbers of influenza-specific antibody secreting cells (ASCs) in the bone marrow. In addition, we observed increased activation of follicular helper T cells and formation of germinal centers in the regional lymph nodes in the MN immunized group, rapid clearance of the virus from their lungs as well as complete survival, compared with partial protection observed in the IM-vaccinated group. Our results support the hypothesis that influenza vaccine delivery through the skin would be beneficial for protecting the high-risk young population from influenza infection.
Collapse
Affiliation(s)
- Dimitrios G Koutsonanos
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Influenza Pathogenesis and Immunology Research Center (IPIRC), Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, United States; Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - E Stein Esser
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Sean R McMaster
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Influenza Pathogenesis and Immunology Research Center (IPIRC), Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, United States
| | - Priya Kalluri
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Fest Drive, Atlanta, GA 30332-0100, United States
| | - Jeong-Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Fest Drive, Atlanta, GA 30332-0100, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Fest Drive, Atlanta, GA 30332-0100, United States
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Influenza Pathogenesis and Immunology Research Center (IPIRC), Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, United States; Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Timothy L Denning
- Center for Inflammation, Immunity, and Infection, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, United States
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Influenza Pathogenesis and Immunology Research Center (IPIRC), Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, United States
| | - Richard W Compans
- Department of Microbiology & Immunology, Emory University School of Medicine, 1518 Clifton Road, Atlanta, GA 30322, United States; Influenza Pathogenesis and Immunology Research Center (IPIRC), Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA 30322, United States; Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States.
| |
Collapse
|