151
|
Lacerda MVG, Mourão MPG, Alexandre MAA, Siqueira AM, Magalhães BML, Martinez-Espinosa FE, Filho FSS, Brasil P, Ventura AMRS, Tada MS, Couto VSCD, Silva AR, Silva RSU, Alecrim MGC. Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature. Malar J 2012; 11:12. [PMID: 22230294 PMCID: PMC3268102 DOI: 10.1186/1475-2875-11-12] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022] Open
Abstract
The resurgence of the malaria eradication agenda and the increasing number of severe manifestation reports has contributed to a renewed interested in the Plasmodium vivax infection. It is the most geographically widespread parasite causing human malaria, with around 2.85 billion people living under risk of infection. The Brazilian Amazon region reports more than 50% of the malaria cases in Latin America and since 1990 there is a marked predominance of this species, responsible for 85% of cases in 2009. However, only a few complicated cases of P. vivax have been reported from this region. A systematic review of the Brazilian indexed and non-indexed literature on complicated cases of vivax malaria was performed including published articles, masters' dissertations, doctoral theses and national congresses' abstracts. The following information was retrieved: patient characteristics (demographic, presence of co-morbidities and, whenever possible, associated genetic disorders); description of each major clinical manifestation. As a result, 27 articles, 28 abstracts from scientific events' annals and 13 theses/dissertations were found, only after 1987. Most of the reported information was described in small case series and case reports of patients from all the Amazonian states, and also in travellers from Brazilian non-endemic areas. The more relevant clinical complications were anaemia, thrombocytopaenia, jaundice and acute respiratory distress syndrome, present in all age groups, in addition to other more rare clinical pictures. Complications in pregnant women were also reported. Acute and chronic co-morbidities were frequent, however death was occasional. Clinical atypical cases of malaria are more frequent than published in the indexed literature, probably due to a publication bias. In the Brazilian Amazon (considered to be a low to moderate intensity area of transmission), clinical data are in accordance with the recent findings of severity described in diverse P. vivax endemic areas (especially anaemia in Southeast Asia), however in this region both children and adults are affected. Finally, gaps of knowledge and areas for future research are opportunely pointed out.
Collapse
Affiliation(s)
- Marcus V G Lacerda
- Fundação de Medicina Tropical Dr, Heitor Vieira Dourado, Av, Pedro Teixeira, 25, 69040-000, Manaus Amazonas, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med 2012; 9:e1001339. [PMID: 23152723 PMCID: PMC3496665 DOI: 10.1371/journal.pmed.1001339] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/04/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Primaquine is a key drug for malaria elimination. In addition to being the only drug active against the dormant relapsing forms of Plasmodium vivax, primaquine is the sole effective treatment of infectious P. falciparum gametocytes, and may interrupt transmission and help contain the spread of artemisinin resistance. However, primaquine can trigger haemolysis in patients with a deficiency in glucose-6-phosphate dehydrogenase (G6PDd). Poor information is available about the distribution of individuals at risk of primaquine-induced haemolysis. We present a continuous evidence-based prevalence map of G6PDd and estimates of affected populations, together with a national index of relative haemolytic risk. METHODS AND FINDINGS Representative community surveys of phenotypic G6PDd prevalence were identified for 1,734 spatially unique sites. These surveys formed the evidence-base for a Bayesian geostatistical model adapted to the gene's X-linked inheritance, which predicted a G6PDd allele frequency map across malaria endemic countries (MECs) and generated population-weighted estimates of affected populations. Highest median prevalence (peaking at 32.5%) was predicted across sub-Saharan Africa and the Arabian Peninsula. Although G6PDd prevalence was generally lower across central and southeast Asia, rarely exceeding 20%, the majority of G6PDd individuals (67.5% median estimate) were from Asian countries. We estimated a G6PDd allele frequency of 8.0% (interquartile range: 7.4-8.8) across MECs, and 5.3% (4.4-6.7) within malaria-eliminating countries. The reliability of the map is contingent on the underlying data informing the model; population heterogeneity can only be represented by the available surveys, and important weaknesses exist in the map across data-sparse regions. Uncertainty metrics are used to quantify some aspects of these limitations in the map. Finally, we assembled a database of G6PDd variant occurrences to inform a national-level index of relative G6PDd haemolytic risk. Asian countries, where variants were most severe, had the highest relative risks from G6PDd. CONCLUSIONS G6PDd is widespread and spatially heterogeneous across most MECs where primaquine would be valuable for malaria control and elimination. The maps and population estimates presented here reflect potential risk of primaquine-associated harm. In the absence of non-toxic alternatives to primaquine, these results represent additional evidence to help inform safe use of this valuable, yet dangerous, component of the malaria-elimination toolkit. Please see later in the article for the Editors' Summary.
