151
|
Gómez-Pinedo U, García-Ávila Y, Gallego-Villarejo L, Matías-Guiu JA, Benito-Martín MS, Esteban-García N, Sanclemente-Alamán I, Pytel V, Moreno-Jiménez L, Sancho-Bielsa F, Vidorreta-Ballesteros L, Montero-Escribano P, Matías-Guiu J. Sera from Patients with NMOSD Reduce the Differentiation Capacity of Precursor Cells in the Central Nervous System. Int J Mol Sci 2021; 22:5192. [PMID: 34068922 PMCID: PMC8155872 DOI: 10.3390/ijms22105192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.
Collapse
Affiliation(s)
- Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Yolanda García-Ávila
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lucía Gallego-Villarejo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jordi A. Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - María Soledad Benito-Martín
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Noelia Esteban-García
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Inmaculada Sanclemente-Alamán
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Vanesa Pytel
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Lidia Moreno-Jiménez
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Francisco Sancho-Bielsa
- Department of Physiology, Ciudad Real School of Medicine, Universidad de Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Lucía Vidorreta-Ballesteros
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Paloma Montero-Escribano
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Health Research Institute, Universidad Complutense, 28040 Madrid, Spain; (Y.G.-Á.); (L.G.-V.); (J.A.M.-G.); (M.S.B.-M.); (N.E.-G.); (I.S.-A.); (V.P.); (L.M.-J.); (L.V.-B.); (P.M.-E.); (J.M.-G.)
| |
Collapse
|
152
|
Elshony HS, Idris A, Al-Ghamdi A, Muddassir R. Intracerebral Hemorrhage in Patients with Neuromyelitis Optica: Case Report with Literature Review for Possible Pathological Association. Case Rep Neurol 2021; 13:157-165. [PMID: 33790774 PMCID: PMC7989829 DOI: 10.1159/000513644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune demyelinating disorder of the central nervous system which is characterized by attacks of optic neuritis and transverse myelitis. An association between NMO and intracerebral hemorrhage (ICH) has been rarely recognized, having been reported only 3 times before. Here we report on a patient with NMO who eventually developed subarachnoid hemorrhage, in order to emphasize that the association between NMO and ICH is mostly not incidental and that the pathological basis for this association should be investigated thoroughly.
Collapse
Affiliation(s)
- Hosna Saad Elshony
- Department of Neurology/Internal Medicine, Security Forces Hospital, Makkah, Saudi Arabia
| | - Abdelrahman Idris
- Department of Neurology/Internal Medicine, Security Forces Hospital, Makkah, Saudi Arabia
| | - Abdulaziz Al-Ghamdi
- Department of Neurology/Internal Medicine, Security Forces Hospital, Makkah, Saudi Arabia
| | - Rabia Muddassir
- Department of Neurology/Internal Medicine, Security Forces Hospital, Makkah, Saudi Arabia
| |
Collapse
|
153
|
Romeo AR. Recent advances in the treatment of neuromyelitis optica spectrum disorders. Curr Opin Rheumatol 2021; 33:233-239. [PMID: 33741809 DOI: 10.1097/bor.0000000000000791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review examines recently published randomized placebo-controlled trials for the treatment of neuromyelitis optica spectrum disorders (NMOSD). RECENT FINDINGS Until recently, treatments for NMOSD were used-off label and had not been subjected to randomized placebo-controlled trials. Increased understanding of the pathophysiology of NMOSD, particularly aquaporin-4-IgG seropositive NMOSD, lead to the investigation of eculizumab, inebilizumab, and satralizumab for maintenance therapy. Eculizumab inhibits the cleavage of the terminal complement protein C5, inebilizumab depletes immune cells of B-lymphocyte lineage, and satralizumab inhibits interleukin-6 receptors. International, phase 3, randomized, placebo-controlled trials have demonstrated that each of these therapies reduces the risk of NMOSD relapse. In some cases, the studied therapies were administered in conjunction with other immunosuppressants. Each therapy has important safety considerations, notably risk of meningococcal infection with eculizumab and risks of infection and hypogammaglobulinemia with inebilizumab. Reviewing trial design highlights future areas of inquiry for the treatment of NMOSD. SUMMARY Eculizumab, inebilizumab, and satralizumab are effective maintenance therapies approved for the treatment of AQP-4 seropositive NMOSD.
Collapse
Affiliation(s)
- Andrew R Romeo
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
154
|
Waliszewska-Prosół M, Chojdak-Łukasiewicz J, Budrewicz S, Pokryszko-Dragan A. Neuromyelitis Optica Spectrum Disorder Treatment-Current and Future Prospects. Int J Mol Sci 2021; 22:ijms22062801. [PMID: 33802046 PMCID: PMC7998461 DOI: 10.3390/ijms22062801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Neuromyelitis optica (NMO) is an immune-mediated demyelinative disorder of the central nervous system affecting mainly the optical nerves and the spinal cord. The recurrent course of the disease, with exacerbations and incomplete remissions, causes accumulating disability, which has a profound impact upon patients’ quality of life. The discovery of antibodies against aquaporin 4 (AQP4) and their leading role in NMO etiology and the formulation of diagnostic criteria have improved appropriate recognition of the disease. In recent years, there has been rapid progress in understanding the background of NMO, leading to an increasing range of treatment options. On the basis of a review of the relevant literature, the authors present currently available therapeutic strategies for NMO as well as ongoing research in this field, with reference to key points of immune-mediated processes involved in the background of the disease.
