151
|
Yablonski D, Kadlecek T, Weiss A. Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT. Mol Cell Biol 2001; 21:4208-18. [PMID: 11390650 PMCID: PMC87082 DOI: 10.1128/mcb.21.13.4208-4218.2001] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLP-76 is an adapter protein required for T-cell receptor (TCR) signaling. In particular, TCR-induced tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), and the resultant TCR-inducible gene expression, depend on SLP-76. Nonetheless, the mechanisms by which SLP-76 mediates PLC-gamma1 activation are not well understood. We now demonstrate that SLP-76 directly interacts with the Src homology 3 (SH3) domain of PLC-gamma1. Structure-function analysis of SLP-76 revealed that each of the previously defined protein-protein interaction domains can be individually deleted without completely disrupting SLP-76 function. Additional deletion mutations revealed a new, 67-amino-acid functional domain within the proline-rich region of SLP-76, which we have termed the P-1 domain. The P-1 domain mediates a constitutive interaction of SLP-76 with the SH3 domain of PLC-gamma1 and is required for TCR-mediated activation of Erk, PLC-gamma1, and NFAT (nuclear factor of activated T cells). The adjacent Gads-binding domain of SLP-76, also within the proline-rich region, mediates inducible recruitment of SLP-76 to a PLC-gamma1-containing complex via the recruitment of both PLC-gamma1 and Gads to another cell-type-specific adapter, LAT. Thus, TCR-induced activation of PLC-gamma1 entails the binding of PLC-gamma1 to both LAT and SLP-76, a finding that may underlie the requirement for both LAT and SLP-76 to mediate the optimal activation of PLC-gamma1.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | | | |
Collapse
|
152
|
Woods ML, Shimizu Y. Signaling networks regulating β1 integrin‐mediated adhesion of T lymphocytes to extracellular matrix. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Melody L. Woods
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
153
|
Lian JP, Toker A, Badwey JA. Phosphorylation of the activation loop of gamma p21-activated kinase (gamma-Pak) and related kinases (MSTs) in normal and stressed neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6349-57. [PMID: 11342659 DOI: 10.4049/jimmunol.166.10.6349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils stimulated with a variety of chemoattractants exhibit a rapid activation of two p21-activated kinases (Paks) with molecular masses of approximately 63 and 69 kDa (gamma- and alpha-Pak). A number of in vitro studies suggest that modification of Thr(402) in the activation loop (AL) of gamma-Pak can play a critical role in the regulation of this kinase under certain circumstances. A phosphospecific Ab was generated to this region of Pak (pPak(AL)Ab). This Ab reacted with activated gamma- and alpha-Pak from fMLP-stimulated neutrophils that contain the sequence KRXT(P)XXGTP in their ALS: The rapid but transient activation of Paks in normal stimulated neutrophils coincided with phosphorylation and dephosphorylation at the ALs of these enzymes. In contrast, stressed cells exhibited a prolonged phosphorylation at Thr(402) in both intact gamma-Pak and a proteolytic fragment of this kinase. The pPak(AL)Ab also reacted with the mammalian sterile twenty-like kinases (MSTs) (members of the Pak family) in osmotically stressed neutrophils and neutrophils treated with certain apoptotic agents (i.e., tumor promoters that inhibit type 1 and 2A protein phosphatases) but not in normal fMLP-stimulated cells. Thus, our results indicate that the AL of gamma-Pak undergoes transient phosphorylation during normal neutrophil stimulation and chronic phosphorylation in stressed cells. In addition, we demonstrate that a number of MSTs are present in neutrophils and also undergo phosphorylation during stressful circumstances.
Collapse
Affiliation(s)
- J P Lian
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
154
|
Donnadieu E, Lang V, Bismuth G, Ellmeier W, Acuto O, Michel F, Trautmann A. Differential roles of Lck and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5540-9. [PMID: 11313393 DOI: 10.4049/jimmunol.166.9.5540] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag recognition triggered at the interface between a T cell and an APC is conditioned by cell-cell adhesion and cytoskeletal remodeling. The role played in these phenomena by Lck and Itk, two protein tyrosine kinases essential for T cell signaling, was examined. Early T cell responses (membrane ruffling, Ca(2+) response, APC-T cell adhesion) were monitored in T cells overexpressing kinase-defective (KD) Lck and Itk mutants by combining fluorescence imaging and electron microscopy. Neither Lck nor Itk appears to be involved in the Ag-independent formation of a small and labile contact interface between T cells and APCS: By contrast, the Ag-induced Ca(2+) response in a cell population is similarly blunted in both KD transfectants. However, the underlying mechanisms are strikingly different for the two kinases. The major effect of Lck-KD is to reduce the probability of giving rise to quasi-normal Ca(2+) responses, whereas overexpression of Itk-KD results in a tuning down of all single-cell Ca(2+) responses. In addition, Lck, but not Itk, is required for the formation of a stable T/APC conjugate and for T cell polarization after Ag stimulation. Overall, our results lead to a clear distinction between Lck and ITK: Lck plays an ignition role, controlling all the downstream events tested here, whereas Itk amplifies the Ca(2+) response, but is dispensable for APC-induced adhesive and morphological responses.
Collapse
Affiliation(s)
- E Donnadieu
- Laboratoire d'Immuno-Pharmacologie, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | | | | | |
Collapse
|
155
|
Herndon TM, Shan XC, Tsokos GC, Wange RL. ZAP-70 and SLP-76 regulate protein kinase C-theta and NF-kappa B activation in response to engagement of CD3 and CD28. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5654-64. [PMID: 11313406 DOI: 10.4049/jimmunol.166.9.5654] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transcription factor NF-kappaB is a critical regulator of T cell function that becomes strongly activated in response to coengagement of TCR and CD28. Although events immediately proximal to NF-kappaB activation are well understood, uncertainty remains over which upstream signaling pathways engaged by TCR and CD28 lead to NF-kappaB activation. By using Jurkat T cell lines that are deficient or replete for either the protein tyrosine kinase ZAP-70 or the cytosolic adapter molecule SLP-76, the role of these proteins in modulating NF-kappaB activation was examined. NF-kappaB was not activated in response to coengagement of TCR and CD28 in either the ZAP-70- or SLP-76-negative cells, whereas stimuli that bypass these receptors (PMA plus A23187, or TNF-alpha) activated NF-kappaB normally. Protein kinase C (PKC) theta activation, which is required for NF-kappaB activation, also was defective in these cells. Reexpression of ZAP-70 restored PKCtheta and NF-kappaB activation in response to TCR and CD28 coengagement. p95(vav) (Vav)-1 tyrosine phosphorylation was largely unperturbed in the ZAP-70-negative cells; however, receptor-stimulated SLP-76/Vav-1 coassociation was greatly reduced. Wild-type SLP-76 fully restored PKCtheta and NF-kappaB activation in the SLP-76-negative cells, whereas 3YF-SLP-76, which lacks the sites of tyrosine phosphorylation required for Vav-1 binding, only partially rescued signaling. These data illustrate the importance of the ZAP-70/SLP-76 signaling pathway in CD3/CD28-stimulated activation of PKC theta and NF-kappaB, and suggest that Vav-1 association with SLP-76 may be important in this pathway.