Collapse
|
153
|
Abstract
The long-standing dearth of knowledge surrounding Plasmodium vivax, the most widely distributed of the malaria species, merits urgent attention. A growing awareness of the true burden of this parasite and its potential to cause severe disease, and the identification of increasing parasite resistance in many areas of the world to chloroquine, the mainstay of vivax treatment, underscores the need to identify new and effective treatment strategies. Artemisinin-based combination therapies (ACTs) have been widely adopted as first-line treatment for P. falciparum malaria and would offer logistic benefits in areas of co-endemicity. However, while ACTs show high and similar efficacy against the blood stages of P. vivax, neither ACTs nor chloroquine are active against vivax hypnozoites and must be complemented with a full course of primaquine to eradicate dormant vivax hypnozoites and prevent relapses. Artemether-lumefantrine (AL), the most commonly deployed ACT, has shown rapid clearance of P. vivax parasitemia and fever. The relatively short half-life of lumefantrine would appear beneficial in terms of reducing risk of resistance when compared to other ACTs. However, it has a shorter capability to suppress vivax relapses or prevent de novo infections, which generally translates into comparatively lower in vivo short-term measures of efficacy (e.g., day 28 or day 42 uncorrected cure rates). Assuming that the different artemisinin derivatives have equivalent efficacy against vivax, differences between AL and other ACTs may be restricted to the duration of plasma therapeutic levels of the partner drug, a variable of limited clinical relevance, particularly in regions with low vivax transmission rates or in cases where primaquine is added to the regimen to prevent relapses. More rigorous assessment of the use of ACTs in general, and AL in particular, for the treatment of P. vivax infections, either alone or in combination with primaquine, is merited. In the meantime, AL treatment of vivax malaria may be a pragmatic choice for areas with chloroquine-resistant P. vivax, and in co-endemic areas where AL is already used routinely against P. falciparum and parasitological differentiation is not routinely performed or only clinical diagnosis is used.
Collapse
Affiliation(s)
- Quique Bassat
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
154
|
Abstract
PURPOSE OF REVIEW For over 50 years, the treatment of Plasmodium vivax has relied on a combination of chloroquine and primaquine, but this strategy is under threat. Chloroquine efficacy is now compromised across much of the vivax endemic world and there are significant operational difficulties in deploying primaquine. We review the recent advances in P. vivax chemotherapy that may influence the future management of this neglected pathogen. RECENT FINDINGS New-generation artemisinin combination therapies (ACTs) have shown potent efficacy against the erythrocytic stages of both drug-resistant P. vivax and Plasmodium falciparum. Antimalarial regimens containing slowly eliminated drugs provide a measure of protection against the first, and possibly second, relapse of tropical strains of P. vivax, but reliable radical cure is needed to prevent future relapses. Primaquine is currently the only licensed hypnozoitocidal treatment, but requires long treatment courses and its effectiveness in different endemic settings remains largely unknown. SUMMARY In regions coendemic for P. vivax and P. falciparum, a unified treatment policy for malaria of any parasitological cause is likely to confer the greatest individual and public health benefit. Optimizing the safety and effectiveness of primaquine through the development of rapid diagnostic tests for glucose-6-phosphate dehydrogenase deficiency and improving drug adherence will be crucial endeavors in the fight against vivax malaria.
