151
|
Kong Y, Jiang J, Huang Y, Li L, Liu X, Jin Z, Wei F, Liu X, Zhang S, Duan X, Zhang Y, Tong Q, Chen H. Endoplasmic reticulum stress in melanoma pathogenesis and resistance. Biomed Pharmacother 2022; 155:113741. [DOI: 10.1016/j.biopha.2022.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
|
152
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
153
|
Matveyenka M, Rizevsky S, Kurouski D. Amyloid aggregates exert cell toxicity causing irreversible damages in the endoplasmic reticulum. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166485. [PMID: 35840040 PMCID: PMC10424722 DOI: 10.1016/j.bbadis.2022.166485] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Amyloid oligomers and fibrils are protein aggregates that cause an onset and progression of many neurodegenerative diseases, diabetes type 2 and systemic amyloidosis. Although a growing body of evidence shows that oligomers and fibrils trigger mitochondrial dysfunction simultaneously enhancing production of reactive oxygen species, exact mechanisms by which these protein aggregates exert their toxicities remain unclear. In this study, we used advanced microscopic and spectroscopic methods to examine topography and structure of insulin aggregates grown in the lipid-free environment, as well as in the presence of major classes of phospho- and sphingolipids. We also employed a set of molecular markers to determine the extent to which insulin aggregates induce a damage of cell endoplasmic reticulum (ER), an important cell organelle used for calcium storage, protein synthesis and folding. Our results show that insulin aggregates activate the expression of Activating Transcription Factor 6 (ATF6), a transmembrane protein that is involved in unfolded protein response (UPR) of the stressed ER. At the same time, two other ER transmembrane proteins, Inositol Requiring 1 (IRE1α) and eLF2a, the product of PKR-like ER kinase (PERK), exhibited very low expression levels. Furthermore, amyloid aggregates trigger an expression of the 78-kDa glucose-regulated protein GRP78, which is also involved in the UPR. We also observed UPR-induced expression of a proapoptotic transcription factor CHOP, which, in turn, regulates expression of caspase 3 kinase and BCL2 protein family members, including the ER localized Bax. These findings show that insulin oligomers and fibrils induce UPR-associated ER stress and ultimately fatal changes in cell homeostasis.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Viet Nam
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
154
|
Makam AA, Biswas A, Kothegala L, Gandasi NR. Setting the Stage for Insulin Granule Dysfunction during Type-1-Diabetes: Is ER Stress the Culprit? Biomedicines 2022; 10:2695. [PMID: 36359215 PMCID: PMC9687317 DOI: 10.3390/biomedicines10112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 02/06/2025] Open
Abstract
Type-1-diabetes (T1D) is a multifactorial disorder with a global incidence of about 8.4 million individuals in 2021. It is primarily classified as an autoimmune disorder, where the pancreatic β-cells are unable to secrete sufficient insulin. This leads to elevated blood glucose levels (hyperglycemia). The development of T1D is an intricate interplay between various risk factors, such as genetic, environmental, and cellular elements. In this review, we focus on the cellular elements, such as ER (endoplasmic reticulum) stress and its consequences for T1D pathogenesis. One of the major repercussions of ER stress is defective protein processing. A well-studied example is that of islet amyloid polypeptide (IAPP), which is known to form cytotoxic amyloid plaques when misfolded. This review discusses the possible association between ER stress, IAPP, and amyloid formation in β-cells and its consequences in T1D. Additionally, ER stress also leads to autoantigen generation. This is driven by the loss of Ca++ ion homeostasis. Imbalanced Ca++ levels lead to abnormal activation of enzymes, causing post-translational modification of β-cell proteins. These modified proteins act as autoantigens and trigger the autoimmune response seen in T1D islets. Several of these autoantigens are also crucial for insulin granule biogenesis, processing, and release. Here, we explore the possible associations between ER stress leading to defects in insulin secretion and ultimately β-cell destruction.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Anusmita Biswas
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
| | - Lakshmi Kothegala
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Nikhil R. Gandasi
- Cell metabolism Lab (GA-08), Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science (IISc), Bengaluru 560012, India
- Unit of Metabolic Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Medical Cell Biology, Uppsala University, BMC 571, 751 23 Uppsala, Sweden
| |
Collapse
|
155
|
A noncanonical function of EIF4E limits ALDH1B1 activity and increases susceptibility to ferroptosis. Nat Commun 2022; 13:6318. [PMID: 36274088 PMCID: PMC9588786 DOI: 10.1038/s41467-022-34096-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Ferroptosis is a type of lipid peroxidation-dependent cell death that is emerging as a therapeutic target for cancer. However, the mechanisms of ferroptosis during the generation and detoxification of lipid peroxidation products remain rather poorly defined. Here, we report an unexpected role for the eukaryotic translation initiation factor EIF4E as a determinant of ferroptotic sensitivity by controlling lipid peroxidation. A drug screening identified 4EGI-1 and 4E1RCat (previously known as EIF4E-EIF4G1 interaction inhibitors) as powerful inhibitors of ferroptosis. Genetic and functional studies showed that EIF4E (but not EIF4G1) promotes ferroptosis in a translation-independent manner. Using mass spectrometry and subsequent protein-protein interaction analysis, we identified EIF4E as an endogenous repressor of ALDH1B1 in mitochondria. ALDH1B1 belongs to the family of aldehyde dehydrogenases and may metabolize the aldehyde substrate 4-hydroxynonenal (4HNE) at high concentrations. Supraphysiological levels of 4HNE triggered ferroptosis, while low concentrations of 4HNE increased the cell susceptibility to classical ferroptosis inducers by activating the NOX1 pathway. Accordingly, EIF4E-dependent ALDH1B1 inhibition enhanced the anticancer activity of ferroptosis inducers in vitro and in vivo. Our results support a key function of EIF4E in orchestrating lipid peroxidation to ignite ferroptosis.
Collapse
|
156
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
157
|
Resende R, Fernandes T, Pereira AC, Marques AP, Pereira CF. Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor. Antioxid Redox Signal 2022; 37:758-780. [PMID: 35369731 DOI: 10.1089/ars.2020.8231] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Mitochondria-Associated Membranes (MAMs) are highly dynamic endoplasmic reticulum (ER)-mitochondria contact sites that, due to the transfer of lipids and Ca2+ between these organelles, modulate several physiologic processes, such as ER stress response, mitochondrial bioenergetics and fission/fusion events, autophagy, and inflammation. In addition, these contacts are implicated in the modulation of the cellular redox status since several MAMs-resident proteins are involved in the generation of reactive oxygen species (ROS), which can act as both signaling mediators and deleterious molecules, depending on their intracellular levels. Recent Advances: In the past few years, structural and functional alterations of MAMs have been associated with the pathophysiology of several neurodegenerative diseases that are closely associated with the impairment of several MAMs-associated events, including perturbation of the redox state on the accumulation of high ROS levels. Critical Issues: Inter-organelle contacts must be tightly regulated to preserve cellular functioning by maintaining Ca2+ and protein homeostasis, lipid metabolism, mitochondrial dynamics and energy production, as well as ROS signaling. Simultaneously, these contacts should avoid mitochondrial Ca2+ overload, which might lead to energetic deficits and deleterious ROS accumulation, culminating in oxidative stress-induced activation of apoptotic cell death pathways, which are common features of many neurodegenerative diseases. Future Directions: Given that Sig-1R is an ER resident chaperone that is highly enriched at the MAMs and that controls ER to mitochondria Ca2+ flux, as well as oxidative and ER stress responses, its potential as a therapeutic target for neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer, Parkinson, and Huntington diseases should be further explored. Antioxid. Redox Signal. 37, 758-780.