Collapse
Affiliation(s)
- T M Herndon
- Laboratory of Biological Chemistry, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
156
|
Reth M, Wienands J. The maintenance and the activation signal of the B-cell antigen receptor. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:323-8. [PMID: 11232302 DOI: 10.1101/sqb.1999.64.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Reth
- Abteilung für Molekulare Immunologie, Biologie III, Universität Freiburg and Max-Planck-Institut für Immunbiologie, Stübeweg 51, 79108 Freiburg, Germany
| | | |
Collapse
|
157
|
Finco TS, Yablonski D, Lin J, Weiss A. The adapter proteins LAT and SLP-76 are required for T-cell activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:265-74. [PMID: 11232295 DOI: 10.1101/sqb.1999.64.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T S Finco
- Department of Biology, Agnes Scott College, Decatur, Georgia 30030, USA
| | | | | | | |
Collapse
|
158
|
Abstract
The SH3 domain is perhaps the best-characterized member of the growing family of protein-interaction modules. By binding with moderate affinity and selectivity to proline-rich ligands, these domains play critical roles in a wide variety of biological processes ranging from regulation of enzymes by intramolecular interactions, increasing the local concentration or altering the subcellular localization of components of signaling pathways, and mediating the assembly of large multiprotein complexes. SH3 domains and their binding sites have cropped up in many hundreds of proteins in species from yeast to man, which suggests that they provide the cell with an especially handy and adaptable means of bringing proteins together. The wealth of genetic, biochemical and structural information available provides an intimate and detailed portrait of the domain, serving as a framework for understanding other modular protein-interaction domains. Processes regulated by SH3 domains also raise important questions about the nature of specificity and the overall logic governing networks of protein interactions.
Collapse
Affiliation(s)
- B J Mayer
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA.
| |
Collapse
|
159
|
Miceli MC, Moran M, Chung CD, Patel VP, Low T, Zinnanti W. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin Immunol 2001; 13:115-28. [PMID: 11308295 DOI: 10.1006/smim.2000.0303] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor (TCR) antigen recognition induces the formation of a specialized 'immunological synapse' at the T cell : antigen presenting cell (APC) junction. This junction is generated by the recruitment and exclusion of particular proteins from the contact area and is required for T cell activation. We and others have hypothesized that lipid raft/non-raft partitioning provides a molecular basis for protein sorting which organizes the TCR, co-stimulators, signal transducers and the actin cytoskeleton at the T cell : APC interface. Here we discuss the emerging paradigm that co-stimulators induce the directional transport and clustering of lipid rafts at the T cell : APC interface, thus generating platform(s) specialized for processive and sustained TCR signal transduction and T cell activation. We also discuss recent data implicating the involvement of 'counter-stimulators' and other negative regulators which prevent optimal raft clustering at the TCR contact site and, thus, facilitate T cell inactivation and tolerance induction.
Collapse
Affiliation(s)
- M C Miceli
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095-1570, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Némorin JG, Laporte P, Bérubé G, Duplay P. p62dok negatively regulates CD2 signaling in Jurkat cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4408-15. [PMID: 11254695 DOI: 10.4049/jimmunol.166.7.4408] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
p62(dok) belongs to a newly identified family of adaptor proteins. In T cells, the two members that are predominantly expressed, p56(dok) and p62(dok), are tyrosine phosphorylated upon CD2 or CD28 stimulation, but not upon CD3 ligation. Little is known about the biological role of Dok proteins in T cells. In this study, to evaluate the importance of p62(dok) in T cell function, we generated Jurkat clones overexpressing p62(dok). Our results demonstrate that overexpression of p62(dok) in Jurkat cells has a dramatic negative effect on CD2-mediated signaling. The p62(dok)-mediated inhibition affects several biochemical events initiated by CD2 ligation, such as the increase of intracellular Ca(2+), phospholipase C gamma 1 activation, and extracellular signal-regulated kinase 1/2 activation. Importantly, these cellular events are not affected in the signaling cascade induced by engagement of the CD3/TCR complex. However, both CD3- and CD2-induced NF-AT activation and IL-2 secretion are impaired in p62(dok)-overexpressing cells. In addition, we show that CD2 but not CD3 stimulation induces p62(dok) and Ras GTPase-activating protein recruitment to the plasma membrane. These results suggest that p62(dok) plays a negative role at multiple steps in the CD2 signaling pathway. We propose that p62(dok) may represent an important negative regulator in the modulation of the response mediated by the TCR.
Collapse
Affiliation(s)
- J G Némorin
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval QC, Canada
| | | | | | | |
Collapse
|
161
|
Yoder J, Pham C, Iizuka YM, Kanagawa O, Liu SK, McGlade J, Cheng AM. Requirement for the SLP-76 adaptor GADS in T cell development. Science 2001; 291:1987-91. [PMID: 11239162 DOI: 10.1126/science.1057176] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
GADS is an adaptor protein implicated in CD3 signaling because of its ability to link SLP-76 to LAT. A GADS-deficient mouse was generated by gene targeting, and the function of GADS in T cell development and activation was examined. GADS- CD4-CD8- thymocytes exhibited a severe block in proliferation but still differentiated into mature T cells. GADS- thymocytes failed to respond to CD3 cross-linking in vivo and were impaired in positive and negative selection. Immunoprecipitation experiments revealed that the association between SLP-76 and LAT was uncoupled in GADS- thymocytes. These observations indicate that GADS is a critical adaptor for CD3 signaling.
Collapse
Affiliation(s)
- J Yoder
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
163
|
Bunnell SC, Kapoor V, Trible RP, Zhang W, Samelson LE. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 2001; 14:315-29. [PMID: 11290340 DOI: 10.1016/s1074-7613(01)00112-1] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
T cell activation induces functional changes in cell shape and cytoskeletal architecture. To facilitate the collection of dynamic, high-resolution images of activated T cells, we plated T cells on coverslips coated with antibodies to the T cell receptor (TCR). Using these images, we were able to quantitate the morphological responses of individual cells over time. Here, we show that TCR engagement triggers the formation and expansion of contacts bounded by continuously remodeled actin-rich rings. These processes are associated with the extension of lamellipodia and require actin polymerization, tyrosine kinase activation, cytoplasmic calcium increases, and LAT, an important hematopoietic adaptor. In addition, the maintenance of the resulting contact requires sustained calcium influxes, an intact microtubule cytoskeleton, and functional LAT.
