151
|
Jiang R, Shen F, Zhang M, Mulati S, Wang J, Tao Y, Zhang W. Evaluating the Anti-Melanoma Effects and Toxicity of Cinnamaldehyde Analogues. Molecules 2023; 28:7309. [PMID: 37959729 PMCID: PMC10647553 DOI: 10.3390/molecules28217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.
Collapse
Affiliation(s)
- Rongsong Jiang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, China;
| | - Miaomiao Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Shulipan Mulati
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Jinfeng Wang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Yicun Tao
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| | - Weiyi Zhang
- School of Pharmacy, Xinjiang Medical University, Urumchi 830017, China; (R.J.); (M.Z.); (S.M.); (J.W.)
| |
Collapse
|
152
|
Zhu EY, Schillo JL, Murray SD, Riordan JD, Dupuy AJ. Understanding cancer drug resistance with Sleeping Beauty functional genomic screens: Application to MAPK inhibition in cutaneous melanoma. iScience 2023; 26:107805. [PMID: 37860756 PMCID: PMC10582486 DOI: 10.1016/j.isci.2023.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023] Open
Abstract
Combined BRAF and MEK inhibition is an effective treatment for BRAF-mutant cutaneous melanoma. However, most patients progress on this treatment due to drug resistance. Here, we applied the Sleeping Beauty transposon system to understand how melanoma evades MAPK inhibition. We found that the specific drug resistance mechanisms differed across melanomas in our genetic screens of five cutaneous melanoma cell lines. While drivers that reactivated MAPK were highly conserved, many others were cell-line specific. One such driver, VAV1, activated a de-differentiated transcriptional program like that of hyperactive RAC1, RAC1P29S. To target this mechanism, we showed that an inhibitor of SRC, saracatinib, blunts the VAV1-induced transcriptional reprogramming. Overall, we highlighted the importance of accounting for melanoma heterogeneity in treating cutaneous melanoma with MAPK inhibitors. Moreover, we demonstrated the utility of the Sleeping Beauty transposon system in understanding cancer drug resistance.
Collapse
Affiliation(s)
- Eliot Y. Zhu
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jacob L. Schillo
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D. Murray
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Jesse D. Riordan
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
153
|
Seth R, Agarwala SS, Messersmith H, Alluri KC, Ascierto PA, Atkins MB, Bollin K, Chacon M, Davis N, Faries MB, Funchain P, Gold JS, Guild S, Gyorki DE, Kaur V, Khushalani NI, Kirkwood JM, McQuade JL, Meyers MO, Provenzano A, Robert C, Santinami M, Sehdev A, Sondak VK, Spurrier G, Swami U, Truong TG, Tsai KK, van Akkooi A, Weber J. Systemic Therapy for Melanoma: ASCO Guideline Update. J Clin Oncol 2023; 41:4794-4820. [PMID: 37579248 DOI: 10.1200/jco.23.01136] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE To provide guidance to clinicians regarding the use of systemic therapy for melanoma. METHODS American Society of Clinical Oncology convened an Expert Panel and conducted an updated systematic review of the literature. RESULTS The updated review identified 21 additional randomized trials. UPDATED RECOMMENDATIONS Neoadjuvant pembrolizumab was newly recommended for patients with resectable stage IIIB to IV cutaneous melanoma. For patients with resected cutaneous melanoma, adjuvant nivolumab or pembrolizumab was newly recommended for stage IIB-C disease and adjuvant nivolumab plus ipilimumab was added as a potential option for stage IV disease. For patients with unresectable or metastatic cutaneous melanoma, nivolumab plus relatlimab was added as a potential option regardless of BRAF mutation status and nivolumab plus ipilimumab followed by nivolumab was preferred over BRAF/MEK inhibitor therapy. Talimogene laherparepvec is no longer recommended as an option for patients with BRAF wild-type disease who have progressed on anti-PD-1 therapy. Ipilimumab- and ipilimumab-containing regimens are no longer recommended for patients with BRAF-mutated disease after progression on other therapies.This full update incorporates the new recommendations for uveal melanoma published in the 2022 Rapid Recommendation Update.Additional information is available at www.asco.org/melanoma-guidelines.
Collapse
Affiliation(s)
- Rahul Seth
- SUNY Upstate Medical University, Syracuse, NY
| | - Sanjiv S Agarwala
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | | | | | - Paolo A Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | | | | | - Matias Chacon
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Nancy Davis
- Vanderbilt University Medical Center, Nashville, TN
| | - Mark B Faries
- The Angeles Clinic and Research Institute and Cedars Sinai Medical Center, Los Angeles, CA
| | | | | | | | | | | | | | - John M Kirkwood
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Institute, Pittsburgh, PA
| | | | - Michael O Meyers
- University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Caroline Robert
- Gustave Roussy Cancer Centre and Paris-Saclay University, Villejuif, France
| | - Mario Santinami
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Vernon K Sondak
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Umang Swami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - Katy K Tsai
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Alexander van Akkooi
- Melanoma Institute Australia, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, NY
| |
Collapse
|
154
|
Peisen F, Gerken A, Hering A, Dahm I, Nikolaou K, Gatidis S, Eigentler TK, Amaral T, Moltz JH, Othman AE. Can Whole-Body Baseline CT Radiomics Add Information to the Prediction of Best Response, Progression-Free Survival, and Overall Survival of Stage IV Melanoma Patients Receiving First-Line Targeted Therapy: A Retrospective Register Study. Diagnostics (Basel) 2023; 13:3210. [PMID: 37892030 PMCID: PMC10605712 DOI: 10.3390/diagnostics13203210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate whether the combination of radiomics and clinical parameters in a machine-learning model offers additive information compared with the use of only clinical parameters in predicting the best response, progression-free survival after six months, as well as overall survival after six and twelve months in patients with stage IV malignant melanoma undergoing first-line targeted therapy. METHODS A baseline machine-learning model using clinical variables (demographic parameters and tumor markers) was compared with an extended model using clinical variables and radiomic features of the whole tumor burden, utilizing repeated five-fold cross-validation. Baseline CTs of 91 stage IV malignant melanoma patients, all treated in the same university hospital, were identified in the Central Malignant Melanoma Registry and all metastases were volumetrically segmented (n = 4727). RESULTS Compared with the baseline model, the extended radiomics model did not add significantly more information to the best-response prediction (AUC [95% CI] 0.548 (0.188, 0.808) vs. 0.487 (0.139, 0.743)), the prediction of PFS after six months (AUC [95% CI] 0.699 (0.436, 0.958) vs. 0.604 (0.373, 0.867)), or the overall survival prediction after six and twelve months (AUC [95% CI] 0.685 (0.188, 0.967) vs. 0.766 (0.433, 1.000) and AUC [95% CI] 0.554 (0.163, 0.781) vs. 0.616 (0.271, 1.000), respectively). CONCLUSIONS The results showed no additional value of baseline whole-body CT radiomics for best-response prediction, progression-free survival prediction for six months, or six-month and twelve-month overall survival prediction for stage IV melanoma patients receiving first-line targeted therapy. These results need to be validated in a larger cohort.
Collapse
Affiliation(s)
- Felix Peisen
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Annika Gerken
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Alessa Hering
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
- Diagnostic Image Analysis Group, Radboud University Medical Center (Radboudumc), Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Isabel Dahm
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Image-Guided and Functionally Instructed Tumor Therapies (iFIT), The Cluster of Excellence (EXC 2180), 72076 Tuebingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tuebingen, Germany
| | - Thomas K. Eigentler
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humbolt-Universität zu Berlin, Luisenstraße 2, 10117 Berlin, Germany
| | - Teresa Amaral
- Center of Dermato-Oncology, Department of Dermatology, Tuebingen University Hospital, Eberhard Karls University, Liebermeisterstraße 25, 72076 Tuebingen, Germany; (T.K.E.); (T.A.)
| | - Jan H. Moltz
- Fraunhofer MEVIS, Max-von-Laue-Straße 2, 28359 Bremen, Germany; (A.G.); (A.H.); (J.H.M.)
| | - Ahmed E. Othman
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076 Tuebingen, Germany; (I.D.); (K.N.); (S.G.); (A.E.O.)
- Institute of Neuroradiology, Johannes Gutenberg University Hospital Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
155
|
van den Bulk J, Verdegaal EM, van der Ploeg M, Visser M, Nunes JB, de Ru AH, Tjokrodirijo RT, Ijsselsteijn ME, Janssen NI, van der Breggen R, de Bruin L, de Kok P, Janssen GM, Ruano D, Kapiteijn EH, van Veelen PA, de Miranda NF, van der Burg SH. Neoantigen Targetability in Progressive Advanced Melanoma. Clin Cancer Res 2023; 29:4278-4288. [PMID: 37540567 PMCID: PMC10570682 DOI: 10.1158/1078-0432.ccr-23-1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE The availability of (neo)antigens and the infiltration of tumors by (neo)antigen-specific T cells are crucial factors in cancer immunotherapy. In this study, we aimed to investigate the targetability of (neo)antigens in advanced progessive melanoma and explore the potential for continued T-cell-based immunotherapy. EXPERIMENTAL DESIGN We examined a cohort of eight patients with melanoma who had sequential metastases resected at early and later time points. Antigen-presenting capacity was assessed using IHC and flow cytometry. T-cell infiltration was quantified through multiplex immunofluorescence. Whole-exome and RNA sequencing were conducted to identify neoantigens and assess the expression of neoantigens and tumor-associated antigens. Mass spectrometry was used to evaluate antigen presentation. Tumor recognition by autologous T cells was assessed by coculture assays with cell lines derived from the metastatic lesions. RESULTS We observed similar T-cell infiltration in paired early and later metastatic (LM) lesions. Although elements of the antigen-presenting machinery were affected in some LM lesions, both the early and later metastasis-derived cell lines were recognized by autologous T cells. At the genomic level, the (neo)antigen landscape was dynamic, but the (neo)antigen load was stable between paired lesions. CONCLUSIONS Our findings indicate that subsequently isolated tumors from patients with late-stage melanoma retain sufficient antigen-presenting capacity, T-cell infiltration, and a stable (neo)antigen load, allowing recognition of tumor cells by T cells. This indicates a continuous availability of T-cell targets in metastases occurring at different time points and supports further exploration of (neo)antigen-specific T-cell-based therapeutic approaches for advanced melanoma.
Collapse
Affiliation(s)
- Jitske van den Bulk
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Els M.E. Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Joana B. Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud H. de Ru
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rayman T.N. Tjokrodirijo
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Natasja I. Janssen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ruud van der Breggen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Pita de Kok
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - George M.C. Janssen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen H.W. Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A. van Veelen
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
156
|
Ascierto PA, Dummer R, Gogas HJ, Arance A, Mandala M, Liszkay G, Garbe C, Schadendorf D, Krajsova I, Gutzmer R, Chiarion-Sileni V, Dutriaux C, de Groot JWB, Yamazaki N, Loquai C, Robert C, Flaherty KT. Contribution of MEK Inhibition to BRAF/MEK Inhibitor Combination Treatment of BRAF-Mutant Melanoma: Part 2 of the Randomized, Open-Label, Phase III COLUMBUS Trial. J Clin Oncol 2023; 41:4621-4631. [PMID: 37506329 PMCID: PMC10564308 DOI: 10.1200/jco.22.02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE In COLUMBUS part 1, patients with advanced BRAFV600-mutant melanoma were randomly assigned 1:1:1 to encorafenib 450 mg once daily plus binimetinib 45 mg twice a day (COMBO450), vemurafenib 960 mg twice a day, or encorafenib 300 mg once daily (ENCO300). As previously reported, COMBO450 improved progression-free survival (PFS) versus vemurafenib (part 1 primary end point) and ENCO300 (part 1 key secondary end point; not statistically significant). Part 2, requested by the US Food and Drug Administration, evaluated the contribution of binimetinib by maintaining the same encorafenib dosage in the combination (encorafenib 300 mg once daily plus binimetinib 45 mg twice daily [COMBO300]) and ENCO300 arms. METHODS In part 2, patients were randomly assigned 3:1 to COMBO300 or ENCO300. ENCO300 (parts 1 and 2) data were combined, per protocol, for PFS analysis (key secondary end point) by a blinded independent review committee (BIRC). Other analyses included overall response rate (ORR), overall survival, and safety. RESULTS Two hundred fifty-eight patients received COMBO300, and 86 received ENCO300. Per protocol, ENCO300 arms (parts 1 and 2 combined) were also evaluated (n = 280). The median follow-up for ENCO300 was 40.8 months (part 1) and 57.1 months (part 2). The median PFS (95% CI) was 12.9 months (10.9 to 14.9) for COMBO300 versus 9.2 months (7.4 to 11.1) for ENCO300 (parts 1 and 2) and 7.4 months (5.6 to 9.2) for ENCO300 (part 2). The hazard ratio (95% CI) for COMBO300 was 0.74 (0.60 to 0.92; two-sided P = .003) versus ENCO300 (parts 1 and 2). The ORR by BIRC (95% CI) was 68% (62 to 74) and 51% (45 to 57) for COMBO300 and ENCO300 (parts 1 and 2), respectively. COMBO300 had greater relative dose intensity and fewer grade 3/4 adverse events than ENCO300. CONCLUSION COMBO300 improved PFS, ORR, and tolerability compared with ENCO300, confirming the contribution of binimetinib to efficacy and safety.
