151
|
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33:1001-1012.e5. [PMID: 33691090 PMCID: PMC8102368 DOI: 10.1016/j.cmet.2021.02.015] [Citation(s) in RCA: 542] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.
Collapse
Affiliation(s)
- Xingzhe Ma
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lintao Liu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Pan Su
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Enguang Bi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Maojie Yang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|
152
|
Evaluating the efficacy and safety of immune checkpoint inhibitors by detecting the exposure-response: An inductive review. Int Immunopharmacol 2021; 97:107703. [PMID: 33933843 DOI: 10.1016/j.intimp.2021.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/23/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have been demonstrated an effective treatment in multiple tumor type, which restore the immune response to against cancer cell. Currently, approved ICIs include anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4); anti-programmed cell death 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) monoclonal antibodies (mAbs). In most these drugs, unique pharmacokinetic (PK) and pharmacodynamics (PD) have shown significant influence on clinical outcomes, which occurred by target-mediated drug concentration and time-varying drug clearance. An exposure-response (E-R) relationship has been used to describe the safety and efficacy of ICIs, and shown a plateaued E-R and time dependent changes in exposure. Using an enzyme linked immunosorbent assay (ELISA) or LC-MS/MS method to measure the peak concentration, trough concentration or area under the curve (AUC) of ICIs to assess the drug exposure. There are lots of covariates that have an influence on exposure, such as sex, clearance, body weight and tumor burden. In this review, we pooled data from studies of concentration or other pharmacokinetics parameter of mAbs to assess E-R in efficacy and safety.
Collapse
|
153
|
Balducci D, Quatraccioni C, Benedetti A, Marzioni M, Maroni L. Gastrointestinal disorders as immune-related adverse events. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:174-186. [PMID: 36046145 PMCID: PMC9400751 DOI: 10.37349/etat.2021.00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Immune checkpoint inhibitors, such as cytotoxic T-lymphocyte antigen 4 inhibitors, programmed cell death 1 inhibitors and programmed cell death-ligand 1 inhibitors, have recently emerged as novel drugs in the anti-cancer therapy. Their use in different types of advanced cancer has shown good results and an increase in survival rates. However, immune-related adverse events (irAEs) are frequent and often require special care. IrAEs may affect all the organs, but they are most commonly seen in skin, lungs, endocrine glands and in the gastrointestinal tract where small bowel, colon, the liver and/or the pancreas can be involved. Despite being usually mild and self-resolving, irAEs may present in severe and life-threatening forms, causing the withdrawal of anti-cancer therapy. IrAEs, therefore, represent a challenging condition to manage that often requires the cooperation between the oncologists and the gastroenterologists in order to identify and treat them adequately.
Collapse
Affiliation(s)
- Daniele Balducci
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti-University Hospital, 60126 Ancona, Italy
| | - Claudia Quatraccioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti-University Hospital, 60126 Ancona, Italy
| | - Antonio Benedetti
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti-University Hospital, 60126 Ancona, Italy
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti-University Hospital, 60126 Ancona, Italy
| | - Luca Maroni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti-University Hospital, 60126 Ancona, Italy
| |
Collapse
|
154
|
Abdayem P, Planchard D. Safety of current immune checkpoint inhibitors in non-small cell lung cancer. Expert Opin Drug Saf 2021; 20:651-667. [PMID: 33393387 DOI: 10.1080/14740338.2021.1867100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICIs) achieved response rates around 20% in advanced non-small cell lung cancer (NSCLC) with 8% of patients becoming long-term survivors. Outcomes have improved with the addition of chemotherapy to immunotherapy or the combination of anti-PD(L)1 with anti-CTLA-4 agents.Areas covered: The incidence of immune-related adverse events (irAEs) in patients with NSCLC treated with ICIs varied across clinical trials and real-life studies. The onset of irAEs was 10 weeks. Toxic deaths from irAEs following anti-PD(L)1 administration resulted mainly from pneumonitis. Some irAEs such as rash and thyroiditis were probably associated with better clinical outcomes, though confounding biases exist. Investigations are on-going to determine ideal biomarkers to predict the occurrence, to screen for and to diagnose irAEs.Expert opinion: Prevention, anticipation, detection, treatment and careful monitoring are the five principles that characterize our management of irAEs. Distinguishing immune-induced pneumonitis from progression, pseudo progression, hyper progression, or other etiologies (COVID-19) can be particularly challenging in lung cancer due to the baseline vulnerable pulmonary function and thus requires caution and teamwork. We treat patients according to institutional and international guidelines and we only rechallenge them with ICIs after resolution of the AE and corticosteroid tapering.
Collapse
Affiliation(s)
- Pamela Abdayem
- Department of Cancer Medicine, Thoracic Oncology Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - David Planchard
- Department of Cancer Medicine, Thoracic Oncology Unit, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
155
|
Impact of rheumatoid arthritis and biologic and targeted synthetic disease modifying antirheumatic agents on cancer risk and recurrence. Curr Opin Rheumatol 2021; 33:292-299. [PMID: 33741804 DOI: 10.1097/bor.0000000000000796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Several new therapeutic drugs are now available for the management of rheumatoid arthritis (RA). Given that RA has been associated with an increased risk of certain cancers like lymphoma and lung cancer, concern remains about the safety of (newer) immunosuppressants used in RA management as it relates to the risk of cancer. RECENT FINDINGS Most meta-analyses of randomized clinical trials of tumor necrosis factor inhibitors (TNFi) have not observed an association between TNFi and risk of incident cancer. Studies of non-TNFi biologic disease modifying antirheumatic drugs (bDMARDs) and targeted synthetic DMARDs and cancer are also reassuring but limited and of short-term follow-up. Regarding the use of DMARDs in patients with RA and a prior malignancy, retrospective studies have shown that TNFi use is not associated with recurrence. SUMMARY There is a need for ongoing studies on the safety of non-TNFi bDMARDs and targeted synthetic disease modifying anti-rheumatic drugs and recurrent cancer. Further research is also needed to guide the patients, rheumatologists, and oncologists regarding the safest DMARDs to choose for patients with RA and a recent diagnosis of cancer.
Collapse
|
156
|
Karimi A, Alilou S, Mirzaei HR. Adverse Events Following Administration of Anti-CTLA4 Antibody Ipilimumab. Front Oncol 2021; 11:624780. [PMID: 33767992 PMCID: PMC7985548 DOI: 10.3389/fonc.2021.624780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Ipilimumab, a monoclonal anti-CTLA4 antibody, paved the path for promising treatments, particularly in advanced forms of numerous cancers like melanoma. By blockading CTLA-4, ipilimumab can abolish the higher binding affinity of B7 for CTLA-4, setting CD28 free to act unlimited. This blockade can result in an amplified antitumor immune response, and thereby, boosting more effective tumor regression. However, this blockage can lead to diminished self-tolerance and yielding autoimmune complications. The current review aims to describe adverse events (AEs) following the administration of ipilimumab in different cancers as every benefit comes at a cost. We will also discuss AEs in two different categories, melanoma and non-melanoma, owing to the possible shining promises in treating non-melanoma cancers. As the melanoma settings are more studied than other cancers, it might even help predict the patterns related to the other types of cancers. This similarity also might help physicians to predict adverse events and correctly manage them in non-melanoma cancers using the extensive findings reported in the more-studied melanoma settings. Recognizing the adverse events is vital since most of the adverse events could be reverted while carefully implementing guidelines. Finally, we will also describe the observed effectiveness of ipilimumab in non-melanoma cancers. This effectiveness reveals the importance of understanding the profile of adverse events in this group, even though some have not received FDA approval yet. Further clinical trials and careful systematic reviews may be required to decipher the hidden aspects of therapies with ipilimumab and its related AEs.
Collapse
Affiliation(s)
- Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
157
|
Bander ED, Yuan M, Carnevale JA, Reiner AS, Panageas KS, Postow MA, Tabar V, Moss NS. Melanoma brain metastasis presentation, treatment, and outcomes in the age of targeted and immunotherapies. Cancer 2021; 127:2062-2073. [PMID: 33651913 DOI: 10.1002/cncr.33459] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Historically, the prognosis for patients who have melanoma brain metastasis (MBM) has been dismal. However, breakthroughs in targeted and immunotherapies have improved long-term survival in those with advanced melanoma. Therefore, MBM presentation, prognosis, and the use of multimodality central nervous system (CNS)-directed treatment were reassessed. METHODS In this retrospective study, the authors evaluated patients with MBM who received treatment at Memorial Sloan Kettering Cancer Center between 2010 and 2019. Kaplan-Meier methodology was used to describe overall survival (OS). Recursive partitioning analysis and time-dependent multivariable Cox modeling were used to assess prognostic variables and to associate CNS-directed treatments with OS. RESULTS Four hundred twenty-five patients with 2488 brain metastases were included. The median OS after an MBM diagnosis was 8.9 months (95% CI, 7.9-11.3 months). Patients who were diagnosed with MBM between 2015 and 2019 experienced longer OS compared to those who were diagnosed between 2010 and 2014 (OS, 13.0 months [95% CI, 10.47-17.06 months] vs 7.0 months [95% CI, 6.1-8.3 months]; P = .0003). Prognostic multivariable modeling significantly associated shortened OS independently with leptomeningeal dissemination (P < .0001), increasing numbers of brain metastases at diagnosis (P < .0001), earlier MBM diagnosis year (P = .0008), higher serum levels of lactate dehydrogenase (P < .0001), receipt of immunotherapy before MBM diagnosis (P = .003), and the presence of extracranial disease (P = .02). The use of different CNS-directed treatment modalities was associated with presenting symptoms, diagnosis year, number and size of brain metastases, and the presence of extracranial disease. Multivariable analysis demonstrated improved survival for patients who underwent craniotomy (P = .01). CONCLUSIONS The prognosis for patients with MBM has improved within the last 5 years, coinciding with the approval of PD-1 immune checkpoint blockade and combined BRAF/MEK targeting. Improving survival reflects and may influence the willingness to use aggressive multimodality treatment for MBM. LAY SUMMARY Historically, melanoma brain metastases (MBM) have carried a poor survival prognosis of 4 to 6 months; however, the introduction of immunotherapy and targeted precision medicines has altered the survival curve for advanced melanoma. In this large, single-institution, contemporary cohort, the authors demonstrate a significant increase in survival of patients with MBM to 13 months within the last 5 years of the study. A worse prognosis for patients with MBM was significantly associated with the number of metastases at diagnosis, previous exposure to immunotherapy, spread of disease to the leptomeningeal compartment, serum lactate dehydrogenase elevation, and the presence of extracranial disease. The current age of systemic treatments has also been accompanied by shifts in the use of central nervous system-directed therapies.