Collapse
Affiliation(s)
- Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | |
Collapse
|
155
|
A head-to-head comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Med 2011; 8:e1001119. [PMID: 22087077 PMCID: PMC3210754 DOI: 10.1371/journal.pmed.1001119] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 09/30/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are the mainstay for the management of uncomplicated malaria cases. However, up-to-date data able to assist sub-Saharan African countries formulating appropriate antimalarial drug policies are scarce. METHODS AND FINDINGS Between 9 July 2007 and 19 June 2009, a randomized, non-inferiority (10% difference threshold in efficacy at day 28) clinical trial was carried out at 12 sites in seven sub-Saharan African countries. Each site compared three of four ACTs, namely amodiaquine-artesunate (ASAQ), dihydroartemisinin-piperaquine (DHAPQ), artemether-lumefantrine (AL), or chlorproguanil-dapsone-artesunate (CD+A). Overall, 4,116 children 6-59 mo old with uncomplicated Plasmodium falciparum malaria were treated (1,226 with AL, 1,002 with ASAQ, 413 with CD+A, and 1,475 with DHAPQ), actively followed up until day 28, and then passively followed up for the next 6 mo. At day 28, for the PCR-adjusted efficacy, non-inferiority was established for three pair-wise comparisons: DHAPQ (97.3%) versus AL (95.5%) (odds ratio [OR]: 0.59, 95% CI: 0.37-0.94); DHAPQ (97.6%) versus ASAQ (96.8%) (OR: 0.74, 95% CI: 0.41-1.34), and ASAQ (97.1%) versus AL (94.4%) (OR: 0.50, 95% CI: 0.28-0.92). For the PCR-unadjusted efficacy, AL was significantly less efficacious than DHAPQ (72.7% versus 89.5%) (OR: 0.27, 95% CI: 0.21-0.34) and ASAQ (66.2% versus 80.4%) (OR: 0.40, 95% CI: 0.30-0.53), while DHAPQ (92.2%) had higher efficacy than ASAQ (80.8%) but non-inferiority could not be excluded (OR: 0.35, 95% CI: 0.26-0.48). CD+A was significantly less efficacious than the other three treatments. Day 63 results were similar to those observed at day 28. CONCLUSIONS This large head-to-head comparison of most currently available ACTs in sub-Saharan Africa showed that AL, ASAQ, and DHAPQ had excellent efficacy, up to day 63 post-treatment. The risk of recurrent infections was significantly lower for DHAPQ, followed by ASAQ and then AL, supporting the recent recommendation of considering DHAPQ as a valid option for the treatment of uncomplicated P. falciparum malaria. TRIAL REGISTRATION ClinicalTrials.gov NCT00393679; Pan African Clinical Trials Registry PACTR2009010000911750
Collapse
|
156
|
Hwang J, Alemayehu BH, Hoos D, Melaku Z, Tekleyohannes SG, Teshi T, Birhanu SG, Demeke L, Gobena K, Kassa M, Jima D, Reithinger R, Nettey H, Green M, Malone JL, Kachur SP, Filler S. In vivo efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in Central Ethiopia. Malar J 2011; 10:209. [PMID: 21798054 PMCID: PMC3163628 DOI: 10.1186/1475-2875-10-209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/28/2011] [Indexed: 12/27/2022] Open
Abstract
Background In vivo efficacy assessments of the first-line treatments for Plasmodium falciparum malaria are essential for ensuring effective case management. In Ethiopia, artemether-lumefantrine (AL) has been the first-line treatment for uncomplicated P. falciparum malaria since 2004. Methods Between October and November 2009, we conducted a 42-day, single arm, open label study of AL for P. falciparum in individuals >6 months of age at two sites in Oromia State, Ethiopia. Eligible patients who had documented P. falciparum mono-infection were enrolled and followed according to the standard 2009 World Health Organization in vivo drug efficacy monitoring protocol. The primary and secondary endpoints were PCR uncorrected and corrected cure rates, as measured by adequate clinical and parasitological response on days 28 and 42, respectively. Results Of 4426 patients tested, 120 with confirmed falciparum malaria were enrolled and treated with AL. Follow-up was completed for 112 patients at day 28 and 104 patients at day 42. There was one late parasitological failure, which was classified as undetermined after genotyping. Uncorrected cure rates at both day 28 and 42 for the per protocol analysis were 99.1% (95% CI 95.1-100.0); corrected cure rates at both day 28 and 42 were 100.0%. Uncorrected cure rates at day 28 and 42 for the intention to treat analysis were 93.3% (95% CI 87.2-97.1) and 86.6% (95% CI 79.1-92.1), respectively, while the corrected cure rates at day 28 and 42 were 94.1% (95% CI 88.2-97.6) and 87.3% (95% CI 79.9-92.7), respectively. Using survival analysis, the unadjusted cure rate was 99.1% and 100.0% adjusted by genotyping for day 28 and 42, respectively. Eight P. falciparum patients (6.7%) presented with Plasmodium vivax infection during follow-up and were excluded from the per protocol analysis. Only one patient had persistent parasitaemia at day 3. No serious adverse events were reported, with cough and nausea/vomiting being the most common adverse events. Conclusions AL remains a highly effective and well-tolerated treatment for uncomplicated falciparum malaria in the study setting after several years of universal access to AL. A high rate of parasitaemia with P. vivax possibly from relapse or new infection was observed. Trial Registration NCT01052584