Collapse
Affiliation(s)
- Paolo A. Ascierto
- Melanoma Unit, Cancer Immunotherapy and Innovative Therapies, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich Skin Cancer Center, Zürich, Switzerland
| | - Helen J. Gogas
- Department of Internal Medicine, National and Kapodistrian University of Athens, Laikon Hospital, Athens, Greece
| | - Ana Arance
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mario Mandala
- Santa Maria Misericordia Hospital, University of Perugia, Perugia, Italy
| | - Gabriella Liszkay
- Department of Dermatology, National Institute of Oncology, Budapest, Hungary
| | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - Ivana Krajsova
- Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ralf Gutzmer
- Department of Dermatology, Skin Cancer Center Minden, Mühlenkreiskliniken, Ruhr University Bochum, Minden, Germany
| | | | - Caroline Dutriaux
- Department of Oncologic Dermatology, Bordeaux University Hospital Center, Bordeaux Cédex, France
| | | | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Carmen Loquai
- Department of Dermatology, Klinikum Bremen-Ost, Gesundheitnord gGmbH, Bremen, Germany
| | - Caroline Robert
- Department of Medicine, Service of Dermatology, Paris-Saclay University, Cedex, France
| | | |
Collapse
|
157
|
Glen C, Adam S, McDowell K, Waterston A, Tan YY, Petrie MC, Coats CJ, Lang NN. Cardiotoxicity of BRAF/MEK Inhibitors: A Longitudinal Study Incorporating Contemporary Definitions and Risk Scores. JACC CardioOncol 2023; 5:628-637. [PMID: 37969652 PMCID: PMC10635885 DOI: 10.1016/j.jaccao.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 11/17/2023] Open
Abstract
Background Rapidly accelerated fibrosarcoma B-type (BRAF) and mitogen-activated extracellular signal-regulated kinase (MEK) inhibitors have revolutionized treatment for patients with BRAF-mutated melanoma. Although left ventricular systolic dysfunction associated with these therapies has been reported in clinical trials, the real-world incidence is poorly defined, as are risk factors for its development. Objectives This study sought to characterize the incidence, time course, and risk factors for cancer therapy-related cardiac dysfunction (CTRCD) in patients with melanoma receiving BRAF and MEK inhibitors. Methods Patients with melanoma treated with BRAF and MEK inhibitors at a cancer hospital network between June 1, 2017, and June 30, 2020, were included retrospectively. CTRCD was defined as mild, moderate, or severe according to International Cardio-Oncology Society (ICOS) definitions. Baseline cardiotoxicity risk stratification was performed using the Heart Failure Association/ICOS tool. Results Of the 63 patients included, 27% developed CTRCD (17% mild and 10% moderate). No patients developed severe CTRCD or symptomatic heart failure. CTRCD occurred most frequently in patients considered to be at "low" and "medium" baseline risk of cardiotoxicity (82%). The baseline left ventricular ejection fraction and global longitudinal strain were not different in patients who developed moderate CTRCD vs those who did not. Left ventricular internal diameters in diastole and systole were larger in patients who developed moderate CTRCD compared with those who did not (left ventricular internal diameter in diastole: 4.9 ± 0.6 cm vs 4.3 ± 0.6 cm; P = 0.023; left ventricular internal diameter in systole: 3.3 ± 0.4 cm vs 2.8 ± 0.5 cm; P = 0.039). Conclusions BRAF and MEK inhibitor-associated CTRCD is common. The utility of the Heart Failure Association/ICOS risk stratification tool appears limited in this group, and better risk prediction tools are needed. The long-term consequences of CTRCD, particularly mild CTRCD, warrant evaluation in larger prospective studies.
Collapse
Affiliation(s)
- Claire Glen
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Adam
- Queen Elizabeth University Hospital, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Kirsty McDowell
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Ashita Waterston
- Beatson West of Scotland Cancer Centre, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Yun Yi Tan
- Beatson West of Scotland Cancer Centre, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Mark C. Petrie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Caroline J. Coats
- Queen Elizabeth University Hospital, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Ninian N. Lang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
158
|
Gawlik M, Zimodro JM, Gąsecka A, Filipiak KJ, Szmit S. Cardiac Arrhythmias in Oncological Patients-Epidemiology, Risk Factors, and Management within the Context of the New ESC 2022 Guidelines. Curr Oncol Rep 2023; 25:1107-1115. [PMID: 37589940 PMCID: PMC10556148 DOI: 10.1007/s11912-023-01445-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE OF REVIEW To provide an update on epidemiology, risk factors, and management of cardiac arrhythmias in oncological patients within the context of the new European Society of Cardiology 2022 guidelines on cardio-oncology. RECENT FINDINGS One of the side effects of different chemotherapeutics is their pro-arrhythmic activity. Both atrial and ventricular arrhythmias may be induced by cancer itself or by anticancer treatment. Recent studies report on the cardiotoxic activity of such promising therapies as BRAF and MEK inhibitors, or CAR-T therapy. Risk factors of arrhythmias in oncological patients overlap with cardiovascular diseases risk factors, but there are some groups of anticancer drugs that increase the risk of cardiotoxicity. It is crucial to be aware of the risks associated with the oncological treatment and know how to act in case of cardiotoxicity.
Collapse
Affiliation(s)
- Michał Gawlik
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Jakub Michal Zimodro
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Sebastian Szmit
- Department of Cardio-Oncology, Centre of Postgraduate Medical Education, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Clinic of Oncological Diagnostics and Cardio-Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
159
|
Mandalà M, Palmieri G, Ludovini V, Baglivo S, Marasciulo F, Castiglione F, Gili A, Osella Abate S, Rubatto M, Senetta R, Avallone G, Ribero S, Romano L, Pimpinelli N, de Giorgi V, Roila F, Pisano M, Casula M, Manca A, Sini MC, Massi D, Quaglino P. BRAFV600 variant allele frequency predicts outcome in metastatic melanoma patients treated with BRAF and MEK inhibitors. J Eur Acad Dermatol Venereol 2023; 37:1991-1998. [PMID: 37335879 DOI: 10.1111/jdv.19281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND The prognostic impact of variant allele frequency (VAF) on clinical outcome in BRAFV600 mutated metastatic melanoma patients (MMPs) receiving BRAF (BRAFi) and MEK inhibitors (MEKi) is unclear. MATERIALS AND METHODS A cohort of MMPs receiving first line BRAFi and MEKi was identified by inspecting dedicated databases of three Italian Melanoma Intergroup centres. VAF was determined by next generation sequencing in pre-treatment baseline tissue samples. Correlation between VAF and BRAF copy number variation was analysed in an ancillary study by using a training and a validation cohort of melanoma tissue samples and cell lines. RESULTS Overall, 107 MMPs were included in the study. The VAF cut-off determined by ROC curve was 41.3%. At multivariate analysis, progression-free survival (PFS) was significantly shorter in patients with M1c/M1d [HR 2.25 (95% CI 1.41-3.6, p < 0.01)], in those with VAF >41.3% [HR 1.62 (95% CI 1.04-2.54, p < 0.05)] and in those with ECOG PS ≥1 [HR 1.82 (95% CI 1.15-2.88, p < 0.05)]. Overall survival (OS) was significantly shorter in patients with M1c/M1d [HR 2.01 (95% CI 1.25-3.25, p < 0.01)]. Furthermore, OS was shorter in patients with VAF >41.3% [HR 1.46 (95% CI 0.93-2.29, p = 0.06)] and in patients with ECOG PS ≥1 [HR 1.52 (95% CI 0.94-2.87, p = 0.14)]. BRAF gene amplification was found in 11% and 7% of samples in the training and validation cohort, respectively. CONCLUSIONS High VAF is an independent poor prognostic factor in MMP receiving BRAFi and MEKi. High VAF and BRAF amplification coexist in 7%-11% of patients.
Collapse
Affiliation(s)
- Mario Mandalà
- University of Perugia, Perugia, Italy
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Palmieri
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Sassari, Italy
- Unit of Cancer Genetics, IRGB-CNR, Sassari, Italy
| | - Vienna Ludovini
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Sara Baglivo
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesca Marasciulo
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesca Castiglione
- Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Alessio Gili
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Simona Osella Abate
- Pathology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marco Rubatto
- Dermatology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Rebecca Senetta
- Pathology Division, "Città della Salute e della Scienza di Torino" University Hospital, Torino, Italy
| | - Gianluca Avallone
- Dermatology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Simone Ribero
- Dermatology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Luca Romano
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Nicola Pimpinelli
- Unit of Dermatology, Department of Health Sciences, University of Florence Medical School, Florence, Italy
| | - Vincenzo de Giorgi
- Unit of Dermatology, Department of Health Sciences, University of Florence Medical School, Florence, Italy
| | - Fausto Roila
- University of Perugia, Perugia, Italy
- Unit of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | | | | | | | | | - Daniela Massi
- Section of Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pietro Quaglino
- Dermatology Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
160
|
Özdemir D, Büssgen M. Effectiveness and cost-effectiveness of combination therapy versus monotherapy in malignant melanoma. J Pharm Policy Pract 2023; 16:106. [PMID: 37749653 PMCID: PMC10521452 DOI: 10.1186/s40545-023-00611-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/16/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Until 2010, stage III or IV malignant melanoma (MM) had a poor prognosis. The discovery of immune checkpoint inhibitors (ICIs) in 2011 changed the treatment landscape. Promising results in patient survival with a checkpoint inhibitor prompted research into combination therapies. In 2016, the first combination therapy has been approved as first-line therapy for advanced MM. OBJECTIVE The aim of this work is to investigate to what extent combination therapy is (cost-)effective compared to monotherapy in stage III or IV MM. METHODS A systematic literature search was performed (Web of Science, PubMed, PubPharm, EconLit, and Cochrane Library); searching for publications published over the past decade that examine the cost-effectiveness in terms of cost/QALY and the effectiveness in terms of survival and response of combination therapy in comparison to monotherapy in stage III or IV MM patients. RESULTS A total of 11 randomized controlled trials (RCTs) and five cost-utility analyses met our inclusion criteria. Nine clinical trials demonstrated superiority of combination therapy over monotherapy. The combination of B-rapidly accelerated fibrosarcoma (BRAF) protein and mitogen-activated kinase (MEK) protein inhibitors is not cost-effective in any country. Three analyses demonstrate the cost-effectiveness of combination therapy with ICI compared to monotherapy. CONCLUSION Combination therapy is more effective compared to monotherapy. While combined ICIs are cost-effective compared to monotherapy, this is not the case for the combination of BRAF and MEK inhibitors.