Collapse
Affiliation(s)
- Evan D Bander
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurosurgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York
| | - Melissa Yuan
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph A Carnevale
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurosurgery, New York Presbyterian Hospital/Weill Cornell Medical College, New York, New York
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Viviane Tabar
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelson S Moss
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
158
|
Boussios S, Sheriff M, Rassy E, Moschetta M, Samartzis EP, Hallit R, Sadauskaite A, Katsanos KH, Christodoulou DK, Pavlidis N. Immuno-oncology: a narrative review of gastrointestinal and hepatic toxicities. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:423. [PMID: 33842644 PMCID: PMC8033350 DOI: 10.21037/atm-20-7361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccines, cytokines, and adoptive cellular therapies (ACT) represent immuno-therapeutic modalities with great development potential, and they are currently approved for the treatment of a limited number of advanced malignancies. The most up-to-date knowledge on the regulation of the anti-cancer immune response has recently led to the development and approval of inhibitors of immune checkpoints, which have produced unprecedented clinical activity in several hard to treat solid malignancies. However, severe adverse events (AEs) represent a limitation to the use of these drugs. Currently approved checkpoint inhibitors block cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death protein (PD-1) and its ligand (PD-L1), resulted in increased survival of patients with several solid and hematologic malignancies. The most common treatment AEs associated with these drugs are fatigue, rash, and auto-immune/inflammatory reactions. Many of the immune-related AEs are reversible and the strategies for their management include supportive care either with or without treatment withdrawal; nevertheless, in severe cases, hospitalization and treatment with immune suppressants, and/or immunomodulators may be required. Steroid therapy is a critical component of the treatment algorithm; nevertheless, the associated immunosuppression may compromise the antitumor response. This article provides a comprehensive and narrative review of luminal gastrointestinal and hepatic complications, including recommendations for their investigation and management.
Collapse
Affiliation(s)
- Stergios Boussios
- King's College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, SE1 9RT, London, UK.,Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, UK.,AELIA Organization, 9th Km Thessaloniki - Thermi, Thessaloniki, Greece
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, Villejuif, France.,Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21 CH-1011, Lausanne, Switzerland
| | - Eleftherios P Samartzis
- Department of Gynecology, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091 Zurich, Switzerland
| | - Rachel Hallit
- Gastroenterology Department, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Agne Sadauskaite
- Department of Pharmacy, Medway NHS Foundation Trust, Gillingham, Kent, UK
| | - Konstantinos H Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
159
|
Xu C, Zhang S, Zhang Y, Tang SQ, Fang XL, Zhu GL, Peng L, Liu JQ, Mao YP, Tang LL, Liu Q, Lin AH, Sun Y, Ma J. Evolving landscape and academic attitudes toward the controversies of global immuno-oncology trials. Int J Cancer 2021; 149:108-118. [PMID: 33544890 PMCID: PMC8248025 DOI: 10.1002/ijc.33503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
This cross‐sectional and longitudinal descriptive analysis aimed to track the evolving landscape of global immuno‐oncology (IO) trials and provide insight into the resolution of IO‐related controversies. Clinical trials (n = 4510) registered on ClinicalTrials.gov in 2007 to 2019 studying immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), cancer vaccines and immune modulators were included. Most of IO trials are Phase 2 and focus on ICIs and multiple IO therapies. The United States leads global IO research, with stable growth and the best methodological quality. Mainland China ranks first in the number of ACT trials but has the lowest article publication rate (6.2%). A multiple‐arm comparative design is often adopted in multiple IO therapies trials (44.0%). Trials studying ICIs and multiple IO therapies are likely to use early registration (80.0% and 86.6%) and stringent corticosteroid‐/infection‐related criteria. Hospitals have provided the most extensive and strongest support for all IO categories. Big pharma prefers to fund Phase 3‐4 ICI trials (6.98%), while small pharma has a wider sponsorship favoring Phase 1‐2 trials. The “partial‐use‐of‐corticosteroids” strategy is generally well accepted in ICI trials with a definitive trend (32.5%; P < .001) but is associated with the poor dissemination of results (P ≤ .020), while the complete disclosure and standardization of dose/timing limits are still lacking. Disparities in design features and dissemination of results are widespread in IO trials and are modulated by IO category, cancer type and sponsor. We propose policy reforms to redefine the timely publication of IO trials and standardize the resolution of corticosteroid‐/infection‐related issues.
What's new?
In recent decades, immunotherapy has emerged and advanced to become a key part of cancer‐fighting strategies. The rapid growth of immuno‐oncology, however, has been accompanied by controversy in suitable interventions and trial design. In this cross‐sectional and longitudinal analysis, disparities in design were found to be common in immuno‐oncology trials, with differences influenced by factors such as cancer type and trial sponsor. Trials with strict limitations on corticosteroid use had significantly higher publications rates than trials permitting partial corticosteroid administration. The data further suggest that timely publication of immuno‐oncology trials is the third year after trial completion.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Sun Yat-sen Global Health Institute, School of Public Health and Institute of State Governance, Sun Yat-sen University, Guangzhou, China
| | - Si-Qi Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xue-Liang Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guang-Li Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Qi Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qing Liu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ai-Hua Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
160
|
Saito R, Sawada Y, Nakamura M. Immune Profile Analysis in Peripheral Blood and Tumor in Patients with Malignant Melanoma. Int J Mol Sci 2021; 22:ijms22041957. [PMID: 33669410 PMCID: PMC7920420 DOI: 10.3390/ijms22041957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a severe and life-threatening malignancy derived from melanocytes. The traditional treatment for melanoma could not sustain satisfactory outcomes long term; however, the recent immune checkpoint treatment has made a breakthrough in these problems. Nivolumab is a representative immune checkpoint treatment, and this PD-1-targeted therapy has evolutionally developed and improved the clinical outcome in a recent decade. On the other hand, the clinical application of immune checkpoint treatment presents clinicians with novel questions, especially how to obtain additional efficacy and overcome the disadvantage by using this treatment. To answer these problems, we first investigated the distribution of PD-L1 in various organs to clarify the organs most affected by anti-PD-1 antibody treatment. Among various organs, lung, placenta, spleen, heart, and thyroid highly expressed PD-L1, while skin, thalamus, hippocampus, ovary, stomach, testis, and prostate showed lower expressions of PD-L1. Furthermore, the immune profiles were also examined in tumors and peripheral blood in patients with melanoma. PD-1 was highly expressed in CD8 and CD4 cells, and B cells also highly expressed PD-1 compared with NK cells. However, there was no significant difference in Th1/Th2/Th17 cytokines and inhibitory cytokine IL-10. Although nevus showed a low expression of PD-L1 compared with healthy skin, PD-L1 expression was increased in growth-phase melanoma. Finally, we analyzed the peripheral blood profiles in patients treated with nivolumab. PD-1-bearing dendritic cells (DCs) were increased during nivolumab treatment and Lin-CD11c+HLA-DR+ cells were highly increased during nivolumab treatment. These findings indicate a clue to answering the problems during nivolumab treatment and suggest to us the importance of multiple aspect observation during immune checkpoint treatment.
Collapse
Affiliation(s)
| | - Yu Sawada
- Correspondence: ; Tel.: +81-093-691-7445
| | | |
Collapse
|
161
|
Zhong L, Wu Q, Chen F, Liu J, Xie X. Immune-related adverse events: promising predictors for efficacy of immune checkpoint inhibitors. Cancer Immunol Immunother 2021; 70:2559-2576. [PMID: 33576872 DOI: 10.1007/s00262-020-02803-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE This study was designed to investigate the correlation between immune-related adverse events (irAEs) of immune checkpoint inhibitors (ICIs) and corresponding efficacy, and to explore the potential of predicting the efficacy of ICIs via irAEs. METHODS Electronic databases including PubMed, Embase, Cochrane Library, CNKI and Wanfang were applied to search for relevant studies. The primary endpoint was overall survival (OS) or progression-free survival (PFS), and the secondary endpoint was objective response rate (ORR). Stratification analyses were conducted according to the type of irAEs and ICIs, region of studies and primary tumors. Furthermore, statistical analyses were realized by means of RevMan 5.3 software. RESULTS Altogether, 40 studies with 8,641 participants were enrolled, among which the incidence of irAEs ranged from 15.34 to 85.23% and the major sites reached out to skin, endocrine organ, gastrointestinal tract, liver and lung. The ORR, OS and PFS in irAE group were significantly higher than those in non-irAE group as per pooled analyses and stratification analyses. Importantly, patients with irAEs in skin, endocrine organ or gastrointestinal tract rather than in liver and lung were found to obtain survival benefits (p < 0.05). CONCLUSION IrAEs, especially in skin, endocrine organ or gastrointestinal tract, triggered by ICIs indicate significant survival benefits.
Collapse
Affiliation(s)
- Li Zhong
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, China.,Department of Oncology, The Second Hospital of Longyan, Fujian, 364000, China
| | - Qing Wu
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, China
| | - Fuchun Chen
- Department of Gynecology, The First Hospital of Longyan, Fujian, 364000, China
| | - Junjin Liu
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, China
| | - Xianhe Xie
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, China. .,Molecular Oncology Research Institute, First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
162
|
Anderson MA, Kurra V, Bradley W, Kilcoyne A, Mojtahed A, Lee SI. Abdominal immune-related adverse events: detection on ultrasonography, CT, MRI and 18F-Fluorodeoxyglucose positron emission tomography. Br J Radiol 2021; 94:20200663. [PMID: 33112648 DOI: 10.1259/bjr.20200663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitor and chimeric antigen receptor T-cell therapies are associated with a unique spectrum of complications termed immune-related adverse events (irAEs). The abdomen is the most frequent site of severe irAEs that require hospitalization with life-threatening consequences. Most abdominal irAEs such as enterocolitis, hepatitis, cholangiopathy, cholecystitis, pancreatitis, adrenalitis, and sarcoid-like reaction are initially detected on imaging such as ultrasonography (US), CT, MRI and fusion 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)-CT during routine surveillance of cancer therapy. Early recognition and diagnosis of irAEs and immediate management with cessation of immune modulator cancer therapy and institution of immunosuppressive therapy are necessary to avert morbidity and mortality. Diagnosis of irAEs is confirmed by tissue sampling or by follow-up imaging demonstrating resolution. Abdominal radiologists reviewing imaging on patients being treated with anti-cancer immunomodulators should be familiar with the imaging manifestations of irAEs.
Collapse
Affiliation(s)
- Mark A Anderson
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vikram Kurra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - William Bradley
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Aoife Kilcoyne
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Amirkasra Mojtahed
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Susanna I Lee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
163
|
Abstract
The treatment landscape for patients with advanced melanoma has dramatically improved over the past decade, leading to unprecedented survival. Despite the robust activity of single-agent immune-checkpoint blockade with anti-CTLA-4 or anti-PD-1 agents, and the efficacy of targeted therapies capable of interrupting aberrant signaling resulting from BRAF mutations, the benefit from these therapies is not universal. Advanced understanding of immune and molecular processes underlying melanoma tumorigenesis has demonstrated the promise of combined, multidrug regimens. We discuss the currently available evidence that supports using combinatorial approaches in advanced melanoma treatment and provide insights into promising new combination strategies under investigation.