Collapse
Affiliation(s)
- Rosa Resende
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Tânia Fernandes
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Cláudia Fragão Pereira
- Center for Neuroscience and Cell Biology, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
158
|
Takeda S, Togawa T, Mishiba KI, Yamato KT, Iwata Y, Koizumi N. IRE1-mediated cytoplasmic splicing and regulated IRE1-dependent decay of mRNA in the liverwort Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:303-310. [PMID: 36349237 PMCID: PMC9592932 DOI: 10.5511/plantbiotechnology.22.0704a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
The unfolded protein response (UPR) or the endoplasmic reticulum (ER) stress response is a homeostatic cellular response conserved in eukaryotes to alleviate the accumulation of unfolded proteins in the ER. In the present study, we characterized the UPR in the liverwort Marchantia polymorpha to obtain insights into the conservation and divergence of the UPR in the land plants. We demonstrate that the most conserved UPR transducer in eukaryotes, IRE1, is conserved in M. polymorpha, which harbors a single gene encoding IRE1. We showed that MpIRE1 mediates cytoplasmic splicing of mRNA encoding MpbZIP7, a M. polymorpha homolog of bZIP60 in flowering plants, and upregulation of ER chaperone genes in response to the ER stress inducer tunicamycin. We further showed that MpIRE1 also mediates downregulation of genes encoding secretory and membrane proteins in response to ER stress, indicating the conservation of regulated IRE1-dependent decay of mRNA. Consistent with their roles in the UPR, Mpire1 ge and Mpbzip7 ge mutants exhibited higher sensitivity to ER stress. Furthermore, an Mpire1 ge mutant also exhibited retarded growth even without ER stress inducers, indicating the importance of MpIRE1 for vegetative growth in addition to alleviation of ER stress. The present study provides insights into the evolution of the UPR in land plants.
Collapse
Affiliation(s)
- Sho Takeda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
| | - Taisuke Togawa
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Kei-ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
| | - Katsuyuki T. Yamato
- Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
| |
Collapse
|
159
|
Kang Z, Chen F, Wu W, Liu R, Chen T, Xu F. UPRmt and coordinated UPRER in type 2 diabetes. Front Cell Dev Biol 2022; 10:974083. [PMID: 36187475 PMCID: PMC9523447 DOI: 10.3389/fcell.2022.974083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPRER) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPRmt and UPRER to cooperatively resist stresses such as hyperglycemia in T2D. Increasing evidence suggests that the protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) signaling pathway is likely an important node for coordinating UPRmt and UPRER. The PERK pathway is activated in both UPRmt and UPRER, and its downstream molecules perform important functions. In this review, we discuss the mechanisms of UPRmt, UPRER and their crosstalk in T2D.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Feng Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wanhui Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tianda Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fang Xu
- Department of Basic Medical Research, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Fang Xu,
| |
Collapse
|
160
|
Metabolic reprogramming and alteration of the redox state in hyper-productive MDCK cells for influenza a virus production. Biologicals 2022; 80:35-42. [PMID: 36114098 DOI: 10.1016/j.biologicals.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza is a global public health issue leading to widespread morbidity and mortality with devastating economic loss annually. Madin-Darby Canine Kidney (MDCK) cell line has been a major cell line for influenza vaccine applications. Though many details of the host metabolic responses upon influenza A virus (IAV) infection have been documented, little is known about the metabolic reprogramming features of a hyper-productive host for IAV vaccine production. In this study, a MDCK cell clone H1 was shown to have a particular high productivity of 30 × 103 virions/cell. The glucose and amino acid metabolism of H1 were evaluated, indicating that the high producer had a particular metabolic reprogramming phenotype compared to its parental cell line (P): elevated glucose uptake, superior tricarboxylic acid cycle flux, moderate amino acid consumption, and better regulation of reactive oxygen species. Combined with the stronger mitochondrial function and mild antiviral and inflammatory responses characterized previously, our results indicated that the high producer had a sufficient intracellular energy supply, and balanced substrate distribution for IAV and host protein synthesis as well as the intracellular redox status. Understanding of these metabolic alterations paves the way for the rational cell line development and reasonable process optimization for high-yield influenza vaccine production.
Collapse
|
161
|
Zhan M, Wen L, Zhu M, Gong J, Xi C, Wen H, Xu G, Shen H. Integrative Analysis of Transcriptome and Metabolome Reveals Molecular Responses in Eriocheir sinensis with Hepatopancreatic Necrosis Disease. BIOLOGY 2022; 11:1267. [PMID: 36138745 PMCID: PMC9495758 DOI: 10.3390/biology11091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Hepatopancreatic necrosis disease (HPND) is a highly lethal disease that first emerged in 2015 in Jiangsu Province, China. So far, most researchers believe that this disease is caused by abiotic factors. However, its true pathogenic mechanism remains unknown. In this study, the effects of HPND on the metabolism and other biological indicators of the Chinese mitten crab (Eriocheir sinensis) were evaluated by integrating transcriptomics and metabolomics. Our findings demonstrate that the innate immunity, antioxidant activity, detoxification ability, and nervous system of the diseased crabs were affected. Additionally, metabolic pathways such as lipid metabolism, nucleotide metabolism, and protein metabolism were dysregulated, and energy production was slightly increased. Moreover, the IL-17 signaling pathway was activated and high levels of autophagy and apoptosis occurred in diseased crabs, which may be related to hepatopancreas damage. The abnormal mitochondrial function and possible anaerobic metabolism observed in our study suggested that functional hypoxia may be involved in HPND progression. Furthermore, the activities of carboxylesterase and acetylcholinesterase were significantly inhibited, indicating that the diseased crabs were likely stressed by pesticides such as pyrethroids. Collectively, our findings provide new insights into the molecular mechanisms altered in diseased crabs, as well as the etiology and pathogenic mechanisms of HPND.
Collapse
Affiliation(s)
- Ming Zhan
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Lujie Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mengru Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jie Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changjun Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haibo Wen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
162
|
Alzahrani MR, Guan BJ, Zagore LL, Wu J, Chen CW, Licatalosi DD, Baker KE, Hatzoglou M. Newly synthesized mRNA escapes translational repression during the acute phase of the mammalian unfolded protein response. PLoS One 2022; 17:e0271695. [PMID: 35947624 PMCID: PMC9365188 DOI: 10.1371/journal.pone.0271695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress, caused by the accumulation of misfolded proteins in the ER, elicits a homeostatic mechanism known as the Unfolded Protein Response (UPR). The UPR reprograms gene expression to promote adaptation to chronic ER stress. The UPR comprises an acute phase involving inhibition of bulk protein synthesis and a chronic phase of transcriptional induction coupled with the partial recovery of protein synthesis. However, the role of transcriptional regulation in the acute phase of the UPR is not well understood. Here we analyzed the fate of newly synthesized mRNA encoding the protective and homeostatic transcription factor X-box binding protein 1 (XBP1) during this acute phase. We have previously shown that global translational repression induced by the acute UPR was characterized by decreased translation and increased stability of XBP1 mRNA. We demonstrate here that this stabilization is independent of new transcription. In contrast, we show XBP1 mRNA newly synthesized during the acute phase accumulates with long poly(A) tails and escapes translational repression. Inhibition of newly synthesized RNA polyadenylation during the acute phase decreased cell survival with no effect in unstressed cells. Furthermore, during the chronic phase of the UPR, levels of XBP1 mRNA with long poly(A) tails decreased in a manner consistent with co-translational deadenylation. Finally, additional pro-survival, transcriptionally-induced mRNAs show similar regulation, supporting the broad significance of the pre-steady state UPR in translational control during ER stress. We conclude that the biphasic regulation of poly(A) tail length during the UPR represents a previously unrecognized pro-survival mechanism of mammalian gene regulation.
