151
|
Wang J, Ma J, Cai C, Daver N, Ning J. A Bayesian hierarchical monitoring design for phase II cancer clinical trials: Incorporating information on response duration into monitoring rules. Stat Med 2021; 40:4629-4639. [PMID: 34101217 DOI: 10.1002/sim.9084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 11/06/2022]
Abstract
We propose a Bayesian hierarchical monitoring design for single-arm phase II clinical trials of cancer treatments that incorporates the information on the duration of response (DOR) into the monitoring rules. To screen a new treatment by evaluating its preliminary therapeutic effect, futility monitoring rules are commonly used in phase II clinical trials to make "go/no-go" decisions timely and efficiently. These futility monitoring rules are usually focused on a single outcome (eg, response rate), although a single outcome may not adequately determine the efficacy of the experimental treatment. For example, targeted agents with a long response duration but a similar response rate may be worth further evaluation in cancer research. To address this issue, we propose Bayesian hierarchical futility monitoring rules to consider both the response rate and duration. The first level of monitoring evaluates whether the response rate provides evidence that the experimental treatment is worthy of further evaluation. If the evidence from the response rate does not support continuing the trial, the second level monitoring rule, which is based on the DOR, will be triggered. If both stopping rules are satisfied, the trial will be stopped for futility. We conducted simulation studies to evaluate the operating characteristics of the proposed monitoring rules and compared them to those of standard method. We illustrated the proposed design with a single-arm phase II cancer clinical trial to assess the safety and efficacy of combined treatment of nivolumab and azacitidine in patients with relapsed/refractory acute myeloid leukemia. The proposed design avoids an aggressive early termination for futility when the experimental treatment substantially prolongs the DOR but fails to improve the response rate.
Collapse
Affiliation(s)
- Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chunyan Cai
- Marketplace Data Science, Uber, San Francisco, California
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
152
|
Kondo T, Onozawa M, Fujisawa S, Harada S, Ogasawara R, Izumiyama K, Saito M, Morioka M, Mori A, Teshima T. Myelomonocytic differentiation of leukemic blasts accompanied by differentiation syndrome in a case of FLT3-ITD-positive AML treated with gilteritinib. ACTA ACUST UNITED AC 2021; 26:256-260. [PMID: 33631087 DOI: 10.1080/16078454.2021.1889111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in acute myelogenous leukemia (AML) and the mutation is associated with poor prognosis of patients. Two distinct types of activating mutations have been identified in AML samples. One is internal tandem duplications in the juxtamembrane domain (FLT3-ITD) and the other is point mutations in the tyrosine kinase domain (FLT3-TKD). Gilteritinib is a FLT3 inhibitor that inhibits both FLT3-ITD and FLT3-TKD. It was reported that differentiation of leukemic blasts accompanied by differentiation syndrome occurs in some patients treated with gilteritinib. However, information about the precise clinical course is limited, and appropriate management of differentiation syndrome has not been established. We report a case of relapsed AML with FLT3-ITD that was treated with gilteritinib. Analysis of the FLT3-ITD variant allele frequency (VAF) revealed that FLT3-ITD VAF was not decreased despite achievement of complete remission with incomplete hematologic recovery. Remarkable increases of monocytes and granulocytes accompanied by differentiation syndrome were observed at 6 months after the initiation of gilteritinib treatment. Intermittent chemotherapy with low-dose cytarabine and mitoxantrone was effective for reducing myelomonocytosis and resolving differentiation syndrome.
Collapse
Affiliation(s)
- Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | | | | | - Koh Izumiyama
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Makoto Saito
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | | | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
153
|
FLT3 Tyrosine Kinase Inhibitors for the Treatment of Fit and Unfit Patients with FLT3-Mutated AML: A Systematic Review. Int J Mol Sci 2021; 22:ijms22115873. [PMID: 34070902 PMCID: PMC8198781 DOI: 10.3390/ijms22115873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
FLT3-mutated acute myeloid leukemia accounts for around 30% of acute myeloid leukemia (AML). The mutation carried a poor prognosis until the rise of tyrosine kinase inhibitors (TKIs). New potent and specific inhibitors have successfully altered the course of the disease, increasing the complete response rate and the survival of patients with FLT3-mutated AML. The aim of this article is to review all the current knowledge on these game-changing drugs as well as the unsolved issues raised by their use for fit and unfit FLT3-mutated AML patients. To this end, we analyzed the results of phase I, II, III clinical trials evaluating FLT3-TKI both in the first-line, relapse monotherapy or in combination referenced in the PubMed, the American Society of Hematology, the European Hematology Association, and the Clinicaltrials.gov databases, as well as basic science reports on TKI resistance from the same databases. The review follows a chronological presentation of the different trials that allowed the development of first- and second-generation TKI and ends with a review of the current lines of evidence on leukemic blasts resistance mechanisms that allow them to escape TKI.
Collapse
|
154
|
Kantarjian HM, Short NJ, Fathi AT, Marcucci G, Ravandi F, Tallman M, Wang ES, Wei AH. Acute Myeloid Leukemia: Historical Perspective and Progress in Research and Therapy Over 5 Decades. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:580-597. [PMID: 34176779 DOI: 10.1016/j.clml.2021.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022]
Abstract
With the Food and Drug Administration approval of 9 agents for different acute myeloid leukemia (AML) indications, the prognosis and management of AML is evolving rapidly. Herein, we review the important milestones in the history of AML research and therapy, discuss insights regarding prognostic assessment and prediction of treatment outcome, detail practical supportive care measures, and summarize the current treatment landscape and areas of evolving research.
Collapse
Affiliation(s)
| | - Nicholas J Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Amir T Fathi
- Leukemia Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research City of Hope, Duarte, CA, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew H Wei
- Department of Clinical Hematology, The Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
155
|
Targeted Therapeutic Approach Based on Understanding of Aberrant Molecular Pathways Leading to Leukemic Proliferation in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22115789. [PMID: 34071627 PMCID: PMC8198876 DOI: 10.3390/ijms22115789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous hematopoietic neoplasm with various genetic abnormalities in myeloid stem cells leading to differentiation arrest and accumulation of leukemic cells in bone marrow (BM). The multiple genetic alterations identified in leukemic cells at diagnosis are the mainstay of World Health Organization classification for AML and have important prognostic implications. Recently, understanding of heterogeneous and complicated molecular abnormalities of the disease could lead to the development of novel targeted therapeutic agents. In the past years, gemtuzumab ozogamicin, BCL-2 inhibitors (venetovlax), IDH 1/2 inhibitors (ivosidenib and enasidenib) FLT3 inhibitors (midostaurin, gilteritinib, and enasidenib), and hedgehog signaling pathway inhibitors (gladegib) have received US Food and Drug Administration (FDA) approval for the treatment of AML. Especially, AML patients with elderly age and/or significant comorbidities are not currently suitable for intensive chemotherapy. Thus, novel therapeutic planning including the abovementioned target therapies could lead to improve clinical outcomes in the patients. In the review, we will present various important and frequent molecular abnormalities of AML and introduce the targeted agents of AML that received FDA approval based on the previous studies.
Collapse
|
156
|
Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J 2021; 11:104. [PMID: 34045454 PMCID: PMC8159924 DOI: 10.1038/s41408-021-00495-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of patients with newly diagnosed acute myeloid leukemia (AML) harbor mutations in the fms-like tyrosine kinase 3 (FLT3) gene. While the adverse prognostic impact of FLT3-ITDmut in AML has been clearly proven, the prognostic significance of FLT3-TKDmut remains speculative. Current guidelines recommend rapid molecular testing for FLT3mut at diagnosis and earlier incorporation of targeted agents to achieve deeper remissions and early consideration for allogeneic stem cell transplant (ASCT). Mounting evidence suggests that FLT3mut can emerge at any timepoint in the disease spectrum emphasizing the need for repetitive mutational testing not only at diagnosis but also at each relapse. The approval of multi-kinase FLT3 inhibitor (FLT3i) midostaurin with induction therapy for newly diagnosed FLT3mut AML, and a more specific, potent FLT3i, gilteritinib as monotherapy for relapsed/refractory (R/R) FLT3mut AML have improved outcomes in patients with FLT3mut AML. Nevertheless, the short duration of remission with single-agent FLT3i's in R/R FLT3mut AML in the absence of ASCT, limited options in patients refractory to gilteritinib therapy, and diverse primary and secondary mechanisms of resistance to different FLT3i's remain ongoing challenges that compel the development and rapid implementation of multi-agent combinatorial or sequential therapies for FLT3mut AML.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
157
|
Triazole antifungal use for prophylaxis and treatment of invasive fungal diseases for patients receiving gilteritinib. Leuk Res 2021; 108:106610. [PMID: 34048999 DOI: 10.1016/j.leukres.2021.106610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Gilteritinib is primarily metabolized via cytochrome P450 (CYP). Therefore, concomitant administration of strong CYP3A4 inducers or inhibitors is not recommended. We evaluated the incidence of gilteritinib-related adverse events (AEs) in 47 patients who received gilteritinib with or without antifungal triazoles which are known inhibitors of CYP3A4. Reasons for coadministration were antifungal prophylaxis or treatment of suspected or confirmed fungal diseases. Gilteritinib-related AEs were similar in the gilteritinib-triazole group compared to the gilteritinib without triazole group (75 % vs. 55.5 %, P = 0.23). Additionally, severity of AEs, gilteritinib dose reductions (15 % vs. 14.8 %) or discontinuation due to AEs (10 % vs. 22.2 %), and 90-day mortality (35 % vs. 11.1 %) were similar in both groups. Thus, concomitant gilteritinib and triazole therapy is feasible and is not associated with clinically meaningful increase in gilteritinib-related AEs.