Collapse
|
155
|
Winkler A, Wrzos C, Haberl M, Weil MT, Gao M, Möbius W, Odoardi F, Thal DR, Chang M, Opdenakker G, Bennett JL, Nessler S, Stadelmann C. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J Clin Invest 2021; 131:141694. [PMID: 33645550 DOI: 10.1172/jci141694] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Approximately 80% of neuromyelitis optica spectrum disorder (NMOSD) patients harbor serum anti-aquaporin-4 autoantibodies targeting astrocytes in the CNS. Crucial for NMOSD lesion initiation is disruption of the blood-brain barrier (BBB), which allows the entrance of Abs and serum complement into the CNS and which is a target for new NMOSD therapies. Astrocytes have important functions in BBB maintenance; however, the influence of their loss and the role of immune cell infiltration on BBB permeability in NMOSD have not yet been investigated. Using an experimental model of targeted NMOSD lesions in rats, we demonstrate that astrocyte destruction coincides with a transient disruption of the BBB and a selective loss of occludin from tight junctions. It is noteworthy that BBB integrity is reestablished before astrocytes repopulate. Rather than persistent astrocyte loss, polymorphonuclear leukocytes (PMNs) are the main mediators of BBB disruption, and their depletion preserves BBB integrity and prevents astrocyte loss. Inhibition of PMN chemoattraction, activation, and proteolytic function reduces lesion size. In summary, our data support a crucial role for PMNs in BBB disruption and NMOSD lesion development, rendering their recruitment and activation promising therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael Haberl
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Marie-Theres Weil
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ming Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium.,Laboratory of Neuropathology, Institute of Pathology, Ulm University, Ulm, Germany
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jeffrey L Bennett
- Departments of Neurology and Ophthalmology, Program in Neuroscience, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | |
Collapse
|
156
|
Asavapanumas N, Tradtrantip L, Verkman AS. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin Biol Ther 2021; 21:1073-1086. [PMID: 33513036 DOI: 10.1080/14712598.2021.1884223] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is characterized by central nervous system inflammation and demyelination. In AQP4-IgG seropositive NMOSD, circulating immunoglobulin G (IgG) autoantibodies against astrocyte water channel aquaporin-4 (AQP4) cause tissue injury. Compelling evidence supports a pathogenic role for complement activation following AQP4-IgG binding to AQP4. Clinical studies supported the approval of eculizumab, an inhibitor of C5 cleavage, in AQP4-IgG seropositive NMOSD. AREAS COVERED This review covers in vitro, animal models, and human evidence for complement-dependent and complement-independent tissue injury in AQP4-IgG seropositive NMOSD. Complement targets are discussed, including complement proteins, regulators and anaphylatoxin receptors, and corresponding drug candidates. EXPERT OPINION Though preclinical data support a central pathogenic role of complement activation in AQP4-IgG seropositive NMOSD, they do not resolve the relative contributions of complement-dependent vs. complement-independent disease mechanisms such as antibody-dependent cellular cytotoxicity, T cell effector mechanisms, and direct AQP4-IgG-induced cellular injury. The best evidence that complement-dependent mechanisms predominate in AQP4-IgG seropositive NMOSD comes from eculizumab clinical data. Various drug candidates targeting distinct complement effector mechanisms may offer improved safety and efficacy. However, notwithstanding the demonstrated efficacy of complement inhibition in AQP4-IgG seropositive NMOSD, the ultimate niche for complement inhibition is not clear given multiple drug options with alternative mechanisms of action.Abbreviations: AAV2, Adeno-associated virus 2; ADCC, antibody-dependent cellular cytotoxicity; ANCA, antineutrophilic cytoplasmic autoantibody; AQP4, aquaporin-4; AQP4-IgG, AQP4-immunoglobulin G; C1-INH, C1-esterase inhibitor; C3aR, C3a receptor; C4BP, C4 binding protein; C5aR, C5a receptor; CDC, complement-dependent cytotoxicity; CFHR1, complement factor H related 1; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; EndoS, endoglycosidase S; FHL-1, factor-H-like protein 1; GFAP, glial fibrillary acidic protein; Iba-1, ionized calcium-binding adaptor protein-1; IgG, immunoglobulin G; IVIG, intravenous human immunoglobulin G; MAC, membrane attack complex; MBL, maltose-binding lectin; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; NK cell, natural killer cell; NMOSD, neuromyelitis optica spectrum disorder; OAP, orthogonal arrays of particles; PNH, paroxysmal nocturnal hemoglobinuria.
Collapse
Affiliation(s)
- Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
157
|
Gklinos P, Papadopoulou M, Stanulovic V, Mitsikostas DD, Papadopoulos D. Monoclonal Antibodies as Neurological Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14020092. [PMID: 33530460 PMCID: PMC7912592 DOI: 10.3390/ph14020092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
Over the last 30 years the role of monoclonal antibodies in therapeutics has increased enormously, revolutionizing treatment in most medical specialties, including neurology. Monoclonal antibodies are key therapeutic agents for several neurological conditions with diverse pathophysiological mechanisms, including multiple sclerosis, migraines and neuromuscular disease. In addition, a great number of monoclonal antibodies against several targets are being investigated for many more neurological diseases, which reflects our advances in understanding the pathogenesis of these diseases. Untangling the molecular mechanisms of disease allows monoclonal antibodies to block disease pathways accurately and efficiently with exceptional target specificity, minimizing non-specific effects. On the other hand, accumulating experience shows that monoclonal antibodies may carry class-specific and target-associated risks. This article provides an overview of different types of monoclonal antibodies and their characteristics and reviews monoclonal antibodies currently in use or under development for neurological disease.
Collapse
Affiliation(s)
- Panagiotis Gklinos
- Department of Neurology, KAT General Hospital of Attica, 14561 Athens, Greece;
| | - Miranta Papadopoulou
- Center for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Vid Stanulovic
- Global Pharmacovigilance, R&D Sanofi, 91385 Chilly-Mazarin, France;
| | - Dimos D. Mitsikostas
- 1st Neurology Department, Aeginition Hospital, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Dimitrios Papadopoulos
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 129 Vasilissis Sophias Avenue, 11521 Athens, Greece
- Salpetriere Neuropsychiatric Clinic, 149 Papandreou Street, Metamorphosi, 14452 Athens, Greece
- Correspondence:
| |
Collapse
|
158
|
Elevated cerebrospinal fluid β2-microglobulin levels in patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2021; 49:102774. [PMID: 33713918 DOI: 10.1016/j.msard.2021.102774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/24/2022]
Abstract
Cerebrospinal fluid (CSF) β2-microglobulin (β2-MG) levels elevated in patients with multiple sclerosis (MS). We examined the levels of β2-MG in serum and cerebrospinal fluid (CSF) from 46 patients with neuromyelitis optica spectrum disorders (NMOSD), in serum from 21 healthy controls (HC), in CSF from 25 disease controls with non-inflammatory neurological diseases (NIND) with normal CSF results. CSF β2-MG levels were significantly higher in patients with NMOSD than controls and with weak association with the number of white blood cells, protein and lactate levels in CSF. CSF β2-MG is thus one more, non-specific indicator of inflammation in NMOSD.