Collapse
Affiliation(s)
- Mohammed R. Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Leah L. Zagore
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chien-Wen Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Donny D. Licatalosi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kristian E. Baker
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
163
|
Moreira P, Matos P, Figueirinha A, Salgueiro L, Batista MT, Branco PC, Cruz MT, Pereira CF. Forest Biomass as a Promising Source of Bioactive Essential Oil and Phenolic Compounds for Alzheimer's Disease Therapy. Int J Mol Sci 2022; 23:ijms23158812. [PMID: 35955963 PMCID: PMC9369093 DOI: 10.3390/ijms23158812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-β (Aβ) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Maria Teresa Cruz
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Cláudia Fragão Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
164
|
Qiao L, Yan S, Dou X, Song X, Chang J, Pi S, Zhang X, Xu C. Biogenic Selenium Nanoparticles Alleviate Intestinal Epithelial Barrier Damage through Regulating Endoplasmic Reticulum Stress-Mediated Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3982613. [PMID: 36035212 PMCID: PMC9410834 DOI: 10.1155/2022/3982613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
The intestinal barrier plays a fundamental role in body health. Intracellular redox imbalance can trigger endoplasmic reticulum stress (ERS) and mitophagy, leading to intestinal barrier damage. Our previous studies demonstrated that mitophagy is closely associated with the protective effects of biogenic selenium nanoparticles (SeNPs) on intestinal epithelial barrier function. Thus, we hypothesize that ERS and mitophagy are likely involved in the regulatory effects of SeNPs on oxidative stress-induced intestinal epithelial barrier dysfunction. The results showed that oxidative stress or ERS caused the increase of intestinal epithelial permeability. SeNPs effectively alleviated hydrogen peroxide (H2O2-)-induced structural damage of endoplasmic reticulum (ER) and mitochondria of porcine jejunal epithelial cells (IPEC-J2). SeNPs significantly decreased intracellular inositol triphosphate (IP3) and Ca2+ concentration, down-regulated inositol trisphosphate receptor (IP3R) expression level, and up-regulated ER-resident selenoproteins mRNA levels in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment significantly decreased the intracellular Ca2+, IP3, IP3R, and reactive oxygen species (ROS) levels; protected the structure and function of ER and mitochondria; and effectively alleviated the increase of intestinal epithelial permeability of IPEC-J2 cells exposed to tunicamycin (TM). Moreover, SeNPs significantly inhibited the colocalization of mitochondria and lysosomes. Furthermore, compared with TM model group, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4 and AMPK/mTOR/PINK1 signaling pathway. The PERK agonist (CCT020312) and the AMPK agonist (AICAR) could reverse the protective effects of SeNPs on IPEC-J2 cells. The PERK inhibitor (GSK2656157) and the AMPK inhibitor (compound C) had a similar effect on IPEC-J2 cells as that of SeNPs. In summary, the protective effects of SeNPs on intestinal barrier dysfunction are closely associated with ERS-related PERK and mitophagy-related AMPK signaling pathway.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
165
|
PERK/EIF2AK3 integrates endoplasmic reticulum stress-induced apoptosis, oxidative stress and autophagy responses in immortalised retinal pigment epithelial cells. Sci Rep 2022; 12:13324. [PMID: 35922637 PMCID: PMC9349321 DOI: 10.1038/s41598-022-16909-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Retinal pigment epithelium (RPE) performs essential functions for ensuring retinal homeostasis and is a key site for pathogenic changes leading to age-related macular degeneration (AMD). Compromised proteostasis in RPE results in ER stress and ER stress-dependent antioxidant, apoptosis and autophagic responses. ER stress induces the unfolded protein response (UPR) in which EIF2AK3, encoding the protein kinase RNA-like ER kinase (PERK), acts as a key regulator. Downregulated EIF2AK3 gene expression has recently been identified in AMD using human donor RPE, however the molecular mechanisms that integrate the various ER-mediated cellular pathways underpinning progressive RPE dysfunction in AMD have not been fully characterised. This study investigated the downstream effects of PERK downregulation in response to Brefeldin A (BFA)-induced ER stress in ARPE-19 cells. PERK downregulation resulted in increased ER stress and impaired apoptosis induction, antioxidant responses and autophagic flux. ARPE-19 cells were unable to efficiently induce autophagy following PERK downregulation and PERK presented a role in regulating the rate of autophagy induction. The findings support PERK downregulation as an integrative event facilitating dysregulation of RPE processes critical to cell survival known to contribute to AMD development and highlight PERK as a potential future therapeutic target for AMD.
Collapse
|
166
|
Li Y, Xie X, Liao S, Zeng Z, Li S, Xie B, Huang Q, Zhou H, Zhou C, Lin J, Huang Y, Xu D. A011, a novel small-molecule ligand of σ 2 receptor, potently suppresses breast cancer progression via endoplasmic reticulum stress and autophagy. Biomed Pharmacother 2022; 152:113232. [PMID: 35679718 DOI: 10.1016/j.biopha.2022.113232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer has surpassed lung cancer to become the most commonly diagnosed cancer in women worldwide. Sigma-2 (σ2) receptor is considered to be a potential therapeutic target for breast cancer because of its high expression in breast cancer cells and low expression in normal breast cells. Many σ2 ligands have been reported to have excellent anticancer activity, but their mechanism of action has not been fully elucidated. We discovered that A011 had high affinity and selectivity for σ2 receptor, reduced proliferation in five cancer cell lines, and significantly inhibited the monoclonal formation ability of MCF-7 cells. Furthermore, A011 rapidly increased the levels of intracellular Ca2+ and reactive oxygen species and induced autophagy. Molecular pharmacology studies revealed that A011 induced endoplasmic reticulum stress, activated the PERK-eIF2α-CHOP pathway and inhibited the activation of the PI3K-Akt-mTOR pathway, leading to cell apoptosis. In an in vivo tumor model, A011 showed obvious anti-tumor activity and no significant toxicity. More importantly, our study demonstrated for the first time that endoplasmic reticulum stress is the main mechanism of anti-cancer effects for σ2 ligands, at least for A011. A011 may potentially be useful as a therapeutic agent for treating breast cancer.
Collapse
Affiliation(s)
- Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Shiyi Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Siyan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510016, China
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018 China
| | - Qunfa Huang
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan 523808, China
| | - Jiantao Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Yunsheng Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China.
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
167
|
Sawarkar R. Transcriptional lockdown during acute proteotoxic stress. Trends Biochem Sci 2022; 47:660-672. [PMID: 35487807 PMCID: PMC9041648 DOI: 10.1016/j.tibs.2022.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Cells experiencing proteotoxic stress downregulate the expression of thousands of active genes and upregulate a few stress-response genes. The strategy of downregulating gene expression has conceptual parallels with general lockdown in the global response to the coronavirus disease 2019 (COVID-19) pandemic. The mechanistic details of global transcriptional downregulation of genes, termed stress-induced transcriptional attenuation (SITA), are only beginning to emerge. The reduction in RNA and protein production during stress may spare proteostasis capacity, allowing cells to divert resources to control stress-induced damage. Given the relevance of translational downregulation in a broad variety of diseases, the role of SITA in diseases caused by proteotoxicity should be investigated in future, paving the way for potential novel therapeutics.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Medical Research Council (MRC), University of Cambridge, Cambridge, UK.
| |
Collapse
|
168
|
Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR mt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022; 15:98. [PMID: 35864539 PMCID: PMC9306209 DOI: 10.1186/s13045-022-01317-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are essential for tumor growth and progression. However, the heavy demand for mitochondrial activity in cancer leads to increased production of mitochondrial reactive oxygen species (mtROS), accumulation of mutations in mitochondrial DNA, and development of mitochondrial dysfunction. If left unchecked, excessive mtROS can damage and unfold proteins in the mitochondria to an extent that becomes lethal to the tumor. Cellular systems have evolved to combat mtROS and alleviate mitochondrial stress through a quality control mechanism called the mitochondrial unfolded protein response (UPRmt). The UPRmt system is composed of chaperones and proteases, which promote protein folding or eliminate mitochondrial proteins damaged by mtROS, respectively. UPRmt is conserved and activated in cancer in response to mitochondrial stress to maintain mitochondrial integrity and support tumor growth. In this review, we discuss how mitochondria become dysfunctional in cancer and highlight the tumor-promoting functions of key components of the UPRmt.