Collapse
Affiliation(s)
- Rodrigo Ramella Munhoz
- Oncology Center, Hospital Sírio Libanês, Rua Dona Adma Jafet, 91, São Paulo 01308-050, Brazil.
| | - Michael Andrew Postow
- Melanoma Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
164
|
Maity A, Mick R, Rengan R, Mitchell TC, Amaravadi RK, Schuchter LM, Pryma DA, Patsch DM, Maity AP, Minn AJ, Vonderheide RH, Lukens JN. A stratified phase I dose escalation trial of hypofractionated radiotherapy followed by ipilimumab in metastatic melanoma: long-term follow-up and final outcomes. Oncoimmunology 2021; 10:1863631. [PMID: 33643689 PMCID: PMC7872096 DOI: 10.1080/2162402x.2020.1863631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We conducted a phase I dose-escalation trial of radiation with ipilimumab in patients with melanoma with ≥2 metastatic lesions. Here, we report the final full clinical analysis. Patients received RT (6 or 8 Gy x 2 or 3 doses) to a single lesion followed by 4 cycles of ipilimumab. The primary endpoint was maximum tolerated dose of RT, and secondary endpoint was response at non-radiated sites. Twenty-two patients with treatment-naïve (n = 11) or treatment-refractory (n = 11) Stage IV melanoma were enrolled. There were 31 treatment-related adverse events (AEs), of which 16 were deemed immune-related. Eleven patients had grade 3 AEs (no grade 4/5). There were no dose-limiting toxicities related to the radiation/ipilimumab combination. Five of 22 patients (22.7%, 95% CI 7.8-45.4%) had partial response as best response and three (13.6%) had stable disease. Median overall survival was 10.7 months (95% CI, 4.9 months to not-estimable) and median progression-free survival 3.6 months (95% CI, 2.9 months to 7.8 months). Seven patients were still alive at the time of last follow-up (median follow-up 89.2 months), most of whom received pembrolizumab after progression. Radiotherapy followed by ipilimumab was well tolerated and yielded a response rate that compares favorably to the objective response rate with ipilimumab alone. Furthermore, 32% of patients are long-term survivors, most of whom received pembrolizumab. Based on these results, the recommended dose that was used in subsequent Phase 2 trials was 8 Gy x 3 doses. Clinical Trial Registration: NCT01497808 (www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Amit Maity
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Rosemarie Mick
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tara C Mitchell
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Pryma
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Dana M Patsch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alisha P Maity
- Department of Medicine, Lankenau Medical Center, Wynnewood, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.,Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John N Lukens
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
165
|
Yang Y, Liu J, Yang K, Ma Y, Fu S, Tang X, Wang Y, Zhou L. Endocrine Adverse Events Caused by Different Types and Different Doses of Immune Checkpoint Inhibitors in the Treatment of Solid Tumors: A Meta-Analysis and Systematic Review. J Clin Pharmacol 2021; 61:282-297. [PMID: 33345342 DOI: 10.1002/jcph.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
The aim of this meta-analysis was to assess the risks of endocrine adverse events in patients with malignancies treated with different types and different doses of immune checkpoint inhibitors (ICIs). PubMed and Embase were searched for randomized controlled trials on ICIs and endocrine adverse events since 2000, and meta-analysis was carried out. Twenty-six randomized controlled trials comprising 13 824 patients with malignancies were included. Compared with the other tumor therapies (used as a control group), patients treated with programmed death-1 inhibitors appeared to be at higher risks of hypothyroidism, hyperthyroidism, thyroiditis, hypophysitis or hypopituitarism, and type 1 diabetes mellitus, while there was no difference in the risk of primary adrenal insufficiency. It was also found that patients treated with cytotoxic T-lymphocyte-associated protein-4 inhibitors were at higher risk of hypophysitis or hypopituitarism, primary adrenal insufficiency, and hypothyroidism. In comparison, patients treated with programmed death-ligand 1 inhibitors were at higher risk of hyperthyroidism and hypothyroidism. Compared with the control group, both low-dose and high-dose ICI groups were at higher risk of hypothyroidism and hyperthyroidism, and the low-dose group had increased risk of thyroiditis and primary adrenal insufficiency. There was no significant difference in the risk of type 1 diabetes between the low-dose group and the high-dose group. The risk of hypophysitis or hypopituitarism in the high-dose group (relative risk, 20.12; 95% confidence interval, 8.02-50.46) was significantly higher than that in the low-dose group (relative risk, 4.92; 95% confidence interval, 2.11-11.47). The risk of endocrine adverse events was increased in patients treated with ICIs. Different types and doses of ICIs have varying characteristics of endocrine adverse events.
Collapse
Affiliation(s)
- Yaxian Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jingfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,Department of Endocrinology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Kaili Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yanqi Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Songbo Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,Department of Endocrinology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xulei Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,Department of Endocrinology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Wang
- Department of Endocrinology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liyuan Zhou
- Department of Endocrinology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
166
|
Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, Im SA, Tran B, Subramaniam DS, Gainer SD, Vashisht K, Lewis A, Jin X, Kentner S, Mulgrew K, Wang Y, Overstreet MG, Dodgson J, Wu Y, Palazon A, Morrow M, Rainey GJ, Browne GJ, Neal F, Murray TV, Toloczko AD, Dall'Acqua W, Achour I, Freeman DJ, Wilkinson RW, Mazor Y. Design and Efficacy of a Monovalent Bispecific PD-1/CTLA4 Antibody That Enhances CTLA4 Blockade on PD-1 + Activated T Cells. Cancer Discov 2021; 11:1100-1117. [PMID: 33419761 DOI: 10.1158/2159-8290.cd-20-1445] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
The clinical benefit of PD-1 blockade can be improved by combination with CTLA4 inhibition but is commensurate with significant immune-related adverse events suboptimally limiting the doses of anti-CTLA4 mAb that can be used. MEDI5752 is a monovalent bispecific antibody designed to suppress the PD-1 pathway and provide modulated CTLA4 inhibition favoring enhanced blockade on PD-1+ activated T cells. We show that MEDI5752 preferentially saturates CTLA4 on PD-1+ T cells versus PD-1- T cells, reducing the dose required to elicit IL2 secretion. Unlike conventional PD-1/CTLA4 mAbs, MEDI5752 leads to the rapid internalization and degradation of PD-1. Moreover, we show that MEDI5752 preferentially localizes and accumulates in tumors providing enhanced activity when compared with a combination of mAbs targeting PD-1 and CTLA4 in vivo. Following treatment with MEDI5752, robust partial responses were observed in two patients with advanced solid tumors. MEDI5752 represents a novel immunotherapy engineered to preferentially inhibit CTLA4 on PD-1+ T cells. SIGNIFICANCE: The unique characteristics of MEDI5752 represent a novel immunotherapy engineered to direct CTLA4 inhibition to PD-1+ T cells with the potential for differentiated activity when compared with current conventional mAb combination strategies targeting PD-1 and CTLA4. This molecule therefore represents a step forward in the rational design of cancer immunotherapy.See related commentary by Burton and Tawbi, p. 1008.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Simon J Dovedi
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
| | | | - Chunning Yang
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Lorraine Irving
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Anna Hansen
- Translational Science and Experimental Medicine, Respiratory and Immunology (RI), Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland
| | - James Hair
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Des C Jones
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sumati Hasani
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Bo Wang
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Seock-Ah Im
- Division of Hematology-Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, Korea
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Kapil Vashisht
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Arthur Lewis
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Xiaofang Jin
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Stacy Kentner
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kathy Mulgrew
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Yaya Wang
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - James Dodgson
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Yanli Wu
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Asis Palazon
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Gareth J Browne
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Frances Neal
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Thomas V Murray
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Aleksandra D Toloczko
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - William Dall'Acqua
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland
| | - Ikbel Achour
- Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Yariv Mazor
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
167
|
Di Carlo V, Estève J, Johnson C, Girardi F, Weir HK, Wilson RJ, Minicozzi P, Cress RD, Lynch CF, Pawlish KS, Rees JR, Coleman MP, Allemani C. Trends in short-term survival from distant-stage cutaneous melanoma in the United States, 2001-2013 (CONCORD-3). JNCI Cancer Spectr 2021; 4:pkaa078. [PMID: 33409455 PMCID: PMC7771008 DOI: 10.1093/jncics/pkaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Survival from metastatic cutaneous melanoma is substantially lower than for localized disease. Treatments for metastatic melanoma have been limited, but remarkable clinical improvements have been reported in clinical trials in the last decade. We described the characteristics of US patients diagnosed with cutaneous melanoma during 2001-2013 and assessed trends in short-term survival for distant-stage disease. Methods Trends in 1-year net survival were estimated using the Pohar Perme estimator, controlling for background mortality with life tables of all-cause mortality rates by county of residence, single year of age, sex, and race for each year 2001-2013. We fitted a flexible parametric survival model on the log-hazard scale to estimate the effect of race on the hazard of death because of melanoma and estimated 1-year net survival by race. Results Only 4.4% of the 425 915 melanomas were diagnosed at a distant stage, cases diagnosed at a distant stage are more commonly men, older patients, and African Americans. Age-standardized, 1-year net survival for distant-stage disease was stable at approximately 43% during 2001-2010. From 2010 onward, survival improved rapidly, reaching 58.9% (95% confidence interval = 56.6% to 61.2%) for patients diagnosed in 2013. Younger patients experienced the largest improvement. Survival for distant-stage disease increased in both Blacks and Whites but was consistently lower in Blacks. Conclusions One-year survival for distant-stage melanoma improved during 2001-2013, particularly in younger patients and those diagnosed since 2010. This improvement may be a consequence of the introduction of immune-checkpoint-inhibitors and other targeted treatments for metastatic and unresectable disease. Persistent survival inequalities exist between Blacks and Whites, suggesting differential access to treatment.