Collapse
Affiliation(s)
- Jimee Hwang
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Sinclair D, Gogtay N, Brand F, Olliaro P. Artemisinin-based combination therapy for treating uncomplicated Plasmodium vivax malaria. Cochrane Database Syst Rev 2011:CD008492. [PMID: 21735431 DOI: 10.1002/14651858.cd008492.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasmodium vivax is an important cause of malaria in many parts of Asia and South America, and resistance to the standard treatment (chloroquine) is now high in some parts of Oceania. This review aims to assess the current treatment options in the light of rising chloroquine resistance. OBJECTIVES To compare Artemisinin-based combination therapies (ACTs) with alternative antimalarial regimens for treating acute uncomplicated P.vivax malaria. SEARCH STRATEGY We searched the Cochrane Infectious Disease Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS and the metaRegister of Controlled Trials (mRCT) using "vivax" and "arte* OR dihydroarte*" as search terms. SELECTION CRITERIA Randomized controlled trials comparing ACTs versus standard therapy, or comparing alternative ACTs, in adults and children with uncomplicated P. vivax malaria. DATA COLLECTION AND ANALYSIS Two authors independently assessed trials for eligibility and risk of bias, and extracted data. Recurrent parasitaemia prior to day 28 was taken as a proxy for effective treatment of the blood stage parasite, and drugs compared using risk ratios (RR) and 95% confidence intervals (CI). Trials following patients for longer than 28 days were used to assess the duration of the post-treatment prophylactic effect of ACTs. The quality of evidence has been assessed using the GRADE methodology. MAIN RESULTS ACTs vs chloroquineIn settings where chloroquine remains effective, ACTs are equivalent at preventing recurrent parasitemias before day 28 (four trials, 1185 participants; RR 1, 95% CI 0.30 to 3.39, high quality evidence).ACT combinations with long half-lives are probably superior to chloroquine over six to eight weeks follow-up, with significantly fewer recurrent episodes 0 after day 28 (two trials, 668 participants, RR 0.47, 95% CI 0.29 to 0.76, moderate quality evidence). It is not clear if this effect is still present if primaquine is given.Dihydroartemisinin-piperaquine versus alternative ACTsDihydroartemisinin-piperaquine is the most studied ACT for the treatment of P. vivax. In high transmission settings it is probably superior to artemether-lumefantrine, artesunate plus sulphadoxine-pyrimethamine and artesunate plus amodiaquine at preventing recurrent parasitemias before day 28 (three trials, 334 participants, RR 0.20, 95% CI 0.08 to 0.49, moderate quality evidence).This advantage with dihydroartemisinin-piperaquine may last for at least six weeks even when primaquine is also given to achieve radical cure; with fewer recurrent parasitemias occurring between day 28 and day 42 (two trials, 179 participants, RR 0.21, 95% CI 0.10 to 0.46, low quality evidence).The data available from low transmission settings is too limited to make conclusions about the relative effectiveness of ACTs. AUTHORS' CONCLUSIONS ACTs appear at least equivalent to chloroquine at effectively treating the blood stage P. vivax infection. Even where chloroquine remains effective this finding may allow for simplified protocols treating all forms of malaria with ACTs.Dihydroartemisinin-piperaquine may provide a longer period of post-treatment prophylaxis than artemether-lumefantrine or artesunate plus amodiaquine, which is likely to be a function of the long elimination half-life of piperaquine. This effect may be clinically important in high transmission settings whether primaquine is also given or not.
Collapse
Affiliation(s)
- David Sinclair
- International Health Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK, L3 5QA
| | | | | | | |
Collapse
|
158
|
Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2011; 55:4461-4. [PMID: 21730116 DOI: 10.1128/aac.01375-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ferroquine (FQ; SSR97193), a ferrocene-containing 4-aminoquinoline derivate, has potent in vitro efficacy against chloroquine (CQ)-resistant Plasmodium falciparum and CQ-sensitive P. vivax. In the current study, ex vivo FQ activity was tested in multidrug-resistant P. falciparum and P. vivax field isolates using a schizont maturation assay. Although FQ showed excellent activity against CQ-sensitive and -resistant P. falciparum and P. vivax (median 50% inhibitory concentrations [IC(50)s], 9.6 nM and 18.8 nM, respectively), there was significant cross-susceptibility with the quinoline-based drugs chloroquine, amodiaquine, and piperaquine (for P. falciparum, r = 0.546 to 0.700, P < 0.001; for P. vivax, r = 0.677 to 0.821, P < 0.001). The observed ex vivo cross-susceptibility is likely to reflect similar mechanisms of drug uptake/efflux and modes of drug action of this drug class. However, the potent activity of FQ against resistant isolates of both P. falciparum and P. vivax highlights a promising role for FQ as a lead antimalarial against CQ-resistant Plasmodium and a useful partner drug for artemisinin-based combination therapy.