Collapse
Affiliation(s)
- Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
169
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
170
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
171
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
172
|
Rigg N, Abu-Hijleh FA, Patel V, Mishra RK. Ketamine-induced neurotoxicity is mediated through endoplasmic reticulum stress in vitro in STHdh Q7/Q7 cells. Neurotoxicology 2022; 91:321-328. [PMID: 35728656 DOI: 10.1016/j.neuro.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
Ketamine has traditionally been used as a dissociative anesthetic agent and more recently as a treatment for treatment-resistant depression. However, there is growing concern over the increased use of ketamine in recreational and therapeutic settings due to the potential neurotoxic effects. Recent studies have demonstrated that ketamine is cytotoxic in several cell types, such as fibroblasts, hepatocytes, uroepithelial cells, and adult induced pluripotent stem cells (iPSCs). Ketamine has been shown to dysregulate calcium signalling, increase reactive oxygen species (ROS) production, and impair mitochondrial function, ultimately leading to apoptosis. However, it is unclear whether endoplasmic reticulum (ER) stress plays a role in ketamine associated neurotoxicity in striatal neurons. Disruption to ER homeostasis can initiate ER-mediated cell death, which has been implicated in several neurodegenerative diseases. Thus, the purpose of this study was to determine whether ketamine's neurotoxic effects involve an ER stress-dependent pathway and to elucidate the underlying mechanisms involved in its neurotoxic effects. Mouse striatal cells were treated with various concentrations of ketamine (10 μM, 100 μM, 1 mM) or DMEM for 9-72 hrs. Cell viability was assessed using the MTT assay, and changes in gene expression of ER stress markers were evaluated using RT-qPCR. MTT results revealed that 1 mM ketamine decreased cell viability in striatal cells after 24 h of treatment. Gene expression studies complemented these findings such that ketamine upregulated pro-apoptotic ER stress markers, including X-box binding protein 1 (XBP1), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) and downregulated pro-survival ER stress proteins such as GRP78, MANF and CDNF. Ketamine activated all three stress sensing pathways including PERK, IRE1, and ATF6. Taken together, our results show that ketamine-induced neurotoxicity is mediated through an ER stress-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Nicolette Rigg
- Department of Psychiatry and Behavioural Neuroscience, Faculty of Health Science, McMaster University, Hamilton, ON, Canada.
| | - Fahed A Abu-Hijleh
- Department of Psychiatry and Behavioural Neuroscience, Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Vidhi Patel
- Department of Psychiatry and Behavioural Neuroscience, Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neuroscience, Faculty of Health Science, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
173
|
Schwed-Gross A, Hamiel H, Faber GP, Angel M, Ben-Yishay R, Benichou JIC, Ishay-Ronen D, Shav-Tal Y. Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics leading to cell death. J Cell Sci 2022; 135:276097. [PMID: 35713120 PMCID: PMC9450892 DOI: 10.1242/jcs.259629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) can assemble in cancer cells upon chemotoxic stress. Glucocorticoids function during stress responses and are administered with chemotherapies. The roles of glucocorticoids in SG assembly and disassembly pathways are unknown. We examined whether combining glucocorticoids such as cortisone with chemotherapies from the vinca alkaloid family, which dismantle the microtubule network, affects SG assembly and disassembly pathways and influences cell viability in cancer cells and human-derived organoids. Cortisone augmented SG formation when combined with vinorelbine (VRB). Live-cell imaging showed that cortisone increased SG assembly rates but reduced SG clearance rates after stress, by increasing protein residence times within the SGs. Mechanistically, VRB and cortisone signaled through the integrated stress response mediated by eIF2α (also known as EIF2S1), yet induced different kinases, with cortisone activating the GCN2 kinase (also known as EIF2AK4). Cortisone increased VRB-induced cell death and reduced the population of cells trapped in mitotic catastrophe. These effects were mediated by the core SG proteins G3BP1 and G3BP2. In conclusion, glucocorticoids induce SG assembly and cell death when administered with chemotherapies, suggesting that combining glucocorticoids with chemotherapies can enhance cancer cell chemosensitivity. Summary: Combining cortisone with the chemotherapy vinorelbine enhances the assembly of stress granules that are less likely to be cleared from the cells, augmenting vinorelbine-induced cell death.
Collapse
Affiliation(s)
- Avital Schwed-Gross
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hila Hamiel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gabriel P Faber
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mor Angel
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Rakefet Ben-Yishay
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Jennifer I C Benichou
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dana Ishay-Ronen
- Oncology Institute, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
174
|
Overton DL, Mastracci TL. Exocrine-Endocrine Crosstalk: The Influence of Pancreatic Cellular Communications on Organ Growth, Function and Disease. Front Endocrinol (Lausanne) 2022; 13:904004. [PMID: 35769082 PMCID: PMC9234176 DOI: 10.3389/fendo.2022.904004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus, a disease that affects nearly 536.6 million people worldwide, is characterized by the death or dysfunction of insulin-producing beta cells of the pancreas. The beta cells are found within the islets of Langerhans, which are composed of multiple hormone-producing endocrine cells including the alpha (glucagon), delta (somatostatin), PP (pancreatic polypeptide), and epsilon (ghrelin) cells. There is direct evidence that physical and paracrine interactions between the cells in the islet facilitate and support beta cell function. However, communication between endocrine and exocrine cells in the pancreas may also directly impact beta cell growth and function. Herein we review literature that contributes to the view that "crosstalk" between neighboring cells within the pancreas influences beta cell growth and function and the maintenance of beta cell health.
Collapse
Affiliation(s)
- Danielle L. Overton
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teresa L. Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
175
|
Patel P, Buchanan CN, Zdradzinski MD, Sahoo PK, Kar A, Lee S, Vaughn L, Urisman A, Oses-Prieto J, Dell’Orco M, Cassidy D, Costa I, Miller S, Thames E, Smith T, Burlingame A, Perrone-Bizzozero N, Twiss J. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res 2022; 50:5772-5792. [PMID: 35556128 PMCID: PMC9177972 DOI: 10.1093/nar/gkac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.