Collapse
Affiliation(s)
- Veronica Di Carlo
- Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Jacques Estève
- Université Claude Bernard, Hospices Civils de Lyon, Service de Biostatistique, Lyon Cedex 03, France
| | | | - Fabio Girardi
- Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Hannah K Weir
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Reda J Wilson
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pamela Minicozzi
- Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Rosemary D Cress
- Public Health Institute, Cancer Registry of Greater California, Sacramento, CA, USA
| | - Charles F Lynch
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | | | - Judith R Rees
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Michel P Coleman
- Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Claudia Allemani
- Cancer Survival Group, Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
168
|
Gambichler T, Tsagoudis K, Kiecker F, Reinhold U, Stockfleth E, Hamscho R, Egberts F, Hauschild A, Amaral T, Garbe C. Prognostic significance of an 11-gene RNA assay in archival tissue of cutaneous melanoma stage I-III patients. Eur J Cancer 2021; 143:11-18. [PMID: 33278769 DOI: 10.1016/j.ejca.2020.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The purpose of this study was to validate the results of an 11-gene expression profiling (GEP) assay which aims to improve the precision of individual prognosis beyond conventional American Joint Committee on Cancer staging for patients with cutaneous melanoma. METHODS The reverse transcriptase polymerase chain reaction test of 11 prospectively selected genes was performed on 291 formalin-fixed, paraffin-embedded primary tumours of patients with stage I-III cutaneous melanoma. The expression levels of eight prognostic and three reference genes were used in a predefined algorithm to calculate a numerical score (-0.84 to 3.53) and then assign each patient to a preselected risk group (low versus high score) for melanoma-specific survival (MSS). RESULTS One hundred twenty-seven patients were allocated to the low-score group, with a corresponding five-year disease-free survival (DFS) and MSS of 95% and 99%, respectively. 164 patients were allocated to the high-score group, with a corresponding five-year DFS and MSS of 78% and 88%. Continuous regression analysis demonstrated decreasing MSS probabilities with increasing scores. In a multivariate cox regression, only the 11-GEP, tumour thickness and age were statistically associated with MSS (p = 0.0068, 0.002 and 0.0159). CONCLUSIONS The 11-GEP has been validated as an independent predictor of outcome for melanoma patients. More specifically, using an 11-GEP score cut-off of ≤0, the assay can identify patient cohorts with 10-year survival probabilities well above 90%. This information may be used in the decision-making for a potential adjuvant therapy.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | | | - Felix Kiecker
- Skin Cancer Center, Department of Dermatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Reinhold
- Dermatological Centre Bonn Friedensplatz, Bonn, Germany
| | - Eggert Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Rami Hamscho
- Department of Dermatology and Allergology, Vivantes Klinikum Spandau, Berlin, Germany
| | - Friederike Egberts
- Department of Dermatology and Venerology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Axel Hauschild
- Department of Dermatology and Venerology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
169
|
De Silva P, Aiello M, Gu-Trantien C, Migliori E, Willard-Gallo K, Solinas C. Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations? Int J Cancer 2020; 149:31-41. [PMID: 33252786 DOI: 10.1002/ijc.33415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Immunotherapy approaches boosting spontaneous and durable antitumor immune responses through immune checkpoint blockade are revolutionizing treatment and patient outcomes in solid tumors and hematological malignancies. Among the various inhibitory molecules employed by the immune system to regulate the adaptive immune responses, cytotoxic T lymphocyte antigen-4 (CTLA-4) is the first successfully targeted immune checkpoint molecule in the clinic, giving rise to significant but selective benefit either when targeted alone or in combination with anti-programmed cell death protein-1 (PD-1) antibodies (Abs). However, the use of anti-CTLA-4 Abs was associated with the incidence of autoimmune-like adverse events (AEs), which were particularly frequent and severe with the use of combinational strategies. Nevertheless, the higher incidence of AEs is associated with an improved clinical benefit indicating treatment response. A prompt recognition of AEs followed by early and adequate treatment with immunosuppressive agents allows the management of these potentially serious AEs. This narrative review aims to summarize CTLA-4 biology, the rationale for the use as a companion for anti-PD-1 Abs in humans with results from the most relevant Phase III clinical trials including anti-CTLA-4 Abs in combination with anti-PD-1 Abs in solid tumors.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marco Aiello
- Medical Oncology Unit A.O.U. Policlinico, Vittorio Emanuele di Catania, Catania, Italy
| | - Chunyan Gu-Trantien
- Institute of Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium
| | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, New York, USA
| | | | - Cinzia Solinas
- Regional Hospital of Valle d'Aosta, Azienda U.S.L. Valle d'Aosta, Aosta, Italy
| |
Collapse
|
170
|
Noreña I, Fernández-Ruiz M, Aguado JM. Is there a real risk of bacterial infection in patients receiving targeted and biological therapies? Enferm Infecc Microbiol Clin 2020; 40:S0213-005X(20)30398-0. [PMID: 33339658 DOI: 10.1016/j.eimc.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/03/2022]
Abstract
Over the past decades, the advent of targeted and biological therapies has revolutionized the management of cancer and autoimmune, hematological and inflammatory conditions. Although a large amount of information is now available on the risk of opportunistic infections associated with some of these agents, the evidence regarding the susceptibility to bacterial infections is more limited. Biological agents have been shown to entail a variable risk of bacterial infections in pivotal randomized clinical trials and post-marketing studies. Recommendations on risk minimization strategies and therapeutic interventions are therefore scarce and often based on expert opinion, with only a few clear statements for some particular agents (i.e. meningococcal vaccination for patients receiving eculizumab). In the present review the available information regarding the incidence of and risk factors for bacterial infection associated with the use of different groups of biological agents is summarized according to their mechanisms of action, and recommendations based on this evidence are provided. Additional information coming from clinical research and real-world studies is required to address unmet questions in this emerging field.
Collapse
Affiliation(s)
- Ivan Noreña
- Teaching and Training Unit, Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany.
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain; School of Medicine, Universidad Complutense. Madrid, Spain
| |
Collapse
|
171
|
The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:284. [PMID: 33317597 PMCID: PMC7734811 DOI: 10.1186/s13046-020-01749-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
The enthusiasm for immune checkpoint inhibitors (ICIs), an efficient tumor treatment model different from traditional treatment, is based on their unprecedented antitumor effect, but the occurrence of immune-related adverse events (irAEs) is an obstacle to the prospect of ICI treatment. IrAEs are a discrete toxicity caused by the nonspecific activation of the immune system and can affect almost all tissues and organs. Currently, research on biomarkers mainly focuses on the gastrointestinal tract, endocrine system, skin and lung. Several potential hypotheses concentrate on the overactivation of the immune system, excessive release of inflammatory cytokines, elevated levels of pre-existing autoantibodies, and presence of common antigens between tumors and normal tissues. This review lists the current biomarkers that might predict irAEs and their possible mechanisms for both nonspecific and organ-specific biomarkers. However, the prediction of irAEs remains a major clinical challenge to screen and identify patients who are susceptible to irAEs and likely to benefit from ICIs.
Collapse
|
172
|
Sznol M, Melero I. Revisiting anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer immunotherapy. Ann Oncol 2020; 32:295-297. [PMID: 33307201 DOI: 10.1016/j.annonc.2020.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- M Sznol
- Departments of Immunology and Oncology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| | - I Melero
- Department of Immunology, CIMA and Clinica Universidad de Navarra, Pamplona, Spain; CIBERONC, Madrid, Spain
| |
Collapse
|
173
|
Kawakatsu S, Bruno R, Kågedal M, Li C, Girish S, Joshi A, Wu B. Confounding factors in exposure-response analyses and mitigation strategies for monoclonal antibodies in oncology. Br J Clin Pharmacol 2020; 87:2493-2501. [PMID: 33217012 DOI: 10.1111/bcp.14662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022] Open
Abstract
Dose selection and optimization is an important topic in drug development to maximize treatment benefits for all patients. While exposure-response (E-R) analysis is a useful method to inform dose-selection strategy, in oncology, special considerations for prognostic factors are needed due to their potential to confound the E-R analysis for monoclonal antibodies. The current review focuses on 3 different approaches to mitigate the confounding effects for monoclonal antibodies in oncology: (i) Cox-proportional hazards modelling and case-matching; (ii) tumour growth inhibition-overall survival modelling; and (iii) multiple dose level study design. In the presence of confounding effects, studying multiple dose levels may be required to reveal the true E-R relationship. However, it is impractical for pivotal trials in oncology drug development programmes. Therefore, the strengths and weaknesses of the other 2 approaches are considered, and the favourable utility of tumour growth inhibition-overall survival modelling to address confounding in E-R analyses is described. In the broader scope of oncology drug development, this review discusses the downfall of the current emphasis on E-R analyses using data from single dose level trials and proposes that development programmes be designed to study more dose levels in earlier trials.
Collapse
Affiliation(s)
- Sonoko Kawakatsu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA.,Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, USA
| | - René Bruno
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Matts Kågedal
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Chunze Li
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Sandhya Girish
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Amita Joshi
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| | - Benjamin Wu
- Clinical Pharmacology, Development Sciences, gRED, Genentech/Roche, South San Francisco, CA, USA
| |
Collapse
|
174
|
Correlation Between Immune-related Adverse Event (IRAE) Occurrence and Clinical Outcome in Patients With Metastatic Renal Cell Carcinoma (mRCC) Treated With Nivolumab: IRAENE Trial, an Italian Multi-institutional Retrospective Study. Clin Genitourin Cancer 2020; 18:477-488. [DOI: 10.1016/j.clgc.2020.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 01/15/2023]
|
175
|
Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol 2020; 18:919-935. [PMID: 33235388 DOI: 10.1038/s41423-020-00586-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, approaches based on T cells and their immunomodulatory receptors have emerged as a solid improvement in treatments for various types of cancer. However, the roles of these molecules in the therapeutic context of autoimmune and cardiovascular diseases are still relatively unexplored. Here, we review the best known and most commonly used immunomodulatory T cell receptors in clinical practice (PD-1 and CTLA-4), along with the rest of the receptors with known functions in animal models, which have great potential as modulators in human pathologies in the medium term. Among these other receptors is the receptor CD69, which has recently been described to be expressed in mouse and human T cells in autoimmune and cardiovascular diseases and cancer. However, inhibition of these receptors individually or in combination by drugs or monoclonal antibodies generates a loss of immunological tolerance and can trigger multiple autoimmune disorders in different organs and immune-related adverse effects. In the coming decades, knowledge on the functions of different immunomodulatory receptors will be pivotal for the development of new and better therapies with less harmful side effects. In this review, we discuss the roles of these receptors in the control of immunity from a perspective focused on therapeutic potential in not only cancer but also autoimmune diseases, such as systemic lupus erythematosus, autoimmune diabetes and rheumatoid arthritis, and cardiovascular diseases, such as atherosclerosis, acute myocardial infarction, and myocarditis.
Collapse
|
176
|
Huang YF, Xie WJ, Fan HY, Du J. Comparative Risks of High-Grade Adverse Events Among FDA-Approved Systemic Therapies in Advanced Melanoma: Systematic Review and Network Meta-Analysis. Front Oncol 2020; 10:571135. [PMID: 33178599 PMCID: PMC7593404 DOI: 10.3389/fonc.2020.571135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Head-to-head evidence is lacking in comparative risks of high-grade adverse events (AEs) among different systemic treatment options for advanced melanoma. Methods: An up-to-date systematic review and network meta-analysis (NMA) was performed. Randomized controlled trials (RCTs) of patients with advanced melanoma were eligible if at least one intervention was the Food and Drug Administration-approved targeted or immune checkpoint inhibitors. Risks of high-grade AEs were estimated by random-effects Bayesian NMAs, based on relative risks. Surface under the cumulative ranking probabilities was used to assess relative ranking of treatments. The summary incidences were calculated. Results: Twenty-five RCTs (12,925 patients) comparing 10 different systemic treatment options were included. BRAF/MEK had the highest risk of overall high-grade AEs (pooled incidence: 32.11%). BRAF had the highest risk of high-grade arthralgia (0.39%), whereas MEK had the highest risk of high-grade hypertension (2.28%) and nausea (0.37%). Cytotoxic T-lymphocyte antigen 4 (CTLA-4)/chemo had the highest risk of high-grade diarrhea (1.31%), alanine aminotransferase (0.60%), and aspartate aminotransferase elevation (0.59%). Programmed cell death 1 (PD-1)/CTLA-4 had the highest risks of high-grade pyrexia (1.14%) and rash (0.94%). Using PD-1 inhibitor alone had the lowest risks of overall high-grade AEs. Conclusions: Different systemic treatment options have varying high-grade AEs in advanced melanoma treatment. Current evidences highlight the important risks of BRAF/MEK, CTLA-4/chemo, and PD-1/CTLA-4.