Collapse
|
158
|
CD52 is a novel target for the treatment of FLT3-ITD-mutated myeloid leukemia. Cell Death Discov 2021; 7:121. [PMID: 34035227 PMCID: PMC8149417 DOI: 10.1038/s41420-021-00446-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022] Open
Abstract
Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) confers poor prognosis and is found in approximately 25% of cases of acute myeloid leukemia (AML). Although FLT3 inhibitors have shown clinical benefit in patients with AML harboring FLT3-ITD, the therapeutic effect is limited. Here, to explore alternative therapeutics, we established a cellular model of monoallelic FLT3ITD/WT cells using the CRISPR-Cas9 system in a human myeloid leukemia cell line, K562. cDNA microarray analysis revealed elevated CD52 expression in K562–FLT3ITD/WT cells compared to K562–FLT3WT/WT cells, an observation that was further confirmed by quantitative real-time-PCR and flow cytometric analyses. The elevated expression of CD52 in K562–FLT3ITD/WT cells was decreased in wild-type FLT3 (FLT3-WT) knock-in K562–FLT3ITD/WT cells. In K562–FLT3ITD/WT cells, a STAT5 inhibitor, pimozide, downregulated CD52 protein expression while an AKT inhibitor, afuresertib, did not affect CD52 expression. Notably, an anti-CD52 antibody, alemtuzumab, induced significant antibody-dependent cell-mediated cytotoxicity (ADCC) in K562-FLT3ITD/WT cells compared to K562–FLT3WT/WT cells. Furthermore, alemtuzumab significantly suppressed the xenograft tumor growth of K562–FLT3ITD/WT cells in severe combined immunodeficiency (SCID) mice. Taken together, our data suggested that genetically modified FLT3-ITD knock-in human myeloid leukemia K562 cells upregulated CD52 expression via activation of STAT5, and alemtuzumab showed an antitumor effect via induction of ADCC in K562–FLT3ITD/WT cells. Our findings may allow establishment of a new therapeutic option, alemtuzumab, to treat leukemia with the FLT3-ITD mutation.
Collapse
|
159
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
160
|
A phase 1/2 study of the oral FLT3 inhibitor pexidartinib in relapsed/refractory FLT3-ITD-mutant acute myeloid leukemia. Blood Adv 2021; 4:1711-1721. [PMID: 32330242 DOI: 10.1182/bloodadvances.2020001449] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitors (TKIs) have activity in acute myeloid leukemia (AML) patients with FLT3 internal tandem duplication (ITD) mutations, but efficacy is limited by resistance-conferring kinase domain mutations. This phase 1/2 study evaluated the safety, tolerability, and efficacy of the oral FLT3 inhibitor PLX3397 (pexidartinib), which has activity against the FLT3 TKI-resistant F691L gatekeeper mutation in relapsed/refractory FLT3-ITD-mutant AML. Ninety patients were treated: 34 in dose escalation (part 1) and 56 in dose expansion (part 2). Doses of 800 to 5000 mg per day in divided doses were tested. No maximally tolerated dose was reached. Plasma inhibitory assay demonstrated that patients dosed with ≥3000 mg had sufficient levels of active drug in their trough plasma samples to achieve 95% inhibition of FLT3 phosphorylation in an FLT3-ITD AML cell line. Based on a plateau in drug exposure, the 3000-mg dose was chosen as the recommended phase 2 dose. The most frequently reported treatment-emergent adverse events were diarrhea (50%), fatigue (47%), and nausea (46%). Based on modified response criteria, the overall response rate to pexidartinib among all patients was 21%. Twenty-three percent of patients treated at ≥2000 mg responded. The overall composite complete response rate for the study was 11%. Six patients were successfully bridged to transplantation. Median overall survival (OS) of patients treated in dose expansion was 112 days (90% confidence interval [CI], 77-150 days), and median OS of responders with complete remission with or without recovery of blood counts was 265 days (90% CI, 170-422 days). This trial was registered at www.clinicaltrials.gov as #NCT01349049.
Collapse
|
161
|
Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Adv 2021; 4:514-524. [PMID: 32040554 DOI: 10.1182/bloodadvances.2019000919] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Gilteritinib is the first FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitor (TKI) approved as monotherapy in acute myeloid leukemia with FLT3 internal tandem duplication and D835/I836 tyrosine kinase domain (TKD) mutations. Sequencing studies in patients have uncovered less common, noncanonical (NC) mutations in FLT3 and have implicated secondary TKD mutations in FLT3 TKI resistance. We report that gilteritinib is active against FLT3 NC and TKI resistance-causing mutations in vitro. A mutagenesis screen identified FLT3 F691L, Y693C/N, and G697S as mutations that confer moderate resistance to gilteritinib in vitro. Analysis of patients treated with gilteritinib revealed that 2/9 patients with preexisting NC FLT3 mutations responded and that secondary TKD mutations are acquired in a minority (5/31) of patients treated with gilteritinib. Four of 5 patients developed F691L mutations (all treated at <200 mg). These studies suggest that gilteritinib has broad activity against FLT3 mutations and limited vulnerability to resistance-causing FLT3 TKD mutations, particularly when used at higher doses.
Collapse
|
162
|
Loke J, Buka R, Craddock C. Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia: Who, When, and How? Front Immunol 2021; 12:659595. [PMID: 34012445 PMCID: PMC8126705 DOI: 10.3389/fimmu.2021.659595] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
Although the majority of patients with acute myeloid leukemia (AML) treated with intensive chemotherapy achieve a complete remission (CR), many are destined to relapse if treated with intensive chemotherapy alone. Allogeneic stem cell transplant (allo-SCT) represents a pivotally important treatment strategy in fit adults with AML because of its augmented anti-leukemic activity consequent upon dose intensification and the genesis of a potent graft-versus-leukemia effect. Increased donor availability coupled with the advent of reduced intensity conditioning (RIC) regimens has dramatically increased transplant access and consequently allo-SCT is now a key component of the treatment algorithm in both patients with AML in first CR (CR1) and advanced disease. Although transplant related mortality has fallen steadily over recent decades there has been no real progress in reducing the risk of disease relapse which remains the major cause of transplant failure and represents a major area of unmet need. A number of therapeutic approaches with the potential to reduce disease relapse, including advances in induction chemotherapy, the development of novel conditioning regimens and the emergence of the concept of post-transplant maintenance, are currently under development. Furthermore, the use of genetics and measurable residual disease technology in disease assessment has improved the identification of patients who are likely to benefit from an allo-SCT which now represents an increasingly personalized therapy. Future progress in optimizing transplant outcome will be dependent on the successful delivery by the international transplant community of randomized prospective clinical trials which permit examination of current and future transplant therapies with the same degree of rigor as is routinely adopted for non-transplant therapies.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Richard Buka
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
- CRUK Clinical Trials Unit, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
163
|
Miura K, Iriyama N, Hatta Y, Takei M. Personalized patient care with aggressive hematological malignancies in non-responders to first-line treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1903314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Katsuhiro Miura
- Tumor Center, Nihon University Itabashi Hospital, 173-8610, Itabashi city, Japan
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Noriyoshi Iriyama
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| | - Masami Takei
- Department of Hematology and Rheumatology, Nihon University School of Medicine, 173-8610, Itabashi city, Tokyo, Japan
| |
Collapse
|
164
|
Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:3549-3555. [PMID: 33832948 DOI: 10.1158/1078-0432.ccr-20-4543] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML. PATIENTS AND METHODS Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays. RESULTS Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events. CONCLUSIONS On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Pengfei Wang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Zhuoyan Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Wenting Gan
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
165
|