Collapse
Affiliation(s)
| | - Melanie Büssgen
- Hamburg Center for Health Economics, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
161
|
Myszkiewicz MF, Puzanov I, Goey AKL. Development and validation of an LC-MS/MS method to measure the BRAF inhibitors dabrafenib and encorafenib quantitatively and four major metabolites semi-quantitatively in human plasma. J Pharm Biomed Anal 2023; 234:115594. [PMID: 37478552 PMCID: PMC10528671 DOI: 10.1016/j.jpba.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
This article describes the development and validation of a liquid-chromatography coupled with tandem mass spectrometry (LC-MS/MS) assay for the simultaneous quantitation of the BRAF inhibitors dabrafenib and encorafenib, and semi-quantitation of their major metabolites (i.e., carboxy-dabrafenib, desmethyl-dabrafenib, hydroxy-dabrafenib, M42.5A) in human plasma. Analytes were extracted from human plasma by protein precipitation, followed by reversed phase high-performance liquid chromatography. Analyte detection was performed using tandem mass spectrometry with heated electrospray ionization operating in positive ion mode. The assay was validated in accordance with the current U.S. Food and Drug Administration Guidance on Bioanalytical Method Validation. Results showed that measurements were both accurate (94.6-112.0 %) and precise (within-run: 1.9-3.4 %; between-run: 1.7-12.0 %) spanning a concentration range of 5 to 2000 ng/mL for dabrafenib and 10 to 4000 ng/mL for encorafenib. Recoveries for these analytes were consistent with mean values ranging from 85.6 % to 90.9 %. The mean internal standard-normalized matrix factors for each drug ranged between 0.87 and 0.98 and were found to be precise (% RSD <6.4 %). Dabrafenib and encorafenib were stable in the final extract and in human plasma held under various storage conditions. The metabolites also passed the validation criteria for precision and selectivity. Finally, the clinical applicability of the assay was confirmed by (semi-)quantitation of all six analytes in plasma samples from cancer patients receiving standard-of-care treatment with dabrafenib and encorafenib. Reproducibility of the measured analyte concentrations in study samples was confirmed successfully by incurred sample reanalysis. In conclusion, this sensitive LC-MS/MS assay has been validated successfully and is suitable for therapeutic drug monitoring of dabrafenib and encorafenib and clinical pharmacokinetic studies with these BRAF inhibitors.
Collapse
Affiliation(s)
- Melody F Myszkiewicz
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Andrew K L Goey
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
162
|
Mezi S, Botticelli A, Scagnoli S, Pomati G, Fiscon G, De Galitiis F, Di Pietro FR, Verkhovskaia S, Amirhassankhani S, Pisegna S, Gentile G, Simmaco M, Gohlke B, Preissner R, Marchetti P. The Impact of Drug-Drug Interactions on the Toxicity Profile of Combined Treatment with BRAF and MEK Inhibitors in Patients with BRAF-Mutated Metastatic Melanoma. Cancers (Basel) 2023; 15:4587. [PMID: 37760556 PMCID: PMC10526382 DOI: 10.3390/cancers15184587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND BRAF and MEK inhibition is a successful strategy in managing BRAF-mutant melanoma, even if the treatment-related toxicity is substantial. We analyzed the role of drug-drug interactions (DDI) on the toxicity profile of anti-BRAF/anti-MEK therapy. METHODS In this multicenter, observational, and retrospective study, DDIs were assessed using Drug-PIN software (V 2/23). The association between the Drug-PIN continuous score or the Drug-PIN traffic light and the occurrence of treatment-related toxicities and oncological outcomes was evaluated. RESULTS In total, 177 patients with advanced BRAF-mutated melanoma undergoing BRAF/MEK targeted therapy were included. All grade toxicity was registered in 79% of patients. Cardiovascular toxicities occurred in 31 patients (17.5%). Further, 94 (55.9%) patients had comorbidities requiring specific pharmacological treatments. The median Drug-PIN score significantly increased when the target combination was added to the patient's home therapy (p-value < 0.0001). Cardiovascular toxicity was significantly associated with the Drug-PIN score (p-value = 0.048). The Drug-PIN traffic light (p = 0.00821) and the Drug-PIN score (p = 0.0291) were seen to be significant predictors of cardiotoxicity. Patients with low-grade vs. high-grade interactions showed a better prognosis regarding overall survival (OS) (p = 0.0045) and progression-free survival (PFS) (p = 0.012). The survival analysis of the subgroup of patients with cardiological toxicity demonstrated that patients with low-grade vs. high-grade DDIs had better outcomes in terms of OS (p = 0.0012) and a trend toward significance in PFS (p = 0.068). CONCLUSIONS DDIs emerged as a critical issue for the risk of treatment-related cardiovascular toxicity. Our findings support the utility of DDI assessment in melanoma patients treated with BRAF/MEK inhibitors.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Andrea Botticelli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Simone Scagnoli
- Department of Radiological, Oncological, and Anatomopathological Sciences, Sapienza University of Rome, 00161 Rome, Italy; (S.M.); (A.B.)
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Federica De Galitiis
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Francesca Romana Di Pietro
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sofia Verkhovskaia
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Via Palagi, 40126 Bologna, Italy;
| | - Simona Pisegna
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (G.P.); (S.P.)
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00185 Rome, Italy; (G.G.); (M.S.)
- Unit of Laboratory and Advanced Molecular Diagnostics, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Bjoern Gohlke
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 10117 Berlin, Germany; (B.G.); (R.P.)
| | - Paolo Marchetti
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00144 Rome, Italy; (F.D.G.); (F.R.D.P.); (S.V.); (P.M.)
| |
Collapse
|
163
|
Fay CJ, Jakuboski S, Mclellan B, Allais BS, Semenov Y, Larocca CA, LeBoeuf NR. Diagnosis and Management of Dermatologic Adverse Events from Systemic Melanoma Therapies. Am J Clin Dermatol 2023; 24:765-785. [PMID: 37395930 PMCID: PMC10796164 DOI: 10.1007/s40257-023-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 07/04/2023]
Abstract
The advent of protein kinase inhibitors and immunotherapy has profoundly improved the management of advanced melanoma. However, with these therapeutic advancements also come drug-related toxicities that have the potential to affect various organ systems. We review dermatologic adverse events from targeted (including BRAF and MEK inhibitor-related) and less commonly used melanoma treatments, with a focus on diagnosis and management. As immunotherapy-related toxicities have been extensively reviewed, herein, we discuss injectable talimogene laherparepvec and touch on recent breakthroughs in the immunotherapy space. Dermatologic adverse events may severely impact quality of life and are associated with response and survival. It is therefore essential that clinicians are aware of their diverse presentations and management strategies.
Collapse
Affiliation(s)
- Christopher J Fay
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Beth Mclellan
- Department of Dermatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Blair S Allais
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Yevgeniy Semenov
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cecilia A Larocca
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Brigham and Women's Hospital, and the Center for Cutaneous Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
164
|
Dang H, Sui M, He Q, Xie J, Liu Y, Hou P, Ji M. Pin1 inhibitor API-1 sensitizes BRAF-mutant thyroid cancers to BRAF inhibitors by attenuating HER3-mediated feedback activation of MAPK/ERK and PI3K/AKT pathways. Int J Biol Macromol 2023; 248:125867. [PMID: 37473892 DOI: 10.1016/j.ijbiomac.2023.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
BRAFV600E mutation is one of the most therapeutic targets in thyroid cancers. However, its specific inhibitors have shown little clinical benefit because they can reactivate the MAPK/ERK and PI3K/AKT pathways by feedback upregulating the transcription of HER3. Peptidyl-prolyl cis/trans isomerase Pin1 has been proven to be closely associated with tumor progression. Here, we aimed to determine antitumor activity of Pin1 inhibitor API-1 in thyroid cancer and its effect on cellular response to BRAF inhibitors. The results showed that API-1 exhibited strong antitumor activity against thyroid cancer. Meanwhile, it improved the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4032 and there was a synergistic effect between them. Specially, a combination therapy of API-1 and PLX4032 significantly inhibited cell proliferation, colony formation, and the growth of xenograft tumors as well as induced cell apoptosis in BRAF-mutant thyroid cancer cells compared with API-1 or PLX4032 monotherapy. Similar results were also observed in transgenic mice with BrafV600E-driven thyroid cancer. Mechanistically, API-1 enhanced XPO5 ability to export pre-microRNA 20a (pre-miR-20a) from the nucleus to cytoplasm, thereby promoting the maturation of miR-20a-5p. Further studies showed that miR-20a-5p specifically targeted and down-regulated HER3, thereby blocking the reactivation of MAPK/ERK and PI3K/AKT signaling pathways caused by PLX4032. These results, taken together, demonstrate that Pin1 inhibitor API-1 significantly improves the sensitivity of BRAF-mutant thyroid cancer cells to PLX4032. Thus, this study not only determines the potential antitumor activity of Pin1 inhibitor API-1 in thyroid cancer but also offers an alternative therapeutic strategy for BRAF-mutant thyroid cancers by a combination of Pin1 inhibitor and BRAF kinase inhibitor.
Collapse
Affiliation(s)
- Hui Dang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Mengjun Sui
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qingyuan He
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jingyi Xie
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Yan Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
165
|
van Akkooi AC, Hauschild A, Long GV, Mandala M, Kicinski M, Govaerts AS, Klauck I, Ouali M, Lorigan PC, Eggermont AM. COLUMBUS-AD: phase III study of adjuvant encorafenib + binimetinib in resected stage IIB/IIC BRAF V600-mutated melanoma. Future Oncol 2023; 19:2017-2027. [PMID: 37665297 DOI: 10.2217/fon-2023-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Stage IIB/IIC melanoma has a high risk of recurrence after surgical resection. While, for decades, surgery was the only option for high-risk stage II disease in most countries, adjuvant therapies now exist. Anti-programmed cell death protein 1 (PD-1) antibodies significantly improve recurrence-free survival versus placebo in patients with fully resected stage IIB/IIC melanoma. Combined BRAF MEK inhibitor therapy showed benefits in high-risk stage III and advanced disease; however, its role in patients with fully resected stage BRAF-mutated IIB/IIC melanoma is still unknown. Here we describe the rationale and design of the ongoing randomized, placebo-controlled COLUMBUS-AD trial, the first study of a BRAF-MEK inhibitor combination therapy (encorafenib + binimetinib) in patients with BRAF V600-mutated stage IIB/IIC melanoma.
Collapse
Affiliation(s)
- Alexander Cj van Akkooi
- Melanoma Institute Australia, the University of Sydney & Royal Prince Alfred Hospital, 40 Rocklands Road Wollstonecraft, Sydney 2065, NSW, Australia
| | - Axel Hauschild
- Department of Dermatology, University Hospital (UKSH), Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, & Mater & Royal North Shore Hospitals, 40 Rocklands Road Wollstonecraft, Sydney 2065, NSW, Australia
| | - Mario Mandala
- University of Perugia, Ospedale Santa Maria della Misericordia, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Michal Kicinski
- EORTC Headquarters, Avenue Emmanuel Mounier 83/11, 1200, Brussels, Belgium
| | | | - Isabelle Klauck
- Pierre Fabre, Medical & Patient/Consumer Division, 33 avenue Emile Zola, 92100, Boulogne-Billancourt, France
| | - Monia Ouali
- Pierre Fabre, Medical & Patient/Consumer Division, Langlade, France
| | - Paul C Lorigan
- Christie NHS Foundation Trust, Wilmslow Road Manchester M20 4BX, UK
| | - Alexander Mm Eggermont
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Comprehensive Cancer Center Munich, Technical University Munich & Ludwig Maximiliaan University, Marchioninistraße 15, 81377 Munich, Germany
| |
Collapse
|
166
|
Halloush S, Alkhatib NS, Almutairi AR, Calamia M, Halawah H, Obeng-Kusi M, Hoyle M, Rashdan O, Koeller J, Abraham I. Economic Evaluation of Three BRAF + MEK Inhibitors for the Treatment of Advanced Unresectable Melanoma With BRAF Mutation From a US Payer Perspective. Ann Pharmacother 2023; 57:1016-1024. [PMID: 36639851 DOI: 10.1177/10600280221146878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The combinations of BRAF + MEK inhibitors-encorafenib (ENC) + binimetinib (BIN), cobimetinib (COB) + vemurafenib (VEM), and dabrafenib (DAB) + trametinib (TRA)-are recommended for the treatment of BRAF-mutated advanced melanoma. OBJECTIVE To assess the cost-effectiveness and cost-utility of ENC + BIN versus COB + VEM versus DAB + TRA from a US payer perspective. METHODS A Markov model was constructed to simulate a hypothetical cohort over a time horizon of 10 years. The overall survival (OS) and progression-free survival (PFS) curves were independently digitized from a randomized controlled trial for ENC + BIN and fitted using R software. Published and indirectly estimated hazard ratios were used to fit OS and PFS curves for COB + VEM and DAB + TRA. Costs, life-year gains, and quality-adjusted life years (QALYs) associated with the 3 treatment combinations were estimated. A base case analysis and probabilistic sensitivity analysis (PSA) were conducted to estimate the incremental cost-utility ratio (ICUR). A discount rate of 3.5% was applied on cost and outcomes. RESULTS The ENC + BIN versus COB + VEM comparison was associated with an ICUR of $656 233 per QALY gained. The ENC + BIN versus DAB + TRA comparison was associated with an ICUR of $3 135 269 per QALY gained. The DAB + TRA combination dominated COB + VEM. The base case analysis estimates were confirmed by the PSA estimates. ENC + BIN was the most cost-effective combination at a high willingness-to-pay (WTP) threshold of $573 000 per QALY and $1.5 million/QALY when compared to COB + VEM and DAB + TRA, respectively. CONCLUSION AND RELEVANCE Given current prices and acceptable WTP thresholds, our study suggests that DAB + TRA is the optimum treatment. In this study, ENC + BIN was cost-effective only at a very high WTP per QALY threshold.