Collapse
Affiliation(s)
- S C Bunnell
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
164
|
Affiliation(s)
- A Bauch
- Department of Pathology and Developmental Biology, Howard Hughes Medical Institute, Beckman Center for Molecular and Genetic Medicine, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|
165
|
Obergfell A, Judd BA, del Pozo MA, Schwartz MA, Koretzky GA, Shattil SJ. The molecular adapter SLP-76 relays signals from platelet integrin alphaIIbbeta3 to the actin cytoskeleton. J Biol Chem 2001; 276:5916-23. [PMID: 11113155 DOI: 10.1074/jbc.m010639200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet adhesion to fibrinogen through integrin alpha(IIb)beta(3) triggers actin rearrangements and cell spreading. Mice deficient in the SLP-76 adapter molecule bleed excessively, and their platelets spread poorly on fibrinogen. Here we used human platelets and a Chinese hamster ovary (CHO) cell expression system to better define the role of SLP-76 in alpha(IIb)beta(3) signaling. CHO cell adhesion to fibrinogen required alpha(IIb)beta(3) and stimulated tyrosine phosphorylation of SLP-76. SLP-76 phosphorylation required coexpression of Syk tyrosine kinase and stimulated association of SLP-76 with the adapter, Nck, and with the Rac exchange factor, Vav1. SLP-76 expression increased lamellipodia formation induced by Syk and Vav1 in adherent CHO cells (p < 0.001). Although lamellipodia formation requires Rac, SLP-76 functioned downstream of Rac by potentiating adhesion-dependent activation of PAK kinase (p < 0.001), a Rac effector that associates with Nck. In platelets, adhesion to fibrinogen stimulated the association of SLP-76 with the SLAP-130 adapter and with VASP, a SLAP-130 binding partner implicated in actin reorganization. Furthermore, SLAP-130 colocalized with VASP at the periphery of spread platelets. Thus, SLP-76 functions to relay signals from alpha(IIb)beta(3) to effectors of cytoskeletal reorganization. Therefore, deficient recruitment of specific adapters and effectors to sites of adhesion may explain the integrin phenotype of SLP-76(-/-) platelets.
Collapse
Affiliation(s)
- A Obergfell
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
166
|
Dietrich J, Cella M, Colonna M. Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) inhibits TCR signaling and actin cytoskeleton reorganization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2514-21. [PMID: 11160312 DOI: 10.4049/jimmunol.166.4.2514] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig-like transcript 2 (ILT2)/leukocyte Ig-like receptor 1 (LIR1) is a receptor, specific for MHC class I molecules, that inhibits lymphoid and myeloid cells. Here, we analyzed the molecular and cellular mechanisms by which ILT2 modulates T cell activation in primary CTLs and transfected T cell lines. We found that cross-linking with the TCR and the activity of Src tyrosine kinase p56(lck) were required for phosphorylation of ILT2 and subsequent recruitment of Src homology protein 1. In contrast, ILT2 triggering resulted in reduced phosphorylation of TCRzeta and linker for activation of T cells, which led to reduced TCRzeta-ZAP70 complex formation, as well as extracellular signal-related kinase 1 and 2 activation. Furthermore, ILT2 inhibited both superantigen and anti-TCR Ab-induced rearrangement of the actin cytoskeleton. The inhibitory effect mediated by ILT2 is probably concentrated at the APC-T cell interface because both TCR and ILT2 were strongly polarized toward the APC upon engagement by their specific ligands. Thus, ILT2 inhibits both signaling and cellular events involved in the activation of T cells.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Antibodies, Monoclonal/metabolism
- Antigens, CD
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Line, Transformed
- Cell Polarity/immunology
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Cytoskeleton/immunology
- Cytoskeleton/metabolism
- Humans
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Intracellular Signaling Peptides and Proteins
- Leukocyte Immunoglobulin-like Receptor B1
- Ligands
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/immunology
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- src Homology Domains/immunology
Collapse
Affiliation(s)
- J Dietrich
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
167
|
Ku GM, Yablonski D, Manser E, Lim L, Weiss A. A PAK1-PIX-PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J 2001; 20:457-65. [PMID: 11157752 PMCID: PMC133476 DOI: 10.1093/emboj/20.3.457] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Given the importance of the Rho GTPase family member Rac1 and the Rac1/Cdc42 effector PAK1 in T-cell activation, we investigated the requirements for their activation by the T-cell receptor (TCR). Rac1 and PAK1 activation required the tyrosine kinases ZAP-70 and Syk, but not the cytoplasmic adaptor Slp-76. Surprisingly, PAK1 was activated in the absence of the transmembrane adaptor LAT while Rac1 was not. However, efficient PAK1 activation required its binding sites for Rho GTPases and for PIX, a guanine nucleotide exchange factor for Rho GTPases. The overexpression of ssPIX that either cannot bind PAK1 or lacks GEF function blocked PAK1 activation. These data suggest that a PAK1-PIX complex is recruited to appropriate sites for activation and that PIX is required for Rho family GTPase activation upstream of PAK1. Furthermore, we detected a stable trimolecular complex of PAK1, PIX and the paxillin kinase linker p95PKL. Taken together, these data show that PAK1 contained in this trimolecular complex is activated by a novel LAT- and Slp-76-independent pathway following TCR stimulation.
Collapse
Affiliation(s)
| | - Deborah Yablonski
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Edward Manser
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Louis Lim
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| | - Arthur Weiss
- Howard Hughes Medical Institute, Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143-0414, USA,
Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649 Bat Galim, Haifa 31096, Israel, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609 and Institute of Neurology, University College London, London WC1N 1PJ, UK Corresponding author e-mail:
| |
Collapse
|
168
|
Tsoukas CD, Grasis JA, Ching KA, Kawakami Y, Kawakami T. Itk/Emt: a link between T cell antigen receptor-mediated Ca2+ events and cytoskeletal reorganization. Trends Immunol 2001; 22:17-20. [PMID: 11286686 DOI: 10.1016/s1471-4906(00)01795-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Itk/Emt, a tec family tyrosine kinase, is important for T-cell development and activation through the antigen receptor. Here, we review data suggesting that Itk/Emt is involved in the generation of critical second messengers (Ca(2+), PKC) whose duration it modulates by regulation of cytoskeletal reorganization. We propose that Itk/Emt constitutes an important link between these critical signaling events.
Collapse
Affiliation(s)
- C D Tsoukas
- Department of Biology and the Molecular Biology Institute, San Diego State University, CA 92182, USA.
| | | | | | | | | |
Collapse
|
169
|
Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 2000; 20:9212-24. [PMID: 11094073 PMCID: PMC102179 DOI: 10.1128/mcb.20.24.9212-9224.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A recently reported new member of the Vav family proteins, Vav3 has been identified as a Ros receptor protein tyrosine kinase (RPTK) interacting protein by yeast two-hybrid screening. Northern analysis shows that Vav3 has a broad tissue expression profile that is distinct from those of Vav and Vav2. Two species of Vav3 transcripts, 3.4 and 5.4 kb, were detected with a differential expression pattern in various tissues. Transient expression of Vav in 293T and NIH 3T3 cells demonstrated that ligand stimulation of several RPTKs (epidermal growth factor receptor [EGFR], Ros, insulin receptor [IR], and insulin-like growth factor I receptor [IGFR]) led to tyrosine phosphorylation of Vav3 and its association with the receptors as well as their downstream signaling molecules, including Shc, Grb2, phospholipase C (PLC-gamma), and phosphatidylinositol 3 kinase. In vitro binding assays using glutathione S-transferase-fusion polypeptides containing the GTPase-binding domains of Rok-alpha, Pak, or Ack revealed that overexpression of Vav3 in NIH 3T3 cells resulted in the activation of Rac-1 and Cdc42 whereas a deletion mutant lacking the N-terminal calponin homology and acidic region domains activated RhoA and Rac-1 but lost the ability to activate Cdc42. Vav3 induced marked membrane ruffles and microspikes in NIH 3T3 cells, while the N-terminal truncation mutants of Vav3 significantly enhanced membrane ruffle formation but had a reduced ability to induce microspikes. Activation of IR further enhanced the ability of Vav3 to induce membrane ruffles, but IGFR activation specifically promoted Vav3-mediated microspike formation. N-terminal truncation of Vav3 activated its transforming potential, as measured by focus-formation assays. We conclude that Vav3 mediates RPTK signaling and regulates GTPase activity, its native and mutant forms are able to modulate cell morphology, and it has the potential to induce cell transformation.