Collapse
Affiliation(s)
- Ya-Fang Huang
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| | - Wen-Jie Xie
- Department Clinical Research, University of Bern, Bern, Switzerland
| | - Hai-Yu Fan
- Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Juan Du
- School of General Practice and Continuing Education, Capital Medical University, Beijing, China
| |
Collapse
|
177
|
Schwarze JK, Awada G, Cras L, Tijtgat J, Forsyth R, Dufait I, Tuyaerts S, Van Riet I, Neyns B. Intratumoral Combinatorial Administration of CD1c (BDCA-1) + Myeloid Dendritic Cells Plus Ipilimumab and Avelumab in Combination with Intravenous Low-Dose Nivolumab in Patients with Advanced Solid Tumors: A Phase IB Clinical Trial. Vaccines (Basel) 2020; 8:vaccines8040670. [PMID: 33182610 PMCID: PMC7712037 DOI: 10.3390/vaccines8040670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Intratumoral (IT) myeloid dendritic cells (myDCs) play a pivotal role in re-licensing antitumor cytotoxic T lymphocytes. IT injection of the IgG1 monoclonal antibodies ipilimumab and avelumab may induce antibody-dependent cellular cytotoxicity, thereby enhancing the release of tumor antigens that can be captured and processed by CD1c (BDCA-1)+ myDCs. Patients with advanced solid tumors after standard care were eligible for IT injections of ≥1 lesion with ipilimumab (10 mg) and avelumab (40 mg) and intravenous (IV) nivolumab (10 mg) on day 1, followed by IT injection of autologous CD1c (BDCA-1)+ myDCs on day 2. IT/IV administration of ipilimumab, avelumab, and nivolumab was repeated bi-weekly. Primary objectives were safety and feasibility. Nine patients were treated with a median of 21 × 106 CD1c (BDCA-1)+ myDCs, and a median of 4 IT/IV administrations of ipilimumab, avelumab, and nivolumab. The treatment was safe with mainly injection-site reactions, but also immune-related pneumonitis (n = 2), colitis (n = 1), and bullous pemphigoid (n = 1). The best response was a durable partial response in a patient with stage IV melanoma who previously progressed on checkpoint inhibitors. Our combinatorial therapeutic approach, including IT injection of CD1c (BDCA-1)+ myDCs, is feasible and safe, and it resulted in encouraging signs of antitumor activity in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Julia Katharina Schwarze
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
- Correspondence: ; Tel.: +32-2-477-64-15
| | - Gil Awada
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Louise Cras
- Department of Anatomopathology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.C.); (R.F.)
| | - Jens Tijtgat
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Ramses Forsyth
- Department of Anatomopathology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (L.C.); (R.F.)
| | - Inès Dufait
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Sandra Tuyaerts
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| | - Ivan Van Riet
- Stem Cell Laboratory, Department of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium;
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium; (G.A.); (J.T.); (I.D.); (S.T.); (B.N.)
| |
Collapse
|
178
|
Tang SQ, Tang LL, Mao YP, Li WF, Chen L, Zhang Y, Guo Y, Liu Q, Sun Y, Xu C, Ma J. The Pattern of Time to Onset and Resolution of Immune-Related Adverse Events Caused by Immune Checkpoint Inhibitors in Cancer: A Pooled Analysis of 23 Clinical Trials and 8,436 Patients. Cancer Res Treat 2020; 53:339-354. [PMID: 33171025 PMCID: PMC8053869 DOI: 10.4143/crt.2020.790] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The occurrence pattern of immune-related adverse events (irAEs) induced by immune checkpoint inhibitor (ICI) in cancer treatment remains unclear. Materials and Methods Phase II-III clinical trials that evaluated ICI-based treatments in cancer and were published between January 2007 and December 2019 were retrieved from public electronic databases. The pooled median time to onset (PMT-O), resolution (PMT-R), and immune-modulation resolution (PMT-IMR) of irAEs were generated using the metamedian package of R software. RESULTS Twenty-two eligible studies involving 23 clinical trials and 8,436 patients were included. The PMT-O of all-grade irAEs ranged from 2.2 to 14.8 weeks, with the longest in renal events. The PMT-O of grade ≥ 3 irAEs was significantly longer than that of all-grade irAEs induced by programmed cell death protein 1 (PD-1) and its ligand 1 (PD-L1) inhibitors (27.5 weeks vs. 8.4 weeks, p < 0.001) and treatment of nivolumab (NIV) plus ipilimumab (IPI) (7.9 weeks vs. 6.0 weeks, p < 0.001). The PMT-R of all-grade irAEs ranged from 0.1 to 54.3 weeks, with the shortest and longest in hypersensitivity/infusion reaction and endocrine events, respectively. The PMT-IMR of grade ≥ 3 irAEs was significantly shorter than that of all-grade irAEs caused by PD-1/PD-L1 blockade (6.9 weeks vs. 40.6 weeks, p=0.002) and NIV+IPI treatment (3.1 weeks vs. 5.9 weeks, p=0.031). CONCLUSION This study revealed the general and specific occurrence pattern of ICI-induced irAEs in pan-cancers, which was deemed to aid the comprehensive understanding, timely detection, and effective management of ICI-induced irAEs.
Collapse
Affiliation(s)
- Si-Qi Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan-Ping Mao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wen-Fei Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Lei Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yuan Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying Guo
- Clinical Trials Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Qing Liu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Cheng Xu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
179
|
Baylet A, Laclaverie M, Marchand L, Bordes S, Closs-Gonthier B, Delpy L. Immunotherapies in cutaneous pathologies: an overview. Drug Discov Today 2020; 26:248-255. [PMID: 33137480 DOI: 10.1016/j.drudis.2020.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Skin is a vital protective organ, the main role of which is to provide a physical barrier and to prevent the entry of pathogens. Various pathologies, such as atopic dermatitis (AD), psoriasis (PSO), or skin cancers, can affect the skin, and all show a high and increasing prevalence. Many antibodies are currently used in the treatment of these diseases. However, various studies are underway for the development of new biologics directed against specific targets. In this review, we describe current biologics used in skin pathologies as well as antibodies in development. We also discuss various immunotherapy examples that use new delivery technologies, such as microneedle patch, nanoparticles (NPs), liposomes, or gel formulation.
Collapse
Affiliation(s)
- Audrey Baylet
- Unité Mixte de Recherche CNRS 7276 - INSERM U1262 - Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025 Limoges, France; Silab R&D Department, Brive, France
| | | | | | | | | | - Laurent Delpy
- Unité Mixte de Recherche CNRS 7276 - INSERM U1262 - Université de Limoges, CBRS, 2 rue du Dr Marcland, 87025 Limoges, France.
| |
Collapse
|
180
|
Regev A, Avigan MI, Kiazand A, Vierling JM, Lewis JH, Omokaro SO, Di Bisceglie AM, Fontana RJ, Bonkovsky HL, Freston JW, Uetrecht JP, Miller ED, Pehlivanov ND, Haque SA, Harrison MJ, Kullak-Ublick GA, Li H, Patel NN, Patwardhan M, Price KD, Watkins PB, Chalasani NP. Best practices for detection, assessment and management of suspected immune-mediated liver injury caused by immune checkpoint inhibitors during drug development. J Autoimmun 2020; 114:102514. [DOI: 10.1016/j.jaut.2020.102514] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
|
181
|
Barrios DM, Do MH, Phillips GS, Postow MA, Akaike T, Nghiem P, Lacouture ME. Immune checkpoint inhibitors to treat cutaneous malignancies. J Am Acad Dermatol 2020; 83:1239-1253. [PMID: 32461079 PMCID: PMC7572574 DOI: 10.1016/j.jaad.2020.03.131] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
As the incidence of cutaneous malignancies continues to rise and their treatment with immunotherapy expands, dermatologists and their patients are more likely to encounter immune checkpoint inhibitors. While the blockade of immune checkpoint target proteins (cytotoxic T-lymphocyte-associated protein-4, programmed cell death-1, and programmed cell death ligand-1) generates an antitumor response in a substantial fraction of patients, there is a critical need for reliable predictive biomarkers and approaches to address refractory disease. The first article of this Continuing Medical Education series reviews the indications, efficacy, safety profile, and evidence supporting checkpoint inhibition as therapeutics for metastatic melanoma, cutaneous squamous cell carcinoma, and Merkel cell carcinoma. Pivotal studies resulting in the approval of ipilimumab, pembrolizumab, nivolumab, cemiplimab, and avelumab by regulatory agencies for various cutaneous malignancies, as well as ongoing clinical research trials, are discussed.
Collapse
Affiliation(s)
- Dulce M Barrios
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mytrang H Do
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medicine, New York, New York
| | - Gregory S Phillips
- State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Michael A Postow
- Weill Cornell Medicine, New York, New York; Melanoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tomoko Akaike
- Division of Dermatology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Mario E Lacouture
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medicine, New York, New York.
| |
Collapse
|
182
|
Jafari F, Javdansirat S, Sanaie S, Naseri A, Shamekh A, Rostamzadeh D, Dolati S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann Diagn Pathol 2020; 49:151654. [PMID: 33130384 DOI: 10.1016/j.anndiagpath.2020.151654] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023]
Abstract
Osteosarcoma, a bone cancer usually seen in children and young adults, is generally a high-grade malignancy presented by extreme metastases to the lungs. Osteosarcoma has a tendency for appearing in bones with rapid growth rate. The etiology of osteosarcoma is multifaceted and poorly understood. A molecular consideration of this disease will lead to a directed tumor treatment. The present treatment for osteosarcoma comprises of an arrangement of systemic chemotherapy and wide surgical resection. Survival rate is increased by the progress of destructive systemic chemotherapies. So, the development of new treatment approaches for metastatic osteosarcoma is essential. Immunomodulation has been used in clinical settings. Through targeting surface antigens expressed on tumor cells, particular antibodies and exploitation of cellular immunotherapy against sarcomas have been confirmed to be effective as cancer therapeutics. In this article, we have reviewed epidemiology, etiology, pathogenesis, diagnosis, and treatment of osteosarcoma and we have focused on different methods of immunotherapy including vaccines, cell-based immunotherapy, cytokines, and monoclonal antibodies.