Collapse
Affiliation(s)
- Shiraz Halloush
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Nimer S Alkhatib
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Pi Pharma Intelligence, Amman, Jordan
- Center for Health Outcomes and PharmacoEconomic Research, The University of Arizona, Tucson, AZ, USA
| | | | - Mathias Calamia
- Center for Health Outcomes and PharmacoEconomic Research, The University of Arizona, Tucson, AZ, USA
| | - Hala Halawah
- Center for Health Outcomes and PharmacoEconomic Research, The University of Arizona, Tucson, AZ, USA
| | - Mavis Obeng-Kusi
- Center for Health Outcomes and PharmacoEconomic Research, The University of Arizona, Tucson, AZ, USA
| | - Martin Hoyle
- Centre for the Health Economy, Macquarie University, Sydney, NSW, Australia
| | - Omar Rashdan
- College of Pharmacy, Middle East University, Amman, Jordan
| | - Jim Koeller
- College of Pharmacy, University of Texas at Austin, Austin, TX, USA
- Pharmacotherapy Education & Research Center, UT Health, San Antonio, TX, USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, The University of Arizona, Tucson, AZ, USA
- Department of Pharmacy Practice & Science, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
167
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
168
|
Rossi A, Aimar G, Audisio M, Bungaro M, Caglio A, Di Liello R, Gamba T, Gargiulo P, Ghisoni E, Lombardi P, Marandino L, Mariniello A, Paratore C, Reale ML, Trastu F, Tuninetti V, Turco F, Fabi A, Perrone F, Di Maio M. Analysis of the adequacy of control arms in oncology randomised clinical trials published between 2017 and 2021: a meta-research study. Eur J Cancer 2023; 189:112920. [PMID: 37277262 DOI: 10.1016/j.ejca.2023.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Randomised controlled trials (RCTs) are usually considered the highest level of evidence for clinical practice. Patients assigned to control arm in RCTs should always receive the best available treatments to protect participants while also allowing for proper interpretation and applicability of study results. Here we analysed RCTs published in oncology between 2017 and 2021 to describe the frequency of suboptimal control arms. METHODS We identified phase III studies testing active treatments in patients with solid tumours among 11 major oncology journals. Each control arm was analysed, and the standard of care was determined according to international guidelines and scientific evidence at accrual beginning and until accrual completion. We identified studies with suboptimal control arm from the beginning (type 1) and studies with an initially optimal control arm which became outdated during the accrual period (type 2). RESULTS This analysis included 387 studies. Forty-three (11.1%) control arms were judged as suboptimal: 24 (6.2%) type 1 and 19 (4.9%) type 2. These rates were higher in industry-sponsored compared to academic trials: 9.3% versus 1.9% for type 1 (p = 0.003); 7.9% versus 0.6% for type 2 (p = 0.001). Rates of suboptimal control arms were higher in studies with positive results: 8.1% versus 4.0% for type 1 (p = 0.09); 7.6% versus 1.7% for type 2 (p = 0.007). CONCLUSIONS Many trials have suboptimal control arms, even in journals with high-impact factors, leading to suboptimal treatment of control patients and biased evaluation of trial results.
Collapse
Affiliation(s)
- Alessandro Rossi
- Unit of Precision Medicine in Breast Cancer, Department of Gynaecological Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Aimar
- Division of Medical Oncology, Santa Croce e Carle Hospital, Cuneo, Italy; Department of Oncology, University of Turin, Italy
| | - Marco Audisio
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea (TO), Italy
| | - Maristella Bungaro
- Medical Oncology, Ospedale Michele e Pietro Ferrero, Verduno (CN), Italy
| | - Andrea Caglio
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | | | - Teresa Gamba
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - Piera Gargiulo
- Clinical Trial Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Eleonora Ghisoni
- Department of Oncology, Immuno-Oncology Service, University Hospital of Lausanne (UNIL-CHUV), Lausanne, Switzerland
| | - Pasquale Lombardi
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Marandino
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Mariniello
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Department of Oncology, University of Turin, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy
| | - Chiara Paratore
- Department of Oncology, ASL TO4, Ivrea Community Hospital, Ivrea (TO), Italy
| | | | - Federica Trastu
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - Valentina Tuninetti
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy
| | - Fabio Turco
- Department of Oncology, University of Turin, San Luigi Gonzaga University Hospital, Orbassano (TO), Italy; IOSI (Oncology Institute of Southern Switzerland), Ente Ospedaliero Cantonale (EOC), Bellinzona, Switzerland
| | - Alessandra Fabi
- Unit of Precision Medicine in Breast Cancer, Department of Gynaecological Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Perrone
- Clinical Trial Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, Ordine Mauriziano Hospital, Turin, Italy.
| |
Collapse
|
169
|
Priantti JN, Vilbert M, Madeira T, Moraes FCA, Hein ECK, Saeed A, Cavalcante L. Efficacy and Safety of Rechallenge with BRAF/MEK Inhibitors in Advanced Melanoma Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:3754. [PMID: 37568570 PMCID: PMC10417341 DOI: 10.3390/cancers15153754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
This systematic review and meta-analysis aims to evaluate the efficacy and safety of rechallenging advanced melanoma patients with BRAFi/MEKi. Seven studies, accounting for 400 patients, were included. Most patients received immunotherapy before the rechallenge, and 79% underwent rechallenge with the combination of BRAFi/MEKi. We found a median progression-free survival of 5 months and overall survival of 9.8 months. The one-year survival rate was 42.63%. Regarding response, ORR was 34% and DCR 65%. There were no new or unexpected safety concerns. Rechallenge with BRAFi/MEKi can improve outcomes in advanced melanoma patients with refractory disease. These findings have significant implications for clinical practice, particularly in the setting of progressive disease in later lines and limited treatment options.
Collapse
Affiliation(s)
- Jonathan N. Priantti
- School of Medicine, Federal University of Amazonas—UFAM, Manaus 69020-160, AM, Brazil
| | - Maysa Vilbert
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thiago Madeira
- School of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, MG, Brazil
| | | | - Erica C. Koch Hein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Hematology and Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ludimila Cavalcante
- Department of Medical Oncology, Novant Health Cancer Institute, Charlotte, NC 28204, USA
| |
Collapse
|
170
|
Long GV, Swetter SM, Menzies AM, Gershenwald JE, Scolyer RA. Cutaneous melanoma. Lancet 2023:S0140-6736(23)00821-8. [PMID: 37499671 DOI: 10.1016/s0140-6736(23)00821-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 137.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 07/29/2023]
Abstract
Cutaneous melanoma is a malignancy arising from melanocytes of the skin. Incidence rates are rising, particularly in White populations. Cutaneous melanoma is typically driven by exposure to ultraviolet radiation from natural sunlight and indoor tanning, although there are several subtypes that are not related to ultraviolet radiation exposure. Primary melanomas are often darkly pigmented, but can be amelanotic, with diagnosis based on a combination of clinical and histopathological findings. Primary melanoma is treated with wide excision, with margins determined by tumour thickness. Further treatment depends on the disease stage (following histopathological examination and, where appropriate, sentinel lymph node biopsy) and can include surgery, checkpoint immunotherapy, targeted therapy, or radiotherapy. Systemic drug therapies are recommended as an adjunct to surgery in patients with resectable locoregional metastases and are the mainstay of treatment in advanced melanoma. Management of advanced melanoma is complex, particularly in those with cerebral metastasis. Multidisciplinary care is essential. Systemic drug therapies, particularly immune checkpoint inhibitors, have substantially increased melanoma survival following a series of landmark approvals from 2011 onward.
Collapse
Affiliation(s)
- Georgina V Long
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia.
| | - Susan M Swetter
- Department of Dermatology and Pigmented Lesion and Melanoma Program, Stanford University Medical Center and Cancer Institute, Stanford, CA, USA; Department of Dermatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia; Department of Medical Oncology, Mater Hospital, Sydney, NSW, Australia
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
171
|
Riely GJ, Smit EF, Ahn MJ, Felip E, Ramalingam SS, Tsao A, Johnson M, Gelsomino F, Esper R, Nadal E, Offin M, Provencio M, Clarke J, Hussain M, Otterson GA, Dagogo-Jack I, Goldman JW, Morgensztern D, Alcasid A, Usari T, Wissel P, Wilner K, Pathan N, Tonkovyd S, Johnson BE. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAFV600-Mutant Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3700-3711. [PMID: 37270692 DOI: 10.1200/jco.23.00774] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
PURPOSE The combination of encorafenib (BRAF inhibitor) plus binimetinib (MEK inhibitor) has demonstrated clinical efficacy with an acceptable safety profile in patients with BRAFV600E/K-mutant metastatic melanoma. We evaluated the efficacy and safety of encorafenib plus binimetinib in patients with BRAFV600E-mutant metastatic non-small-cell lung cancer (NSCLC). METHODS In this ongoing, open-label, single-arm, phase II study, patients with BRAFV600E-mutant metastatic NSCLC received oral encorafenib 450 mg once daily plus binimetinib 45 mg twice daily in 28-day cycles. The primary end point was confirmed objective response rate (ORR) by independent radiology review (IRR). Secondary end points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival, time to response, and safety. RESULTS At data cutoff, 98 patients (59 treatment-naïve and 39 previously treated) with BRAFV600E-mutant metastatic NSCLC received encorafenib plus binimetinib. Median duration of treatment was 9.2 months with encorafenib and 8.4 months with binimetinib. ORR by IRR was 75% (95% CI, 62 to 85) in treatment-naïve and 46% (95% CI, 30 to 63) in previously treated patients; median DOR was not estimable (NE; 95% CI, 23.1 to NE) and 16.7 months (95% CI, 7.4 to NE), respectively. DCR after 24 weeks was 64% in treatment-naïve and 41% in previously treated patients. Median PFS was NE (95% CI, 15.7 to NE) in treatment-naïve and 9.3 months (95% CI, 6.2 to NE) in previously treated patients. The most frequent treatment-related adverse events (TRAEs) were nausea (50%), diarrhea (43%), and fatigue (32%). TRAEs led to dose reductions in 24 (24%) and permanent discontinuation of encorafenib plus binimetinib in 15 (15%) patients. One grade 5 TRAE of intracranial hemorrhage was reported. Interactive visualization of the data presented in this article is available at the PHAROS dashboard (https://clinical-trials.dimensions.ai/pharos/). CONCLUSION For patients with treatment-naïve and previously treated BRAFV600E-mutant metastatic NSCLC, encorafenib plus binimetinib showed a meaningful clinical benefit with a safety profile consistent with that observed in the approved indication in melanoma.