Collapse
Affiliation(s)
- L Zeng
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Adler CE, Miyoshi-Akiyama T, Aleman LM, Tanaka M, Smith JM, Mayer BJ. Abl family kinases and Cbl cooperate with the Nck adaptor to modulate Xenopus development. J Biol Chem 2000; 275:36472-8. [PMID: 10967110 DOI: 10.1074/jbc.m005424200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that overexpression of the Nck Src homology (SH) 2/SH3 adaptor in Xenopus embryos induced developmental defects including anterior truncation and mesoderm ventralization. Mutagenic analysis indicated that this was due to relocalization of endogenous proteins that bind the first two SH3 domains of Nck. We therefore screened a Xenopus expression library with Nck SH3 domains to identify Nck-interacting proteins, and evaluated candidate binding proteins for a potential role in Nck-induced anterior truncation/ventralization. Of 39 binding proteins analyzed, only the Abl-related kinase Arg and the Cbl proto-oncogene product bound preferentially to the first two SH3 domains in tandem compared with the individual domains, consistent with a role in the developmental phenotype. High level overexpression of c-Abl or Arg alone induced anterior truncation, as did lower levels of an activated form of Abl; Cbl alone had no effect. In a sensitized system where subthreshold amounts of a ventralizing Nck mutant were expressed, co-expression of the combination of Abl or Arg and Cbl at modest levels strongly potentiated anterior truncation, while Arg, Abl, or Cbl alone were without effect. These results suggest a role for both Cbl and Abl family kinases in patterning the Xenopus embryo.
Collapse
Affiliation(s)
- C E Adler
- Laboratory of Molecular Medicine, Children's Hospital and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
171
|
Ebert PJ, Baker JF, Punt JA. Immature CD4+CD8+ thymocytes do not polarize lipid rafts in response to TCR-mediated signals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5435-42. [PMID: 11067895 DOI: 10.4049/jimmunol.165.10.5435] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TCR-mediated stimulation induces activation and proliferation of mature T cells. When accompanied by signals through the costimulatory receptor CD28, TCR signals also result in the recruitment of cholesterol- and glycosphingolipid-rich membrane microdomains (lipid rafts), which are known to contain several molecules important for T cell signaling. Interestingly, immature CD4(+)CD8(+) thymocytes respond to TCR/CD28 costimulation not by proliferating, but by dying. In this study, we report that, although CD4(+)CD8(+) thymocytes polarize their actin cytoskeleton, they fail to recruit lipid rafts to the site of TCR/CD28 costimulation. We show that coupling of lipid raft mobilization to cytoskeletal reorganization can be mediated by phosphoinositide 3-kinase, and discuss the relevance of these findings to the interpretation of TCR signals by immature vs mature T cells.
Collapse
Affiliation(s)
- P J Ebert
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | | | | |
Collapse
|
172
|
Epler JA, Liu R, Chung H, Ottoson NC, Shimizu Y. Regulation of beta 1 integrin-mediated adhesion by T cell receptor signaling involves ZAP-70 but differs from signaling events that regulate transcriptional activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4941-9. [PMID: 11046020 DOI: 10.4049/jimmunol.165.9.4941] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stimulation of the CD3/TCR results within minutes in an increase in T cell adhesion mediated by beta(1) integrins. The biochemical pathways that control CD3-mediated increases in beta(1) integrin-mediated adhesion remain poorly characterized. In this study, the role of the tyrosine kinase ZAP-70 in the regulation of beta(1) integrin activity by the CD3/TCR was investigated. CD3 stimulation did not increase beta(1) integrin-mediated adhesion of the ZAP-70-deficient Jurkat T cell line, P116, to the beta(1) integrin ligand fibronectin. Reintroduction of wild-type ZAP-70, but not a kinase-inactive variant, K369R, corrected the adhesive defect observed in P116 T cells. In addition, the kinase-inactive ZAP-70 mutant inhibited CD3-induced adhesion of primary human T cell blasts. Interestingly, a ZAP-70 mutant with a tyrosine to phenylalanine substitution at position 319 (Y319F) restored the adhesive defect in P116 T cells, even though Y319F ZAP-70 failed to fully reconstitute CD3-initiated NF-AT-dependent transcription and tyrosine phosphorylation of the LAT adapter protein. Finally, expression of mutants of LAT and the SLP-76 adapter protein that modulate CD3-mediated activation of an NF-AT reporter gene failed to block CD3-induced increases in beta(1) integrin-mediated adhesion. These observations support a model in which the tyrosine kinase activity of ZAP-70 kinase is critical for regulation of beta(1) integrin activity by CD3/TCR. However, the signaling events downstream of ZAP-70 that regulate CD3/TCR-mediated activation of beta(1) integrin function exhibit key differences when compared with the signaling pathways that regulate transcriptional events initiated by CD3/TCR stimulation.
Collapse
Affiliation(s)
- J A Epler
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
173
|
Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. IMMUNOLOGY TODAY 2000; 21:584-91. [PMID: 11094263 DOI: 10.1016/s0167-5699(00)01716-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adapters can be defined as proteins that mediate intermolecular interactions within a signal transduction pathway and that lack both intrinsic enzymatic and transcriptional activity. Their essential role in lymphocyte signaling was revealed by recent analyses of mice and cell lines deficient in LAT, SLP-76 and BLNK. These and other adapters nucleate signaling complexes and facilitate coupling of antigen receptor triggering to functional responses in lymphocytes.
Collapse
Affiliation(s)
- M G Tomlinson
- Dept of Medicine and the Howard Hughes Medical Institute, University of California at San Francisco, CA 94143-0795, USA
| | | | | |
Collapse
|
174
|
Chen M, She H, Kim A, Woodley DT, Li W. Nckbeta adapter regulates actin polymerization in NIH 3T3 fibroblasts in response to platelet-derived growth factor bb. Mol Cell Biol 2000; 20:7867-80. [PMID: 11027258 PMCID: PMC86398 DOI: 10.1128/mcb.20.21.7867-7880.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SH3-SH3-SH3-SH2 adapter Nck represents a two-gene family that includes Nckalpha (Nck) and Nckbeta (Grb4/Nck2), and it links receptor tyrosine kinases to intracellular signaling networks. The function of these mammalian Nck genes has not been established. We report here a specific role for Nckbeta in platelet-derived growth factor (PDGF)-induced actin polymerization in NIH 3T3 cells. Overexpression of Nckbeta but not Nckalpha blocks PDGF-stimulated membrane ruffling and formation of lamellipoda. Mutation in either the SH2 or the middle SH3 domain of Nckbeta abolishes its interfering effect. Nckbeta binds at Tyr-1009 in human PDGF receptor beta (PDGFR-beta) which is different from Nckalpha's binding site, Tyr-751, and does not compete with phosphatidylinositol-3 kinase for binding to PDGFR. Microinjection of an anti-Nckbeta but not an anti-Nckalpha antibody inhibits PDGF-stimulated actin polymerization. Constitutively membrane-bound Nckbeta but not Nckalpha blocks Rac1-L62-induced membrane ruffling and formation of lamellipodia, suggesting that Nckbeta acts in parallel to or downstream of Rac1. This is the first report of Nckbeta's role in receptor tyrosine kinase signaling to the actin cytoskeleton.