Collapse
|
159
|
William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, Khoo S, Fredrick C, Jelip J, Anstey NM, Yeo TW. SeverePlasmodium knowlesiMalaria in a Tertiary Care Hospital, Sabah, Malaysia. Emerg Infect Dis 2011; 17:1248-55. [DOI: 10.3201/eid1707.101017] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
160
|
William T, Menon J, Rajahram G, Chan L, Ma G, Donaldson S, Khoo S, Frederick C, Jelip J, Anstey NM, Yeo TW. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis 2011. [PMID: 21762579 PMCID: PMC3381373 DOI: 10.3201/eid.1707.101017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The simian parasite Plasmodium knowlesi causes severe human malaria; the optimal treatment remains unknown. We describe the clinical features, disease spectrum, and response to antimalarial chemotherapy, including artemether-lumefantrine and artesunate, in patients with P. knowlesi malaria diagnosed by PCR during December 2007-November 2009 at a tertiary care hospital in Sabah, Malaysia. Fifty-six patients had PCR-confirmed P. knowlesi monoinfection and clinical records available for review. Twenty-two (39%) had severe malaria; of these, 6 (27%) died. Thirteen (59%) had respiratory distress; 12 (55%), acute renal failure; and 12, shock. None experienced coma. Patients with uncomplicated disease received chloroquine, quinine, or artemether-lumefantrine, and those with severe disease received intravenous quinine or artesunate. Parasite clearance times were 1-2 days shorter with either artemether-lumefantrine or artesunate treatment. P. knowlesi is a major cause of severe and fatal malaria in Sabah. Artemisinin derivatives rapidly clear parasitemia and are efficacious in treating uncomplicated and severe knowlesi malaria.
Collapse
Affiliation(s)
- Timothy William
- Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysian Borneo
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Combined deletions of pfhrp2 and pfhrp3 genes result in Plasmodium falciparum malaria false-negative rapid diagnostic test. J Clin Microbiol 2011; 49:2694-6. [PMID: 21543573 DOI: 10.1128/jcm.00281-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of misdiagnosis of Plasmodium falciparum malaria from Brazil with negative PfHRP2-based rapid diagnostic tests (RDTs), leading to inappropriate case management. Genetic tests showed the deletion of both pfhrp2 and pfhrp3 genes. The detection of two distinct P. falciparum target antigens is then advisable.
Collapse
|
162
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
163
|
Douglas NM, Nosten F, Ashley EA, Phaiphun L, van Vugt M, Singhasivanon P, White NJ, Price RN. Plasmodium vivax recurrence following falciparum and mixed species malaria: risk factors and effect of antimalarial kinetics. Clin Infect Dis 2011; 52:612-20. [PMID: 21292666 PMCID: PMC3060895 DOI: 10.1093/cid/ciq249] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/17/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Plasmodium vivax malaria commonly follows treatment of falciparum malaria in regions of co-endemicity. This is an important cause of preventable morbidity. METHODS We examined the factors contributing to the risk of recurrence of P. vivax infection after treatment of acute falciparum malaria in a series of clinical trials conducted on the Thai-Myanmar border from 1991 through 2005. RESULTS Overall, 10,549 patients (4960 children aged <15 years and 5589 adults) were treated for falciparum malaria; of these patients, 9385 (89.0%) had Plasmodium falciparum monoinfection and 1164 (11.0%) had mixed P. falciparum/P. vivax infections according to microscopic examinations performed at screening. The cumulative proportion of patients with P. falciparum infection recurrence by day 63 was 21.5% (95% confidence interval [CI], 20.3%-22.8%), and the cumulative proportion with P. vivax infection recurrence was 31.5% (95% CI, 30.1%-33.0%). Significant risk factors for P. vivax infection recurrence were mixed infection at enrollment, male sex, younger age, lower hematocrit, higher asexual P. falciparum parasite density (P < .001 for all factors), and P. falciparum gametocytemia at enrollment (P = .001). By day 63, the cumulative risk of vivax malaria after P. falciparum monoinfection was 51.1% (95% CI, 46.1%-56.2%) after treatment with rapidly eliminated drugs (t(1/2) <1 day), 35.3% (95% CI, 31.8%-39.0%) after treatment with intermediate half-life drugs (t(1/2) 1-7 days), and 19.6% (95% CI, 18.1%-21.3%) after treatment with slowly eliminated drugs (t(1/2) > 7 days) (P < .001, by test for trend). Artemisinin-based combinations containing mefloquine or piperaquine, compared with the artemether-lumefantrine and artesunate-atovaquone-proguanil combinations, were associated with a 3.6-fold to 4.2-fold lower adjusted hazard ratio for P. vivax infection recurrence within 63 days after pure or mixed P. falciparum infections (P < .001, for comparisons with artesunate-mefloquine). CONCLUSIONS On the Thai-Myanmar border, P. vivax is the most common cause of parasitological failure after treatment for falciparum malaria. Slowly eliminated antimalarials reduce the risk of early P. vivax infection recurrence.