Lee E, Koh Y, Hong J, Eom HS, Yoon SS. Recent Clinical Update of Acute Myeloid Leukemia: Focus on Epigenetic Therapies. J Korean Med Sci 2021; 36:e85. [PMID: 33821592 PMCID: PMC8021975 DOI: 10.3346/jkms.2021.36.e85] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complicated disease characterized by genetic heterogeneity and simultaneous alterations in multiple genes. For decades, its only curative method has been intensive induction chemotherapy with or without allogeneic hematopoietic stem cell transplantation, and this approach cannot be applied to elderly patients, who make up more than 50% of AML patients. Recent advances in genomics facilitated the elucidation of various mutations related to AML, and the most frequent mutations were discovered in epigenetic regulators. Alterations to epigenetic modifications that are essential for normal cell biology, including DNA methylation and histone acetylation, have been identified. As epigenetic dysregulation is an important carcinogenic mechanism and some epigenetic changes are reversible, these epigenetic alterations have become targets for novel drug development against AML. This review summarizes the recent advances in epigenetic therapies for AML and discusses future research directions.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Internal Medicine, Center for Hematologic Malignancy, National Cancer Center, Goyang, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Seok Eom
- Department of Internal Medicine, Center for Hematologic Malignancy, National Cancer Center, Goyang, Korea
| | - Sung Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
166
|
Lee L, Hizukuri Y, Severson P, Powell B, Zhang C, Ma Y, Narahara M, Sumi H, Hernandez D, Rajkhowa T, Bollag G, Levis M. A novel combination regimen of BET and FLT3 inhibition for FLT3-ITD acute myeloid leukemia. Haematologica 2021; 106:1022-1033. [PMID: 33504139 PMCID: PMC8017818 DOI: 10.3324/haematol.2020.247346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with FLT3-ITD mutations have a high risk of relapse and death. FLT3 tyrosine kinase inhibitors improve overall survival, but their efficacy is limited and most patients who relapse will ultimately die of the disease. Even with potent FLT3 inhibition, the disease persists within the bone marrow (BM) microenvironment, mainly due to BM stroma activating parallel signaling pathways that maintain pro-survival factors. BET inhibitors suppress pro-survival factors such as MYC and BCL2, but these drugs thus far have shown only limited single-agent clinical potential. We demonstrate here, using pre-clinical and clinical correlative studies, that the novel 4-azaindole derivative, PLX51107, has BET-inhibitory activity in vitro and in vivo. The combination of BET and FLT3 inhibition induces a synergistic anti-leukemic effect in a murine xenograft model of FLT3- ITD AML, and against primary FLT3-ITD AML cells co-cultured with BM stroma. Using suppression of MYC as a surrogate for BET inhibition, we demonstrate BET inhibition in human patients. The short plasma half-life of PLX51107 results in intermittent target inhibition to promote tolerability while overcoming the protective effect of the microenvironment. Mechanistically, the synergistic cytotoxicity is associated with suppression of key survival genes such as MYC. These data provide the scientific rationale for a clinical trial of a BET plus FLT3 inhibitor for the treatment of relapsed/refractory FLT3-ITD AML. A clinical trial of PLX51107 as monotherapy in patients with different malignancies is underway and will be reported separately.
Collapse
Affiliation(s)
- Lauren Lee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | | | | | | | | | - Yan Ma
- Plexxikon Inc., Berkeley, CA
| | | | | | - Daniela Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Trivikram Rajkhowa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | | | - Mark Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
167
|
Levis M. Is there evidence for the use of FLT3 inhibitors as maintenance therapy in AML? Best Pract Res Clin Haematol 2021; 34:101246. [PMID: 33762101 DOI: 10.1016/j.beha.2021.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is often assumed that all patients with FLT3 (FMS-Like Tyrosine kinase-3)-mutated AML who undergo an allogeneic transplant should receive maintenance therapy with a FLT3 inhibitor. The validity of this assumption is controversial.
Collapse
Affiliation(s)
- Mark Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Department of Oncology, Division of Hematologic Malignancies, United States.
| |
Collapse
|
168
|
Perl AE. Which novel agents will have a clinically meaningful impact in AML at diagnosis? Best Pract Res Clin Haematol 2021; 34:101257. [PMID: 33762111 DOI: 10.1016/j.beha.2021.101257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New drug approvals now afford AML physicians a wider choice of initial treatment options than ever before. Although chemotherapy for AML is by no means ready to be replaced entirely by novel agents, the role of traditional cytotoxics in AML therapy is rapidly changing. In particular, biologically targeted agents such as the BCL2 inhibitor venetoclax and inhibitors of FLT3 and IDH mutations stand out as drugs likely to take AML therapy in important new directions. Maximum response and survival benefits likely require combinations of novel agents and chemotherapy or multiple novel agents together. The recently-published phase 3 VIALE-A study demonstrates a very successful example of a new combination approach, which led to venetoclax plus azacitidine establishing itself as the new standard of care for patients unfit for intensive chemotherapy. One could reasonably expect other subsets of AML to benefit from this regimen or other applications of venetoclax combinations. Building on this experience, venetoclax-based regimens also have the potential to replace standard intensive cytarabine/anthracycline "7&3" induction approach for some if not many patients who are fit for induction. This review will describe novel agents with the greatest potential for impactful frontline applications that will change the AML treatment paradigm.
Collapse
Affiliation(s)
- Alexander E Perl
- Perelman School of Medicine at the University of Pennsylvania, Division of Hematology-Oncology, Abramson Cancer Center, Leukemia Program, Phiadelphia, PA, USA.
| |
Collapse
|
169
|
Kantarjian HM, Kadia TM, DiNardo CD, Welch MA, Ravandi F. Acute myeloid leukemia: Treatment and research outlook for 2021 and the MD Anderson approach. Cancer 2021; 127:1186-1207. [PMID: 33734442 DOI: 10.1002/cncr.33477] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The unraveling of the pathophysiology of acute myeloid leukemia (AML) has resulted in rapid translation of the information into clinical practice. After more than 40 years of slow progress in AML research, the US Food and Drug Administration has approved nine agents for different AML treatment indications since 2017. In this review, we detail the progress that has been made in the research and treatment of AML, citing key publications related to AML research and therapy in the English literature since 2000. The notable subsets of AML include acute promyelocytic leukemia (APL), core-binding factor AML (CBF-AML), AML in younger patients fit for intensive chemotherapy, and AML in older/unfit patients (usually at the age cutoff of 60-70 years). We also consider within each subset whether the AML is primary or secondary (therapy-related, evolving from untreated or treated myelodysplastic syndrome or myeloproliferative neoplasm). In APL, therapy with all-trans retinoic acid and arsenic trioxide results in estimated 10-year survival rates of ≥80%. Treatment of CBF-AML with fludarabine, high-dose cytarabine, and gemtuzumab ozogamicin (GO) results in estimated 10-year survival rates of ≥75%. In younger/fit patients, the "3+7" regimen (3 days of daunorubicin + 7 days of cytarabine) produces less favorable results (estimated 5-year survival rates of 35%; worse in real-world experience); regimens that incorporate high-dose cytarabine, adenosine nucleoside analogs, and GO are producing better results. Adding venetoclax, FLT3, and IDH inhibitors into these regimens has resulted in encouraging preliminary data. In older/unfit patients, low-intensity therapy with hypomethylating agents (HMAs) and venetoclax is now the new standard of care. Better low-intensity regimens incorporating cladribine, low-dose cytarabine, and other targeted therapies (FLT3 and IDH inhibitors) are emerging. Maintenance therapy now has a definite role in the treatment of AML, and oral HMAs with potential treatment benefits are also available. In conclusion, AML therapy is evolving rapidly and treatment results are improving in all AML subsets as novel agents and strategies are incorporated into traditional AML chemotherapy. LAY SUMMARY: Ongoing research in acute myeloid leukemia (AML) is progressing rapidly. Since 2017, the US Food and Drug Administration has approved 10 drugs for different AML indications. This review updates the research and treatment pathways for AML.