Collapse
Affiliation(s)
- Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Devon E Cassidy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
176
|
Hussain Y, Khan H, Efferth T, Alam W. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:153985. [PMID: 35358935 DOI: 10.1016/j.phymed.2022.153985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/14/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cancer is still an all-times issue due to a large and even increasing number of deaths. Impaired genes regulating cell proliferation and apoptosis are targets for the development of novel cancer treatments. HYPOTHESIS Increased transcription of NADPH oxidase activator (NOXA), Bcl2-like11 (BIM), BH3-only proteins and p53 unregulated apoptosis modulator (PUMA) is caused by the imbalance between pro- and anti-apoptotic Bcl-2 proteins due to endoplasmic reticulum (ER) stress. The membranous network of ER is present in all eukaryotic cells. ER stress facilitates the interaction between Bax and PUMA, triggering the release of cytochrome C. As a main intracellular organelle, ER is responsible for translocation as well as post-translation modification and protein folding. RESULTS Hesperetin is a cytoprotective flavonone, which acts against ER stress and protects from cell damage induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Hesperetin inhibits lipid peroxidation induced by Fe2+ and l-ascorbic acid in rat brain homogenates. CONCLUSION This review deals with the anticancer effects of hesperetin regarding the regulation of ER stress as a principal mechanism in the pathogenesis of tumors.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, 215123, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| |
Collapse
|
177
|
Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev 2022; 170:203781. [DOI: 10.1016/j.cdev.2022.203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
178
|
Shao S, Zhuang X, Zhang L, Qiao T. Antidepressants Fluoxetine Mediates Endoplasmic Reticulum Stress and Autophagy of Non-Small Cell Lung Cancer Cells Through the ATF4-AKT-mTOR Signaling Pathway. Front Pharmacol 2022; 13:904701. [PMID: 35620287 PMCID: PMC9127500 DOI: 10.3389/fphar.2022.904701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
Fluoxetine, one of the latest clinical antidepressants, is reported to have the anti-proliferative effect on cancer cells via immune-related pathways. However, the mechanism is still not known. This study mainly focused on the discovery of the molecular basis of the inhibitory effect of fluoxetine in lung cancer. The specific anti-proliferation effect and autophagy induced by fluoxetine on lung cancer cell were shown in CCK8 and immunofluorescence. The RNA sequence hinted that the endoplasmic reticulum (ER) stress-related protein and mTOR pathway were enriched after fluoxetine treatment. Western blot results revealed that the ER stress pathway was activated by fluoxetine, including PERK, ATF4, and CHOP, while the AKT/mTOR pathway was inhibited. In addition, the transfection of ATF4 siRNA further discovered that ER stress participated in the inhibition of AKT/mTOR pathway and the induction of anti-proliferation and autophagy in the fluoxetine-treated cells. More importantly, fluoxetine was demonstrated to play cytotoxic activity in cancer cells without affecting normal cells. Our results showed that fluoxetine triggered the ATF4-AKT-mTOR signaling pathway to induce cell cycle arrest and autophagy restraining cancer cells’ growth in lung cancer. This study found fluoxetine unaffected the proliferation of normal lung epithelial cells, providing safe clinical therapeutic strategies for lung cancer patients with depression.
Collapse
Affiliation(s)
- Shali Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lin Zhang
- Department of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
179
|
Li YJ, Hu PP, Zhang Z, Yuan ZH, Yang K, Sun ZL. Protective autophagy alleviates neurotoxin-gelsenicine induced apoptosis through PERK signaling pathway in Neuro-2a cells. Toxicology 2022; 474:153210. [PMID: 35588915 DOI: 10.1016/j.tox.2022.153210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Gelsemium elegans Benth. (G. elegans) showed significant biological activities, but it has the side effects of neurotoxicity, predominantly in the form of respiratory depression. Gelsenicine is the main toxic constituent of G. elegans which is highly neurotoxic to humans and animals. Although the acute neurotoxicity of gelsenicine has been widely reported, but neurotoxicity mechanisms have not been elucidated and its direct effect on nerve cells remains poorly characterized. In this study, Neuro-2a cells were used to be our object of study for determining the mechanism by which gelsenicine induced neurotoxicity. We found that gelsenicine is neurotoxic to Neuro-2a cells; indeed cell proliferation was inhibited and apoptosis was induced in a dose-dependent manner. Meanwhile, gelsenicine markedly promoted autophagy and activated autophagic flux. Additionally, promoting autophagy with rapamycin decreased apoptosis, whereas blocking autophagy with 3-methyladenine (3-MA) increased apoptosis. Furthermore, the protein kinase ribose nucleic acid (RNA)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway was involved in the induction of protective autophagy in Neuro-2a cells. Inhibition of PERK using small interfering RNA (siRNA) inhibited gelsenicine-induced autophagy and aggravated apoptosis. These data indicate that gelsenicine not only exhibited cytotoxicity and induced apoptosis, but it also induced protective autophagy via PERK signaling pathway to alleviate gelsenicine-mediated apoptosis in Neuro-2a cells.
Collapse
Affiliation(s)
- Yu-Juan Li
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan 423000, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pei-Pei Hu
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhiqiang Zhang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China
| | - Zhi-Hang Yuan
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kun Yang
- College of Animal Medicine, Henan University of Animal Husbandry and Economics, Zhengzhou, Henan 400045, China.
| | - Zhi-Liang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan 410128, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
180
|
KLF16 enhances stress tolerance of colorectal carcinomas by modulating nucleolar homeostasis and translational reprogramming. Mol Ther 2022; 30:2828-2843. [PMID: 35524408 PMCID: PMC9372374 DOI: 10.1016/j.ymthe.2022.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Translational reprogramming is part of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, which acts to the advantage of cancer growth and development in different stress conditions. But the mechanism of ER stress-related translational reprogramming in colorectal carcinoma (CRC) progression remains unclear. Here, we identified that Krüppel-Like Factor 16 (KLF16) can promote CRC progression and stress tolerance through translational reprogramming. The expression of KLF16 was upregulated in CRC tissues and associated with poor prognosis for CRC patients. We found that ER stress inducers can recruit KLF16 to the nucleolus and increase its interaction with two essential proteins for nucleolar homeostasis, nucleophosmin1 (NPM1) and fibrillarin (FBL). Moreover, knockdown of KLF16 can dysregulate nucleolar homeostasis in CRC cells. Translation-reporter system and polysome profiling assays further showed that KLF16 can effectively promote cap-independent translation of ATF4, which can enhance ER-phagy and proliferation of CRC cells. Overall, our study unveils a previously unrecognized role for KLF16 as an ER stress regulator through mediating translational reprogramming to enhance stress tolerance of CRC cells and provides a potential therapeutic vulnerability.