Collapse
Affiliation(s)
- M Chen
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
175
|
Judd BA, Myung PS, Leng L, Obergfell A, Pear WS, Shattil SJ, Koretzky GA. Hematopoietic reconstitution of SLP-76 corrects hemostasis and platelet signaling through alpha IIb beta 3 and collagen receptors. Proc Natl Acad Sci U S A 2000; 97:12056-61. [PMID: 11050236 PMCID: PMC17293 DOI: 10.1073/pnas.97.22.12056] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mice deficient in the hematopoietic cell-specific adapter protein SLP-76 demonstrate a failure of T cell development and fetal hemorrhage. Although SLP-76-deficient platelets manifest defective collagen receptor signaling, this alone may not explain the observed bleeding diathesis. Because alpha IIb beta 3, the platelet fibrinogen receptor, is required for normal hemostasis, we explored a potential role for SLP-76 in alpha IIb beta 3 signaling. Interaction of soluble or immobilized fibrinogen with normal human or murine platelets triggers rapid tyrosine phosphorylation of SLP-76. Moreover, platelet adhesion to fibrinogen stimulates actin rearrangements, filopodial and lamellipodial extension, and localization of tyrosine phosphorylated proteins to the cell periphery. In contrast, SLP-76-deficient murine platelets bind fibrinogen normally, but spread poorly and exhibit reduced levels of phosphotyrosine. The in vivo bleeding diathesis as well as the defects in platelet responses to fibrinogen and collagen are reversed by retroviral transduction of SLP-76 into bone marrow derived from SLP-76-deficient mice. These studies establish that SLP-76 functions downstream of alpha IIb beta 3 and collagen receptors in platelets. Furthermore, expression of SLP-76 in hematopoietic cells, including platelets, plays a necessary role in hemostasis.
Collapse
Affiliation(s)
- B A Judd
- University of Iowa Program in Molecular Biology, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Wong J, Ishiai M, Kurosaki T, Chan AC. Functional complementation of BLNK by SLP-76 and LAT linker proteins. J Biol Chem 2000; 275:33116-22. [PMID: 10934198 DOI: 10.1074/jbc.m004467200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated a requirement for the SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activation of T cells) adaptor/linker proteins in T cell antigen receptor activation and T cell development as well as the BLNK (B cell linker) linker protein in B cell antigen receptor (BCR) signal transduction and B cell development. Whereas the SLP-76 and LAT adaptor proteins are expressed in T, natural killer, and myeloid cells and platelets, BLNK is preferentially expressed in B cells and monocytes. Although BLNK is structurally homologous to SLP-76, BLNK interacts with a variety of downstream signaling proteins that interact directly with both SLP-76 and LAT. Here, we demonstrate that neither SLP-76 nor LAT alone is sufficient to restore the signaling deficits observed in BLNK-deficient B cells. Conversely, the coexpression of SLP-76 and LAT together restored BCR-inducible calcium responses as well as activation of all three families of mitogen-activated protein kinases. Together, these data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function.
Collapse
Affiliation(s)
- J Wong
- Center for Immunology, the Divisions of Nephrology and Rheumatology, Department of Internal Medicine and Pathology, and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
177
|
Affiliation(s)
- M L Dustin
- Center for Immunology and Department of Pathology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
178
|
Boerth NJ, Sadler JJ, Bauer DE, Clements JL, Gheith SM, Koretzky GA. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med 2000; 192:1047-58. [PMID: 11015445 PMCID: PMC2193307 DOI: 10.1084/jem.192.7.1047] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2000] [Accepted: 08/16/2000] [Indexed: 11/04/2022] Open
Abstract
Two hematopoietic-specific adapters, src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) and linker for activation of T cells (LAT), are critical for T cell development and T cell receptor (TCR) signaling. Several studies have suggested that SLP-76 and LAT function coordinately to promote downstream signaling. In support of this hypothesis, we find that a fraction of SLP-76 localizes to glycolipid-enriched membrane microdomains (GEMs) after TCR stimulation. This recruitment of SLP-76 requires amino acids 224-244. The functional consequences of targeting SLP-76 to GEMs for TCR signaling are demonstrated using a LAT/SLP-76 chimeric protein. Expression of this construct reconstitutes TCR-inducted phospholipase Cgamma1 phosphorylation, extracellular signal-regulated kinase activation, and nuclear factor of activated T cells (NFAT) promoter activity in LAT-deficient Jurkat T cells (J.CaM2). Mutation of the chimeric construct precluding its recruitment to GEMs diminishes but does not eliminate its ability to support TCR signaling. Expression of a chimera that lacks SLP-76 amino acids 224-244 restores NFAT promoter activity, suggesting that if localized, SLP-76 does not require an association with Gads to promote T cell activation. In contrast, mutation of the protein tyrosine kinase phosphorylation sites of SLP-76 in the context of the LAT/SLP-76 chimera abolishes reconstitution of TCR function. Collectively, these experiments show that optimal TCR signaling relies on the compartmentalization of SLP-76 and that one critical function of LAT is to bring SLP-76 and its associated proteins to the membrane.
Collapse
Affiliation(s)
- N J Boerth
- Signal Transduction Program, The Leonard and Madlyn Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
179
|
Michel F, Mangino G, Attal-Bonnefoy G, Tuosto L, Alcover A, Roumier A, Olive D, Acuto O. CD28 utilizes Vav-1 to enhance TCR-proximal signaling and NF-AT activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3820-9. [PMID: 11034388 DOI: 10.4049/jimmunol.165.7.3820] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism through which CD28 costimulation potentiates TCR-driven gene expression is still not clearly defined. Vav-1, an exchange factor for Rho GTPases thought to regulate, mainly through Rac-1, various signaling components leading to cytokine gene expression, is tyrosine phosphorylated upon CD28 engagement. Here, we provide evidence for a key role of Vav-1 in CD28-mediated signaling. Overexpression of Vav-1 in Jurkat cells in combination with CD28 ligation strongly reduced the concentration of staphylococcus enterotoxin E/MHC required for TCR-induced NF-AT activation. Surprisingly, upon Vav-1 overexpression CD28 ligation sufficed to activate NF-AT in the absence of TCR engagement. This effect was not mediated by overexpression of ZAP-70 nor of SLP-76 but necessitated the intracellular tail of CD28, the intactness of the TCR-proximal signaling cascade, the Src-homology domain 2 (SH2) domain of Vav-1, and SLP-76 phosphorylation, an event which was favored by Vav-1 itself. Cells overexpressing Vav-1 formed lamellipodia and microspikes reminiscent of Rac-1 and Cdc42 activation, respectively, for which the SH2 domain of Vav-1 was dispensable. Together, these data suggest that CD28 engagement activates Vav-1 to boost TCR signals through a synergistic cooperation between Vav-1 and SLP-76 and probably via cortical actin changes to facilitate the organization of a signaling zone.