Collapse
Affiliation(s)
- Nicholas M. Douglas
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - François Nosten
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Shoklo Malaria Research Unit, Tak Province, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Shoklo Malaria Research Unit, Tak Province, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lucy Phaiphun
- Shoklo Malaria Research Unit, Tak Province, Thailand
| | - Michèle van Vugt
- Shoklo Malaria Research Unit, Tak Province, Thailand
- Department of Internal Medicine, Division of Infectious Diseases, Tropical Medicine and AIDS and Center for Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Nicholas J. White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N. Price
- Global Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| |
Collapse
|
164
|
Grobusch MP, van Vugt M. Malaria therapy: where do we stand, what next? Future Microbiol 2011; 5:1447-9. [PMID: 21073301 DOI: 10.2217/fmb.10.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
165
|
Muhamad P, Ruengweerayut R, Chacharoenkul W, Rungsihirunrat K, Na-Bangchang K. Monitoring of clinical efficacy and in vitro sensitivity of Plasmodium vivax to chloroquine in area along Thai Myanmar border during 2009-2010. Malar J 2011; 10:44. [PMID: 21324161 PMCID: PMC3055225 DOI: 10.1186/1475-2875-10-44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/16/2011] [Indexed: 11/18/2022] Open
Abstract
Background In Thailand, the proportion of Plasmodium vivax infection has become equal to Plasmodium falciparum. Reports of a trend of gradual decline of in vitro sensitivity of P. vivax to chloroquine in some areas of the country, together with accumulating evidences of chloroquine resistance P. vivax in other parts of the world, emphasize the need for closely and continuously monitoring clinical efficacy in conjunction with in vitro sensitivity of P. vivax isolates. Methods The study was conducted at Mae Tao clinic for migrant workers, Tak Province during March 2008 - August 2009. A total of 130 patients (17 Thais and 113 Burmeses; 64 males and 66 females) with mono-infection of P. vivax malaria, aged between 15-60 years and weighing more than 40 kg, were included in the study. Patients received treatment with chloroquine (2,000 mg chloroquine phosphate over three days) and the anti-relapse drug primaquine (15 mg for 14 days). In vitro sensitivity of P. vivax isolates was evaluated by schizont maturation inhibition assay. Results All patients showed satisfactory response to treatment. The cure rate was virtually 100% within the follow-up period of 42 days. Neither recurrence of P. vivax parasitaemia nor appearance of P. falciparum occurred during the investigation period. In vitro data showed a stable sensitivity of chloroquine in this area since 2006. Geometric mean and median (95% CI) values of IC50 for chloroquine were 100.1 and 134.7 (1.1-264.9) nM, respectively. Conclusion In vivo results suggest that the standard regimen of chloroquine was still very effective for the treatment of blood infections with P. vivax in the Thai-Myanmar border area. In vitro sensitivity data however, raise the possibility of potential advent of resistance in the future. Regular monitoring of the chloroquine sensitivity of P. vivax is essential to facilitate the early recognition of treatment failures and to expedite the formulation of appropriate changes to the drug policy.