Collapse
|
159
|
Sharma J, Bhatti MT, Danesh-Meyer HV. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein IgG associated disorder: A comprehensive neuro-ophthalmic review. Clin Exp Ophthalmol 2021; 49:186-202. [PMID: 33426799 DOI: 10.1111/ceo.13863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated inflammatory disease of the central nervous system that involves the optic nerves, spinal cord, and often other specific brain regions such as area postrema of the medulla. NMOSD was formerly classified as a variant of multiple sclerosis (MS), given the similar symptomatology and relapsing course but is now considered to have distinct clinical, paraclinical, immunological and prognostic features. The discovery of aquaporin 4 (AQP4) immunoglobulin G (IgG) has improved the ability to diagnose NMOSD. AQP4-IgG targets the astrocytic AQP4 water channel leading to complement activation and increased blood-brain barrier permeability. Accurate and early diagnosis is crucial as timely treatment may result in mitigation of long-term disability. Myelin oligodendrocyte glycoprotein (MOG)-IgG associated disorder (MOGAD) is a distinct nosologic entity, which has been more recently described. Its clinical spectrum partly overlaps that of seronegative NMOSD and MS. Although it is considered to have fewer relapses and better prognosis than NMOSD, the clinical course and outcome of MOGAD has not been fully characterized.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Ophthalmology, University of Auckland, New Zealand
| | - M Tariq Bhatti
- Department of Ophthalmology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | |
Collapse
|
160
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|
161
|
Raju GB, Lavanya ML, Gopi S, Kumar TS, Kumari UA. Relapsing neuromyelitis optica spectrum disorder. JOURNAL OF DR. NTR UNIVERSITY OF HEALTH SCIENCES 2021. [DOI: 10.4103/jdrntruhs.jdrntruhs_65_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
162
|
Pandit L, Cox LM, Malli C, D'Cunha A, Rooney T, Lokhande H, Willocq V, Saxena S, Chitnis T. Clostridium bolteae is elevated in neuromyelitis optica spectrum disorder in India and shares sequence similarity with AQP4. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e907. [PMID: 33148687 PMCID: PMC7643530 DOI: 10.1212/nxi.0000000000000907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To understand the role of gut microbiome in influencing the pathogenesis of neuromyelitis optica spectrum disorders (NMOSDs) among patients of south Indian origin. METHODS In this case-control study, stool and blood samples were collected from 39 patients with NMOSD, including 17 with aquaporin 4 IgG antibodies (AQP4+) and 36 matched controls. 16S ribosomal RNA (rRNA) sequencing was used to investigate the gut microbiome. Peripheral CD4+ T cells were sorted in 12 healthy controls, and in 12 patients with AQP4+ NMOSD, RNA was extracted and immune gene expression was analyzed using the NanoString nCounter human immunology kit code set. RESULTS Microbiota community structure (beta diversity) differed between patients with AQP4+ NMOSD and healthy controls (p < 0.001, pairwise PERMANOVA test). Linear discriminatory analysis effect size identified several members of the microbiota that were altered in patients with NMOSD, including an increase in Clostridium bolteae (effect size 4.23, p 0.00007). C bolteae was significantly more prevalent (p = 0.02) among patients with AQP4-IgG+ NMOSD (n = 8/17 subjects) compared with seronegative patients (n = 3/22) and was absent among healthy stool samples. C bolteae has a highly conserved glycerol uptake facilitator and related aquaporin protein (p59-71) that shares sequence homology with AQP4 peptide (p92-104), positioned within an immunodominant (AQP4 specific) T-cell epitope (p91-110). Presence of C bolteae correlated with expression of inflammatory genes associated with both innate and adaptive immunities and particularly involved in plasma cell differentiation, B cell chemotaxis, and Th17 activation. CONCLUSION Our study described elevated levels of C bolteae associated with AQP4+ NMOSD among Indian patients. It is possible that this organism may be causally related to the immunopathogenesis of this disease in susceptible individuals.
Collapse
Affiliation(s)
- Lekha Pandit
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Cox
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chaithra Malli
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anitha D'Cunha
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy Rooney
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hrishikesh Lokhande
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Valerie Willocq
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shrishti Saxena
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tanuja Chitnis
- From the Nitte University (L.P., C.M., A.D.), Mangalore, India; and Ann Romney Center for Neurological Diseases (L.M.C., T.R., H.L., V.W., S.S., T.C.), Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
163
|
Sell J, Haselmann H, Hallermann S, Hust M, Geis C. Autoimmune encephalitis: novel therapeutic targets at the preclinical level. Expert Opin Ther Targets 2020; 25:37-47. [PMID: 33233983 DOI: 10.1080/14728222.2021.1856370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Antibody-mediated encephalitides (AE) with pathogenic autoantibodies (aAB) against neuronal surface antigens are a growing group of diseases characterized by antineuronal autoimmunity in the brain. AE patients typically present with rapidly progressive encephalitis and characteristic disease symptoms dependent on the target antigen. Current treatment consists of an escalating immunotherapy strategy including plasma exchange, steroid application, and B cell depletion. AREAS COVERED For this review, we searched Medline database and google scholar with inclusive dates from 2000. We summarize current treatment strategies and present novel therapeutic approaches of target-specific interventions at the pre-clinical level as well as immunotherapy directed at antibody-induced pathology. Treatment options include modulation of target proteins, intervention with downstream pathways, antibody modification, and depletion of antibody-secreting cells. EXPERT OPINION Although current therapies in AE are effective in many patients, recovery is often prolonged and relapses as well as persistent deficits can occur. Specific immunotherapy together with supportive target-specific therapy may provide faster control of severe symptoms, shorten the disease course, and lead to long-lasting disease stability. Among the various novel therapeutic approaches, modulation of targeted receptors by small molecules crossing the blood-brain barrier as well as prevention of aAB binding is of particular interest.