Collapse
Affiliation(s)
- Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Javdansirat
- Clinical Research development unit Center, Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sarvin Sanaie
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
183
|
Liermann J, Winkler JK, Syed M, Neuberger U, Reuss D, Harrabi S, Naumann P, Ristau J, Weykamp F, El Shafie RA, König L, Debus J, Hassel J, Rieken S. Stereotactic Radiosurgery With Concurrent Immunotherapy in Melanoma Brain Metastases Is Feasible and Effective. Front Oncol 2020; 10:592796. [PMID: 33178618 PMCID: PMC7593445 DOI: 10.3389/fonc.2020.592796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Objective: Stereotactic radiosurgery (SRS) is an established treatment for brain metastases in the management of metastasized melanoma. The increasing use of checkpoint inhibitors in melanoma therapy leads to combined treatment schemes consisting of immunotherapy and SRS that need to be evaluated regarding safety and feasibility. Methods: We retrospectively analyzed 36 patients suffering from cerebral metastasized melanoma. Between November 2011 and May 2016, altogether 66 brain metastases were treated with single-fraction SRS (18-20 Gy prescribed to the 80% isodose) in combination with a checkpoint inhibitor (ipilimumab: 82%, pembrolizumab: 14% or nivolumab: 4%), administered within 3 months before or after SRS. Toxicity was evaluated with focus on the incidence of central nervous system (CNS) radiation necrosis (CRN). Overall survival (OS), freedom from local progression (FFLP), freedom from central nervous system radiation necrosis (FFCRN), and freedom from distant intracranial progression (FFDIP) were analyzed using the Kaplan-Meier method. Results: The median follow-up was 25 months (range: 2-115 months). Two patients (6%) presented with cerebral edema CTCAE °III and another two patients (6%) presented with one-sided muscle weakness CTCAE °III after SRS. One of these four symptomatic cases correlated with an observed CRN, the other three symptomatic cases were related to local tumor progression (n = 2) or related to the performance of additional whole brain radiotherapy (WBRT). No further CTCAE °III or °IV toxicity was seen. During follow-up, seven of the growing contrast-enhanced lesions were resected, revealing two cases of CRN and five cases of local tumor progression. Altogether, the observed CRN rate of the irradiated metastases was 6-17% at the time of analysis, ranging due to the radiologically challenging differentiation between CRN and local tumor progression. The observed ranges of the 1- and 2-years FFLP rates were 82-85% and 73-80%, respectively. The median FFDIP was 6.1 months, the median OS was 22.2 months. Conclusion: In the presented cohort, the combination of SRS and checkpoint inhibitors in the management of cerebral metastasized melanoma was safe and effective. Compared to historic data on SRS only, the observed CRN rate was acceptable. To gain resilient data on the incidence of CRN after combined treatment schemes, prospective trials are needed.
Collapse
Affiliation(s)
- Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Julia K Winkler
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mustafa Syed
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Ulf Neuberger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Reuss
- Heidelberg University Hospital, Institute of Pathology, Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jonas Ristau
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner Site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jessica Hassel
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
184
|
Youssef G, Dietrich J. Ipilimumab: an investigational immunotherapy for glioblastoma. Expert Opin Investig Drugs 2020; 29:1187-1193. [PMID: 32945231 DOI: 10.1080/13543784.2020.1826436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary malignant central nervous system tumor and has a poor overall outcome despite an aggressive standard-of-care treatment. Hence, better therapeutic modalities are necessary. Immunotherapy is a novel modality that has an indirect action against the tumor cells through activation of an anti-tumor immune response. AREAS COVERED Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) belongs to a class of molecules called immune checkpoints that are inherently expressed on immune cells and lead to attenuation of the immune response. Inhibition of such molecules has been approved for the treatment of melanoma, and prolonged survival and complete responses have been reported in preclinical GBM mouse models. Ipilimumab inhibits CTLA-4 and is being investigated for the treatment of GBM, alone or in combination with other treatment modalities, in various preclinical and clinical studies, the results of the most relevant of which are discussed in this review. EXPERT OPINION Combining ipilimumab with other immunotherapy modalities and using it in specific conditions may increase the rate of objective responses in patients with GBM.
Collapse
Affiliation(s)
- Gilbert Youssef
- MGH Cancer Center, Massachusetts General Hospital & Harvard Medical School , Boston, MA, USA.,Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital & Harvard Medical School , Boston, MA, USA
| | - Jorg Dietrich
- MGH Cancer Center, Massachusetts General Hospital & Harvard Medical School , Boston, MA, USA.,Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital & Harvard Medical School , Boston, MA, USA
| |
Collapse
|
185
|
Lee AY, Brady MS. Neoadjuvant immunotherapy for melanoma. J Surg Oncol 2020; 123:782-788. [PMID: 33002195 DOI: 10.1002/jso.26229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Clinical trials have demonstrated the efficacy of immunotherapy, especially checkpoint blockade inhibitors, in the treatment of patients with metastatic melanoma. More recently, improvements in survival have been reported in patients with high-risk resectable melanoma when these agents are used in the adjuvant setting. Increasing interest in neoadjuvant immunotherapy for high-risk resectable melanoma has been fueled by early reports of significant efficacy. We review the rationale and data behind utilizing neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Ann Y Lee
- Department of Surgery, NYU Langone Health, New York, New York, USA
| | - Mary S Brady
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
186
|
Terbuch A, Tiu C, Candilejo IM, Scaranti M, Curcean A, Bar D, Estevez Timon M, Ameratunga M, Ang JE, Ratoff J, Minchom AR, Banerji U, de Bono JS, Tunariu N, Lopez JS. Radiological Patterns of Drug-induced Interstitial Lung Disease (DILD) in Early-phase Oncology Clinical Trials. Clin Cancer Res 2020; 26:4805-4813. [PMID: 32332017 DOI: 10.1158/1078-0432.ccr-20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Drug-induced interstitial lung disease (DILD) is a rare, but potentially fatal toxicity. Clinical and radiological features of DILD in the early experimental setting are poorly described. PATIENTS AND METHODS A total of 2,499 consecutive patients with advanced cancer on phase I clinical trials were included. DILD was identified by a dedicated radiologist and investigators, categorized per internationally recognized radiological patterns, and graded per Common Terminology Criteria for Adverse Events (CTCAE) and the Royal Marsden Hospital (RMH) DILD score. Clinical and radiological features of DILD were analyzed. RESULTS Sixty patients overall (2.4%) developed DILD. Median time to onset of DILD was 63 days (range, 14-336 days). A total of 45% of patients who developed DILD were clinically asymptomatic. Incidence was highest in patients receiving drug conjugates (7.4%), followed by inhibitors of the PI3K/AKT/mTOR pathway (3.9%). The most common pattern seen was hypersensitivity pneumonitis (33.3%), followed by nonspecific interstitial pneumonia (30%), and cryptogenic organizing pneumonia (26.7%). A higher DILD score [OR, 1.47, 95% confidence interval (CI), 1.19-1.81; P < 0.001] and the pattern of DILD (OR, 5.83 for acute interstitial pneumonia; 95% CI, 0.38-90.26; P = 0.002) were significantly associated with a higher CTCAE grading. The only predictive factor for an improvement in DILD was an interruption of treatment (OR, 0.05; 95% CI, 0.01-0.35; P = 0.01). CONCLUSIONS DILD in early-phase clinical trials is a toxicity of variable onset, with diverse clinical and radiological findings. Radiological findings precede clinical symptoms. The extent of the affected lung parenchyma, scored by the RMH DILD score, correlates with clinical presentation. Most events are low grade, and improve with treatment interruption, which should be considered early.
Collapse
Affiliation(s)
- Angelika Terbuch
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Crescens Tiu
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Irene Moreno Candilejo
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
- Division of Medical Oncology, START Madrid-HM Sanchinarro CIOCC Early Phase Program, Medical University Hospital of Sanchinarro, Madrid, Spain
| | - Mariana Scaranti
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Andra Curcean
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Dan Bar
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Miriam Estevez Timon
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Malaka Ameratunga
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
- Monash University, Melbourne, Australia
| | - Joo Ern Ang
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jonathan Ratoff
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
- Epsom and St. Helier University Hospitals NHS Trust, Epsom, United Kingdom
| | - Anna R Minchom
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Udai Banerji
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Johann S de Bono
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Nina Tunariu
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom
| | - Juanita S Lopez
- Phase I Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, Sutton, United Kingdom.
| |
Collapse
|
187
|
Leven C, Padelli M, Carré JL, Bellissant E, Misery L. Immune Checkpoint Inhibitors in Melanoma: A Review of Pharmacokinetics and Exposure-Response Relationships. Clin Pharmacokinet 2020; 58:1393-1405. [PMID: 31183812 DOI: 10.1007/s40262-019-00789-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors are a new class of monoclonal antibodies that amplify T-cell-mediated immune responses against cancer cells. The introduction of these new drugs, first anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) and then anti-programmed death-1 (anti-PD1), was a major improvement in the treatment of advanced or metastatic melanoma, a highly immunogenic tumour. The development strategy for immune checkpoint immunotherapies differed from that traditionally used for cytotoxic therapies in oncology. The choices of doses at which to conduct clinical trials, and subsequently the choice of doses at which to use these new therapies, were not based on the identification of a maximum tolerated dose from dose-escalation studies; thus, pharmacokinetic and pharmacokinetic-pharmacodynamic modelling was essential. The studies conducted have shown that the pharmacokinetics of ipilimumab were linear and not time-dependent. In addition, there was a correlation between the trough concentrations of ipilimumab and its therapeutic efficacy. On the contrary, the anti-PD1 immunotherapies nivolumab and pembrolizumab had time-dependent pharmacokinetics. Their therapeutic efficacy was not related to their trough concentration, but there was a correlation between the clearance of anti-PD1 and the survival of melanoma patients. This review highlights the complexity of interpreting the exposure-response relationships of these agents. Further studies are needed to assess the value of therapeutic drug monitoring of immune checkpoint inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Cyril Leven
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, Brest, France. .,University of Brest, LIEN, Brest, France.
| | - Maël Padelli
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, Brest, France.,University of Brest, LIEN, Brest, France
| | - Jean-Luc Carré
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, Brest, France.,University of Brest, LIEN, Brest, France
| | - Eric Bellissant
- Department of Clinical and Biological Pharmacology and Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Rennes University Hospital, Rennes, France.,Laboratory of Experimental and Clinical Pharmacology, Faculty of Medicine, Rennes 1 University, Rennes, France.,Clinical Investigation Centre, CIC Inserm 1414, Rennes, France
| | - Laurent Misery
- University of Brest, LIEN, Brest, France.,Department of Dermatology, Brest University Hospital, Brest, France
| |
Collapse
|
188
|
Pourvaziri A, Parakh A, Biondetti P, Sahani D, Kambadakone A. Abdominal CT manifestations of adverse events to immunotherapy: a primer for radiologists. Abdom Radiol (NY) 2020; 45:2624-2636. [PMID: 32451672 DOI: 10.1007/s00261-020-02531-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunotherapy is a rapidly growing field within oncology and is being increasingly used in the management of several malignancies. Due to their unique mechanism of action on the immune system and neoplastic cells, the response pattern and adverse events of this novel therapy are distinct from conventional systemic therapies. Accordingly, the imaging appearances following immunotherapy including adverse events are unique and at times perplexing. Imaging is integral to management of patients on immunotherapeutic agents and a thorough understanding of its mechanism, response patterns and adverse events is crucial for precise interpretation of imaging studies. This review provides a description of the mechanism of action of current immunotherapeutic agents and the organ-wise description of their side effects.