Collapse
Affiliation(s)
- F Michel
- Department of Immunology, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Gomez M, Tybulewicz V, Cantrell DA. Control of pre-T cell proliferation and differentiation by the GTPase Rac-I. Nat Immunol 2000; 1:348-52. [PMID: 11017108 DOI: 10.1038/79808] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The GTPase Rac-I has the potential for pleiotropic functions due to its ability to interact with multiple effectors. Here, activation of Rac-I is shown to potently regulate pre-T cell differentiation and proliferation at the point of T cell antigen receptor (TCR) beta selection. An activated Rac-I effector domain mutant that restricts signaling to particular actions on actin dynamics can drive pre-T cell differentiation. Rac-I activation cannot fully substitute for the pre-TCR complex but can fully correct defects in pre-T cell development in mice lacking the adapter molecule Vav-1. The present study identifies the subset of Rac-I responses that mediate Vav-1 action as critical regulators of TCR beta selection.
Collapse
Affiliation(s)
- M Gomez
- Imperial Cancer Research Fund, Lymphocyte Activation Laboratory, 44 Lincolns Inn Fields, London WC2A3PX, UK
| | | | | |
Collapse
|
181
|
Baldari CT, Telford JL, Acuto O. EMBO WORKSHOP REPORT: lymphocyte antigen receptor and coreceptor signaling Siena, Italy, November 6-10, 1999. EMBO J 2000; 19:4857-65. [PMID: 10990449 PMCID: PMC314226 DOI: 10.1093/emboj/19.18.4857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- C T Baldari
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | |
Collapse
|
182
|
Arrieumerlou C, Randriamampita C, Bismuth G, Trautmann A. Rac is involved in early TCR signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3182-9. [PMID: 10975833 DOI: 10.4049/jimmunol.165.6.3182] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GTPase Rac controls signaling pathways often related to actin polymerization in various cell types. In T lymphocytes, Rac is activated by Vav, a major component of the multiprotein transduction complex associated to the TCR. Although profound signaling defects have been observed in Vav-deficient mice, a role of Rac in the corresponding early TCR signaling has not been tested directly. This question was investigated in Jurkat T cells transfected with either a dominant-negative (RacN17) or a constitutively active (RacV12) form of Rac. In T cells expressing either RacN17 or RacV12, the anti-CD3-induced Ca2+ response and production of inositol-1,4,5-trisphosphate were inhibited. The basal level of phosphatidylinositol-4,5-bisphosphate was not significantly diminished by Rac mutants. The major inhibitory effect of Rac mutants on Ca2+ signaling is exerted on the activity of phospholipase C-gamma and, before that, on the phosphorylation of ZAP-70 and of the linker molecule for activation of T cells, LAT. An anti-CD3-induced increase in actin polymerization was observed in control cells but not in cells transfected with a Rac mutant. In addition, latrunculin, which binds to monomeric actin, simultaneously inhibited basal and CD3-induced actin polymerization and Ca2+ signaling. These findings suggest a link between the effects exerted by Rac mutants on cortical actin polymerization and on TCR signaling. Rac cycling between its GTP- and GDP-bound states is necessary for this signaling. Alterations observed in early TCR-dependent signals suggest that Rac contributes to the assembly of the TCR-associated multiprotein transduction complex.
Collapse
Affiliation(s)
- C Arrieumerlou
- Laboratoire d'Immunologie Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7627, Centre Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
183
|
Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 2000; 102:387-97. [PMID: 10975528 DOI: 10.1016/s0092-8674(00)00043-x] [Citation(s) in RCA: 436] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The p21-activated kinases (PAKs), stimulated by binding with GTP-liganded forms of Cdc42 or Rac, modulate cytoskeletal actin assembly and activate MAP-kinase pathways. The 2.3 A resolution crystal structure of a complex between the N-terminal autoregulatory fragment and the C-terminal kinase domain of PAK1 shows that GTPase binding will trigger a series of conformational changes, beginning with disruption of a PAK1 dimer and ending with rearrangement of the kinase active site into a catalytically competent state. An inhibitory switch (IS) domain, which overlaps the GTPase binding region of PAK1, positions a polypeptide segment across the kinase cleft. GTPase binding will refold part of the IS domain and unfold the rest. A related switch has been seen in the Wiskott-Aldrich syndrome protein (WASP).
Collapse
Affiliation(s)
- M Lei
- Laboratory of Molecular Medicine, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Tamir A, Eisenbraun MD, Garcia GG, Miller RA. Age-dependent alterations in the assembly of signal transduction complexes at the site of T cell/APC interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1243-51. [PMID: 10903722 DOI: 10.4049/jimmunol.165.3.1243] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR interaction with peptide-MHC complexes triggers migration of protein kinases, actin-binding proteins, and other accessory molecules to the T cell/APC synapse. We used confocal immunofluorescence methods to show that the adapter protein LAT (linker for activation of T cells) and the guanine nucleotide exchange factor Vav also move to the APC interface in mouse CD4 T cells conjugated to anti-CD3 hybridoma cells, and in TCR-transgenic CD4 cells conjugated to APC bearing agonist (but not closely related nonagonist) peptides. The proportion of CD4+ T cells able to relocalize LAT or Vav, or to relocate cytoplasmic NT-AT (NF-ATc) from cytoplasm to nucleus, declines about 2-fold in aged mice. The decline in LAT relocalization is accompanied by a similar decline in tyrosine phosphorylation of LAT in CD4 cells stimulated by CD3/CD4 cross-linking. Two-color experiments show that LAT redistribution is strongly associated with relocalization of both NF-ATc and protein kinase C-theta among individual cells. LAT migration to the immunological synapse depends on actin polymerization as well as on activity of Src family kinases, but aging leads to only a small change in the percentage of CD4 cells that redistribute F-actin to the site of APC contact. These results suggest that defects in the ability of T cells from aged donors to move kinase substrates and coupling factors, including LAT and Vav, into the T cell/APC contact region may contribute to the decline with age in NF-ATc-dependent gene expression, and thus to defects in T cell clonal expansion.