Collapse
Affiliation(s)
- Josefine Sell
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| | - Holger Haselmann
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, Leipzig University , Leipzig, Germany
| | - Michael Hust
- Department Biotechnology, Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics , Braunschweig, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital , Jena, Germany
| |
Collapse
|
164
|
Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2020; 109:576-596. [PMID: 33385325 DOI: 10.1016/j.neuron.2020.12.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; RIKEN Center for Brain Science, 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Xinzhu Yu
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 514 Burrill Hall, 407 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University in St. Louis, School of Medicine, Campus Box 8108, 660 South Euclid Ave., St. Louis, MO 63110, USA
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Marc R Freeman
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - David Rowitch
- Department of Paediatrics, Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
165
|
Xue T, Yu J, Chen S, Wang Z, Yang Y, Chen Z, Wang Z. Different Targets of Monoclonal Antibodies in Neuromyelitis Optica Spectrum Disorders: A Meta-Analysis Evidenced From Randomized Controlled Trials. Front Neurol 2020; 11:604445. [PMID: 33391166 PMCID: PMC7773932 DOI: 10.3389/fneur.2020.604445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD), an autoimmune inflammatory disorder of the central nervous system, often leads to vision loss or paralysis. This meta-analysis focused on the assessment of the monoclonal antibody therapy in NMOSD and compared different targets of monoclonal antibodies with each other in terms of efficacy and safety outcomes. Method: We searched through the databases of MEDLINE, EMBASE, Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov for randomized controlled trials (RCTs) evaluating monoclonal antibody therapy in NMOSD up to April 2020. Results: We identified seven randomized controlled trials (RCTs), including 775 patients (monoclonal antibody group, n = 485 and placebo group, n = 290). Monoclonal antibody therapy decreased relapse risk (RR 0.33, 95% CI 0.21–0.52, P < 0.00001), annualized relapse rate (ARR) (mean −0.28, 95% CI −0.35−0.20, P < 0.00001), expanded disability status scale score (EDSS) (mean −0.19, 95% CI −0.32−0.07, P = 0.002) and serious adverse events (RR 0.78, 95% CI 0.61–1.00, P = 0.05). However, we did not observe any significant difference in terms of adverse events or mortality. Further, the subgroup analysis demonstrated that the anti-complement protein C5 monoclonal antibody (eculizumab) might have a lower relapse risk (RR 0.07, 95% CI 0.02–0.23, P < 0.0001) in the AQP4 seropositive patients, and anti-interleukin-6 receptor monoclonal antibodies (satralizumab and tocilizumab) showed decreased EDSS score (mean −0.17, 95% CI −0.31−0.02, P = 0.02) more effectively than other monoclonal antibodies. Conclusions: Monoclonal antibodies were effective and safe in NMOSD. Different targets of monoclonal antibodies might have their own advantages.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiahao Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
166
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:cells9122678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
167
|
Potential role of the gut microbiota in neuromyelitis optica spectrum disorder: Implication for intervention. J Clin Neurosci 2020; 82:193-199. [PMID: 33257156 DOI: 10.1016/j.jocn.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
The gut microbiota plays an important role in the occurrence and development of neuroimmunological diseases. Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the central nervous system that is characterized by the peripheral production of the disease-specific serum autoantibody aquaporin-4 (AQP4)-IgG. Recently, accumulating evidence has provided insights into the associations of gut microbiota dysbiosis and intestinal mucosal barrier destruction with NMOSD, but the underlying pathogenesis remains unclear. Thus, a microbiota intervention might be a potential therapeutic strategy for NMOSD by regulating the gut microbiota, repairing the intestinal mucosal barrier, and modulating intestinal immunity and peripheral immunity.