Collapse
Affiliation(s)
| | - Tapan M Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | | | - Mary Alma Welch
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
170
|
Gagelmann N, Wolschke C, Klyuchnikov E, Christopeit M, Ayuk F, Kröger N. TKI Maintenance After Stem-Cell Transplantation for FLT3-ITD Positive Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:630429. [PMID: 33790903 PMCID: PMC8006462 DOI: 10.3389/fimmu.2021.630429] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
This analysis aimed to systematically review and synthesize the existing evidence regarding the outcome of tyrosine kinase inhibitor (TKI) maintenance therapy after allogeneic stem-cell transplantation for patients with FLT3-ITD-mutated acute myeloid leukemia (AML). We searched publicly available databases, references lists of relevant reviews, registered trials, and relevant conference proceedings. A total of 7 studies comprising 680 patients were included. Five studies evaluated sorafenib and 2 studies evaluated midostaurin, compared with control. The incidence of relapse was significantly reduced after TKI therapy, showing an overall pooled risk ratio (RR) of 0.35 (95% confidence interval [CI], 0.23-0.51; P < 0.001), with a marked 65% reduced risk for relapse. The overall pooled RR for relapse-free survival and overall survival showed significantly improved outcome after TKI maintenance therapy, being 0.48 (95% CI, 0.37–0.61; P < 0.001) and 0.48 (95% CI, 0.36–0.64; P < 0.001). The risk for relapse or death from any cause was reduced by 52% using TKI. No difference in outcome was seen for non-relapse mortality, and the risk for chronic or acute graft-vs. -host disease appeared to be increased, at least for sorafenib. In conclusion, post-transplant maintenance therapy with TKI was associated with significantly improved outcome in relapse and survival in patients with FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evgeny Klyuchnikov
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
171
|
Abstract
Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wild type counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease (MRD) testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alexander J Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
172
|
Yilmaz M, Alfayez M, DiNardo CD, Borthakur G, Kadia TM, Konopleva MY, Loghavi S, Kanagal-Shamanna R, Patel KP, Jabbour EJ, Garcia-Manero G, Pemmaraju N, Pierce SA, Ghayas I, Short NJ, Montalban-Bravo G, Takahashi K, Assi R, Alotaibi AS, Ohanian M, Andreeff M, Cortes JE, Kantarjian HM, Ravandi F, Daver NG. Correction to: Outcomes with sequential FLT3-inhibitor-based therapies in patients with AML. J Hematol Oncol 2021; 14:34. [PMID: 33618754 PMCID: PMC7901199 DOI: 10.1186/s13045-020-01023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Mansour Alfayez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Issa Ghayas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Guillermo Montalban-Bravo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Rita Assi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Ahmad S Alotaibi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Maro Ohanian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Jorge E Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit FC4.2012, Houston, TX, 77030, USA.
| |
Collapse
|
173
|
Kantarjian H, Kadia T, DiNardo C, Daver N, Borthakur G, Jabbour E, Garcia-Manero G, Konopleva M, Ravandi F. Acute myeloid leukemia: current progress and future directions. Blood Cancer J 2021; 11:41. [PMID: 33619261 PMCID: PMC7900255 DOI: 10.1038/s41408-021-00425-3] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the understanding of the biology and therapy of acute myeloid leukemia (AML) is occurring rapidly. Since 2017, nine agents have been approved for various indications in AML. These included several targeted therapies like venetoclax, FLT3 inhibitors, IDH inhibitors, and others. The management of AML is complicated, highlighting the need for expertise in order to deliver optimal therapy and achieve optimal outcomes. The multiple subentities in AML require very different therapies. In this review, we summarize the important pathophysiologies driving AML, review current therapies in standard practice, and address present and future research directions.
Collapse
Affiliation(s)
- Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Tapan Kadia
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Marina Konopleva
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
174
|
Mosquera Orgueira A, Peleteiro Raíndo A, Cid López M, Antelo Rodríguez B, Díaz Arias JÁ, Ferreiro Ferro R, Alonso Vence N, Bendaña López Á, Abuín Blanco A, Bao Pérez L, Melero Valentín P, González Pérez MS, Cerchione C, Martinelli G, Montesinos Fernández P, Pérez Encinas MM, Bello López JL. Gene expression profiling identifies FLT3 mutation-like cases in wild-type FLT3 acute myeloid leukemia. PLoS One 2021; 16:e0247093. [PMID: 33592069 PMCID: PMC7886212 DOI: 10.1371/journal.pone.0247093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FLT3 mutation is present in 25-30% of all acute myeloid leukemias (AML), and it is associated with adverse outcome. FLT3 inhibitors have shown improved survival results in AML both as upfront treatment and in relapsed/refractory disease. Curiously, a variable proportion of wild-type FLT3 patients also responded to these drugs. METHODS We analyzed 6 different transcriptomic datasets of AML cases. Differential expression between mutated and wild-type FLT3 AMLs was performed with the Wilcoxon-rank sum test. Hierarchical clustering was used to identify FLT3-mutation like AMLs. Finally, enrichment in recurrent mutations was performed with the Fisher's test. RESULTS A FLT3 mutation-like gene expression pattern was identified among wild-type FLT3 AMLs. This pattern was highly enriched in NPM1 and DNMT3A mutants, and particularly in combined NPM1/DNMT3A mutants. CONCLUSIONS We identified a FLT3 mutation-like gene expression pattern in AML which was highly enriched in NPM1 and DNMT3A mutations. Future analysis about the predictive role of this biomarker among wild-type FLT3 patients treated with FLT3 inhibitors is envisaged.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
- * E-mail:
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - José Ángel Díaz Arias
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Roi Ferreiro Ferro
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Ángeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Aitor Abuín Blanco
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | - Laura Bao Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
| | | | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | | | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
- Division of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago, Spain
- University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
175
|
Descriptive and Functional Genomics in Acute Myeloid Leukemia (AML): Paving the Road for a Cure. Cancers (Basel) 2021; 13:cancers13040748. [PMID: 33670178 PMCID: PMC7916915 DOI: 10.3390/cancers13040748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, genetic advances have allowed a more precise molecular characterization of AML with the identification of novel oncogenes and tumor suppressors as part of a comprehensive AML molecular landscape. Recent advances in genetic sequencing tools also enabled a better understanding of AML leukemogenesis from the preleukemic state to posttherapy relapse. These advances resulted in direct clinical implications with the definition of molecular prognosis classifications, the development of treatment recommendations based on minimal residual disease (MRD) measurement and the discovery of novel targeted therapies, ultimately improving AML patients' overall survival. The more recent development of functional genomic studies, pushed by novel molecular biology technologies (short hairpin RNA (shRNA) and CRISPR-Cas9) and bioinformatics tools design on one hand, along with the engineering of humanized physiologically relevant animal models on the other hand, have opened a new genomics era resulting in a greater knowledge of AML physiopathology. Combining descriptive and functional genomics will undoubtedly open the road for an AML cure within the next decades.
Collapse
|
176
|
Pikman Y, Tasian SK, Sulis ML, Stevenson K, Blonquist TM, Apsel Winger B, Cooper TM, Pauly M, Maloney KW, Burke MJ, Brown PA, Gossai N, McNeer JL, Shukla NN, Cole PD, Kahn JM, Chen J, Barth MJ, Magee JA, Gennarini L, Adhav AA, Clinton CM, Ocasio-Martinez N, Gotti G, Li Y, Lin S, Imamovic A, Tognon CE, Patel T, Faust HL, Contreras CF, Cremer A, Cortopassi WA, Garrido Ruiz D, Jacobson MP, Dharia NV, Su A, Robichaud AL, Saur Conway A, Tarlock K, Stieglitz E, Place AE, Puissant A, Hunger SP, Kim AS, Lindeman NI, Gore L, Janeway KA, Silverman LB, Tyner JW, Harris MH, Loh ML, Stegmaier K. Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discov 2021; 11:1424-1439. [PMID: 33563661 DOI: 10.1158/2159-8290.cd-20-0564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Despite a remarkable increase in the genomic profiling of cancer, integration of genomic discoveries into clinical care has lagged behind. We report the feasibility of rapid identification of targetable mutations in 153 pediatric patients with relapsed/refractory or high-risk leukemias enrolled on a prospective clinical trial conducted by the LEAP Consortium. Eighteen percent of patients had a high confidence Tier 1 or 2 recommendation. We describe clinical responses in the 14% of patients with relapsed/refractory leukemia who received the matched targeted therapy. Further, in order to inform future targeted therapy for patients, we validated variants of uncertain significance, performed ex vivo drug-sensitivity testing in patient leukemia samples, and identified new combinations of targeted therapies in cell lines and patient-derived xenograft models. These data and our collaborative approach should inform the design of future precision medicine trials. SIGNIFICANCE: Patients with relapsed/refractory leukemias face limited treatment options. Systematic integration of precision medicine efforts can inform therapy. We report the feasibility of identifying targetable mutations in children with leukemia and describe correlative biology studies validating therapeutic hypotheses and novel mutations.See related commentary by Bornhauser and Bourquin, p. 1322.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria Luisa Sulis
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Traci M Blonquist
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Beth Apsel Winger
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Todd M Cooper
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, Washington
| | - Melinda Pauly
- Division of Hematology/Oncology, Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Kelly W Maloney
- Children's Hospital Colorado, University of Colorado Cancer Center, Aurora, Colorado
| | - Michael J Burke
- Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | | | - Nathan Gossai
- Center for Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | | | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter D Cole
- Children's Hospital at Montefiore, Bronx, New York
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Justine M Kahn
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
| | - Jing Chen
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Center, New York, New York
- Children's Cancer Institute, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey
| | | | - Jeffrey A Magee
- Division of Pediatric Hematology/Oncology, Washington University/St. Louis Children's Hospital, St. Louis, Missouri
| | | | - Asmani A Adhav
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catherine M Clinton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Giacomo Gotti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yuting Li
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alma Imamovic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Cristina E Tognon
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Tasleema Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Haley L Faust
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cristina F Contreras
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anjali Cremer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University Hospital Frankfurt, Department of Hematology/Oncology, Frankfurt/Main, Germany
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Angela Su
- INSERM UMR 944, IRSL, St Louis Hospital, Paris, France
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine Tarlock
- Seattle Children's Hospital, Cancer and Blood Disorders Center, Seattle, Washington
| | - Elliot Stieglitz
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Andrew E Place
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Abramson Cancer Center at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lia Gore
- Children's Hospital Colorado, University of Colorado Cancer Center, Aurora, Colorado
| | - Katherine A Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Lewis B Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Marian H Harris
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Mignon L Loh
- Department of Pediatrics, Division of Hematology/Oncology, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| |
Collapse
|
177
|
Marjoncu D, Andrick B. Gilteritinib: A Novel FLT3 Inhibitor for Relapsed/Refractory Acute Myeloid Leukemia. J Adv Pract Oncol 2021; 11:104-108. [PMID: 33542854 PMCID: PMC7517771 DOI: 10.6004/jadpro.2020.11.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common adult leukemia, with an overall poor prognosis. New agents targeting various receptors may improve treatment outcomes and overall survival. FMS-like tyrosine kinase 3 (FLT3) is a targetable mutation occurring in one third of AML patients. It contributes to increased tumor proliferation and decreased cellular differentiation, ultimately conferring a poor overall prognosis. Among patients with FLT3-positive relapsed/refractory AML, outcomes are particularly dismal. Gilteritinib is a novel, second-generation FLT3 inhibitor approved by the U.S. Food & Drug Administration (FDA) for the treatment of relapsed/refractory AML with an FLT3 mutation as detected by an FDA-approved test.