Collapse
Affiliation(s)
- A Tamir
- Department of Pathology, Cellular and Molecular Biology Graduate Program, and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
185
|
Wienands J. Signal transduction elements of the B cell antigen receptor and their role in immunodeficiencies. Immunobiology 2000; 202:120-33. [PMID: 10993287 DOI: 10.1016/s0171-2985(00)80059-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The primary function of B lymphocytes is to contribute to the elimination of foreign antigens by producing large amounts of soluble antibodies. The activation of B cells through their antigen receptor triggers a dynamic network of intracellular signaling proteins. The recent identification of the cytoplasmic adaptor protein SLP-65 (also called BLNK or BASH) provided insight in how the antigen receptor-regulated protein tyrosine kinases couple to downstream signaling cascades, including the mobilization of Ca2+ ions, activation of mitogen-activated kinases and reorganization of the cytoskeleton architecture. While these events have been mostly studied in mature B cells, it is now clear that the components of the antigen receptor and its downstream effector elements play also a central role during early and late B cell development, and in the apoptotic elimination of B cells with reactivity to self-antigens. Thus, genetic defects affecting the expression of antigen receptor subunits or its intracellular signaling proteins can interfere with B cell development and activation, and can cause severe antibody deficiencies in mouse and man. In this article I summarize our current picture of the B cell antigen receptor, how the extracellular signal is transported into the cell interior, and how dysregulation of these processes contribute to immune defects.
Collapse
Affiliation(s)
- J Wienands
- Institute of Biology III, University of Freiburg and Max-Planck-Institute of Immunobiology, Germany.
| |
Collapse
|
186
|
Zhang J, Somani AK, Siminovitch KA. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 2000; 12:361-78. [PMID: 10995583 DOI: 10.1006/smim.2000.0223] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The critical role for the SH2 domain-containing SHP-1 tyrosine phosphatase in regulating haemopoietic cell behaviour was initially revealed by data linking SHP-1 deficiency to the systemic autoimmunity and severe inflammation exhibited by motheaten mice. This discovery laid the groundwork for the identification of SHP-1 as an inhibitor of activation-promoting signalling cascades and for the coincident demonstration that protein tyrosine phosphatases (PTPs) such as SHP-1 show considerable specificity with respect to the mechanisms whereby they modulate the biochemical and biological sequelae of extracellular simulation. As outlined in this review, SHP-1 has now been implicated in the regulation of a myriad of signalling cascades and cell functions. As a result, the cumulative data generated from studies of this PTP have elucidated not only the functional relevance of SHP-1, but also a number of novel paradigms as to the molecular mechanisms whereby signalling cascades are regulated so as to either augment or abrogate specific cell behaviours.
Collapse
Affiliation(s)
- J Zhang
- Department of Medicine, University of Toronto, Ontario, Canada, M5G 1X5
| | | | | |
Collapse
|
187
|
Abstract
Ligation of the T cell antigen receptor (TCR) stimulates protein tyrosine kinases (PTKs), which regulate intracellular calcium and control the activity of protein kinase C (PKC) isozymes. PTKs activated by antigen receptors and costimulatory molecules also couple to phosphatidylinositol-3 kinase (PI3K) and control the activity of Ras- and Rho-family GTPases. T cell signal transduction is triggered physiologically by antigen in the context of antigen presenting cells (APC). The formation of stable and prolonged contacts between T cells and APCs is not necessary to initiate T cell signaling but is required for effective T cell proliferation and differentiation. The stabilization of the T cell/ APC conjugate is regulated by intracellular signals induced by antigen receptors and costimulators. These coordinate the regulation of the actin and microtubule cytoskeleton and organize a specialized signaling zone that allows sustained TCR signaling.
Collapse
Affiliation(s)
- O Acuto
- Molecular Immunology Unit, Department of Immunology, Pasteur Institute, 75724, Paris, France.
| | | |
Collapse
|
188
|
Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000; 1:23-9. [PMID: 10881170 DOI: 10.1038/76877] [Citation(s) in RCA: 505] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actin cytoskeleton seems to play two critical roles in the activation of T cells. One of these roles is T cell shape development and movement, including formation of the immunological synapse. The other is the formation of a scaffold for signaling components. This review focuses on the recent convergence of cell biology and immunology studies to explain the role of the actin cytoskeleton in creating the molecular basis for immunological synapse formation and T cell signaling.
Collapse
Affiliation(s)
- M L Dustin
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis MO 63110, USA.
| | | |
Collapse
|
189
|
Hehner SP, Hofmann TG, Dienz O, Droge W, Schmitz ML. Tyrosine-phosphorylated Vav1 as a point of integration for T-cell receptor- and CD28-mediated activation of JNK, p38, and interleukin-2 transcription. J Biol Chem 2000; 275:18160-71. [PMID: 10849438 DOI: 10.1074/jbc.275.24.18160] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we identified tyrosine-phosphorylated Vav1 as an early point of integration between the signaling routes triggered by the T-cell receptor and CD28 in human T-cell leukemia cells. Costimulation resulted in a prolonged and sustained phosphorylation and membrane localization of Vav1 in comparison to T-cell receptor activation alone. T-cell stimulation induced the recruitment of Vav1 to an inducible multiprotein T-cell activation signaling complex at the plasma membrane. Vav1 activated the mitogen-activated protein kinases JNK and p38. The Vav1-mediated activation of JNK employed a pathway involving Rac, HPK1, MLK3, and MKK7. The costimulation-induced activation of p38 was inhibited by dominant negative forms of Vav1, Rac, and MKK6. Here we show that Vav1 also induces transcription factors that bind to the CD28RE/AP element contained in the interleukin-2 promoter. A detailed mutational analysis of Vav1 revealed a series of constitutively active and nonfunctional forms of Vav1. Almost all inactive versions were mutated in their Dbl homology domain and behaved as dominant negative mutants that impaired costimulation-induced activation of JNK, p38, and CD28RE/AP-dependent transcription. In contrast to NF-AT-dependent transcription, Vav1-mediated transcriptional induction of the CD28RE/AP element in the interleukin-2 promoter could only partially be inhibited by cyclosporin A, suggesting a dual role of Vav1 for controlling Ca(2+)-dependent and -independent events.
Collapse
Affiliation(s)
- S P Hehner
- German Cancer Research Center (DKFZ), Department of Immunochemistry, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
190
|
Abstract
Adapter molecules contain discrete modular domains that direct specific intermolecular interactions to orchestrate assembly of signaling complexes. A number of adapter proteins play critical roles in both positive and negative regulation of antigen-receptor signaling, influencing lymphocyte development and function.
Collapse
Affiliation(s)
- P S Myung
- Graduate Program of Immunology, University of Pennsylvania, The Leonard and Madlyn Abramson Family Cancer Research Institute, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
191
|
Abstract
The past several years have seen the beginning of a shift in the way that TCR signal transduction is studied. Although many investigators continue to identify new molecules, particularly adaptor proteins, others have attempted to look at signaling events in a larger cellular context. Thus the identification of distinct formations of signaling molecules at junctions between T cells and antigen-presenting cells, the role of the cytoskeleton and the partitioning of molecules into specialized lipid subdomains have been the subjects of many publications. Such concepts are helping to assemble a blueprint of how the myriad adaptors and kinases fit together to effect T cell activation.