Collapse
|
168
|
Shi Z, Qiu Y, Zhao Z, Wen D, Chen H, Du Q, Zhang Y, Wang J, Yan C, Yang M, Zhou H. CD8 + T cell subpopulations and pro-inflammatory cytokines in neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol 2020; 8:43-53. [PMID: 33231379 PMCID: PMC7818084 DOI: 10.1002/acn3.51241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Objective Our study aimed to investigate circulating CD8+ T cell subpopulations and pro‐inflammatory cytokines in the neuromyelitis optica spectrum disorder (NMOSD). Methods A total of 121 peripheral blood samples were obtained from 57 patients with NMOSD, 34 patients with multiple sclerosis (MS), and 30 sex‐ and age‐matched healthy controls (HCs) for detection of CD8+ T cell subpopulations, including phenotypes of naïve (TN, CD62LhiCD45RO‐), effector/memory (TE/M, CD62LloCD45RO+), memory precursor (TMP, CD127hiKLRG1lo), and short lived effector (TSLEC, CD127loKLRG1hi). In addition, 36 samples from 18 NMOSD, 12 MS, and 6 sex‐ and age‐matched HCs for detecting pro‐inflammatory cytokines (IFNγ and TNFα) using flow cytometry. Results Compared with HCs, we found significantly reduced CD8+ TN and increased CD8+ TE/M in both NMOSD and MS,while decreased CD8+ TMP was only observed in NMOSD. Patients treated with immunotherapy were associated with increased CD8+ TN and decreased CD8+ TE/M in NMOSD. Moreover NMOSD cohort showed significant higher proportions of IFNγ+CD8+ T cells and proportions of TNFα+CD8+ T cells than HC and MS cohorts. On the contrary, obviously decreased IFNγ and TNFα were found in NMOSD patients treated with immunotherapy. Furthermore, Multivariate linear regression analyses revealed that age was negatively correlated with CD8+ TN and TMP, and positively associated with TSLEC; however, sex, EDSS scores and disease phase were not significantly associated with CD8+ T subpopulations. Interpretation This current study provides an evidence that circulating CD8+ T cell with abnormal subpopulations and increased pro‐inflammatory were associated with pathogenesis of autoimmune demyelinating disease of CNS, especially in NMOSD.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuhan Qiu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhengyang Zhao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dingke Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiancheng Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Yan
- Department of Neurology, Zigong fourth people's hospital, Zigong, 643000, China
| | - Mu Yang
- Translational Centre for Oncoimmunology, Sichuan Cancer Hospital and research Institute, Sichuan Cancer Center, Chengdu, 610000, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
169
|
Wang L, Zhou L, ZhangBao J, Huang W, Chang X, Lu C, Wang M, Li W, Xia J, Li X, Chen L, Qiu W, Lu J, Zhao C, Quan C. Neuromyelitis optica spectrum disorder: pregnancy-related attack and predictive risk factors. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323982. [PMID: 33219038 PMCID: PMC7803904 DOI: 10.1136/jnnp-2020-323982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To investigate the influence of pregnancy on patients with neuromyelitis optica spectrum disorder (NMOSD) and to identify risk factors that predict pregnancy-related attack. METHODS From January 2015 to April 2019, 418 female patients with NMOSD were registered at Huashan Hospital. We retrospectively reviewed their medical records and identified 110 patients with 136 informative pregnancies, of whom 83 were aquaporin-4 antibody (AQP4-ab)-positive and 21 were myelin oligodendrocyte glycoprotein-antibody-positive. Pregnancy-related attack was defined as an attack that occurred during pregnancy or within 1 year after delivery/abortion. We compared annualised relapse rate (ARR) during 12 months before pregnancy with that during every trimester of pregnancy and after delivery/abortion. Multivariate analyses were used to explore the independent risk factors involved and a nomogram was generated for the prediction of pregnancy-related attack. Thirty-five female patients from 3 other centres formed an external cohort to validate this nomogram. RESULTS ARR increased significantly during the first trimester after delivery (p<0.001) or abortion (p=0.019) compared with that before pregnancy. Independent risk factors predicting pregnancy-related attack included age at delivery/abortion (20-26.5, p=0.018; 26.5-33, p=0.001), AQP4-ab titre (≥1:100, p=0.049) and inadequate treatment during pregnancy and postpartum period (p=0.004). The concordance index of nomogram was 0.87 and 0.77 using bootstrap resampling in internal and external validation. CONCLUSIONS The first trimester post partum is a high-risk period for NMOSD recurrence. Patients with younger age, higher AQP4-ab titre and inadequate treatment are at higher risk for pregnancy-related attack.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjuan Huang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuechun Chang
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junhui Xia
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lilin Chen
- Xiuquan Community Health Service Center, Guangzhou, Guangdong, China
| | - Wei Qiu
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
170
|
Wildemann B, Horstmann S, Korporal-Kuhnke M, Viehöver A, Jarius S. [Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Optic Neuritis: Diagnosis and Treatment]. Klin Monbl Augenheilkd 2020; 237:1290-1305. [PMID: 33202462 DOI: 10.1055/a-1219-7907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Optic neuritis (ON) is a frequent manifestation of aquaporin-4 (AQP4) antibody-mediated neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disorders, MOGAD). The past few years have seen major advances in the diagnosis and treatment of these two relatively new entities: international diagnostic criteria for NMOSD and MOG-EM have been proposed, improved antibody assays developed, and consensus recommendations on the indications and methodology of serological testing published. Very recently, the results of four phase III trials assessing new treatment options for NMOSD have been presented. With eculizumab, a monoclonal antibody inhibiting complement factor C5, for the first time a relapse-preventing long-term treatment for NMOSD - which has so far mostly been treated off-label with rituximab, azathioprine, and other immunosuppressants - has been approved. Data from recent retrospective studies evaluating treatment responses in MOG-ON suggest that rituximab and other immunosuppressants are effective also in this entity. By contrast, many drugs approved for the treatment of multiple sclerosis (MS) have been found to be either ineffective or to cause disease exacerbation (e.g., interferon-β). Recent studies have shown that not only NMOSD-ON but also MOG-ON usually follows a relapsing course. If left untreated, both disorders can result in severe visual deficiency or blindness, though MOG-ON seems to have a better prognosis overall. Acute attacks are treated with high-dose intravenous methylprednisolone and, in many cases, plasma exchange (PEX) or immunoadsorption (IA). Early use of PEX/IA may prevent persisting visual loss and improve the long-term outcome. Especially MOG-ON has been found to be frequently associated with flare-ups, if steroids are not tapered, and to underlie many cases of "chronic relapsing inflammatory optic neuropathy" (CRION). Both NMOSD-ON and MOG-ON are often associated with simultaneous or consecutive attacks of myelitis and brainstem encephalitis; in contrast to earlier assumptions, supratentorial MRI brain lesions are a common finding and do not preclude the diagnosis. In this article, we review the current knowledge on the clinical presentation, epidemiology, diagnosis, and treatment of these two rare yet important differential diagnoses of both MS-associated ON und idiopathic autoimmune ON.