Collapse
Affiliation(s)
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Anne Tsao
- MD Anderson Cancer Center, Houston, TX
| | - Melissa Johnson
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN
| | - Francesco Gelsomino
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hasanov M, Milton DR, Davies AB, Sirmans E, Saberian C, Posada EL, Opusunju S, Gershenwald JE, Torres-Cabala CA, Burton EM, Colen RR, Huse JT, Glitza Oliva IC, Chung C, McAleer MF, McGovern SL, Yeboa DN, Kim BYS, Prabhu SS, McCutcheon IE, Weinberg JS, Lang FF, Tawbi HA, Li J, Haydu LE, Davies MA, Ferguson SD. Changes in outcomes and factors associated with survival in melanoma patients with brain metastases. Neuro Oncol 2023; 25:1310-1320. [PMID: 36510640 PMCID: PMC10326492 DOI: 10.1093/neuonc/noac251] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Treatment options for patients with melanoma brain metastasis (MBM) have changed significantly in the last decade. Few studies have evaluated changes in outcomes and factors associated with survival in MBM patients over time. The aim of this study is to evaluate changes in clinical features and overall survival (OS) for MBM patients. METHODS Patients diagnosed with MBMs from 1/1/2009 to 12/31/2013 (Prior Era; PE) and 1/1/2014 to 12/31/2018 (Current Era; CE) at The University of Texas MD Anderson Cancer Center were included in this retrospective analysis. The primary outcome measure was OS. Log-rank test assessed differences between groups; multivariable analyses were performed with Cox proportional hazards models and recursive partitioning analysis (RPA). RESULTS A total of 791 MBM patients (PE, n = 332; CE, n = 459) were included in analysis. Median OS from MBM diagnosis was 10.3 months (95% CI, 8.9-12.4) and improved in the CE vs PE (14.4 vs 10.3 months, P < .001). Elevated serum lactate dehydrogenase (LDH) was the only factor associated with worse OS in both PE and CE patients. Factors associated with survival in CE MBM patients included patient age, primary tumor Breslow thickness, prior immunotherapy, leptomeningeal disease, symptomatic MBMs, and whole brain radiation therapy. Several factors associated with OS in the PE were not significant in the CE. RPA demonstrated that elevated serum LDH and prior immunotherapy treatment are the most important determinants of survival in CE MBM patients. CONCLUSIONS OS and factors associated with OS have changed for MBM patients. This information can inform contemporary patient management and clinical investigations.
Collapse
Affiliation(s)
- Merve Hasanov
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Denái R Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alicia Bea Davies
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Sirmans
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chantal Saberian
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eliza L Posada
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sylvia Opusunju
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth M Burton
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rivka R Colen
- Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburg, Pittsburg, Pennsylvania, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
173
|
Abstract
Gliomas are a heterogeneous group of brain tumors with limited therapeutic options. However, identification of BRAF V600E mutations in a subset of gliomas has provided a genomic-targeted approach for management of these diseases. In this review, we aimed to review the role of BRAF V600E in gliomagenesis, to characterize concurrent genomic alterations and their potential prognostic implications, and to review comprehensively the efficacy data of BRAF inhibitors (combined or not with MEK inhibitors) for the treatment of low- and high-grade gliomas. We also provide a summary of the toxicity of these agents and describe resistance mechanisms that may be circumvented by alternative genomic approaches. Although the efficacy of targeted therapy for management of BRAF V600E-mutant gliomas has mostly been assessed in small retrospective and phase 2 studies with heterogeneous populations, the data generated so far are a proof of concept that genomic-directed therapies improve outcomes of patients with refractory/relapsed glioma and underpin the need of comprehensive genomic assessments for these difficult-to-treat diseases. In the future, the role of targeted therapy in the first-line setting and of genomic-directed therapies to overcome resistance mechanisms should be assessed in well-designed clinical trials.
Collapse
Affiliation(s)
- Thiago P Muniz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Warren P Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
174
|
Marani A, Gioacchini H, Paolinelli M, Offidani A, Campanati A. Potential drug-drug interactions with mitogen-activated protein kinase (MEK) inhibitors used to treat melanoma. Expert Opin Drug Metab Toxicol 2023; 19:555-567. [PMID: 37659065 DOI: 10.1080/17425255.2023.2255519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION The management of patients with BRAF-mutated advanced melanoma who are undergoing targeted therapy with MEK inhibitors can be complicated by the co-administration of multiple medications, which can give rise to drug-drug interactions of clinical significance. COVERED AREAS Our review presents a comprehensive analysis of the pharmacokinetic and pharmacodynamic interactions of the three approved for advanced melanoma MEK inhibitor drugs - binimetinib, cobimetinib, and trametinib. MEDLINE (PubMed) was utilized for the literature search, comprising clinical studies, observational studies, and preclinical research. The review discusses the impact of these interactions on efficacy and safety of the treatments and differentiates between interactions supported by pharmacokinetic or pharmacodynamic mechanisms, those encountered in clinical practice, and those observed in preclinical studies. EXPERT OPINION Physicians should be aware about potential benefits, but also increased toxicity caused by drug interactions between MEK inhibitors and other drugs in the management of patients with metastatic melanoma.
Collapse
Affiliation(s)
- A Marani
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - H Gioacchini
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - M Paolinelli
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - A Offidani
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| | - A Campanati
- Dermatologic Clinic, Department of Clinical and Molecular Sciences, Ancona, Marche, Italy
| |
Collapse
|
175
|
Boutros A, Tanda ET, Croce E, Catalano F, Ceppi M, Bruzzone M, Cecchi F, Arecco L, Fraguglia M, Pronzato P, Genova C, Del Mastro L, Lambertini M, Spagnolo F. Activity and safety of first-line treatments for advanced melanoma: A network meta-analysis. Eur J Cancer 2023; 188:64-79. [PMID: 37196485 DOI: 10.1016/j.ejca.2023.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Treatment options for advanced melanoma have increased with the US Food and Drug Administration approval of the anti-LAG3 plus anti-PD-1 relatlimab/nivolumab combination. To date, ipilimumab/nivolumab is the benchmark of overall survival, despite a high toxicity profile. Furthermore, in BRAF-mutant patients, BRAF/MEK inhibitors and the atezolizumab/vemurafenib/cobimetinib triplet are also available treatments, making the first-line therapy selection more complex. To address this issue, we conducted a systematic review and network meta-analysis of the available first-line treatment options in advanced melanoma. METHODS Randomised clinical trials of previously untreated, advanced melanoma were included if at least one intervention arm contained a BRAF/MEK or an immune-checkpoint inhibitor (ICI). The aim was to indirectly compare the ICIs combinations ipilimumab/nivolumab and relatlimab/nivolumab, and these combinations with all the other first-line treatment options for advanced melanoma (irrespective of BRAF status) in terms of activity and safety. The coprimary end-points were progression-free survival (PFS), overall response rate (ORR) and grade ≥3 treatment-related adverse events (≥ G3 TRAEs) rate, defined according to Common Terminology Criteria for Adverse Events. RESULTS A total of 9070 metastatic melanoma patients treated in 18 randomised clinical trials were included in the network meta-analysis. No difference in PFS and ORR was observed between ipilimumab/nivolumab and relatlimab/nivolumab (HR = 0.99 [95% CI 0.75-1.31] and RR = 0.99 [95% CI 0.78-1.27], respectively). The PD-(L)1/BRAF/MEK inhibitors triplet combinations were superior to ipilimumab/nivolumab in terms of both PFS (HR = 0.56 [95% CI 0.37-0.84]) and ORR (RR = 3.07 [95% CI 1.61-5.85]). Ipilimumab/nivolumab showed the highest risk of developing ≥ G3 TRAEs. Relatlimab/nivolumab trended to a lower risk of ≥ G3 TRAEs (RR = 0.71 [95% CI 0.30-1.67]) versus ipilimumab/nivolumab. CONCLUSION Relatlimab/nivolumab showed similar PFS and ORR compared to ipilimumab/nivolumab, with a trend for a better safety profile.
Collapse
Affiliation(s)
- Andrea Boutros
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy.
| | - Enrica Teresa Tanda
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elena Croce
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Fabio Catalano
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Marcello Ceppi
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bruzzone
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Cecchi
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Arecco
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Fraguglia
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy
| | - Paolo Pronzato
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Del Mastro
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genoa, Italy; Department of Medical Oncology, U.O.C. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), Plastic Surgery, University of Genova, Genoa, Italy
| |
Collapse
|
176
|
Perez MC, Depalo DK, Zager JS. A safety review of recently approved and late-stage trial treatments for metastatic melanoma: systemic and regional therapies. Expert Opin Drug Saf 2023; 22:789-797. [PMID: 37551723 DOI: 10.1080/14740338.2023.2245333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Advanced melanoma accounts for the majority of skin cancer-associated deaths. Over the past 15 years, there has been a dramatic change in the treatment options and prognosis for patients with advanced melanoma secondary to the development of novel systemic immunotherapies (IO) and targeted therapies. In addition to these novel systemic therapies, regional therapies (intralesional and perfusional) also continue to play a major role in the management of these patients. AREAS COVERED In this article, we review recent updates in the management of advanced melanoma via Medline (PubMed) and Google Scholar, including recently published trials in the metastatic, adjuvant, and neoadjuvant settings. We also review recently published trials for regional therapies and discuss future directions in the management of patients with advanced melanoma. EXPERT OPINION A significant portion of patients with advanced melanoma will develop recurrent or progressive disease following treatment with IO or targeted therapy. Therefore, identifying not only the appropriate therapeutic agent but also the sequence and duration of treatment is pivotal for these patients.
Collapse
Affiliation(s)
- Matthew C Perez
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Danielle K Depalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa FL, United States of America
| |
Collapse
|
177
|
Hamidi S, Hofmann MC, Iyer PC, Cabanillas ME, Hu MI, Busaidy NL, Dadu R. Review article: new treatments for advanced differentiated thyroid cancers and potential mechanisms of drug resistance. Front Endocrinol (Lausanne) 2023; 14:1176731. [PMID: 37435488 PMCID: PMC10331470 DOI: 10.3389/fendo.2023.1176731] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
The treatment of advanced, radioiodine refractory, differentiated thyroid cancers (RR-DTCs) has undergone major advancements in the last decade, causing a paradigm shift in the management and prognosis of these patients. Better understanding of the molecular drivers of tumorigenesis and access to next generation sequencing of tumors have led to the development and Food and Drug Administration (FDA)-approval of numerous targeted therapies for RR-DTCs, including antiangiogenic multikinase inhibitors, and more recently, fusion-specific kinase inhibitors such as RET inhibitors and NTRK inhibitors. BRAF + MEK inhibitors have also been approved for BRAF-mutated solid tumors and are routinely used in RR-DTCs in many centers. However, none of the currently available treatments are curative, and most patients will ultimately show progression. Current research efforts are therefore focused on identifying resistance mechanisms to tyrosine kinase inhibitors and ways to overcome them. Various novel treatment strategies are under investigation, including immunotherapy, redifferentiation therapy, and second-generation kinase inhibitors. In this review, we will discuss currently available drugs for advanced RR-DTCs, potential mechanisms of drug resistance and future therapeutic avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
178
|
Bushara O, Tidwell J, Wester JR, Miura J. The Current State of Neoadjuvant Therapy in Resectable Advanced Stage Melanoma. Cancers (Basel) 2023; 15:3344. [PMID: 37444454 DOI: 10.3390/cancers15133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The advent of effective immunotherapy and targeted therapy has significantly improved outcomes in advanced-stage resectable melanoma. Currently, the mainstay of treatment of malignant melanoma is surgery followed by adjuvant systemic therapies. However, recent studies have shown a potential role for neoadjuvant therapy in the treatment of advanced-stage resectable melanoma. Mechanistically, neoadjuvant immunotherapy may yield a more robust response than adjuvant immunotherapy, as the primary tumor serves as an antigen in this setting rather than only micrometastatic disease after the index procedure. Additionally, targeted therapy has been shown to yield effective neoadjuvant cytoreduction, and oncolytic viruses may also increase the immunogenicity of primary tumors. Effective neoadjuvant therapy may serve to decrease tumor size and thus reduce the extent of required surgery and thus morbidity. It also allows for assessment of pathologic response, facilitating prognostication as well as tailoring future therapy. The current literature consistently supports that neoadjuvant therapy, even as little as one dose, is associated with improved outcomes and is well-tolerated. Some patients with a complete pathological response may even avoid surgery completely. These results challenge the current paradigm of a surgery-first approach and provide further evidence supporting neoadjuvant therapy in advanced-stage resectable melanoma. Further research into the optimal treatment schedule and dose timing is warranted, as is the continued investigation of novel therapies and combinations of therapies.