Collapse
Affiliation(s)
- L P Kane
- Department of Medicine, The Howard Hughes Medical Institute, University of California (San Francisco), San Francisco, CA 94143-0795, USA
| | | | | |
Collapse
|
192
|
Myung PS, Clements JL, White DW, Malik ZA, Cowdery JS, Allen LH, Harty JT, Kusner DJ, Koretzky GA. In vitro and in vivo macrophage function can occur independently of SLP-76. Int Immunol 2000; 12:887-97. [PMID: 10837416 DOI: 10.1093/intimm/12.6.887] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of SH2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76), a hematopoietic cell-specific adapter protein, is required to couple Syk family tyrosine kinase activation to downstream mediators such as phospholipase C (PLC)-gamma following TCR, platelet collagen receptor and mast cell Fc epsilon R stimulation. In addition to T cells, mast cells and platelets, SLP-76 is expressed in monocytes and macrophages. To determine the role of SLP-76 in Fc gamma R-stimulated signaling pathways in macrophages, we examined cultured bone marrow-derived macrophages (BMM) from SLP-76(-/-) and wild-type mice. In this study, we show that Fc gamma R cross-linking rapidly induces tyrosine phosphorylation of SLP-76 in wild-type BMM. Surprisingly, however, BMM from SLP-76(-/-) mice activate ERK2 and phosphorylate PLC-gamma 2 following Fc gamma R ligation. Furthermore, SLP-76(-/-) BMM display normal Fc gamma R-dependent phagocytic function and reactive oxygen intermediate production. SLP-76(-/-) and SLP-76(+/+) BMM secrete comparable levels of IL-12 in response to lipopolysaccharide and IFN-gamma. To examine macrophage function in vivo, SLP-76(-/-) mice were challenged i.v. with Listeria monocytogenes. SLP-76(-/-) mice survive and efficiently contain the acute phase of infection similar to wild-type mice but exhibit a stable chronic infection attributed to the lack of mature T cells. These data show that, although SLP-76 is required to couple Syk family PTK activity to downstream mediators and effector functions in Fc gamma R-induced pathways in some cell types, activation of Fc gamma R-dependent pathways occurs independently of SLP-76 in BM
Collapse
Affiliation(s)
- P S Myung
- Department of Physiology and Biophysics, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Abstract
Studies over the past few years have demonstrated the importance of linker or adaptor proteins in the signaling pathways activated by the B cell antigen-receptor. These proteins direct the appropriate subcellular localization of enzymatic complexes, amplify signaling pathways and integrate the functions of distinct signaling complexes. Many of the recently identified linker proteins function through these distinct mechanisms to upregulate the BCR signaling pathway. In addition, linker proteins facilitate the influences of co-receptors that augment or dampen the BCR signaling pathway.
Collapse
Affiliation(s)
- M E Kelly
- Department of Pediatrics, Medicine and Pathology, Center for Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, Box 8022, Saint Louis, MO 63110, USA
| | | |
Collapse
|
194
|
Némorin JG, Duplay P. Evidence that Llck-mediated phosphorylation of p56dok and p62dok may play a role in CD2 signaling. J Biol Chem 2000; 275:14590-7. [PMID: 10799545 DOI: 10.1074/jbc.275.19.14590] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.
Collapse
Affiliation(s)
- J G Némorin
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Université du Québec, Laval, Québec H7V 1B7, Canada
| | | |
Collapse
|
195
|
|
196
|
Krause M, Sechi AS, Konradt M, Monner D, Gertler FB, Wehland J. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the Arp2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J Cell Biol 2000; 149:181-94. [PMID: 10747096 PMCID: PMC2175102 DOI: 10.1083/jcb.149.1.181] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1999] [Accepted: 02/24/2000] [Indexed: 11/28/2022] Open
Abstract
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Antonio S. Sechi
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Marlies Konradt
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - David Monner
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| | - Frank B. Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138-4307
| | - Jürgen Wehland
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung (GBF), D-38124 Braunschweig, Germany
| |
Collapse
|
197
|
Abstract
SLP-76 and LAT are two recently identified adapter proteins that are involved in the signal transduction cascade initiated by engagement of the TCR. The role of these two molecules in thymocyte development has become clearer following studies of gene targeted mice. The data indicate that SLP-76 and LAT are each critical for the expansion and differentiation of double-negative thymocytes and that SLP-76 is essential for allelic exclusion at the TCRbeta locus.
Collapse
Affiliation(s)
- V I Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
198
|
López-Lago M, Lee H, Cruz C, Movilla N, Bustelo XR. Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Mol Cell Biol 2000; 20:1678-91. [PMID: 10669745 PMCID: PMC85351 DOI: 10.1128/mcb.20.5.1678-1691.2000] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vav works as a GDP/GTP exchange factor for Rac GTPases, thereby facilitating the transition of these proteins from the inactive (GDP-bound) into the active (GTP-bound) state. The stimulation of Vav exchange activity during cell signaling is mediated by tyrosine phosphorylation. To understand the roles of phosphorylation in the regulation of Vav activity, we have initiated the characterization of the residues of Vav that are phosphorylated during signal transduction. Here we show that a Y-to-F mutation in one of these residues, Y174, leads to the oncogenic activation of Vav and to the enhancement of other Vav-mediated signals such as those for cytoskeletal reorganization, JNK activation, and stimulation of the nuclear factor of activated T cells. The effect induced by the Y174F mutation is further accentuated by mutations in residue Y142 or Y160. The Y174F mutation has no effect on the exchange activity of Vav in vitro but results in higher levels of phosphorylation in vivo. Using a phosphospecific antibody, we found that Y174 is phosphorylated following stimulation of mitogenic and antigenic receptors. This phosphorylation event is conserved in Vav-2 and Vav-3, the other two members of the Vav family. These results identify a previously unknown mechanism for the oncogenic activation of Vav and suggest that the activity of this exchange factor is modulated by two antagonistic phosphorylation events, one involved in Vav activation and a second one implicated in Vav inactivation.
Collapse
Affiliation(s)
- M López-Lago
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794-7025, USA
| | | | | | | | | |
Collapse
|
199
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
200
|
Bonilla FA, Fujita RM, Pivniouk VI, Chan AC, Geha RS. Adapter proteins SLP-76 and BLNK both are expressed by murine macrophages and are linked to signaling via Fcgamma receptors I and II/III. Proc Natl Acad Sci U S A 2000; 97:1725-30. [PMID: 10677525 PMCID: PMC26503 DOI: 10.1073/pnas.040543597] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kDa) adapter protein is expressed in T cells and myeloid cells, whereas its homologue BLNK (B cell linker protein) is expressed in B cells. SLP-76 and BLNK link immunoreceptor tyrosine-based activation motif-containing receptors to signaling molecules that include phospholipase C-gamma, mitogen-activated protein kinases, and the GTPases Ras and Rho. SLP-76 plays a critical role in T cell receptor, FcvarepsilonRI and gpVI collagen receptor signaling, and participates in signaling via FcgammaR and killer cell inhibitory receptors. BLNK plays a critical role in B cell receptor signaling. We show that murine bone marrow-derived macrophages express both SLP-76 and BLNK. Selective ligation of FcgammaRI and FcgammaRII/III resulted in tyrosine phosphorylation of both SLP-76 and BLNK. SLP-76(-/-) bone marrow-derived macrophages display FcgammaR-mediated tyrosine phosphorylation of Syk, phospholipase C-gamma2, and extracellular signal regulated kinases 1 and 2, and normal FcgammaR-dependent phagocytosis. These data suggest that both SLP-76 and BLNK are coupled to FcgammaR signaling in murine macrophages.
Collapse
Affiliation(s)
- F A Bonilla
- Division of Immunology, Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|