Collapse
Affiliation(s)
| | | | | | | | - Sven Jarius
- Neurologische Klinik, Universitätsklinikum Heidelberg
| |
Collapse
|
171
|
Kang YR, Kim KH, Nam TS, Lee KH, Kang KW, Lee SJ, Choi SY, Chandrasekaran G, Kim MK. Fulminant Course of Neuromyelitis Optica in a Patient With Anti-MDA5 Antibody-Positive Dermatomyositis: A Case Report. Front Med (Lausanne) 2020; 7:576436. [PMID: 33262991 PMCID: PMC7686760 DOI: 10.3389/fmed.2020.576436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody is a myositis-specific marker detected in clinically amyopathic dermatomyositis (DM). DM with anti-MDA5 antibody can be accompanied by rapidly progressive interstitial lung disease (RP-ILD) and other autoimmune disorders. Until now, only one case of neuromyelitis optica (NMO) with anti-MDA5-positive DM has been reported worldwide, in which the patient achieved a favorable outcome with intensive immunotherapy. We report a case of NMO in a patient with anti-MDA5-positive DM complicated by ILD and rheumatoid arthritis. Our patient experienced a fulminant course of NMO, rather than RP-ILD, in the presence of hyperferritinemia, which resulted in profound neurological sequelae despite immunotherapy including rituximab.
Collapse
Affiliation(s)
- You-Ri Kang
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea
| | - Kun-Hee Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea
| | - Seung-Jin Lee
- Department of Radiology, Chonnam National University Medical School, Gwangju, South Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | | | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea
| |
Collapse
|
172
|
D'Souza R, Wuebbolt D, Andrejevic K, Ashraf R, Nguyen V, Zaffar N, Rotstein D, Wyne A. Pregnancy and Neuromyelitis Optica Spectrum Disorder - Reciprocal Effects and Practical Recommendations: A Systematic Review. Front Neurol 2020; 11:544434. [PMID: 33178102 PMCID: PMC7596379 DOI: 10.3389/fneur.2020.544434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder of the central nervous system characterized by severe, antibody-mediated astrocyte loss with secondary demyelination and axonal damage, predominantly targeting optic nerves and the spinal cord. Recent publications have alluded to increased disease activity during pregnancy, and adverse maternal and fetal outcomes in patients with NMOSD. Our objective was to systematically review published literature to help counsel and manage women with NMOSD contemplating pregnancy. Methods: We searched five databases including MEDLINE and EMBASE, for English-language publications describing pregnancies in women with NMOSD. Article selection, data extraction, and risk-of-bias assessment using Joanna Briggs' critical appraisal tool for case reports and case series, were performed in duplicate. Pooled incidences were calculated where possible, and a narrative summary was provided. Results: Of 2,118 identified titles, 22 case reports and seven case series, representing 595 pregnancies in 389 women, were included. The mean maternal age was 28.12 ± 5.19 years. At least 20% of cases were first diagnosed during pregnancy. There were no maternal deaths. Pooled estimates for clinical outcomes could not be obtained due to inadequate reporting. NMOSD-related disability and relapses increased considerably during pregnancy and especially in the immediate postpartum period. Although a high proportion of early pregnancy losses were reported, an association with disease activity or therapeutic interventions could not be established. Apart from one publication which reported an increased risk of preeclampsia, there was no increase in adverse obstetric outcomes including preterm birth, fetal growth restriction or congenital malformations. Initial attacks and relapses were successfully managed with oral or intravenous corticosteroids and immunosuppressants, and refractory cases with immunoglobulin, plasma exchange and immunoadsorption. Conclusion: Increased NMOSD-related disability and relapses during pregnancy the postpartum period may respond to aggressive management with corticosteroids and immunosuppressants such as azathioprine, which are safely administered during pregnancy and lactation. Emerging safety data on monoclonal antibodies during pregnancy, make these attractive options, while intravenous immunoglobulin, plasma exchange and immunoadsorption can be safely used to treat severe relapses. The complex interplay between NMOSD and pregnancy outcomes would be best understood through prospective analysis of data collected through an international registry. Disclosure: Dalia Rotstein has served as a consultant or speaker for Alexion and Roche. She has received research support from Roche Canada. Rohan D'Souza has served as a consultant and speaker for Ferring Canada Inc and Ferring Global Inc, on topics unrelated to this manuscript. The other authors have no relevant relationships to disclose.
Collapse
Affiliation(s)
- Rohan D'Souza
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Danielle Wuebbolt
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.,Department of Obstetrics & Gynaecology, University of Ottawa, Ottawa, ON, Canada
| | - Katarina Andrejevic
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Faculty of Medicine, University of Western Ontario, London, ON, Canada
| | - Rizwana Ashraf
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Vanessa Nguyen
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Nusrat Zaffar
- Division of Maternal and Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.,Child Health Evaluative Sciences Program, Division of Paediatric Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Dalia Rotstein
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Toronto, ON, Canada
| | - Ahraaz Wyne
- General Internal and Obstetrical Medicine, Department of Medicine, Hamilton Health Sciences Center, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
173
|
Drug development in targeting ion channels for brain edema. Acta Pharmacol Sin 2020; 41:1272-1288. [PMID: 32855530 PMCID: PMC7609292 DOI: 10.1038/s41401-020-00503-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/02/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
174
|
Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells 2020; 9:cells9102187. [PMID: 32998402 PMCID: PMC7601078 DOI: 10.3390/cells9102187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
The water channel protein aquaporin-4 (AQP4) is required for a normal rate of water exchange across the blood–brain interface. Following the discovery that AQP4 is a possible autoantigen in neuromyelitis optica, the function of AQP4 in health and disease has become a research focus. While several studies have addressed the expression and function of AQP4 during inflammatory demyelination, relatively little is known about its expression during non-autoimmune-mediated myelin damage. In this study, we used the toxin-induced demyelination model cuprizone as well as a combination of metabolic and autoimmune myelin injury (i.e., Cup/EAE) to investigate AQP4 pathology. We show that during toxin-induced demyelination, diffuse AQP4 expression increases, while polarized AQP4 expression at the astrocyte endfeet decreases. The diffuse increased expression of AQP4 was verified in chronic-active multiple sclerosis lesions. Around inflammatory brain lesions, AQP4 expression dramatically decreased, especially at sites where peripheral immune cells penetrate the brain parenchyma. Humoral immune responses appear not to be involved in this process since no anti-AQP4 antibodies were detected in the serum of the experimental mice. We provide strong evidence that the diffuse increase in anti-AQP4 staining intensity is due to a metabolic injury to the brain, whereas the focal, perivascular loss of anti-AQP4 immunoreactivity is mediated by peripheral immune cells.