Collapse
Affiliation(s)
- Omar Bushara
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jerica Tidwell
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James R Wester
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Miura
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
179
|
Ding L, Sun L, Bu MT, Zhang Y, Scott LN, Prins RM, Su MA, Lechner MG, Hugo W. Antigen presentation by clonally diverse CXCR5+ B cells to CD4 and CD8 T cells is associated with durable response to immune checkpoint inhibitors. Front Immunol 2023; 14:1176994. [PMID: 37435085 PMCID: PMC10330698 DOI: 10.3389/fimmu.2023.1176994] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Increased T cell infiltration and interferon gamma (IFNγ) pathway activation are seen in tumors of melanoma patients who respond to ICI (immune checkpoint inhibitor) or MAPK pathway inhibitor (MAPKi) therapies. Yet, the rate of durable tumor control after ICI is almost twice that of MAPKi, suggesting that additional mechanisms may be present in patients responding to ICI therapy that are beneficial for anti-tumor immunity. Methods We used transcriptional analysis and clinical outcomes from patients treated with ICI or MAPKi therapies to delineate immune mechanisms driving tumor response. Results We discovered response to ICI is associated with CXCL13-driven recruitment of CXCR5+ B cells with significantly higher clonal diversity than MAPKi. Our in vitro data indicate that CXCL13 production was increased in human peripheral blood mononuclear cells by anti-PD1, but not MAPKi, treatment. Higher B cell infiltration and B cell receptor (BCR) diversity allows presentation of diverse tumor antigens by B cells, resulting in activation of follicular helper CD4 T cells (Tfh) and tumor reactive CD8 T cells after ICI therapy. Higher BCR diversity and IFNγ pathway score post-ICI are associated with significantly longer patient survival compared to those with either one or none. Conclusions Response to ICI, but not to MAPKi, depends on the recruitment of CXCR5+ B cells into the tumor microenvironment and their productive tumor antigen presentation to follicular helper and cytotoxic, tumor reactive T cells. Our study highlights the potential of CXCL13 and B cell based strategies to enhance the rate of durable response in melanoma patients treated with ICI.
Collapse
Affiliation(s)
- Lizhong Ding
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lu Sun
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa T. Bu
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanjun Zhang
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lauren N. Scott
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Maureen A. Su
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Melissa G. Lechner
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Willy Hugo
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
180
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
181
|
Cucci MA, Grattarola M, Monge C, Roetto A, Barrera G, Caputo E, Dianzani C, Pizzimenti S. Nrf2 as a Therapeutic Target in the Resistance to Targeted Therapies in Melanoma. Antioxidants (Basel) 2023; 12:1313. [PMID: 37372043 DOI: 10.3390/antiox12061313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The use of specific inhibitors towards mutant BRAF (BRAFi) and MEK (MEKi) in BRAF-mutated patients has significantly improved progression-free and overall survival of metastatic melanoma patients. Nevertheless, half of the patients still develop resistance within the first year of therapy. Therefore, understanding the mechanisms of BRAFi/MEKi-acquired resistance has become a priority for researchers. Among others, oxidative stress-related mechanisms have emerged as a major force. The aim of this study was to evaluate the contribution of Nrf2, the master regulator of the cytoprotective and antioxidant response, in the BRAFi/MEKi acquired resistance of melanoma. Moreover, we investigated the mechanisms of its activity regulation and the possible cooperation with the oncogene YAP, which is also involved in chemoresistance. Taking advantage of established in vitro melanoma models resistant to BRAFi, MEKi, or dual resistance to BRAFi/MEKi, we demonstrated that Nrf2 was upregulated in melanoma cells resistant to targeted therapy at the post-translational level and that the deubiquitinase DUB3 participated in the control of the Nrf2 protein stability. Furthermore, we found that Nrf2 controlled the expression of YAP. Importantly, the inhibition of Nrf2, directly or through inhibition of DUB3, reverted the resistance to targeted therapies.
Collapse
Affiliation(s)
- Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Chiara Monge
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences-San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| | - Emilia Caputo
- Institute of Genetics and Biophysics-IGB-CNR, "A. Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy
| |
Collapse
|
182
|
Fernandez MF, Choi J, Sosman J. New Approaches to Targeted Therapy in Melanoma. Cancers (Basel) 2023; 15:3224. [PMID: 37370834 PMCID: PMC10296143 DOI: 10.3390/cancers15123224] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
It was just slightly more than a decade ago when metastatic melanoma carried a dismal prognosis with few, if any, effective therapies. Since then, the evolution of cancer immunotherapy has led to new and effective treatment approaches for melanoma. However, despite these advances, a sizable portion of patients with advanced melanoma have de novo or acquired resistance to immune checkpoint inhibitors. At the same time, therapies (BRAF plus MEK inhibitors) targeting the BRAFV600 mutations found in 40-50% of cutaneous melanomas have also been critical for optimizing management and improving patient outcomes. Even though immunotherapy has been established as the initial therapy in most patients with cutaneous melanoma, subsequent effective therapy is limited to BRAFV600 melanoma. For all other melanoma patients, driver mutations have not been effectively targeted. Numerous efforts are underway to target melanomas with NRAS mutations, NF-1 LOF mutations, and other genetic alterations leading to activation of the MAP kinase pathway. In this era of personalized medicine, we will review the current genetic landscape, molecular classifications, emerging drug targets, and the potential for combination therapies for non-BRAFV600 melanoma.
Collapse
Affiliation(s)
| | | | - Jeffrey Sosman
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.F.F.); (J.C.)
| |
Collapse
|
183
|
Arasanz H, Chocarro L, Fernández-Rubio L, Blanco E, Bocanegra A, Echaide M, Labiano I, Huerta AE, Alsina M, Vera R, Escors D, Kochan G. Current Indications and Future Landscape of Bispecific Antibodies for the Treatment of Lung Cancer. Int J Mol Sci 2023; 24:9855. [PMID: 37373003 DOI: 10.3390/ijms24129855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bispecific antibodies are a promising type of therapy for the treatment of cancer due to their ability to simultaneously inhibit different proteins playing a role in cancer progression. The development in lung cancer has been singularly intense because of the increasingly vast knowledge of the underlying molecular routes, in particular, in oncogene-driven tumors. In this review, we present the current landscape of bispecific antibodies for the treatment of lung cancer and discuss potential scenarios where the role of these therapeutics might expand in the near future.
Collapse
Affiliation(s)
- Hugo Arasanz
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ibone Labiano
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Maria Alsina
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Oncobiona Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
184
|
Faber EB, Sun L, Tang J, Roberts E, Ganeshkumar S, Wang N, Rasmussen D, Majumdar A, Hirsch LE, John K, Yang A, Khalid H, Hawkinson JE, Levinson NM, Chennathukuzhi V, Harki DA, Schönbrunn E, Georg GI. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding. Nat Commun 2023; 14:3213. [PMID: 37270540 PMCID: PMC10239507 DOI: 10.1038/s41467-023-38732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Abstract
Compared to most ATP-site kinase inhibitors, small molecules that target an allosteric pocket have the potential for improved selectivity due to the often observed lower structural similarity at these distal sites. Despite their promise, relatively few examples of structurally confirmed, high-affinity allosteric kinase inhibitors exist. Cyclin-dependent kinase 2 (CDK2) is a target for many therapeutic indications, including non-hormonal contraception. However, an inhibitor against this kinase with exquisite selectivity has not reached the market because of the structural similarity between CDKs. In this paper, we describe the development and mechanism of action of type III inhibitors that bind CDK2 with nanomolar affinity. Notably, these anthranilic acid inhibitors exhibit a strong negative cooperative relationship with cyclin binding, which remains an underexplored mechanism for CDK2 inhibition. Furthermore, the binding profile of these compounds in both biophysical and cellular assays demonstrate the promise of this series for further development into a therapeutic selective for CDK2 over highly similar kinases like CDK1. The potential of these inhibitors as contraceptive agents is seen by incubation with spermatocyte chromosome spreads from mouse testicular explants, where they recapitulate Cdk2-/- and Spdya-/- phenotypes.
Collapse
Affiliation(s)
- Erik B Faber
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Luxin Sun
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jian Tang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Emily Roberts
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sornakala Ganeshkumar
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nan Wang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Damien Rasmussen
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Abir Majumdar
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Laura E Hirsch
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Kristen John
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - An Yang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Hira Khalid
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Vargheese Chennathukuzhi
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
185
|
Inagaki C, Matoba R, Yuki S, Shiozawa M, Tsuji A, Inoue E, Muro K, Ichikawa W, Fujii M, Sunakawa Y. The BEETS (JACCRO CC-18) trial: an observational and translational study of BRAF-mutated metastatic colorectal cancer. Future Oncol 2023; 19:1165-1174. [PMID: 37458152 DOI: 10.2217/fon-2023-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
For BRAF V600E-mutated metastatic colorectal cancer (mCRC), the BEACON phase 3 trial showed survival benefit of triplet therapy with cetuximab (anti-EGFR antibody), encorafenib (BRAF inhibitor) and binimetinib (MEK inhibitor) as well as doublet therapy with cetuximab and encorafenib over irinotecan-based chemotherapy plus anti-EGFR antibody. Both regimens are standards of care in Japan, but definite biomarkers for predicting efficacy and selecting treatment remain lacking. The mechanisms underlying resistance to these regimens also warrant urgent exploration to further evolve treatment. This prospective observational/translational study evaluated real-word clinical outcomes with cetuximab and encorafenib with or without binimetinib for BRAF-mutated mCRC patients and investigated biomarkers for response and resistance by collecting blood samples before and after treatment. Clinical Trial Registration: UMIN000045530 (https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000051983).
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan
| | - Ryo Matoba
- DNA Chip Research Inc., 1-15-1, Kaigan, Minato-ku, Tokyo 105-0022, Japan
| | - Satoshi Yuki
- Department of Gastroenterology & Hepatology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Manabu Shiozawa
- Department of Surgery, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa 241-8515, Japan
| | - Akihito Tsuji
- Department of Clinical Oncology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Eisuke Inoue
- Showa University Research Administration Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan
| | - Wataru Ichikawa
- Division of Medical Oncology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan
| | - Masashi Fujii
- Japan Clinical Cancer Research Organization (JACCRO), 1-64 Kanda-Jimbocho, Chiyoda-ku, Tokyo 101-0051, Japan
| | - Yu Sunakawa
- Department of Clinical Oncology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
186
|
Haist M, Stege H, Kuske M, Bauer J, Klumpp A, Grabbe S, Bros M. Combination of immune-checkpoint inhibitors and targeted therapies for melanoma therapy: The more, the better? Cancer Metastasis Rev 2023; 42:481-505. [PMID: 37022618 PMCID: PMC10348973 DOI: 10.1007/s10555-023-10097-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023]
Abstract
The approval of immune-checkpoint inhibitors (CPI) and mitogen activated protein kinase inhibitors (MAPKi) in recent years significantly improved the treatment management and survival of patients with advanced malignant melanoma. CPI aim to counter-act receptor-mediated inhibitory effects of tumor cells and immunomodulatory cell types on effector T cells, whereas MAPKi are intended to inhibit tumor cell survival. In agreement with these complementary modes of action preclinical data indicated that the combined application of CPI and MAPKi or their optimal sequencing might provide additional clinical benefit. In this review the rationale and preclinical evidence that support the combined application of MAPKi and CPI either in concurrent or consecutive regimens are presented. Further, we will discuss the results from clinical trials investigating the sequential or combined application of MAPKi and CPI for advanced melanoma patients and their implications for clinical practice. Finally, we outline mechanisms of MAPKi and CPI cross-resistance which limit the efficacy of currently available treatments, as well as combination regimens.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Henner Stege
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Julia Bauer
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Annika Klumpp
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
187
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
188
|
Wozniak M, Czyz M. lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous melanoma. Front Mol Biosci 2023; 10:1170026. [PMID: 37325482 PMCID: PMC10265524 DOI: 10.3389/fmolb.2023.1170026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is the most lethal skin cancer with increasing incidence worldwide. Despite a great improvement of diagnostics and treatment of melanoma patients, this disease is still a serious clinical problem. Therefore, novel druggable targets are in focus of research. EZH2 is a component of the PRC2 protein complex that mediates epigenetic silencing of target genes. Several mutations activating EZH2 have been identified in melanoma, which contributes to aberrant gene silencing during tumor progression. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are molecular "address codes" for EZH2 silencing specificity, and targeting lncRNAs-EZH2 interaction may slow down the progression of many solid cancers, including melanoma. This review summarizes current knowledge regarding the involvement of lncRNAs in EZH2-mediated gene silencing in melanoma. The possibility of blocking lncRNAs-EZH2 interaction in melanoma as a novel therapeutic option and plausible controversies and drawbacks of this approach are also briefly discussed.