Collapse
|
181
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
182
|
Santos M, Fidalgo A, Varanda AS, Soares AR, Almeida GM, Martins D, Mendes N, Oliveira C, Santos MAS. Upregulation of tRNA-Ser-AGA-2-1 Promotes Malignant Behavior in Normal Bronchial Cells. Front Mol Biosci 2022; 9:809985. [PMID: 35586191 PMCID: PMC9108184 DOI: 10.3389/fmolb.2022.809985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Serine tRNAs (tRNASer) are frequently overexpressed in tumors and associated with poor prognosis and increased risk of recurrence in breast cancer. Impairment of tRNA biogenesis and abundance also impacts proteome homeostasis, and activates protein quality control systems. Herein, we aimed at testing whether increasing tRNASer abundance could foster tumor establishment through activation of the UPR. In order to do so, firstly we confirmed that the expression of tRNA-Ser-AGA-2-1 [hereafter tRNASer(AGA)] was upregulated by 1.79-fold in Stage I NSCLC tumors when compared to normal adjacent tissue. To study the impact of tRNASer(AGA) in early stage tumorigenesis, we induced its upregulation in a non-tumoral bronchial cell line, BEAS-2B. Upregulation of this tRNA increased cellular proliferation and protein synthesis rate, driven by eIF2α dephosphorylation and ATF4 activation downstream of PERK signaling. Futhermore, tRNASer(AGA) enhanced transformation potential in vitro, and promoted the establishment of slow growing tumors with aggressive features in nude mice. Our work highlights the importance of studying tRNA deregulation on early stage tumorigenesis, as they may be potential malignancy and aggressiveness biomarkers.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Raquel Soares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela M. Almeida
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department Pathology, Medical Faculty of Porto, Porto, Portugal
| | - Diana Martins
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
| | - Nuno Mendes
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department Pathology, Medical Faculty of Porto, Porto, Portugal
- *Correspondence: Carla Oliveira, ; Manuel A. S. Santos,
| | - Manuel A. S. Santos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- *Correspondence: Carla Oliveira, ; Manuel A. S. Santos,
| |
Collapse
|
183
|
Cytoplasmic proteotoxicity regulates HRI-dependent phosphorylation of eIF2α via the Hsp70-Bag3 module. iScience 2022; 25:104282. [PMID: 35573186 PMCID: PMC9097715 DOI: 10.1016/j.isci.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The major heat shock protein Hsp70 forms a complex with a scaffold protein Bag3 that links it to components of signaling pathways. Via these interactions, the Hsp70-Bag3 module functions as a proteotoxicity sensor that controls cell signaling. Here, to search for pathways regulated by the complex, we utilized JG-98, an allosteric inhibitor of Hsp70 that blocks its interaction with Bag3. RNAseq followed by the pathway analysis indicated that several signaling pathways including UPR were activated by JG-98. Surprisingly, only the eIF2α-associated branch of the UPR was activated, while other UPR branches were not induced, suggesting that the response was unrelated to the ER proteotoxicity and ER-associated kinase PERK1. Indeed, induction of the UPR genes under these conditions was driven by a distinct eIF2α kinase HRI. Hsp70-Bag3 directly interacted with HRI and regulated eIF2α phosphorylation upon cytoplasmic proteotoxicity. Therefore, cytosolic proteotoxicity can activate certain UPR genes via Hsp70-Bag3-HRI-eIF2α axis. Disruption of Hsp70-Bag3 module activates the unfolded protein response (UPR) This induction of UPR genes is mediated by HRI-dependent phosphorylation of eIF2α Hsp70-Bag3 “monitors” cytoplasmic proteotoxicity to activate the HRI-eIF2α axis eIF2α integrates proteotoxicity signals from ER and cytoplasm
Collapse
|
184
|
Bai Y, Treins C, Volpi VG, Scapin C, Ferri C, Mastrangelo R, Touvier T, Florio F, Bianchi F, Del Carro U, Baas FF, Wang D, Miniou P, Guedat P, Shy ME, D'Antonio M. Treatment with IFB-088 Improves Neuropathy in CMT1A and CMT1B Mice. Mol Neurobiol 2022; 59:4159-4178. [PMID: 35501630 PMCID: PMC9167212 DOI: 10.1007/s12035-022-02838-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Vera G Volpi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Thierry Touvier
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Florio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Frank F Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Wang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy.
| |
Collapse
|
185
|
Torres M, Hussain H, Dickson AJ. The secretory pathway - the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit Rev Biotechnol 2022; 43:628-645. [PMID: 35465810 DOI: 10.1080/07388551.2022.2047004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.
Collapse
Affiliation(s)
- Mauro Torres
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Hirra Hussain
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, UK.,Department of Chemical Engineering and Analytical Science, Biochemical and Bioprocess Engineering Group, University of Manchester, Manchester, UK
| |
Collapse
|
186
|
Ma Y, Wang L, Jiang X, Yao X, Huang X, Zhou K, Yang Y, Wang Y, Sun X, Guan X, Xu Y. Integrative Transcriptomics and Proteomics Analysis Provide a Deep Insight Into Bovine Viral Diarrhea Virus-Host Interactions During BVDV Infection. Front Immunol 2022; 13:862828. [PMID: 35371109 PMCID: PMC8966686 DOI: 10.3389/fimmu.2022.862828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is the causative agent of bovine viral diarrhea-mucosal disease (BVD-MD), an important viral disease in cattle that is responsible for extensive economic losses to the cattle industry worldwide. Currently, several underlying mechanisms involved in viral replication, pathogenesis, and evading host innate immunity of BVDV remain to be elucidated, particularly during the early stage of virus infection. To further explore the mechanisms of BVDV-host interactions, the transcriptomics and proteomics profiles of BVDV-infected MDBK cells were sequenced using RNA-seq and iTRAQ techniques, respectively, and followed by an integrative analysis. Compared with mock-infected MDBK cells, a total of 665 differentially expressed genes (DEGs) (391 down-regulated, 274 up-regulated) and 725 differentially expressed proteins (DEPs) (461 down-regulated, 264 up-regulated) were identified. Among these, several DEGs and DEPs were further verified using quantitative RT-PCR and western blot. Following gene ontology (GO) annotation and KEGG enrichment analysis, we determined that these DEGs and DEPs were significantly enriched in multiple important cellular signaling pathways including NOD-like receptor, Toll-like receptor, TNF, NF-κB, MAPK, cAMP, lysosome, protein processing in endoplasmic reticulum, lipid metabolism, and apoptosis signaling pathways. Significantly, the down-regulated DEGs and DEPs were predominantly associated with apoptosis-regulated elements, inflammatory factors, and antiviral elements that were involved in innate immunity, thus, indicating that BVDV could inhibit apoptosis and the expression of host antiviral genes to facilitate viral replication. Meanwhile, up-regulated DEGs and DEPs were primarily involved in metabolism and autophagy signaling pathways, indicating that BVDV could utilize the host metabolic resources and cell autophagy to promote replication. However, the potential mechanisms BVDV-host interactions required further experimental validation. Our data provide an overview of changes in transcriptomics and proteomics profiles of BVDV-infected MDBK cells, thus, providing an important basis for further exploring the mechanisms of BVDV-host interactions.
Collapse
Affiliation(s)
- Yingying Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinning Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kun Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yaqi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaobo Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
187
|
Liu J, Pan M, Liu Y, Huang D, Luo K, Wu Z, Zhang W, Mai K. Taurine alleviates endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in the muscle cells of olive flounder (Paralichthysolivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 123:358-368. [PMID: 35318136 DOI: 10.1016/j.fsi.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of taurine on endoplasmic reticulum stress, inflammatory cytokine expression and mitochondrial oxidative stress induced by high glucose in primary cultured muscle cells of olive flounder (Paralichthys olivaceus). Three experimental groups were designed as follows: muscle cells of olive flounder incubated with three kinds of medium containing 5 mM glucose (control), 33 mM glucose (HG) or 33 mM glucose + 10 mM taurine (HG + T), respectively. Results showed that taurine addition significantly alleviated the decreased activity of superoxide dismutase (SOD) and the ratio of reduced to oxidized glutathione (GSH/GSSG) induced by high glucose. The increase of cellular reactive oxygen species (ROS), malondialdehyde content and cell apoptosis induced by high glucose were alleviated by taurine. Besides, gene expression of glucose-regulated protein 78, PKR-like ER kinase, tumor necrosis factor-α, interleukin-6, interleukin-1β, interleukin-8, muscle atrophy F-box protein and muscle RING-finger protein 1 were significantly up-regulated in the HG group, and taurine addition decreased the expression of these genes. High glucose led to the swelling of the endoplasmic reticulum (ER). Meanwhile, the nuclear translocation of nuclear factor κB (NF-κB) and the release of cytochrome C from mitochondria induced by high glucose were suppressed by taurine addition. These results demonstrated that taurine alleviated ERS, inflammation and mitochondrial oxidative stress induced by high glucose in olive flounder muscle cells. The ROS production, NF-κB signaling pathway and mitochondria function were the main targets of the biological effects of taurine under high glucose condition.
Collapse
Affiliation(s)
- Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, 434024, China
| |
Collapse
|
188
|
Mallick P, Maity S, Chakrabarti O, Chakrabarti S. Role of systems biology and multi-omics analyses in delineating spatial interconnectivity and temporal dynamicity of ER stress mediated cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119210. [PMID: 35032474 DOI: 10.1016/j.bbamcr.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.