Collapse
|
178
|
Kayser S, Hills RK, Langova R, Kramer M, Guijarro F, Sustkova Z, Estey EH, Shaw CM, Ráčil Z, Mayer J, Zak P, Baer MR, Brunner AM, Szotkowski T, Cetkovsky P, Grimwade D, Walter RB, Burnett AK, Ho AD, Ehninger G, Müller-Tidow C, Platzbecker U, Thiede C, Röllig C, Schulz A, Warsow G, Brors B, Esteve J, Russell NH, Schlenk RF, Levis MJ. Characteristics and outcome of patients with acute myeloid leukaemia and t(8;16)(p11;p13): results from an International Collaborative Study. Br J Haematol 2021; 192:832-842. [PMID: 33529373 DOI: 10.1111/bjh.17336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
In acute myeloid leukaemia (AML) t(8;16)(p11;p13)/MYST3-CREBBP is a very rare abnormality. Previous small series suggested poor outcome. We report on 59 patients with t(8;16) within an international, collaborative study. Median age was 52 (range: 16-75) years. AML was de novo in 58%, therapy-related (t-AML) in 37% and secondary after myelodysplastic syndrome (s-AML) in 5%. Cytogenetics revealed a complex karyotype in 43%. Besides MYST3-CREBBP, whole-genome sequencing on a subset of 10 patients revealed recurrent mutations in ASXL1, BRD3, FLT3, MLH1, POLG, TP53, SAMD4B (n = 3, each), EYS, KRTAP9-1 SPTBN5 (n = 4, each), RUNX1 and TET2 (n = 2, each). Complete remission after intensive chemotherapy was achieved in 84%. Median follow-up was 5·48 years; five-year survival rate was 17%. Patients with s-/t-AML (P = 0·01) and those with complex karyotype (P = 0·04) had an inferior prognosis. Allogeneic haematopoietic cell transplantation (allo-HCT) was performed in 21 (36%) patients, including 15 in first complete remission (CR1). Allo-HCT in CR1 significantly improved survival (P = 0·04); multivariable analysis revealed that allo-HCT in CR1 was effective in de novo AML but not in patients with s-AML/t-AML and less in patients exhibiting a complex karyotype. In summary, outcomes of patients with t(8;16) are dismal with chemotherapy, and may be substantially improved with allo-HCT performed in CR1.
Collapse
Affiliation(s)
- Sabine Kayser
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany.,NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Ralitsa Langova
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Michael Kramer
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | | | - Zuzana Sustkova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carole M Shaw
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zdeněk Ráčil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Pavel Zak
- 4th Department of Internal Medicine-Hematology, Faculty of Medicine, Charles University and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Tomas Szotkowski
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Cetkovsky
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Grimwade
- Department of Medical & Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Hematology/Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alan K Burnett
- Department of Haematology, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony D Ho
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Ehninger
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Christian Thiede
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Angela Schulz
- Genomics and Proteomics Core Facility High Throughput Sequencing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | | | - Nigel H Russell
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Richard F Schlenk
- NCT Trial Center, National Center of Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
179
|
Tang H, Jia S, Bi L, Jia W, Gao G. Treatment options for older unfit patients with acute myeloid leukemia. Future Oncol 2021; 17:837-851. [PMID: 33522289 DOI: 10.2217/fon-2020-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Older acute myeloid leukemia patients usually experience a bleak outcome, especially those in the unfit group. For this unfit category, intensive chemotherapy and allogeneic stem cell transplantation are usually accompanied by higher early mortality, which results from higher risk genetic profiles and worse psychological and physiological conditions. The significant improvement in genetic technology recently has driven the appearance of several mutation-targeted therapies, such as FLT3, Bcl-2, IDH and Hedgehog pathway inhibitors and an anti-CD33 antibody-drug conjugate, which have changed enormously the therapeutic landscape of acute myeloid leukemia. This review describes the treatment dilemma of the unfit group and discusses the objective clinical data of each targeted drug and mechanisms of resistance, with a focus on combination strategies with fewer toxicities and abrogation of drug resistance.
Collapse
Affiliation(s)
- Hailong Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shuangshuang Jia
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lei Bi
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Weijing Jia
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
180
|
Yang F, Anekpuritanang T, Press RD. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia. Mol Diagn Ther 2021; 24:1-13. [PMID: 31848884 DOI: 10.1007/s40291-019-00443-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that, even with current advancements in therapy, continues to have a poor prognosis. Recurrent somatic mutations have been identified in a core set of pathogenic genes including FLT3 (25-30% prevalence), NPM1 (25-30%), DNMT3A (25-30%), IDH1/2 (5-15%), and TET2 (5-15%), with direct diagnostic, prognostic, and targeted therapeutic implications. Advances in the understanding of the complex mechanisms of AML leukemogenesis have led to the development and recent US Food and Drug Administration (FDA) approval of several targeted therapies: midostaurin and gilteritinib targeting activated FLT3, and ivosidenib and enasidenib targeting mutated IDH1/2. Several additional drug candidates targeting other recurrently mutated gene pathways in AML are also being actively developed. Furthermore, outside of the realm of predicting responses to targeted therapies, many other mutated genes, which comprise the so-called long tail of oncogenic drivers in AML, have been shown to provide clinically useful diagnostic and prognostic information for AML patients. Many of these recurrently mutated genes have also been shown to be excellent biomarkers for post-treatment minimal residual disease (MRD) monitoring for assessing treatment response and predicting future relapse. In addition, the identification of germline mutations in a set of genes predisposing to myeloid malignancies may directly inform treatment decisions (particularly stem cell transplantation) and impact other family members. Recent advances in sequencing technology have made it practically and economically feasible to evaluate many genes simultaneously using next-generation sequencing (NGS). Mutation screening with NGS panels has been recommended by national and international professional guidelines as the standard of care for AML patients. NGS-based detection of the heterogeneous genes commonly mutated in AML has practical clinical utility for disease diagnosis, prognosis, prediction of targeted therapy response, and MRD monitoring.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA.,Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Richard D Press
- Department of Pathology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L113, Portland, OR, 97239, USA. .,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
181
|
Assi R, Masri N, Abou Dalle I, El-Cheikh J, Bazarbachi A. Post-Transplant Maintenance Therapy for Patients with Acute Myeloid Leukemia: Current Approaches and the Need for More Trials. J Blood Med 2021; 12:21-32. [PMID: 33531851 PMCID: PMC7847363 DOI: 10.2147/jbm.s270015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Relapse rates following allogeneic stem cell transplantation for acute myeloid leukemia remain unacceptably high and a major cause of death. Maintenance therapies post-transplant administered either to patients with impending relapse or at high risk of relapse could present a strategy to improve survival and overall outcomes. With the increasing use of molecular and genomic characterization of the disease, more novel therapies became available as maintenance strategies. These options were, however, hindered by excessive toxicities, mostly hematologic, especially with the use of myeloablative conditioning regimens. Several key questions have also emerged including the efficacy of these therapies, the duration of maintenance, as well as the potential modulation of the graft and the immune microenvironment. These issues are further complicated by the paucity of well-designed prospective randomized clinical trials evaluating these agents. Future directions in this field should include better risk stratification and patient selection based on assays of minimal residual disease, as well as the incorporation of novel targets and pathways of leukemogenesis. In this article, we highlight the current evidence behind the use of post-transplant maintenance therapy, the optimal patient and disease selection, as well as the challenges faced by these strategies in an area that remains quite controversial. We will focus on therapies targeting leukemia stem cells that directly or indirectly modulate the allografted immune microenvironment and augment the graft-versus-leukemia impact.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Nohad Masri
- Division of Hematology-Oncology, Lebanese American University and Lebanese American University Medical Center-Rizk Hospital, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El-Cheikh
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Bazarbachi
- Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
182
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
183
|
Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol 2021; 10:612880. [PMID: 33425766 PMCID: PMC7787101 DOI: 10.3389/fonc.2020.612880] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
The FLT3 receptor is overexpressed on the majority of acute myeloid leukemia (AML) blasts. Mutations in FLT3 are the most common genetic alteration in AML, identified in approximately one third of newly diagnosed patients. FLT3 internal tandem duplication mutations (FLT3-ITD) are associated with increased relapse and inferior overall survival. Multiple small molecule inhibitors of FLT3 signaling have been identified, two of which (midostaurin and gilteritinib) are currently approved in the United States, and many more of which are in clinical trials. Despite significant advances, resistance to FLT3 inhibitors through secondary FLT3 mutations, upregulation of parallel pathways, and extracellular signaling remains an ongoing challenge. Novel therapeutic strategies to overcome resistance, including combining FLT3 inhibitors with other antileukemic agents, development of new FLT3 inhibitors, and FLT3-directed immunotherapy are in active clinical development. Multiple questions regarding FLT3-mutated AML remain. In this review, we highlight several of the current most intriguing controversies in the field including the role of FLT3 inhibitors in maintenance therapy, the role of hematopoietic cell transplantation in FLT3-mutated AML, use of FLT3 inhibitors in FLT3 wild-type disease, significance of non-canonical FLT3 mutations, and finally, emerging concerns regarding clonal evolution.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
184
|
Lin Y, Li D, Zhang J, Tang Z, Liu L, Huang T, Li C, Chen T. I 2/NaH 2PO 2-mediated deoxyamination of cyclic ethers for the synthesis of N-aryl-substituted azacycles. NEW J CHEM 2021. [DOI: 10.1039/d1nj04752c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a protocol for efficient synthesis of N-aryl-substituted azacycles from aryl amines and cyclic ethers using I2/NaH2PO2 as the mediator.