Collapse
|
175
|
de Bellis M, Cibelli A, Mola MG, Pisani F, Barile B, Mastrodonato M, Banitalebi S, Amiry-Moghaddam M, Abbrescia P, Frigeri A, Svelto M, Nicchia GP. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain. Glia 2020; 69:473-488. [PMID: 32946135 DOI: 10.1002/glia.23909] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022]
Abstract
Astrocyte endfeet are endowed with aquaporin-4 (AQP4)-based assemblies called orthogonal arrays of particles (OAPs) whose function is still unclear. To investigate the function of OAPs and of AQP4 tetramers, we have generated a novel "OAP-null" mouse model selectively lacking the OAP forming M23-AQP4 isoform. We demonstrated that AQP4 transcript levels were not reduced by using qPCR. Blue native (BN)/SDS-PAGE and Western blot performed on OAP-null brain and primary astrocyte cultures showed the complete depletion of AQP4 assemblies, the selective expression of M1-AQP4-based tetramers, and a substantial reduction in AQP4 total expression level. Fluorescence quenching and super-resolution microscopy experiments showed that AQP4 tetramers were functionally expressed in astrocyte plasma membrane and their dimensions were reduced compared to wild-type assemblies. Finally, as shown by light and electron microscopy, OAP depletion resulted in a massive reduction in AQP4 expression and a loss of perivascular AQP4 staining at astrocyte endfeet, with only sparse labeling throughout the brain areas analyzed. Our study relies on the unique property of AQP4 to form OAPs, using a novel OAP-null mouse model for the first time, to show that (a) AQP4 assembly is essential for normal AQP4 expression level in the brain and (b) most of AQP4 is organized into OAPs under physiological conditions. Therefore, AQP4 tetramers cannot be used by astrocytes as an alternative to OAPs without affecting AQP4 expression levels, which is important in the physiological and pathological conditions in which OAP aggregation/disaggregation dynamics have been implicated.
Collapse
Affiliation(s)
- Manuela de Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Shervin Banitalebi
- Department of Molecular Medicine, Division of Anatomy, University of Oslo, Oslo, Norway
| | | | - Pasqua Abbrescia
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
176
|
Chang BL, Ro LS, Chen CM, Lo YS, Lyu RK, Kuo HC, Liao MF, Chang CW, Chang HS, Huang CC, Wu YR, Chu CC, Weng YC, Chang KH. Serum levels of cell adhesion molecules in patients with neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol 2020; 7:1854-1861. [PMID: 32860355 PMCID: PMC7545585 DOI: 10.1002/acn3.51167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Objectives Blood–brain barrier (BBB) disruption is a critical pathological process involved in neuromyelitis optica spectrum disorder (NMOSD). Here, we characterized the profile of five cell adhesion molecules in patients with NMOSD. Methods We measured levels of cell adhesion molecules, including ICAM‐1, ICAM‐2, VCAM‐1, PECAM‐1, and NCAM‐1, in the serum of 28 patients with NMOSD, 24 patients with multiple sclerosis (MS), and 25 healthy controls (HCs). Results ICAM‐2 levels (median: 394.8 ng/mL) were increased in patients with NMOSD compared with MS (267.1 ng/mL, P = 0.005) and HCs (257.4 ng/mL, P = 0.007), and VCAM‐1 and ICAM‐1 levels were higher in patients with NMOSD (641.9 ng/mL and 212.7 ng/mL, respectively) compared with HCs (465 ng/mL [P = 0.013] and 141.8 ng/mL [P = 0.002], respectively). However, serum PECAM‐1 levels were lower in patients with NMOSD (89.62 ng/mL) compared with MS (106.9 ng/mL, P = 0.015) and HCs (107.2 ng/mL, P = 0.007). Receiver operating characteristic curve analysis revealed that PECAM‐1 (area under the curve (AUC): 0.729) and ICAM‐2 (AUC: 0.747) had adequate abilities to distinguish NMOSD from MS, and VCAM‐1 (AUC: 0.719), PECAM‐1 (area under the curve: 0.743), ICAM‐1 (AUC: 0.778), and ICAM‐2 (AUC: 0.749) exhibited potential to differentiate NMOSD and HCs. Serum levels of PECAM‐1 also demonstrated a negative correlation with Kurtzke Expanded Disability Status Scale scores in patients with NMOSD. Interpretation Our results reveal possible BBB breakdown signals specifically observed in NMOSD and highlight the potential role of cell adhesion molecules as biomarkers of this disease.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Long-Sun Ro
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Rong-Kuo Lyu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hung-Chou Kuo
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Wei Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Hong-Shiu Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Ching-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Chun-Che Chu
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Yi-Ching Weng
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, No. 5, Fusing St., Gueishan Dist., Taoyuan City, 333, Taiwan.,Chang Gung University College of Medicine, No. 261, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| |
Collapse
|
177
|
Etemadifar M, Sabeti F, Ebrahimian S, Momeni F. Dorsal midbrain involvement in MRI as a core clinical manifestation for NMOSD diagnosis. Mult Scler Relat Disord 2020; 43:102150. [DOI: 10.1016/j.msard.2020.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
|
178
|
Cai MT, Zheng Y, Shen CH, Yang F, Fang W, Zhang YX, Ding MP. Evaluation of brain and spinal cord lesion distribution criteria at disease onset in distinguishing NMOSD from MS and MOG antibody-associated disorder. Mult Scler 2020; 27:871-882. [PMID: 32672091 DOI: 10.1177/1352458520939008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To validate the recently proposed imaging criteria in distinguishing aquaporin-4 antibody (AQP4-ab)-seropositive neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein antibody-associated disorder (MOG-AD) at disease onset in a Chinese population. METHODS We enrolled 241 patients in this retrospective study, including 143 AQP4-ab-seropositive NMOSD, 73 MS, and 25 MOG-AD. Cacciaguerra's criteria were described as fulfillment of at least 2/5 conditions including the absence of the combined juxtacortical/cortical lesions, the presence of longitudinal extensive transverse myelitis (LETM) lesions, the presence of periependymal-lateral ventricles lesions, the absence of Dawson's fingers lesions, and the absence of periventricular lesions. RESULTS Fulfillment of at least 3/5 conditions was able to differentiate NMOSD from MS with a good diagnostic performance (accuracy = 0.92, sensitivity = 0.91, specificity = 0.93), yet failed to differentiate NMOSD from MOG-AD. LETM lesions showed the highest accuracy (0.78), sensitivity (0.70), and specificity (0.97) for NMSOD. CONCLUSION Our research suggested the utility of Cacciaguerra's criteria in a Chinese population at disease onset. A better diagnostic performance in NMOSD could be attained with at least 3/5 conditions fulfilled. Yet their utility in distinguishing NMOSD from MOG-AD was limited.