Collapse
Affiliation(s)
- Michal Wozniak
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
189
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
190
|
Masud MA, Kim JY, Kim E. Effective dose window for containing tumor burden under tolerable level. NPJ Syst Biol Appl 2023; 9:17. [PMID: 37221258 DOI: 10.1038/s41540-023-00279-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
A maximum-tolerated dose (MTD) reduces the drug-sensitive cell population, though it may result in the competitive release of drug resistance. Alternative treatment strategies such as adaptive therapy (AT) or dose modulation aim to impose competitive stress on drug-resistant cell populations by maintaining a sufficient number of drug-sensitive cells. However, given the heterogeneous treatment response and tolerable tumor burden level of individual patients, determining an effective dose that can fine-tune competitive stress remains challenging. This study presents a mathematical model-driven approach that determines the plausible existence of an effective dose window (EDW) as a range of doses that conserve sufficient sensitive cells while maintaining the tumor volume below a threshold tolerable tumor volume (TTV). We use a mathematical model that explains intratumor cell competition. Analyzing the model, we derive an EDW determined by TTV and the competitive strength. By applying a fixed endpoint optimal control model, we determine the minimal dose to contain cancer at a TTV. As a proof of concept, we study the existence of EDW for a small cohort of melanoma patients by fitting the model to longitudinal tumor response data. We performed identifiability analysis, and for the patients with uniquely identifiable parameters, we deduced patient-specific EDW and minimal dose. The tumor volume for a patient could be theoretically contained at the TTV either using continuous dose or AT strategy with doses belonging to EDW. Further, we conclude that the lower bound of the EDW approximates the minimum effective dose (MED) for containing tumor volume at the TTV.
Collapse
Affiliation(s)
- M A Masud
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, Republic of Korea.
| |
Collapse
|
191
|
Liu J, Pei S, Zhang P, Jiang K, Luo B, Hou Z, Yao G, Tang J. Liquid-liquid phase separation throws novel insights into treatment strategies for skin cutaneous melanoma. BMC Cancer 2023; 23:388. [PMID: 37127623 PMCID: PMC10150491 DOI: 10.1186/s12885-023-10847-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND In recent years, there has been growing evidence indicating a relationship between liquid-liquid phase separation (LLPS) and cancer development. However, to date, the clinical significance of LLPS in skin cutaneous melanoma (SKCM, hereafter referred to as melanoma) remains to be elucidated. In the current study, the impact of LLPS-related genes on melanoma prognosis has been explored. METHODS LLPS-related genes were retrieved from the DrLLPS database. The prognostic feature for LLPS in melanoma was developed in The Cancer Genome Atlas (TCGA) dataset and verified in the GSE65904 cohort. Based on risk scores, melanoma patients were categorized into high- and low-risk groups. Thereafter, the differences in clinicopathological correlation, functional enrichment, immune landscape, tumor mutational burden, and impact of immunotherapy between the two groups were investigated. Finally, the role of key gene TROAP in melanoma was validated by in vitro and in vivo experiments. RESULTS The LLPS-related gene signature was developed based on MLKL, PARVA, PKP1, PSME1, RNF114, and TROAP. The risk score was a crucial independent prognostic factor for melanoma and patients with high-risk scores were related to a worse prognosis. Approximately, all immune-relevant characteristics, such as immune cell infiltration and immune scores, were extremely evident in patients with low-risk scores. The findings from the in vitro and in vivo experiments indicated that the viability, proliferation, and invasion ability of melanoma cells were drastically decreased after the knockdown of TROAP. CONCLUSION Our gene signature can independently predict the survival of melanoma patients. It provides a basis for the exploration of the relationship between LLPS and melanoma and can offer a fresh perspective on the clinical diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Jianlan Liu
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Keyu Jiang
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Binlin Luo
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuoqiong Hou
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Yao
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jian Tang
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
192
|
Gouda MA, Subbiah V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E-Positive Adult and Pediatric Solid Tumors. Am Soc Clin Oncol Educ Book 2023; 43:e404770. [PMID: 37159870 DOI: 10.1200/edbk_404770] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The recent US Food and Drug Administration (FDA) approval of the dabrafenib/trametinib combination as a tissue-agnostic treatment for solid tumors with BRAF V600E mutation is the result of more than 20 years of extensive research into BRAF mutations in human cancer, the underlying biological mechanisms that drive BRAF-mediated tumor growth, and the clinical testing and refinement of selective RAF and MEK kinase inhibitors. Such approval marks a significant achievement in the field of oncology and represents a major step forward in our ability to treat cancer. Early evidence supported the use of dabrafenib/trametinib combination in melanoma, non-small-cell lung cancer, and anaplastic thyroid cancer. Furthermore, data from basket trials have demonstrated consistently good response rates in various tumors, including biliary tract cancer, low-grade glioma, high-grade glioma, hairy cell leukemia, and multiple other malignancies, which has been the basis for FDA approval of a tissue-agnostic indication in adult and pediatric patients with BRAF V600E-positive solid tumors. From a clinical standpoint, our review delves into the efficacy of the dabrafenib/trametinib combination for BRAF V600E-positive tumors: examining the underlying rationale for its use, evaluating the latest evidence on its potential benefits, and discussing the possible associated adverse effects and strategies to minimize their impact. Additionally, we explore potential resistance mechanisms and future landscape of BRAF-targeted therapies.
Collapse
Affiliation(s)
- Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Clinical Oncology, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Egypt
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
193
|
Chesney JA, Puzanov I, Collichio FA, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, Logan T, Hauschild A, Lebbé C, Joshi H, Snyder W, Mehnert JM. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J Immunother Cancer 2023; 11:e006270. [PMID: 37142291 PMCID: PMC10163510 DOI: 10.1136/jitc-2022-006270] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Talimogene laherparepvec (T-VEC) plus ipilimumab has demonstrated greater antitumor activity versus ipilimumab alone, without additional toxicity, in patients with advanced melanoma. Here, we report the 5-year outcomes from a randomized phase II study. These data provide the longest efficacy and safety follow-up for patients with melanoma treated with a combination of an oncolytic virus and a checkpoint inhibitor.Eligible patients with unresectable stage IIIB‒IV melanoma were randomized 1:1 to receive T-VEC plus ipilimumab or ipilimumab alone. T-VEC was administered intralesionally at 106 plaque-forming units (PFU)/mL in week 1, followed by 108 PFU/mL in week 4 and every 2 weeks thereafter. Ipilimumab (3 mg/kg every 3 weeks; ≤4 doses) was administered intravenously starting at week 1 in the ipilimumab arm and week 6 in the combination arm. The primary end point was investigator-assessed objective response rate (ORR) per immune-related response criteria; key secondary end points included durable response rate (DRR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety.Overall, 198 patients were randomized to receive the combination (n=98) or ipilimumab (n=100). The combination improved the ORR versus ipilimumab (35.7% vs 16.0%; OR 2.9; 95% CI 1.5 to 5.7; p=0.003). DRR was 33.7% and 13.0% (unadjusted OR 3.4; 95% CI 1.7 to 7.0; descriptive p=0.001), respectively. Among the objective responders, the median DOR was 69.2 months (95% CI 38.5 to not estimable) with the combination and was not reached with ipilimumab. Median PFS was 13.5 months with the combination and 6.4 months with ipilimumab (HR 0.78; 95% CI 0.55 to 1.09; descriptive p=0.14). Estimated 5-year OS was 54.7% (95% CI 43.9 to 64.2) in the combination arm and 48.4% (95% CI 37.9 to 58.1) in the ipilimumab arm. Forty-seven (48.0%) and 65 (65.0%) patients in the combination and ipilimumab arms, respectively, received subsequent therapies. No new safety signals were reported.At the 5-year follow-up, the improved response rates observed with T-VEC plus ipilimumab were durable. This is the first randomized controlled study of the combination of an oncolytic virus and a checkpoint inhibitor that meets its primary end point.Trial registration number: NCT01740297.
Collapse
Affiliation(s)
- Jason A Chesney
- J. Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Frances A Collichio
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - John Glaspy
- University of California Los Angeles School of Medicine, Los Angeles, California, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, California, USA
| | | | | | - Claus Garbe
- University Hospital Tuebingen, Tuebingen, Germany
| | - Theodore Logan
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Celeste Lebbé
- Université de Paris AP-HP Dermatology CIC Departments, Hôpital Saint-Louis, Paris, France
| | | | | | - Janice M Mehnert
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
194
|
Nakai C, Mimaki S, Matsushima K, Shinozaki E, Yamazaki K, Muro K, Yamaguchi K, Nishina T, Yuki S, Shitara K, Bando H, Suzuki Y, Akagi K, Nomura S, Fujii S, Sugiyama M, Nishida N, Mizokami M, Koh Y, Koshizaka T, Okada H, Abe Y, Ohtsu A, Yoshino T, Tsuchihara K. Regulation of MEK inhibitor selumetinib sensitivity by AKT phosphorylation in the novel BRAF L525R mutant. Int J Clin Oncol 2023; 28:654-663. [PMID: 36856908 PMCID: PMC10119053 DOI: 10.1007/s10147-023-02318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Oncogenic mutations in BRAF genes are found in approximately 5-10% of colorectal cancers. The majority of BRAF mutations are located within exons 11-15 of the catalytic kinase domains, with BRAF V600E accounting for more than 80% of the observed BRAF mutations. Sensitivity to BRAF- and mitogen-activated protein kinase (MEK) inhibitors varies depending on BRAF mutations and tumor cell types. Previously, we newly identified, BRAF L525R-mutation, in the activation segment of the kinase in colorectal cancer patient. Here, we characterized the function of the BRAF L525R mutation. METHODS HEK293 cells harboring a BRAF mutation (V600E or L525R) were first characterized and then treated with cetuximab, dabrafenib, and selumetinib. Cell viability was measured using WST-1 assay and the expression of proteins involved in the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signaling pathways was evaluated using western blot analysis. RESULTS The MEK inhibitor selumetinib effectively inhibited cell proliferation and ERK phosphorylation in BRAF L525R cells but not in BRAF V600E cells. Further studies revealed that AKT phosphorylation was reduced by selumetinib in BRAF L525R cells but not in BRAF V600E cells or selumetinib-resistant BRAF L525R cells. Moreover, the AKT inhibitor overcame the selumetinib resistance. CONCLUSIONS We established a model system harboring BRAF L525R using HEK293 cells. BRAF L525R constitutively activated ERK. AKT phosphorylation caused sensitivity and resistance to selumetinib. Our results suggest that a comprehensive network analysis may provide insights to identify effective therapies.