Collapse
Affiliation(s)
- Ying Lin
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Dongyang Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Jingjing Zhang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, 570228, China
| |
Collapse
|
185
|
Xu Y, Wang P, Li M, Wu Z, Li X, Shen J, Xu R. Natural small molecule triptonide inhibits lethal acute myeloid leukemia with FLT3-ITD mutation by targeting Hedgehog/FLT3 signaling. Biomed Pharmacother 2021; 133:111054. [PMID: 33254022 DOI: 10.1016/j.biopha.2020.111054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia harboring internal tandem duplication of FMS-like tyrosine kinase 3 (FLT3-ITD AML) is a subset of highly aggressive malignancies with poor clinical outcome. Despite some advances in the development of FLT3 tyrosine kinase inhibitors (FLT3 inhibitors), most of FLT3-ITD AML patients suffer from lethal disease relapse, suggesting the requirement of novel targets and agents. Here we describe a natural small molecule, triptonide that can efficiently inhibit FLT3-ITD-driven AML in vitro and in vivo. Mechanistically, triptonide targeted Hedgehog/FLT3 signaling by inhibiting its critical effectors, which are GLI2, c-Myc and FLT3 and induced apoptosis of FLT3-ITD-driven leukemia cells. In addition, we also observed that triptonide activated tumor suppressor p53. In vivo, triptonide treatment markedly suppressed lethal FLT3-ITD-driven AML with good tolerance and prolonged survival time in orthotopic mouse model. Our studies identify Hedgehog/FLT3 axis as a novel target for treating FLT3-ITD-driven leukemia and demonstrate that triptonide is an active lead compound that can kill FLT3-ITD-driven leukemia cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Signal Transduction
- Tandem Repeat Sequences
- Triterpenes/pharmacology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Xenograft Model Antitumor Assays
- Zinc Finger Protein Gli2/genetics
- Zinc Finger Protein Gli2/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Mice
Collapse
Affiliation(s)
- Ying Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Ping Wang
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Mengyuan Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Zhaoxing Wu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xian Li
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310009, China.
| | - Rongzhen Xu
- Department of Hematology and Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
186
|
Madan V, Koeffler HP. Differentiation therapy of myeloid leukemia: four decades of development. Haematologica 2021; 106:26-38. [PMID: 33054125 PMCID: PMC7776344 DOI: 10.3324/haematol.2020.262121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia is characterized by arrested differentiation, and agents that overcome this block are therapeutically useful, as shown by the efficacy of all-trans retinoic acid in acute promyelocytic leukemia. However, the early promise of differentiation therapy did not translate into clinical benefit for other subtypes of acute myeloid leukemia, in which cytotoxic chemotherapeutic regimens remained the standard of care. Recent advances, including insights from sequencing of acute myeloid leukemia genomes, have led to the development of targeted therapies, comprising agents that induce differentiation of leukemic cells in preclinical models and clinical trials, thus rejuvenating interest in differentiation therapy. These agents act on various cellular processes including dysregulated metabolic programs, signaling pathways, epigenetic machinery and the cell cycle. In particular, inhibitors of mutant IDH1/2 and FLT3 have shown clinical benefit, leading to approval by regulatory bodies of their use. Besides the focus on recently approved differentiation therapies, this review also provides an overview of differentiation- inducing agents being tested in clinical trials or investigated in preclinical research. Combinatorial strategies are currently being tested for several agents (inhibitors of KDM1A, DOT1L, BET proteins, histone deacetylases), which were not effective in clinical studies as single agents, despite encouraging anti-leukemic activity observed in preclinical models. Overall, recently approved drugs and new investigational agents being developed highlight the merits of differentiation therapy; and ongoing studies promise further advances in the treatment of acute myeloid leukemia in the near future.
Collapse
Affiliation(s)
- Vikas Madan
- Cancer Science Institute of Singapore, National University of Singapore.
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Hospital.
| |
Collapse
|
187
|
Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, Nechiporuk T. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica 2020; 107:77-85. [PMID: 33375770 PMCID: PMC8719098 DOI: 10.3324/haematol.2020.257964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 11/11/2022] Open
Abstract
Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genomewide CRISPR screen, we identified LZTR1, NF1, TSC1 and TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of resistance to sorafenib. Analyses of ex vivo drug sensitivity assays in samples from patients with FLT3-ITD AML revealed that lower expression of LZTR1, NF1, and TSC2 correlated with sensitivity to sorafenib. Importantly, MAPK and/or MTOR complex 1 (MTORC1) activity was upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, and sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting the effectiveness of such treatment in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Alisa Damnernsawad
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biology, Faculty of Science, Mahidol University, Bangkok
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Stephen E Kurtz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| | - Tamilla Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| |
Collapse
|
188
|
Jones LM, Melgar K, Bolanos L, Hueneman K, Walker MM, Jiang JK, Wilson KM, Zhang X, Shen J, Jiang F, Sutter P, Wang A, Xu X, Tawa GJ, Hoyt SB, Wunderlich M, O'Brien E, Perentesis JP, Starczynowski DT, Thomas CJ. Targeting AML-associated FLT3 mutations with a type I kinase inhibitor. J Clin Invest 2020; 130:2017-2023. [PMID: 32149729 DOI: 10.1172/jci127907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase domain (TKD) mutations contribute to acquired resistance to FMS-like tyrosine kinase 3 (FLT3) inhibitors used to treat FLT3-mutant acute myeloid leukemia (AML). We report a cocrystal structure of FLT3 with a type I inhibitor, NCGC1481, that retained potent binding and activity against FLT3 TKD and gatekeeper mutations. Relative to the current generation of advanced FLT3 inhibitors, NCGC1481 exhibited superior antileukemic activity against the common, clinically relevant FLT3-mutant AML cells in vitro and in vivo.