Collapse
Affiliation(s)
- Ali Pourvaziri
- Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Anushri Parakh
- Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Pierpaolo Biondetti
- Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA
| | - Dushyant Sahani
- Department of Radiology, University of Washington, UWMC Radiology RR218, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Avinash Kambadakone
- Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
189
|
Peer CJ, Goldstein DA, Goodell JC, Nguyen R, Figg WD, Ratain MJ. Opportunities for using in silico-based extended dosing regimens for monoclonal antibody immune checkpoint inhibitors. Br J Clin Pharmacol 2020; 86:1769-1777. [PMID: 32424951 PMCID: PMC7444775 DOI: 10.1111/bcp.14369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/10/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic drug monitoring (TDM) involves frequent measurements of drug concentrations to ensure levels remain within a therapeutic window, and it is especially useful for drugs with narrow therapeutic indices or extensive interindividual pharmacokinetic variability. This technique has never been applied to immuno-oncology drugs, but, given recent examinations of clinical data (both exposure and response) on a number of these drugs, further investigations into TDM may be justified to reduce costs as well as potentially reducing the severity and/or duration of immune-related adverse events. Specifically, all but one of the approved PD-1 and PD-L1 inhibitors (pembrolizumab, nivolumab, cemiplimab-rwlc, atezolizumab, avelumab, durvalumab) have been shown to exhibit a plateaued exposure-response (E-R) curve at doses evaluated extensively to date, as well as time-dependent changes in drug exposure. Furthermore, responders have a greater decrease in drug clearance over time and would, therefore, have supratherapeutic serum concentrations. With frequent trough measurements, it is possible to use pharmacokinetic modelling and simulation to estimate drug clearance via Bayesian methods. Based on patient-specific estimates for clearance, optimal alternative dosing strategies can be simulated to lower drug and cost burden yet maintain therapeutic levels, especially as the clearance of the drug decreases over time. This review will comprehensively discuss each of the FDA approved PD-1, PD-L1/2 and CTLA-4 inhibitors regarding their indications and current recommended dosing, with evidence supporting the investigation of these types of TDM strategies.
Collapse
Affiliation(s)
- Cody J. Peer
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | | | | | - Ryan Nguyen
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | - William D. Figg
- Clinical Pharmacology ProgramNational Cancer InstituteBethesdaMDUSA
| | - Mark J. Ratain
- Department of Medicine, Center for Personalized Therapeutics, and Comprehensive Cancer CenterThe University of ChicagoChicagoILUSA
| |
Collapse
|
190
|
Harui A, McLachlan SM, Rapoport B, Zarembinski TI, Roth MD. Peri-tumor administration of controlled release anti-CTLA-4 synergizes with systemic anti-PD-1 to induce systemic antitumor immunity while sparing autoimmune toxicity. Cancer Immunol Immunother 2020; 69:1737-1749. [PMID: 32333082 PMCID: PMC11027619 DOI: 10.1007/s00262-020-02579-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Combination immunotherapy targeting the PD-1 and CTLA-4 checkpoint inhibitor pathways provides substantial clinical benefit in patients with advanced-stage cancer but at the risk of dose-limiting inflammatory and autoimmune toxicity. The delicate balance that exists between unleashing tumor killing and promoting systemic autoimmune toxicity represents a major clinical challenge. We hypothesized that targeting anti-CTLA-4 so that it perfuses tumor-draining lymph nodes would provide a significant therapeutic advantage and developed an injectable hydrogel with controlled antibody release characteristics for this purpose. Injection of hydrogel-encapsulated anti-CTLA-4 at a peri-tumor location (MC-38 tumor model) produced dose-dependent antitumor responses and survival that exceeded those by anti-CTLA-4 alone (p < 0.05). Responses to 100 µg of targeted anti-CTLA-4 also equaled or exceeded those observed with a series of systemic injections delivering 600 µg (p < 0.05). While preserving antitumor activity, this approach resulted in serum anti-CTLA-4 exposure (area under the curve) that averaged only 1/16th of that measured with systemic therapy. Consistent with the marked differences in systemic exposure, systemic anti-CTLA-4 stimulated the onset of autoimmune thyroiditis in iodide-exposed NOD.H-2h4 mice, as measured by anti-thyroglobulin antibody titer, while hydrogel-encapsulated anti-CTLA-4 had a minimal effect (p ≤ 0.01). At the same time, this targeted low-dose anti-CTLA-4 approach synergized well with systemic anti-PD-1 to control tumor growth and resulted in a high frequency of complete responders that were immune to tumor re-challenge at a distant site. We conclude that targeted and controlled delivery of low-dose anti-CTLA-4 has the potential to improve the benefit-risk ratio associated with combination checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Airi Harui
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Sandra M McLachlan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Michael D Roth
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
191
|
Abdou Y, Pandey M, Sarma M, Shah S, Baron J, Ernstoff MS. Mechanism-based treatment of cancer with immune checkpoint inhibitor therapies. Br J Clin Pharmacol 2020; 86:1690-1702. [PMID: 32323342 PMCID: PMC8176998 DOI: 10.1111/bcp.14316] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoints are cell surface molecules that initiate regulatory pathways which have powerful control of CD8+ cytolytic T cell activity. Antagonistic and agonistic antibodies engaging these molecules have demonstrated profound impact on immune activation and have entered clinical use for the treatment of a variety of diseases. Over the past decade, antagonistic antibodies known as immune checkpoint inhibitors have become a new pillar of cancer treatment and have reshaped the therapeutic landscape in oncology. These agents differ in their mechanism of action and toxicity profiles compared to more traditional systemic cancer treatments such as chemo- and targeted therapies. This article reviews the pharmacology of this new class of agents.
Collapse
Affiliation(s)
- Yara Abdou
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Manu Pandey
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Maithreyi Sarma
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Shrunjal Shah
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Jeffrey Baron
- Department of PharmacyRoswell Park Comprehensive Cancer CenterBuffaloNew York
| | - Marc S. Ernstoff
- Department of MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew York
| |
Collapse
|
192
|
Efficacy of ipilimumab after anti-PD-1 therapy in sequential treatment of metastatic melanoma patients - Real world evidence. Adv Med Sci 2020; 65:316-323. [PMID: 32554313 DOI: 10.1016/j.advms.2020.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Immunotherapy has become a standard treatment option for patients with metastatic melanoma, and the use of checkpoint inhibitors significantly improves the treatment outcomes in this group. PATIENTS AND METHODS A total of 116 patients with metastatic melanoma were enrolled in the study. In the first line, they were treated with an anti-PD-1 inhibitor (nivolumab or pembrolizumab), following which ipilimumab was used as the second-line therapy. RESULTS BRAF mutation was detected in 12 patients (10%). The median progression-free survival (PFS) of ipilimumab treatment was 2.8 months, the overall survival (OS) was 5.1 months. The rate of 6-month survival was 45%, 1-year survival was 24%, and 2-year survival was 3%. The responses to treatment were: complete response in 2 cases (2%), partial response in 7 cases (6%), stable disease in 39 cases (34%). In multivariate analysis, normal levels of lactate dehydrogenase (LDH) were associated with a longer median OS and PFS (p = 0.02 and p = 0.009, respectively), while 2 or less number of metastatic locations and the presence of BRAF mutations were correlated with a longer OS (p = 0.041 and p = 0.024, respectively). CONCLUSIONS Ipilimumab could be considered after anti-PD-1 treatment. Treatment with ipilimumab following anti-PD-1 therapy showed beneficial effects in patients with normal levels of LDH, 2 or less number of metastatic locations, and BRAF-mutated melanoma. However, further studies are required to confirm our results as the study included a low number of patients with BRAF mutation-positive melanoma. No significant increase in toxicity was detected with the use of ipilimumab after anti-PD-1 therapy.
Collapse
|
193
|
Mangan BL, McAlister RK, Balko JM, Johnson DB, Moslehi JJ, Gibson A, Phillips EJ. Evolving insights into the mechanisms of toxicity associated with immune checkpoint inhibitor therapy. Br J Clin Pharmacol 2020; 86:1778-1789. [PMID: 32543711 PMCID: PMC7444794 DOI: 10.1111/bcp.14433] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors have emerged as a revolutionary treatment option for patients with various types of malignancy. Although these agents afford a significant improvement in outcomes for melanoma and other previously untreatable malignancies, their novel mechanism of action may predispose patients to immune-related adverse effects (irAEs). In the tumour neoantigen environment, these irAEs are due to the activation of the immune system by the blockade of suppressive checkpoints, leading to increases in T-cell activation and proliferation. IrAEs have been reported in almost any organ and at any point in time, even months to years after discontinuation of therapy. Certain populations with distinct physiological changes, genetic risk factors, and specific antigen exposures may be more highly predisposed to develop irAEs. This review discusses the incidence and mechanisms of irAEs and the relationship between host factors and irAE occurrence.
Collapse
Affiliation(s)
- Brendan L. Mangan
- Department of PharmacyVanderbilt University Medical CenterNashvilleTNUSA
| | - Renee K. McAlister
- Department of PharmacyVanderbilt University Medical CenterNashvilleTNUSA
| | - Justin M. Balko
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Breast Cancer Research ProgramVanderbilt University Medical CenterNashvilleTNUSA
- Cancer Biology ProgramVanderbilt University Medical CenterNashvilleTNUSA
| | - Douglas B. Johnson
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Javid J. Moslehi
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Andrew Gibson
- Institute for Immunology and Infectious DiseasesMurdoch UniversityMurdochWAAustralia
| | - Elizabeth J. Phillips
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Institute for Immunology and Infectious DiseasesMurdoch UniversityMurdochWAAustralia
| |
Collapse
|
194
|
Shan Q, Wang H, Han X, Guo J, Wang Z. Duration of immunotherapy in patients with advanced lung adenocarcinoma with negative driver genes: case report and literature review. Thorac Cancer 2020; 11:3001-3006. [PMID: 32833320 PMCID: PMC7529576 DOI: 10.1111/1759-7714.13600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Here, we report two cases of advanced non‐small cell lung cancer (NSCLC) in patients with negative driver genes who received ICI treatment for less than two years but continued to benefit from their administration after drug withdrawal. The first patient was diagnosed with left lung adenocarcinoma, cT1cN3M1c, stage IVb, and after four cycles achieved a completed response (CR). After 10 cycles of camrelizumab treatment, immunotherapy was discontinued because of hepatotoxicity. When the drug was discontinued, the curative effect was evaluated as CR. At the last follow‐up, the drug withdrawal time had been more than 20 months, and the response was maintained at CR, with PFS of over 30 months. In the second case, the patient was diagnosed with left lung adenocarcinoma, cT1N3M1c, stage IVb. The patient was treated with sintilimab, and due to cardiac and skin toxicity, the patient withdrew from the trial after five cycles of immunotherapy. After drug withdrawal, the curative effect of the patients was maintained at PR. At the last follow‐up, the drug withdrawal time was more than three months, and the curative effect was evaluated as PR. The PFS was more than nine months. In conclusion, whether the drug can be discontinued in advance after immune checkpoint inhibitor (ICI) therapy has been effective remains a concern, and at present there is no final conclusion in the medical profession. However, the results of this study indicate that early withdrawal of immunotherapy due to adverse reactions might also benefit patients with advanced lung adenocarcinoma with negative driver genes who achieve an early response to immunotherapy.