Collapse
Affiliation(s)
- Priyanka Mallick
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
189
|
Mennerich D, Kubaichuk K, Raza GS, Fuhrmann DC, Herzig KH, Brüne B, Kietzmann T. ER-stress promotes VHL-independent degradation of hypoxia-inducible factors via FBXW1A/βTrCP. Redox Biol 2022; 50:102243. [PMID: 35074541 PMCID: PMC8792260 DOI: 10.1016/j.redox.2022.102243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Metabolic adaptation and signal integration in response to hypoxic conditions is mainly regulated by hypoxia-inducible factors (HIFs). At the same time, hypoxia induces ROS formation and activates the unfolded protein response (UPR), indicative of endoplasmic reticulum (ER) stress. However, whether ER stress would affect the hypoxia response remains ill-defined. Here we report that feeding mice a high fat diet causes ER stress and attenuates the response to hypoxia. Mechanistically, ER stress promotes HIF-1α and HIF-2α degradation independent of ROS, Ca2+, and the von Hippel-Lindau (VHL) pathway, involving GSK3β and the ubiquitin ligase FBXW1A/βTrCP. Thereby, we reveal a previously unknown function of the GSK3β/HIFα/βTrCP1 axis in ER homeostasis and demonstrate that inhibition of the HIF-1 and HIF-2 response and genetic deficiency of GSK3β affects proliferation, migration, and sensitizes cells for ER stress promoted apoptosis. Vice versa, we show that hypoxia affects the ER stress response mainly through the PERK-arm of the UPR. Overall, we discovered previously unrecognized links between the HIF pathway and the ER stress response and uncovered an essential survival pathway for cells under ER stress.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | - Ghulam S Raza
- Research Unit of Biomedicine, and Biocenter Oulu, Oulu University Hospital and Medical Research Center, FI-90014, Oulu, Finland
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, D-60590, Frankfurt, Germany
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, and Biocenter Oulu, Oulu University Hospital and Medical Research Center, FI-90014, Oulu, Finland
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, D-60590, Frankfurt, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland.
| |
Collapse
|
190
|
Bezu L, Wu Chuang A, Sauvat A, Humeau J, Xie W, Cerrato G, Liu P, Zhao L, Zhang S, Le Naour J, Pol J, van Endert P, Kepp O, Barlesi F, Kroemer G. Local anesthetics elicit immune-dependent anticancer effects. J Immunother Cancer 2022; 10:e004151. [PMID: 35483744 PMCID: PMC9052055 DOI: 10.1136/jitc-2021-004151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Retrospective clinical trials reported a reduced local relapse rate, as well as improved overall survival after injection of local anesthetics during cancer surgery. Here, we investigated the anticancer effects of six local anesthetics used in clinical practice. RESULTS In vitro, local anesthetics induced signs of cancer cell stress including inhibition of oxidative phosphorylation, and induction of autophagy as well as endoplasmic reticulum (ER) stress characterized by the splicing of X-box binding protein 1 (XBP1s) mRNA, cleavage of activating transcription factor 6 (ATF6), phosphorylation of eIF2α and subsequent upregulation of activating transcription factor 4 (ATF4). Both eIF2α phosphorylation and autophagy required the ER stress-relevant eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, best known as PERK). Local anesthetics also activated two hallmarks of immunogenic cell death, namely, the release of ATP and high-mobility group box 1 protein (HMGB1), yet failed to cause the translocation of calreticulin (CALR) from the ER to the plasma membrane. In vivo, locally injected anesthetics decreased tumor growth and improved survival in several models of tumors established in immunocompetent mice. Systemic immunotherapy with PD-1 blockade or intratumoral injection of recombinant CALR protein, increased the antitumor effects of local anesthetics. Local anesthetics failed to induce antitumor effects in immunodeficient mice or against cancers unable to activate ER stress or autophagy due to the knockout of EIF2AK3/PERK or ATG5, respectively. Uncoupling agents that inhibit oxidative phosphorylation and induce autophagy and ER stress mimicked the immune-dependent antitumor effects of local anesthetics. CONCLUSION Altogether, these results indicate that local anesthetics induce a therapeutically relevant pattern of immunogenic stress responses in cancer cells.
Collapse
Affiliation(s)
- Lucillia Bezu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Anesthesiology Department, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alejandra Wu Chuang
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Québec, Canada
- Department of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Wei Xie
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giulia Cerrato
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Liwei Zhao
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Shuai Zhang
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Jonathan Pol
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médicale, Unité 1151, Université de Paris Cité, Centre National de la Recherche Scientifique, UMR 8253, Paris, France
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabrice Barlesi
- Gustave Roussy, Villejuif, France
- Aix Marseille University, INSERM, CNRS, CRCM, Marseille, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
191
|
Quwaider D, Corchete LA, Martín-Izquierdo M, Hernández-Sánchez JM, Rojas EA, Cardona-Benavides IJ, García-Sanz R, Herrero AB, Gutiérrez NC. RNA sequencing identifies novel regulated IRE1-dependent decay targets that affect multiple myeloma survival and proliferation. Exp Hematol Oncol 2022; 11:18. [PMID: 35361260 PMCID: PMC8969279 DOI: 10.1186/s40164-022-00271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Background IRE1 is an unfolded protein response (UPR) sensor with kinase and endonuclease activity. It plays a central role in the endoplasmic reticulum (ER) stress response through unconventional splicing of XBP1 mRNA and regulated IRE1-dependent decay (RIDD). Multiple myeloma (MM) cells are known to exhibit an elevated level of baseline ER stress due to immunoglobulin production, however RIDD activity has not been well studied in this disease. In this study, we aimed to investigate the potential of RNA-sequencing in the identification of novel RIDD targets in MM cells and to analyze the role of these targets in MM cells. Methods In vitro IRE1-cleavage assay was combined with RNA sequencing. The expression level of RIDD targets in MM cell lines was measured by real-time RT-PCR and Western blot. Results Bioinformatic analysis revealed hundreds of putative IRE1 substrates in the in vitro assay, 32 of which were chosen for further validation. Looking into the secondary structure of IRE1 substrates, we found that the consensus sequences of IRF4, PRDM1, IKZF1, KLF13, NOTCH1, ATR, DICER, RICTOR, CDK12, FAM168B, and CENPF mRNAs were accompanied by a stem-loop structure essential for IRE1-mediated cleavage. In fact, we show that mRNA and protein levels corresponding to these targets were attenuated in an IRE1-dependent manner by treatment with ER-stress-inducing agents. In addition, a synergistic effect between IMiDs and ER-stress inducers was found. Conclusion This study, using RNA sequencing, shows that IRE1 RNase has a broad range of mRNA substrates in myeloma cells and demonstrates for the first time that IRE1 is a key regulator of several proteins of importance in MM survival and proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00271-4.