Collapse
Affiliation(s)
| | - Katelyn Melgar
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Morgan M Walker
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | | | | | - Patrick Sutter
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Amy Wang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Scott B Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland, USA.,Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland
| |
Collapse
|
189
|
Altman JK, Perl AE, Hill JE, Rosales M, Bahceci E, Levis MJ. The impact of FLT3 mutation clearance and treatment response after gilteritinib therapy on overall survival in patients with FLT3 mutation-positive relapsed/refractory acute myeloid leukemia. Cancer Med 2020; 10:797-805. [PMID: 33340276 PMCID: PMC7897940 DOI: 10.1002/cam4.3652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/01/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023] Open
Abstract
The FLT3 inhibitor gilteritinib has clinical activity in patients with FLT3‐mutated (FLT3mut+) relapsed/refractory (R/R) acute myeloid leukemia (AML). The impact of FLT3 mutation clearance and the achievement of composite complete remission (CRc) and complete remission/complete remission with partial hematologic recovery (CR/CRh) on overall survival (OS) in patients with FLT3mut+ R/R AML treated with single‐agent gilteritinib in a phase 1/2 trial were evaluated. Using next‐generation sequencing, a FLT3‐ITD variant allele frequency of ≤10−4 was used to define FLT3‐ITD clearance in patients with no morphologic leukemia (ie, CRc). A total of 108 patients with FLT3‐ITD‐positive (FLT3‐ITD+) R/R AML were analyzed; 95 of these patients had received ≥80‐mg/day gilteritinib. Ten of the 95 patients had FLT3‐ITD clearance; eight of these 10 patients achieved CRc and were considered negative for measurable residual disease. There was a trend toward longer OS in patients who attained CRc with FLT3‐ITD clearance (131.4 weeks) versus those who achieved CRc and did not have FLT3‐ITD clearance (n = 41; 43.3 weeks; HR = 0.416; p = 0.066). Among patients treated with ≥80‐mg/day gilteritinib who achieved CR/CRh (n = 24), seven had FLT3‐ITD clearance. Among patients who received 120‐mg/day gilteritinib, those who achieved CR/CRh had a longer median OS (70.6 weeks) and higher 52‐week survival probability (66.7%) than patients who did not achieve CR/CRh (n = 71; median OS, 41.7 weeks; 52‐week survival probability, 20.2%). Overall, these data suggest that gilteritinib can induce deep molecular responses in patients with FLT3‐ITD+ R/R AML, and in the setting of CRc or CR/CRh, these responses may be associated with prolonged survival.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Alexander E Perl
- Abramson Comprehensive Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
190
|
Hu X, Wang Y, Gao X, Xu S, Zang L, Xiao Y, Li Z, Hua H, Xu J, Li D. Recent Progress of Oridonin and Its Derivatives for the Treatment of Acute Myelogenous Leukemia. Mini Rev Med Chem 2020; 20:483-497. [PMID: 31660811 DOI: 10.2174/1389557519666191029121809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023]
Abstract
First stage human clinical trial (CTR20150246) for HAO472, the L-alanine-(14-oridonin) ester trifluoroacetate, was conducted by a Chinese company, Hengrui Medicine Co. Ltd, to develop a new treatment for acute myelogenous leukemia. Two patents, WO2015180549A1 and CN201410047904.X, covered the development of the I-type crystal, stability experiment, conversion rate research, bioavailability experiment, safety assessment, and solubility study. HAO472 hewed out new avenues to explore the therapeutic properties of oridonin derivatives and develop promising treatment of cancer originated from naturally derived drug candidates. Herein, we sought to overview recent progress of the synthetic, physiological, and pharmacological investigations of oridonin and its derivatives, aiming to disclose the therapeutic potentials and broaden the platform for the discovery of new anticancer drugs.
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Wang
- Valiant Co. Ltd., 11 Wuzhishan Road, YEDA Yantai, Shandong 264006, China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Shengtao Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Linghe Zang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yan Xiao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinyi Xu
- Department of Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
191
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
192
|
Maziarz RT, Levis M, Patnaik MM, Scott BL, Mohan SR, Deol A, Rowley SD, Kim DDH, Hernandez D, Rajkhowa T, Haines K, Bonifacio G, Rine P, Purkayastha D, Fernandez HF. Midostaurin after allogeneic stem cell transplant in patients with FLT3-internal tandem duplication-positive acute myeloid leukemia. Bone Marrow Transplant 2020; 56:1180-1189. [PMID: 33288862 PMCID: PMC8113057 DOI: 10.1038/s41409-020-01153-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
We evaluated standard-of-care (SOC) treatment with or without midostaurin to prevent relapse following allogeneic hematopoietic stem cell transplant (alloHSCT) in patients with acute myeloid leukemia (AML) harboring internal tandem duplication (ITD) in FLT3. Adults (aged 18–70 years) who received alloHSCT in first complete remission, had achieved hematologic recovery, and were transfusion independent were randomized to receive SOC with or without midostaurin (50 mg twice daily) continuously in twelve 4-week cycles. The primary endpoint was relapse-free survival (RFS) 18 months post-alloHSCT. Sixty patients were randomized (30/arm); 30 completed all 12 cycles (midostaurin + SOC, n = 16; SOC, n = 14). The estimated 18-month RFS (95% CI) was 89% (69–96%) in the midostaurin arm and 76% (54–88%) in the SOC arm (hazard ratio, 0.46 [95% CI, 0.12–1.86]; P = 0.27); estimated relapse rates were 11% and 24%, respectively. Inhibition of FLT3 phosphorylation to <70% of baseline (achieved by 50% of midostaurin-treated patients) was associated with improved RFS. The most common serious adverse events were diarrhea, nausea, and vomiting. Rates of graft-vs-host disease were similar between both arms (midostaurin + SOC, 70%; SOC, 73%). The addition of midostaurin maintenance therapy following alloHSCT may provide clinical benefit in some patients with FLT3-ITD AML. (ClinicalTrials.gov identifier: NCT01883362).
Collapse
Affiliation(s)
| | - Mark Levis
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Scott D Rowley
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Dennis D H Kim
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Daniela Hernandez
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Trivikram Rajkhowa
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Kelly Haines
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Patrice Rine
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | |
Collapse
|
193
|
Alotaibi AS, Yilmaz M, Kanagal-Shamanna R, Loghavi S, Kadia TM, DiNardo CD, Borthakur G, Konopleva M, Pierce SA, Wang SA, Tang G, Guerra V, Samra B, Pemmaraju N, Jabbour E, Short NJ, Issa GC, Ohanian M, Garcia-Manero G, Bhalla KN, Patel KP, Takahashi K, Andreeff M, Cortes JE, Kantarjian HM, Ravandi F, Daver N. Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors. Blood Cancer Discov 2020; 2:125-134. [PMID: 33681815 DOI: 10.1158/2643-3230.bcd-20-0143] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Despite promising results with FLT3 inhibitors (FLT3i), response durations remain short. We studied pretreatment and relapse bone marrow samples from patients with FLT3-mutated AML treated with FLT3i-based therapies (secondary resistance cohort), and pretreatment bone marrow samples from patients with no response to FLT3i-based therapies (primary resistance cohort). Targeted next generation sequencing at relapse identified emergent mutations involving on-target FLT3, epigenetic modifiers, RAS/MAPK pathway, and less frequently WT1, and TP53. RAS/MAPK and FLT3-D835 mutations emerged most commonly following type I and type II FLT3i-based therapies, respectively. Patients with emergent mutations at relapse had inferior overall survival compared with those without emergent mutations. Among pretreatment RAS mutated patients, pretreatment cohort level variant allelic frequencies for RAS were higher in non-responders, particularly with type I FLT3i-based therapies, suggesting a potential role in primary resistance as well. These data demonstrate distinct pathways of resistance in FLT3-mutated AML treated with type I versus II FLT3i.
Collapse
Affiliation(s)
- Ahmad S Alotaibi
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Musa Yilmaz
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | | | - Sanam Loghavi
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Tapan M Kadia
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | | | - Gautam Borthakur
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Sherry A Pierce
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Sa A Wang
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Guilin Tang
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Veronica Guerra
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Bachar Samra
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J Short
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Ghayas C Issa
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Maro Ohanian
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | | | - Kapil N Bhalla
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- The Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Jorge E Cortes
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Farhad Ravandi
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
194
|
Kamitani I, Saito T, Yokoyama H, Nakano A, Ishii H, Tanoue S, Hattori D, Oshima S, Ishii S, Gunji T, Fukushima R, Katsube A, Shimada T, Nishiwaki K, Dobashi N, Yano S. Successful bridge therapy of gilteritinib to cord blood transplantation in relapsed acute myeloid leukemia after bone marrow transplantation. J Infect Chemother 2020; 27:639-641. [PMID: 33214069 DOI: 10.1016/j.jiac.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022]
Abstract
The FMS-related tyrosine kinase 3 (FLT3) internal tandem duplication mutations (FLT3-ITD) positive acute myeloid leukemia (AML) is a disease with a dismal outcome. Gilteritinib is a second-generation FLT3 inhibitor with activity against ITD and high affinity toward the FLT3 receptor, thereby showing therapeutic potential for relapsed/refractory FLT3-mutated AML. Bone marrow transplantation (BMT) from a human leukocyte antigen (HLA) identical sibling donor was performed in a 38-year-old Japanese male with FLT3-ITD positive AML. Neutrophil engraftment (>0.5 × 109/L) was achieved on day 16, and bone marrow remission was revealed on day 32. The patient's AML relapsed hematologically four months after BMT and was resistant to salvage chemotherapy. Gilteritinib was administered and the patient achieved non-remission but 'stable disease' status according to the response criteria. During administration, liver damage was observed but controllable. The patient received cord blood transplantation (CBT) as the second hematopoietic stem cell transplantation (HSCT) three months after relapse and achieved second remission. There was no evidence of recurrence of AML four months after CBT. This case demonstrates that gilteritinib can control FLT3-ITD positive AML that relapsed early after initial HSCT and can bridge to second HSCT.