Collapse
Affiliation(s)
- Chikako Nakai
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Sachiyo Mimaki
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Koutatsu Matsushima
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Eiji Shinozaki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimo-Nagakubo, Nagaizumi-Cho, Sunto, Shizuoka, 411-8777, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-0063, Japan
| | - Tomohiro Nishina
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, 160 Minamiumemotomachi, Matsuyama, Ehime, 791-0245, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideaki Bando
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 818 Komuro, Inami-machi, Kitaadachi, Saitama, 362-0806, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research and Administration and Support, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Nao Nishida
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Yasuhiro Koh
- Third Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Takuya Koshizaka
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Hideki Okada
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Yukiko Abe
- G&G Science Co. Ltd., 4-1-1 Misato, Matsukawamachi, Fukushima, 960-1242, Japan
| | - Atsushi Ohtsu
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
195
|
Venzel R, Campos MCP, de Oliveira LP, Dan Lins RV, Siena ÁDD, Mesquita KT, Moreira Dos Santos TP, Nohata N, Arruda LCM, Sales-Campos H, Neto MPC. Clinical and molecular overview of immunotherapeutic approaches for malignant skin melanoma: Past, present and future. Crit Rev Oncol Hematol 2023; 186:103988. [PMID: 37086955 DOI: 10.1016/j.critrevonc.2023.103988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023] Open
Abstract
Traditional therapeutic approaches for malignant melanoma, have proved to be limited and/or ineffective, especially with respect to their role in improving patient survival and tumor recurrence. In this regard, immunotherapy has been demonstrated to be a promising therapeutic alternative, boosting antitumor responses through the modulation of cell signaling pathways involved in the effector mechanisms of the immune system, particularly, the so-called "immunological checkpoints". Clinical studies on the efficacy and safety of immunotherapeutic regimens, alone or in combination with other antitumor approaches, have increased dramatically in recent decades, with very encouraging results. Hence, this review will discuss the current immunotherapeutic regimens used to treat malignant melanoma, as well as the molecular and cellular mechanisms involved. In addition, current clinical studies that have investigated the use, efficacy, and adverse events of immunotherapy in melanoma will also be discussed.
Collapse
Affiliation(s)
- Raphaelly Venzel
- Institute of Health and Biotechnology, Federal University of Amazonas, Coari, Brazil
| | | | | | | | | | | | - Tálita Pollyana Moreira Dos Santos
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA; Head & Neck Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nijiro Nohata
- Oncology Science Unit, MSD K.K, Chiyoda-ku, Tokyo, Japan
| | | | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, GO, Brazil
| | | |
Collapse
|
196
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
197
|
Piscitelli J, Hens B, Tomaszewska I, Wollenberg L, Litwiler K, McAllister M, Reddy M. Effect of Food and a Proton-Pump Inhibitor on the Absorption of Encorafenib: An In Vivo- In Vitro- In Silico Approach. Mol Pharm 2023; 20:2589-2599. [PMID: 37037186 PMCID: PMC10155203 DOI: 10.1021/acs.molpharmaceut.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Encorafenib is a kinase inhibitor indicated for the treatment of patients with BRAF mutant melanoma and BRAF mutant metastatic colorectal cancer. To understand the effect of food and coadministration with a proton-pump inhibitor (PPI), in vitro, in vivo, and in silico data were generated to optimize the clinical dose, evaluate safety, and better understand the oral absorption process under these conditions. Study 1 evaluated the effect of food on the plasma pharmacokinetics, safety, and tolerability after a single oral dose of encorafenib 100 mg. Study 2 evaluated the same end points with coadministration of encorafenib and rabeprazole (PPI perpetrator). The in vitro gastrointestinal TIM-1 model was used to investigate the release of encorafenib and the amount available for absorption under different testing conditions (fasted, fed, and with the use of a PPI). The fasted, fed, and PPI states were predicted for the encorafenib commercial capsule in GastroPlus 9.8. In study 1, both AUCinf and AUClast decreased by 4% with the administration of a high-fat meal. The Cmax was 36% lower than with fasted conditions. All 3 exposure parameters in study 2 (AUCinf, AUClast, and Cmax) had mean changes of <10% when encorafenib was coadministered with a PPI. Using the in vitro gastrointestinal simulator TIM-1, the model demonstrated a similar release of drug, as the bioaccessible fraction, in the 3 conditions was equal (≥80%), predicting no PPI or food effect for this drug formulation. The modeling in GastroPlus 9.8 demonstrated complete absorption of encorafenib when formulated as an amorphous solid dispersion. To obtain these results, it was crucial to integrate the amorphous solubility of the drug that shows a 20-fold higher solubility at pH 6.8 compared with crystalline solubility. The increased amorphous solubility is likely the reason no PPI effect was observed compared with fasted state conditions. The prolongation in gastric emptying in the fed state resulted in delayed plasma Tmax for encorafenib. No dose adjustment is necessary when encorafenib is administered in the fed state or when coadministered with a PPI. Both the TIM-1 and physiologically based pharmacokinetic model results were consistent with the observed clinical data, suggesting that these will be valuable tools for future work.
Collapse
Affiliation(s)
- Joseph Piscitelli
- Pfizer Inc., Global Product Development, La Jolla, California 92121, United States
| | - Bart Hens
- Pfizer Inc., Drug Product Design, Sandwich CT13 9NJ, United Kingdom
| | | | - Lance Wollenberg
- Pfizer Inc., Early Clinical Development, Boulder, Colorado 80301, United States
| | - Kevin Litwiler
- Pfizer Inc., Global Product Development, Boulder, Colorado 80301, United States
| | - Mark McAllister
- Pfizer Inc., Drug Product Design, Sandwich CT13 9NJ, United Kingdom
| | - Micaela Reddy
- Pfizer Inc., Early Clinical Development, Boulder, Colorado 80301, United States
| |
Collapse
|
198
|
Zheng DX, Soldozy S, Mulligan KM, Levoska MA, Cohn EF, Finberg A, Alsaloum P, Cwalina TB, Hanft SJ, Scott JF, Rothermel LD, Nambudiri VE. Epidemiology, management, and treatment outcomes of metastatic spinal melanoma. World Neurosurg X 2023; 18:100156. [PMID: 36875322 PMCID: PMC9976572 DOI: 10.1016/j.wnsx.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
Metastatic spinal melanoma is a rare and aggressive disease process with poor prognosis. We review the literature on metastatic spinal melanoma, focusing on its epidemiology, management, and treatment outcomes. Demographics of metastatic spinal melanoma are similar to those for cutaneous melanoma, and cutaneous primary tumors tend to be most common. Decompressive surgical intervention and radiotherapy have traditionally been considered mainstays of treatment, and stereotactic radiosurgery has emerged as a promising approach in the operative management of metastatic spinal melanoma. While survival outcomes for metastatic spinal melanoma remain poor, they have improved in recent years with the advent of immune checkpoint inhibition, used in conjunction with surgery and radiotherapy. New treatment options remain under investigation, especially for patients with disease refractory to immunotherapy. We additionally explore several of these promising future directions. Nevertheless, further investigation of treatment outcomes, ideally incorporating high-quality prospective data from randomized controlled trials, is needed to identify optimal management of metastatic spinal melanoma.
Collapse
Affiliation(s)
- David X Zheng
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Miami, Miami, FL, United States.,Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Kathleen M Mulligan
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Melissa A Levoska
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Erin F Cohn
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Ariel Finberg
- Department of Neurological Surgery, University of Miami, Miami, FL, United States
| | - Peter Alsaloum
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas B Cwalina
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Simon J Hanft
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Jeffrey F Scott
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luke D Rothermel
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
199
|
Carbonnel F, Routier E, Lazure T, Mussini C, Bellanger C, Merklen C, Bejou B, Buisson A, Amiot A, Meyer A, Dong C, Robert C. Severe colitis in patients with melanoma treated with BRAF/MEK inhibitors. Aliment Pharmacol Ther 2023; 57:792-799. [PMID: 36578099 DOI: 10.1111/apt.17352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Dual blockade of BRAF and MEK kinases is a standard of care for metastatic V600E/K BRAF mutant melanoma. This study reports the first systematic description of colitis due to BRAF and MEK inhibitors. METHODS We studied consecutive patients with melanoma, treated with BRAF and MEK inhibitors, who had colitis requiring hospitalisation. Electronic files were studied; endoscopic biopsies and colectomy specimens were read centrally. RESULTS Between January 2021 and March 2022, nine women and one man, aged 50-90 years, were studied. Nine patients received encorafenib and binimetinib; one patient received dabrafenib and trametinib. The main symptoms were diarrhoea, haematochezia, abdominal pain and intestinal obstruction. Blood tests showed anaemia, increased CRP and low serum albumin levels in most patients. All patients had ulcerations of the right colon with (2/10) or without (8/10) stenosis of the ileocecal valve, and 4/10 patients also had ulcerations distal to the right colon. Histopathological findings were suggestive of ischaemia and mild inflammation. Nine of the 10 patients discontinued BRAF/MEK inhibitors. Drugs were reintroduced in four patients, three of whom had a severe relapse of diarrhoea. Two patients required surgery and underwent intestinal resection. One patient died of enterocolitis. CONCLUSION BRAF/MEK inhibitors can induce severe colitis characterised by ulcerations of the right colon.
Collapse
Affiliation(s)
- Franck Carbonnel
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Emilie Routier
- Dermatology Unit, Department of Medicine, Institute Gustave Roussy, Villejuif, France
| | - Thierry Lazure
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Christophe Bellanger
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Carine Merklen
- Service de Dermatologie, Hôpitaux Civils de Colmar, Colmar, France
| | - Bakhtiar Bejou
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, Bobigny, France
| | - Anthony Buisson
- Service des maladies de l'appareil digestif, CHU Estaing et Inserm U1071, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Aurélien Amiot
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Antoine Meyer
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Catherine Dong
- Service de Gastroentérologie, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Université Paris Saclay, Le Kremlin Bicêtre, France.,Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Villejuif, France
| | - Caroline Robert
- Université Paris Saclay, Le Kremlin Bicêtre, France.,Dermatology Unit, Department of Medicine, Institute Gustave Roussy, Villejuif, France
| |
Collapse
|
200
|
Lin Y, Zhang Y, Tuo Z, Gao L, Ding D, Bi L, Yu D, Lv Z, Wang J, Chen X. ORC6, a novel prognostic biomarker, correlates with T regulatory cell infiltration in prostate adenocarcinoma: a pan-cancer analysis. BMC Cancer 2023; 23:285. [PMID: 36978046 PMCID: PMC10053432 DOI: 10.1186/s12885-023-10763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The origin recognition complex (ORC), a six-subunit DNA-binding complex, participates in DNA replication in cancer cells. Specifically in prostate cancers, ORC participates the androgen receptor (AR) regulated genomic amplification and tumor proliferation throughout the entire cell cycle. Of note, ORC6, the smallest subunit of ORC, has been reported to be dysregulated in some types of cancers (including prostate cancer), however, its prognostic and immunological significances remain yet to be elucidated. METHODS In the current study, we comprehensively investigated the potential prognostic and immunological role of ORC6 in 33 human tumors using multiple databases, such as TCGA, Genotype-Tissue Expression, CCLE, UCSC Xena, cBioPortal, Human Protein Atlas, GeneCards, STRING, MSigDB, TISIDB, and TIMER2 databases. RESULTS ORC6 expression was significantly upregulated in 29 types of cancers compared to the corresponding normal adjacent tissues. ORC6 overexpression correlated with higher stage and worse prognostic outcomes in most cancer types analyzed. Additionally, ORC6 was involved in the cell cycle pathway, DNA replication, and mismatch repair pathways in most tumor types. A negative correlation was observed between the tumor endothelial cell infiltration and ORC6 expression in almost all tumors, whereas the immune infiltration of T regulatory cell was noted to be statistically positively correlated with the expression of ORC6 in prostate cancer tissues. Furthermore, in most tumor types, immunosuppression-related genes, especially TGFBR1 and PD-L1 (CD274), exhibited a specific correlation with the expression of ORC6. CONCLUSIONS This comprehensive pan-cancer analysis revealed that ORC6 expression serves as a prognostic biomarker and that ORC6 is involved in the regulation of various biological pathways, the tumor microenvironment, and the immunosuppression status in several human cancers, suggesting its potential diagnostic, prognostic, and therapeutic value in pan-cancer, especially in prostate adenocarcinoma.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Gao
- Center for Clinical Medicine, Huatuo Institute of Medical Innovation (HTIMI), Berlin, Germany
| | - Demao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengmei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Anhui, China
| | - Jiani Wang
- School of Health Administration, Anhui Medical University, Hefei, China
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Institute for Social Medicine, Epidemiology and Health Economics, Berlin, Germany
| | - Xin Chen
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|