Collapse
Affiliation(s)
- Poonuch Muhamad
- Pharmacology and Toxicology Unit, Graduate Program in Biomedical Sciences, Thammasat University, Thailand
| | | | | | | | | |
Collapse
|
166
|
Davis WA, Clarke PM, Siba PM, Karunajeewa HA, Davy C, Mueller I, Davis TME. Cost-effectiveness of artemisinin combination therapy for uncomplicated malaria in children: data from Papua New Guinea. Bull World Health Organ 2011; 89:211-20. [PMID: 21379417 DOI: 10.2471/blt.10.084103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/21/2010] [Accepted: 01/04/2011] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To compare the cost-effectiveness of conventional antimalarial therapy with that of three artemisinin combination treatment regimens in children from Papua New Guinea aged 6 to 60 months. METHODS An incremental cost-effectiveness analysis was performed using data from 656 children with Plasmodium falciparum and/or P. vivax malaria who participated in a large intervention trial in two clinics in northern Papua New Guinea. The children were randomized to one of the following groups: (i) conventional treatment with chloroquine plus sulfadoxine plus pyrimethamine (CQ+S+P); (ii) artesunate plus S plus P; (iii) dihydroartemisinin plus piperaquine (DHA+PQ); and (iv) artemether plus lumefantrine (A+L). For treatment outcomes, World Health Organization definitions were used. The cost of transport between home and the clinic plus direct health-care costs served as a basis for determining each regimen's incremental cost per incremental treatment success relative to CQ+S+P by day 42 and its cost per life year saved. FINDINGS A+L proved to be the most effective regimen against P. falciparum malaria and was highly cost-effective at 6.97 United States dollars (US$) per treatment success (about US$ 58 per life year saved). DHA+PQ was the most effective regimen against P. vivax malaria and was more cost-effective than CQ+S+P. CONCLUSION A+L and DHA+PQ are highly cost-effective regimens for the treatment of paediatric P. falciparum and P. vivax malaria, respectively, in parts of Papua New Guinea. Future research will be required to determine if these findings hold true for other territories in Asia and Oceania with similar malaria epidemiology.
Collapse
Affiliation(s)
- Wendy A Davis
- University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
167
|
Poravuth Y, Socheat D, Rueangweerayut R, Uthaisin C, Pyae Phyo A, Valecha N, Rao BHK, Tjitra E, Purnama A, Borghini-Fuhrer I, Duparc S, Shin CS, Fleckenstein L. Pyronaridine-artesunate versus chloroquine in patients with acute Plasmodium vivax malaria: a randomized, double-blind, non-inferiority trial. PLoS One 2011; 6:e14501. [PMID: 21267072 PMCID: PMC3022577 DOI: 10.1371/journal.pone.0014501] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/06/2010] [Indexed: 11/25/2022] Open
Abstract
Background New antimalarials are needed for P. vivax and P. falciparum malaria. This study compared the efficacy and safety of pyronaridine-artesunate with that of chloroquine for the treatment of uncomplicated P. vivax malaria. Methods and Findings This phase III randomized, double-blind, non-inferiority trial included five centers across Cambodia, Thailand, India, and Indonesia. In a double-dummy design, patients (aged >3–≤60 years) with microscopically confirmed P. vivax mono-infection were randomized (1∶1) to receive pyronaridine-artesunate (target dose 7.2∶2.4 mg/kg to 13.8∶4.6 mg/kg) or chloroquine (standard dose) once daily for three days. Each treatment group included 228 randomized patients. Outcomes for the primary endpoint, Day-14 cure rate in the per-protocol population, were 99.5%, (217/218; 95%CI 97.5, 100) with pyronaridine-artesunate and 100% (209/209; 95%CI 98.3, 100) with chloroquine. Pyronaridine was non-inferior to chloroquine: treatment difference −0.5% (95%CI −2.6, 1.4), i.e., the lower limit of the 2-sided 95%CI for the treatment difference was greater than −10%. Pyronaridine-artesunate cure rates were non-inferior to chloroquine for Days 21, 28, 35 and 42. Parasite clearance time was shorter with pyronaridine-artesunate (median 23.0 h) versus chloroquine (32.0 h; p<0.0001), as was fever clearance time (median 15.9 h and 23.8 h, respectively; p = 0.0017). Kaplan-Meier estimates of post-baseline P. falciparum infection incidence until Day 42 were 2.5% with pyronaridine-artesunate, 6.1% with chloroquine (p = 0.048, log-rank test). Post-baseline P. vivax or P. falciparum infection incidence until Day 42 was 6.8% and 12.4%, respectively (p = 0.022, log rank test). There were no deaths. Adverse events occurred in 92/228 (40.4%) patients with pyronaridine-artesunate and 72/228 (31.6%) with chloroquine. Mild and transient increases in hepatic enzymes were observed for pyronaridine-artesunate. Conclusion Pyronaridine-artesunate efficacy in acute uncomplicated P. vivax malaria was at least that of chloroquine. As pyronaridine-artesunate is also efficacious against P. falciparum malaria, this combination has potential utility as a global antimalarial drug. Trial registration Clinicaltrials.gov NCT00440999