Collapse
Affiliation(s)
- Dalia Quwaider
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Luis A Corchete
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Marta Martín-Izquierdo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Jesús M Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Elizabeta A Rojas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ignacio J Cardona-Benavides
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Hematology Department, University Hospital of Salamanca, Salamanca, Spain.,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Ana B Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.,Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Norma C Gutiérrez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain. .,Hematology Department, University Hospital of Salamanca, Salamanca, Spain. .,Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain.
| |
Collapse
|
192
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
193
|
Gao H, He C, Hua R, Guo Y, Wang B, Liang C, Gao L, Shang H, Xu JD. Endoplasmic Reticulum Stress of Gut Enterocyte and Intestinal Diseases. Front Mol Biosci 2022; 9:817392. [PMID: 35402506 PMCID: PMC8988245 DOI: 10.3389/fmolb.2022.817392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum, a vast reticular membranous network from the nuclear envelope to the plasma membrane responsible for the synthesis, maturation, and trafficking of a wide range of proteins, is considerably sensitive to changes in its luminal homeostasis. The loss of ER luminal homeostasis leads to abnormalities referred to as endoplasmic reticulum (ER) stress. Thus, the cell activates an adaptive response known as the unfolded protein response (UPR), a mechanism to stabilize ER homeostasis under severe environmental conditions. ER stress has recently been postulated as a disease research breakthrough due to its significant role in multiple vital cellular functions. This has caused numerous reports that ER stress-induced cell dysfunction has been implicated as an essential contributor to the occurrence and development of many diseases, resulting in them targeting the relief of ER stress. This review aims to outline the multiple molecular mechanisms of ER stress that can elucidate ER as an expansive, membrane-enclosed organelle playing a crucial role in numerous cellular functions with evident changes of several cells encountering ER stress. Alongside, we mainly focused on the therapeutic potential of ER stress inhibition in gastrointestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer. To conclude, we reviewed advanced research and highlighted future treatment strategies of ER stress-associated conditions.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuexin Guo
- Department of Oral Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, China
| | - Chen Liang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Jing-Dong Xu,
| |
Collapse
|
194
|
Vargas G, Cortés O, Arias-Muñoz E, Hernández S, Cerda-Troncoso C, Hernández L, González AE, Tatham MH, Bustamante HA, Retamal C, Cancino J, Varas-Godoy M, Hay RT, Rojas-Fernández A, Cavieres VA, Burgos PV. Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Front Cell Dev Biol 2022; 10:743287. [PMID: 35309917 PMCID: PMC8924303 DOI: 10.3389/fcell.2022.743287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
Collapse
Affiliation(s)
- Gabriela Vargas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Omar Cortés
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Laura Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alexis E González
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Michael H Tatham
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hianara A Bustamante
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronald T Hay
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alejandro Rojas-Fernández
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom.,Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
195
|
Yu CY, Cho Y, Sharma O, Kanehara K. What's unique? The unfolded protein response in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1268-1276. [PMID: 34849719 DOI: 10.1093/jxb/erab513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
The investigation of a phenomenon called the unfolded protein response (UPR) started approximately three decades ago, and we now know that the UPR is involved in a number of cellular events among metazoans, higher plants, and algae. The relevance of the UPR in human diseases featuring protein folding defects, such as Alzheimer's and Huntington's diseases, has drawn much attention to the response in medical research to date. While metazoans and plants share similar molecular mechanisms of the UPR, recent studies shed light on the uniqueness of the plant UPR, with plant-specific protein families appearing to play pivotal roles. Given the considerable emphasis on the original discoveries of key factors in metazoans, this review highlights the uniqueness of the plant UPR based on current knowledge.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Oshin Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
196
|
Ward CP, Peng L, Yuen S, Halstead J, Palacios H, Nyangau E, Mohammed H, Ziari N, Dandan M, Frakes AE, Gildea HK, Dillin A, Hellerstein M. Aging alters the metabolic flux signature of the ER-unfolded protein response in vivo in mice. Aging Cell 2022; 21:e13558. [PMID: 35170180 PMCID: PMC8920450 DOI: 10.1111/acel.13558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/16/2021] [Accepted: 12/25/2021] [Indexed: 01/23/2023] Open
Abstract
Age is a risk factor for numerous diseases, including neurodegenerative diseases, cancers, and diabetes. Loss of protein homeostasis is a central hallmark of aging. Activation of the endoplasmic reticulum unfolded protein response (UPRER ) includes changes in protein translation and membrane lipid synthesis. Using stable isotope labeling, a flux "signature" of the UPRER in vivo in mouse liver was developed by inducing ER stress with tunicamycin and measuring rates of both proteome-wide translation and de novo lipogenesis. Several changes in protein synthesis across ontologies were noted with age, including a more dramatic suppression of translation under ER stress in aged mice as compared with young mice. Binding immunoglobulin protein (BiP) synthesis rates and mRNA levels were increased more in aged than young mice. De novo lipogenesis rates decreased under ER stress conditions in aged mice, including both triglyceride and phospholipid fractions. In young mice, a significant reduction was seen only in the triglyceride fraction. These data indicate that aged mice have an exaggerated metabolic flux response to ER stress, which may indicate that aging renders the UPRER less effective in resolving proteotoxic stress.
Collapse
Affiliation(s)
- Catherine P. Ward
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lucy Peng
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Samuel Yuen
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - John Halstead
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hector Palacios
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Edna Nyangau
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hussein Mohammed
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Naveed Ziari
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Mohamad Dandan
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Ashley E. Frakes
- Department of Molecular and Cellular BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Holly K. Gildea
- Department of Molecular and Cellular BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Andrew Dillin
- Department of Molecular and Cellular BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
197
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
198
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
199
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
200
|
Chen Q, Zhang YL, Zhang ZW, Chen YJ, Tang YJ, Qiao D, Dai YC, Tang ZP. Jianpi Qingchang Decoction Ameliorates Chronic Colitis in Piroxicam-Induced IL-10 Knockout Mice by Inhibiting Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7378807. [PMID: 35186102 PMCID: PMC8849791 DOI: 10.1155/2022/7378807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells (IEC) may lead to impaired intestinal mucosal barrier function and then participate in the pathogenesis of ulcerative colitis (UC). Jianpi Qingchang decoction (JPQCD) has been shown to have protective effects on UC. However, further studies are needed to determine whether JPQCD regulates PERK/eIF2α/ATF4/CHOP pathways to play a role in treating UC. METHODS IL-10 -/- mice were randomly assigned into five groups: control, model, low-dose JPQCD (JPQCD L), middle-dose JPQCD (JPQCD M), and high-dose JPQCD (JPQCD H). All groups except for the control group were given model feed containing 200 ppm piroxicam for 10 d to induce colitis. As a comparison, we used wild-type mice that were the progeny of IL-10 +/- matings, bred in the same facility. The control group and wild-type mice were fed with common feed. At the same time, mice in each group were given corresponding drugs by gavage for 14 d. The disease activity index of mice in each group was evaluated daily. Colon tissues of mice were collected, colon length was measured, and pathological changes and ultrastructure of colon epithelial cells were observed. The effects of JPQCD on the PERK/eIF2α/ATF4/CHOP pathways were evaluated by western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The expression of CHOP in colon tissue was detected by tissue immunofluorescence assay. The expression of NF-κB, p-NF-κB p65 protein was analyzed by western blotting; the level of IL-17 in colon tissue was detected by enzyme-linked immunosorbent assay (ELISA) and verified by examining NF-κB and IL-17 mRNA levels by RT-PCR. RESULTS Compared with the control group, the model group showed significant colitis symptoms and severe colonic tissue damage. The results showed that JPQCD significantly reduced body weight loss, ameliorated disease activity index, and restored colon length in IL-10 -/- mice with piroxicam-induced colitis. Western blotting and RT-PCR showed that the PERK/eIF2α/ATF4/CHOP pathway was activated in colon tissue of model mice, suggesting that the pathway is involved in the pathogenesis of ulcerative colitis (UC) and could become a potential therapeutic target. The JPQCD treatment inhibited the activation of the PERK/eIF2α/ATF4/CHOP pathway, alleviated the ER stress, and played a role in preventing and treating UC. In addition, JPQCD can also downregulate the protein of NF-κB, p-NF-κB p65, downregulate the mRNA expression of NF-κB, and reduce the content of IL-17 and its mRNA expression in colon tissues. CONCLUSION JPQCD may play a protective role in UC by regulating the PERK/eIF2α/ATF4/CHOP signaling pathway and relieving endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya-Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zi-Wei Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Jun Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ying-Jue Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Qiao
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan-Cheng Dai
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Peng Tang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|