Collapse
Affiliation(s)
- Iku Kamitani
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takeshi Saito
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan.
| | - Hiroki Yokoyama
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Aya Nakano
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Hiroto Ishii
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Susumu Tanoue
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Daiki Hattori
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Sayaka Oshima
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Shoko Ishii
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Tadahiro Gunji
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Ryoko Fukushima
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Atsushi Katsube
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takaki Shimada
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Kaichi Nishiwaki
- Division of Clinical Oncology/Hematology, The Jikei University Kashiwa Hospital, Japan
| | - Nobuaki Dobashi
- Division of Clinical Oncology/Hematology, The Jikei University Daisan Hospital, Japan
| | - Shingo Yano
- Division of Clinical Oncology/Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| |
Collapse
|
195
|
Gebru MT, Wang HG. Therapeutic targeting of FLT3 and associated drug resistance in acute myeloid leukemia. J Hematol Oncol 2020; 13:155. [PMID: 33213500 PMCID: PMC7678146 DOI: 10.1186/s13045-020-00992-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by several gene mutations and cytogenetic abnormalities affecting differentiation and proliferation of myeloid lineage cells. FLT3 is a receptor tyrosine kinase commonly overexpressed or mutated, and its mutations are associated with poor prognosis in AML. Although aggressive chemotherapy often followed by hematopoietic stem cell transplant is the current standard of care, the recent approval of FLT3-targeted drugs is revolutionizing AML treatment that had remained unchanged since the 1970s. However, despite the dramatic clinical response to targeted agents, such as FLT3 inhibitors, remission is almost invariably short-lived and ensued by relapse and drug resistance. Hence, there is an urgent need to understand the molecular mechanisms driving drug resistance in order to prevent relapse. In this review, we discuss FLT3 as a target and highlight current understanding of FLT3 inhibitor resistance.
Collapse
Affiliation(s)
- Melat T Gebru
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA. .,Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
196
|
Molecular Mechanisms of Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia: Ongoing Challenges and Future Treatments. Cells 2020; 9:cells9112493. [PMID: 33212779 PMCID: PMC7697863 DOI: 10.3390/cells9112493] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment of FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD)-positive acute myeloid leukemia (AML) remains a challenge despite the development of novel FLT3-directed tyrosine kinase inhibitors (TKI); the relapse rate is still high even after allogeneic stem cell transplantation. In the era of next-generation FLT3-inhibitors, such as midostaurin and gilteritinib, we still observe primary and secondary resistance to TKI both in monotherapy and in combination with chemotherapy. Moreover, remissions are frequently short-lived even in the presence of continuous treatment with next-generation FLT3 inhibitors. In this comprehensive review, we focus on molecular mechanisms underlying the development of resistance to relevant FLT3 inhibitors and elucidate how this knowledge might help to develop new concepts for improving the response to FLT3-inhibitors and reducing the development of resistance in AML. Tailored treatment approaches that address additional molecular targets beyond FLT3 could overcome resistance and facilitate molecular responses in AML.
Collapse
|
197
|
Yasu T, Sugi T, Momo K, Hagihara M, Yasui H. Determination of the concentration of gilteritinib in human plasma using HPLC. Biomed Chromatogr 2020; 35:e5028. [PMID: 33179270 DOI: 10.1002/bmc.5028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 11/05/2022]
Abstract
Gilteritinib, an oral inhibitor of FMS-like tyrosine kinase 3 (FLT3), is a standard treatment for FLT3-mutated acute myeloid leukemia. We developed a simple HPLC-UV-based method for determining the concentration of gilteritinib in human plasma. The analysis requires the extraction of a 200-μL plasma sample and the precipitation of proteins by solid-phase extraction. Gilteritinib was isocratically separated within 10 min using a mobile phase of acetonitrile:0.5% monopotassium phosphate (KH2 PO4 , pH 3.5, 28:72, v/v) on a Capcell Pack C18 MG II (250 × 4.6 mm) column at a flow rate of 1.0 mL/min and monitored at 250 nm. The calibration curve was found to be linear within a plasma concentration range of 25-2500 ng/mL, with the coefficient of determination (r2 ) being 0.9997. The coefficients of intra-day and inter-day validation were 2.3-3.7 and 1.3-5.2%, respectively. The accuracy and recovery of the assay were -9.6 to 0.1 and >81.8%, respectively. This HPLC-UV method for determining the plasma concentration of gilteritinib is simple and can be effectively applied to routine drug monitoring.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Tokyo, Japan.,Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomiyuki Sugi
- Department of Pharmacy, Eiju General Hospital, Tokyo, Japan
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Masao Hagihara
- Department of Hematology/Oncology, Eiju General Hospital, Tokyo, Japan
| | - Hiroshi Yasui
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
198
|
Kim RS, Yaghy A, Wilde LR, Shields CL. An Iridociliochoroidal Myeloid Sarcoma Associated With Relapsed Acute Myeloid Leukemia With FLT3-ITD Mutation, Treated With Gilteritinib, an FLT3 Inhibitor. JAMA Ophthalmol 2020; 138:418-419. [PMID: 32163103 DOI: 10.1001/jamaophthalmol.2020.0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ryan S Kim
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Antonio Yaghy
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lindsay R Wilde
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
199
|
Bewersdorf JP, Carraway H, Prebet T. Emerging treatment options for patients with high-risk myelodysplastic syndrome. Ther Adv Hematol 2020; 11:2040620720955006. [PMID: 33240476 PMCID: PMC7675905 DOI: 10.1177/2040620720955006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders
characterized by ineffective hematopoiesis with peripheral blood cytopenias,
dysplastic cell morphology, and a variable risk of progression to acute myeloid
leukemia (AML). The hypomethylating agents (HMA) azacitidine and decitabine have
been used for over a decade in MDS treatment and lead to a modest survival
benefit. However, response rates are only around 40% and responses are mostly
transient. For HMA-refractory patients the prognosis is poor and there are no
therapies approved by the United States Food and Drug Administration. Combinations of HMAs, especially along with immune checkpoint inhibitors, have
shown promising signals in both the frontline and HMA-refractory setting.
Several other novel agents including orally available and longer acting HMAs,
the BCL-2 inhibitor venetoclax, oral agents targeting driver mutations
(IDH1/2, FLT3), immunotherapies, and new options for
intensive chemotherapy have been studied with variable success and will be
reviewed herein. Except for the minority of patients with targetable driver
mutations, HMAs – likely as part of combination therapies – will remain the
backbone of frontline MDS treatment. However, the wider use of genetic testing
may enable a more targeted and individualized therapy of MDS patients.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Hetty Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, 37 College Street, Room 101, New Haven, CT 06511, USA
| |
Collapse
|
200
|
Rummelt C, Gorantla SP, Meggendorfer M, Charlet A, Endres C, Döhner K, Heidel FH, Fischer T, Haferlach T, Duyster J, von Bubnoff N. Activating JAK-mutations confer resistance to FLT3 kinase inhibitors in FLT3-ITD positive AML in vitro and in vivo. Leukemia 2020; 35:2017-2029. [PMID: 33149267 DOI: 10.1038/s41375-020-01077-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway. Knockdown of JAK1, or treatment with a JAK inhibitor, resensitized cells to FLT3 inhibition. Out of 136 patients with FLT3-ITD mutated AML and exposed to FLT3 inhibitor, we found seven different JAK family mutations in six of the cases (4.4%), including five bona fide, activating mutations. Except for one patient, the JAK mutations occurred de novo (n = 4) or displayed increasing variant allele frequency after exposure to FLT3 TKI (n = 1). In vitro each of the five activating variants were found to induce resistance to FLT3-ITD inhibition, which was then overcome by dual FLT3/JAK inhibition. In conclusion, our data characterize a novel mechanism of resistance to FLT3-ITD inhibition and may offer a potential therapy, using dual JAK and FLT3 inhibition.
Collapse
Affiliation(s)
- Christoph Rummelt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Anne Charlet
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Florian H Heidel
- Innere Medizin 2, Universitätsklinikum Jena, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|