Collapse
Affiliation(s)
- Yi Poravuth
- National Malaria Center, Phnom Penh, Cambodia
| | | | | | - Chirapong Uthaisin
- Department of Internal Medicine, Mae Ramat Hospital, Mae Ramat, Thailand
| | | | - Neena Valecha
- National Institute of Malaria Research, Delhi, India
| | | | - Emiliana Tjitra
- National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Asep Purnama
- Internal Medicine Department, TC Hillers General Hospital, Maumere, Indonesia
| | | | | | - Chang-Sik Shin
- Shin Poong Pharmaceutical Company, Seoul, Republic of Korea
| | | |
Collapse
|
168
|
Watkins B, Sibley C. Vivax Malaria: Old Drug, New Uses? J Infect Dis 2011; 203:144-5. [DOI: 10.1093/infdis/jiq027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
169
|
Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2010; 55:961-6. [PMID: 21135175 DOI: 10.1128/aac.01220-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone acetylation plays an important role in regulating gene transcription and silencing in Plasmodium falciparum. Histone deacetylase (HDAC) inhibitors, particularly those of the hydroxamate class, have been shown to have potent in vitro activity against drug-resistant and -sensitive laboratory strains of P. falciparum, raising their potential as a new class of antimalarial compounds. In the current study, stage-specific ex vivo susceptibility profiles of representative hydroxamate-based HDAC inhibitors suberoylanilide hydroxamic acid (SAHA), 2-ASA-9, and 2-ASA-14 (2-ASA-9 and 2-ASA-14 are 2-aminosuberic acid-based HDAC inhibitors) were assessed in multidrug-resistant clinical isolates of P. falciparum (n = 24) and P. vivax (n = 25) from Papua, Indonesia, using a modified schizont maturation assay. Submicromolar concentrations of SAHA, 2-ASA-9, and 2-ASA-14 inhibited the growth of both P. falciparum (median 50% inhibitory concentrations [IC₅₀s] of 310, 533, and 266 nM) and P. vivax (median IC₅₀s of 170, 503, and 278 nM). Inverse correlation patterns between HDAC inhibitors and chloroquine for P. falciparum and mefloquine for P. vivax indicate species-specific susceptibility profiles for HDAC inhibitors. These HDAC inhibitors were also found to be potent ex vivo against P. vivax schizont maturation, comparable to that in P. falciparum, suggesting that HDAC inhibitors may be promising candidates for antimalarial therapy in geographical locations where both species are endemic. Further studies optimizing the selectivity and in vivo efficacy of HDAC inhibitors in Plasmodium spp. and defining drug interaction with common antimalarial compounds are warranted to investigate the role of HDAC inhibitors in antimalarial therapy.
Collapse
|
170
|
In vitro activity of pyronaridine against multidrug-resistant Plasmodium falciparum and Plasmodium vivax. Antimicrob Agents Chemother 2010; 54:5146-50. [PMID: 20876370 DOI: 10.1128/aac.00801-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyronaridine, a Mannich base antimalarial, has demonstrated high in vivo and in vitro efficacy against chloroquine-resistant Plasmodium falciparum. Although this drug has the potential to become a prominent artemisinin combination therapy, little is known about its efficacy against drug-resistant Plasmodium vivax. The in vitro antimalarial susceptibility of pyronaridine was assessed in multidrug-resistant P. vivax (n = 99) and P. falciparum (n = 90) isolates from Papua, Indonesia, using a schizont maturation assay. The median 50% inhibitory concentration (IC(50)) of pyronaridine was 1.92 nM (range, 0.24 to 13.8 nM) against P. falciparum and 2.58 nM (range, 0.13 to 43.6 nM) against P. vivax, with in vitro susceptibility correlating significantly with chloroquine, amodiaquine, and piperaquine (r(s) [Spearman's rank correlation coefficient] = 0.45 to 0.62; P < 0.001). P. falciparum parasites initially at trophozoite stage had higher IC(50)s of pyronaridine than those exposed at the ring stage (8.9 nM [range, 0.6 to 8.9 nM] versus 1.6 nM [range, 0.6 to 8.9 nM], respectively; P = 0.015), although this did not reach significance for P. vivax (4.7 nM [range, 1.4 to 18.7 nM] versus 2.5 nM [range, 1.4 to 15.6 nM], respectively; P = 0.085). The excellent in vitro efficacy of pyronaridine against both chloroquine-resistant P. vivax and P. falciparum highlights the suitability of the drug as a novel partner for artemisinin-based combination therapy in regions where the two species are coendemic.
Collapse
|
171
|
Price RN, Douglas NM. Maximising the public health benefit of antimalarials. THE LANCET. INFECTIOUS DISEASES 2010; 10:654-5. [PMID: 20832368 DOI: 10.1016/s1473-3099(10)70192-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|