Collapse
Affiliation(s)
- Qinge Shan
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao Han
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jun Guo
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhehai Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
195
|
Fan Y, Geng Y, Shen L, Zhang Z. Advances on immune-related adverse events associated with immune checkpoint inhibitors. Front Med 2020; 15:33-42. [PMID: 32779094 DOI: 10.1007/s11684-019-0735-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy has recently led to a paradigm shift in cancer therapy, in which immune checkpoint inhibitors (ICIs) are the most successful agents approved for multiple advanced malignancies. However, given the nature of the non-specific activation of effector T cells, ICIs are remarkably associated with a substantial risk of immune-related adverse events (irAEs) in almost all organs or systems. Up to 90% of patients who received ICIs combination therapy experienced irAEs, of which majority were low-grade toxicity. Cytotoxic lymphocyte antigen-4 and programmed cell death protein-1/programmed cell death ligand 1 inhibitors usually display distinct features of irAEs. In this review, the mechanisms of action of ICIs and how they may cause irAEs are described. Some unsolved challenges, however really engrossing issues, such as the association between irAEs and cancer treatment response, tumor response to irAEs therapy, and ICIs in challenging populations, are comprehensively summarized.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China
| | - Yan Geng
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
196
|
Iacono D, Vitale MG, Basile D, Pelizzari G, Cinausero M, Poletto E, Pascoletti G, Minisini AM. Immunotherapy for older patients with melanoma: From darkness to light? Pigment Cell Melanoma Res 2020; 34:550-563. [PMID: 32745351 DOI: 10.1111/pcmr.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023]
Abstract
Approximately 40% of malignant melanomas are diagnosed in patients older than 65 years. Elderly patients with melanoma present clinicopathological features related to a more aggressive biology, and they are often diagnosed with advanced stage of disease. Interestingly, in older patients the immune system can be altered with changes both in the innate system and in the adaptive immune system with the acquisition of a pro-inflammatory and immune suppressive phenotype. Immunotherapy with immune checkpoint inhibitors has reshaped the treatment strategies and prognosis of patients with melanoma, and particularly, older age should not be considered a contraindication for immunotherapy. However, data regarding efficacy and safety of immunotherapy in elderly population are still limited because frail older patients are generally excluded from clinical trials. Recently, real-world data have shed light on similar efficacy and safety of immunotherapy in older population compared with younger counterpart. The aim of the present review was to summarize the available knowledge on the underlying immune system in older patients with a diagnosis of melanoma and the immunotherapeutic approaches in this population.
Collapse
Affiliation(s)
- Donatella Iacono
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Maria Grazia Vitale
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy.,Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Debora Basile
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Giacomo Pelizzari
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Marika Cinausero
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Elena Poletto
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Gaetano Pascoletti
- Department of Oncology, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | | |
Collapse
|
197
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
198
|
Yeung HM, Gupta B, Kamat B. A Rare Case of Primary Anorectal Melanoma and a Review of the Current Landscape of Therapy. J Community Hosp Intern Med Perspect 2020; 10:371-376. [PMID: 32850102 PMCID: PMC7427446 DOI: 10.1080/20009666.2020.1787809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Anorectal mucosal melanoma (ARMM) is an uncommon and highly aggressive malignancy. Given its rarity, there is insufficient evidence on the optimal medical management which presents as a clinical challenge to its diagnosis and treatment. Treatment of ARMM typically involves a multimodal approach including surgical resection, chemotherapy, targeted therapy and/or immunotherapy. CASE PRESENTATION Here, we present a case of a 78-year-old female who presented with a four-month history of rectal bleeding and bowel incontinence. Ultimately, colonoscopy revealed a mass at the anal verge, and biopsy of the mass showed malignant cells that stained positive for S100, Melan-A and HMB-45, consistent with the diagnosis of malignant melanoma. Molecular testing revealed no BRAF, KIT or NRAS gene mutations. PD-L1 immunohistochemistry showed tumor proportion score of 1%. She underwent abdominoperineal resection with a plan to initiate immunotherapy with an anti-PD-1 checkpoint inhibitor. This case highlights a rare aggressive malignancy and reviews its treatment option, which are mostly extrapolated from its cutaneous counterpart and some derived from a few case reports. Due to its rarity, there is no consensus guideline for the treatment of ARMM.
Collapse
Affiliation(s)
- Ho-Man Yeung
- Department of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Brinda Gupta
- Department of Medicine, Temple University Hospital, Philadelphia, PA, USA
| | - Bhishak Kamat
- Department of Radiology, Temple University Hospital, Philadelphia, PA, USA
| |
Collapse
|
199
|
Boutros C, Chaput-Gras N, Lanoy E, Larive A, Mateus C, Routier E, Sun R, Tao YG, Massard C, Bahleda R, Schwob D, Ibrahim N, Khoury Abboud RM, Caramella C, Lancia A, Cassard L, Roy S, Soria JC, Robert C, Deutsch E. Dose escalation phase 1 study of radiotherapy in combination with anti-cytotoxic-T-lymphocyte-associated antigen 4 monoclonal antibody ipilimumab in patients with metastatic melanoma. J Immunother Cancer 2020; 8:e000627. [PMID: 32819972 PMCID: PMC7443273 DOI: 10.1136/jitc-2020-000627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A synergy between radiotherapy and anti-cytotoxic-T-lymphocyte-associated antigen 4 (anti-CTLA-4) monoclonal antibody has been demonstrated preclinically. The Mel-Ipi-Rx phase 1 study aimed to determine the maximum tolerated dose (MTD) and safety profile of radiotherapy combined with ipilimumab in patients with metastatic melanoma. PATIENTS AND METHODS A 3+3 dose escalation design was used with 9, 15, 18 and 24 Gy dose of radiotherapy at week 4 combined with 10 mg/kg ipilimumab every 3 weeks for four doses. Patients with evidence of clinical benefit at week 12 were eligible for maintenance with ipilimumab 10 mg/kg every 12 weeks starting at week 24 until severe toxicity or disease progression. The database lock occurred on April 30, 2019. Tumor growth rate of irradiated lesions and non-irradiated lesions were analyzed to assess the systemic immunologic antitumor response. Blood immune monitoring was performed before and during treatment to determine if radiotherapy could modify ipilimumab pharmacodynamics. RESULTS 19 patients received ipilimumab between August 2011 and July 2015. Nine patients received the four doses of ipilimumab. All patients received the combined radiotherapy. Grade 3 adverse events occurred in nine patients, the most common being colitis and hepatitis. No drug-related death occurred. Dose limiting toxicity occurred in two of six patients in the cohort receiving 15 Gy. The MTD was 9 Gy. Two patients had complete response, three had partial response response and seven had stable disease, giving an objective response rate of 31% and a clinical benefit rate of 75% at week 24. The median duration of follow-up was 5.8 years (Q1=4.5; Q3=6.8). The median overall survival (95% CI) was estimated at 0.9 years (0.5-2). The median progression-free survival (PFS) (95% CI) was 0.4 (0.2-1.4). Radiotherapy combined with ipilimumab was associated with increased CD4+ and CD8+ICOS+ T cells. Increased CD8+ was significantly associated with PFS. CONCLUSION When combined with ipilimumab at 10 mg/kg, the MTD of radiotherapy was 9 Gy. This combination of ipilimumab and radiotherapy appears to be associated with antitumor activity. Increased CD8+ was significantly associated with PFS. Thus, immune biomarkers may be useful for early response evaluation. TRIAL REGISTRATION NUMBER NCT01557114.
Collapse
Affiliation(s)
- Celine Boutros
- Dermatology Unit, Outpatient Clinic, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Chaput-Gras
- Laboratoire d'immunomonitoring En Oncologie, University Paris-Saclay, Faculty of Pharmacy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Emilie Lanoy
- Biostatistic and Epidemiology Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alicia Larive
- Biostatistic and Epidemiology Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christine Mateus
- Dermatology Unit, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, UK
| | - Emilie Routier
- Dermatology Unit, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, UK
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yun Gan Tao
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christophe Massard
- DITEP, University Paris-Saclay, Faculty of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Rastilav Bahleda
- DITEP, University Paris-Saclay, Faculty of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Dominique Schwob
- Biostatistic and Epidemiology Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathalie Ibrahim
- Outpatient Clinic, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Caroline Caramella
- Department of Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Andrea Lancia
- Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Radiation Oncology, Polyclinic San Matteo Pavia Fondazione IRCCS, Pavia, Italy
| | - Lydie Cassard
- Laboratoire d'immunomonitoring En Oncologie, University Paris-Saclay, Faculty of Pharmacy, Gustave Roussy Cancer Campus, Villejuif, France
| | - Severine Roy
- Dermatology Unit, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, UK
| | - J-C Soria
- DITEP, INSERM Unit U981, University Paris-Saclay, Faculty of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Robert
- Dermatology Unit, Department of Medicine, University Paris-Saclay, Faculty of Medicine, INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, Radiomics Team, Molecular Radiotherapy INSERM U1030, University Paris-Saclay, Faculty of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
200
|
Xu Z, Tsai HI, Xiao Y, Wu Y, Su D, Yang M, Zha H, Yan F, Liu X, Cheng F, Chen H. Engineering Programmed Death Ligand-1/Cytotoxic T-Lymphocyte-Associated Antigen-4 Dual-Targeting Nanovesicles for Immunosuppressive Therapy in Transplantation. ACS NANO 2020; 14:7959-7969. [PMID: 32515579 DOI: 10.1021/acsnano.9b09065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
T cell activation by immune allorecognition is a major contributing factor toward the triggering of organ rejection. Immunosuppressive drugs have to be taken after organ transplantation, but long-term use of these drugs increases the risks of infection and other serious disorders. Here, we showed dysregulation of programmed cell death-ligand 1/programmed cell death 1 (PD-L1/PD-1) and cytotoxic T-lymphocyte-associated protein 4/cluster of differentiation 80 (CTLA-4/CD80) in the spleen of two organ transplantation models. Using a bioengineering approach, cellular exosome-like nanovesicles (NVs) displaying PD-L1/CTLA-4 dual-targeting cargos were designed, and their specificity to bind their ligands PD-1 and CD80 on T cell and dendritic cell surfaces was confirmed. These NVs consequently enhanced PD-L1/PD-1 and CTLA-4/CD80 immune inhibitory pathways, two key immune checkpoints to co-inhibit T cell activation and maintain peripheral tolerance. It was also confirmed that PD-L1/CTLA-4 NVs led to the reduction of T cell activation and proliferation in vitro and in vivo. Finally, it was demonstrated that PD-L1/CTLA-4 NVs reduced density of CD8+ T cells and cytokine production, enriched regulatory T cells, and prolonged the survival of mouse skin and heart grafts. Taken together, these data supported the idea that PD-L1/CTLA-4 dual-targeting NVs exert immune inhibitory effects and may be used as a prospective immunosuppressant in organ transplantation.
Collapse
Affiliation(s)
- Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hsiang-I Tsai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Yingyi Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Min Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hualian Zha
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fuxia Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Xiaoyan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| |
Collapse
|