Collapse
Affiliation(s)
- Meng-Ting Cai
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
179
|
Abstract
Multiple sclerosis is one of the most common autoimmune diseases affecting the central nervous system. Current guidelines characterize multiple sclerosis and related conditions based on clinical, imaging, and body fluid markers. In this review, we describe how laboratory analysis of cerebrospinal fluid is currently performed and discuss new approaches under development for multiple sclerosis diagnostics.
Collapse
Affiliation(s)
- Joshua F Goldsmith
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - A Zara Herskovits
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
180
|
Beneficial effects of intravenous immunoglobulin as an add-on therapy to azathioprine for NMO-IgG-seropositive neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 42:102109. [DOI: 10.1016/j.msard.2020.102109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
181
|
Rocha AL, Costa A, Graça L, Andrade C, Silva S, Abreu P. Fever, nausea and vomiting, and CSF pleocytosis must be meningoencephalitis, right? No, think again! Clin Neurol Neurosurg 2020; 194:105813. [DOI: 10.1016/j.clineuro.2020.105813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/27/2022]
|
182
|
Ye L, Xu Z, Deng J, Yang J. Classical Triad and Periventricular Lesions Do Not Necessarily Indicate Wernicke's Encephalopathy: A Case Report and Review of the Literature. Front Neurol 2020; 11:451. [PMID: 32587564 PMCID: PMC7297919 DOI: 10.3389/fneur.2020.00451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
The classical triad-ophthalmoplegia, cerebellar dysfunction, and altered mental state-in addition to bilateral symmetrical periventricular lesions are actually common to see, and clinicians tend to associate that with Wernicke's encephalopathy (WE). The diagnosis is strengthened with a likely deficiency of thiamine. We herein describe a malnourished patient with clinical triad and hyperintensities in the circumventricular regions, and she turned out to have neuromyelitis optica spectrum disorder (NMOSD) after many twists and turns. Despite totally different pathogenic mechanisms, NMOSD can mimic WE, sometimes even exhibiting radiological features similar to that of WE, thereby complicating the diagnosis. Our case highlights how similar these two diseases could be and the importance of differential diagnosis in clinical practice, which are so far rarely reported. Some clinical and radiological differences of these two diseases are summarized to help establish a prompt diagnosis.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Yang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
183
|
He Y, Bao YT, Chen HS, Chen YT, Zhou XJ, Yang YX, Li CY. The Effect of Shen Qi Wan Medicated Serum on NRK-52E Cells Proliferation and Migration by Targeting Aquaporin 1 (AQP1). Med Sci Monit 2020; 26:e922943. [PMID: 32491998 PMCID: PMC7293146 DOI: 10.12659/msm.922943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Shen Qi Wan (SQW) as a well-known formula for the amelioration of kidney yang deficiency syndrome (KYDS), and it has been widely employed in traditional Chinese medicine (TCM). This study aimed to investigate the effect and underlying mechanism of SQW medicated serum on proliferation and migration in NRK-52E cells. MATERIAL AND METHODS We employed the real-time cell analysis (RTCA) system to investigate the effect of SQW medicated serum on proliferation and migration in NRK-52E cells. In addition, the migration was further investigated by using a wound-healing assay. The mRNA and protein expression level of aquaporin 1 (AQP1) of NRK-52E cells with SQW medicated serum-treated were quantified by real-time quantitative polymerase chain reaction (q-PCR) and western blot assay, respectively. Furthermore, NRK-52E cells were transfected with lentivirus AQP1-RNAi to assess migratory cell abilities in vitro. RESULTS The migratory abilities of NRK-52E cells were significantly increased after SQW medicated serum treatment (P<0.05), and no significant difference in cell proliferation. In addition, SQW medicated serum was significantly upregulated the mRNA and protein expression level of AQP1 in NRK-52E cells (P<0.05). Additionally, the in vitro metastasis test proved that knockdown of AQP1 suppressed migratory abilities according to RTCA and wound healing test while was reversed by SQW medicated serum (P<0.05). CONCLUSIONS Our study demonstrates that SQW medicated serum effectively promotes the migration of NRK-52E cells by increasing AQP1 expression, and AQP1 may be as a therapeutic target of SQW for renal injury treatment under KYDS.
Collapse
Affiliation(s)
- Ying He
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
- Department of Traditional Chinese Medicine (TCM) Pharmacy, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, Zhejiang, P.R. China
| | - Yu Ting Bao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Hong Shu Chen
- Department of Traditional Chinese Medicine (TCM) Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yi Tao Chen
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Xiao Jie Zhou
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Yuan Xiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Chang Yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
184
|
Kleerekooper I, Herbert MK, Kuiperij HB, Sato DK, Fujihara K, Callegaro D, Marignier R, Saiz A, Senel M, Tumani H, De Jong BA, Trip SA, Nakashima I, Verbeek MM, Petzold A. CSF levels of glutamine synthetase and GFAP to explore astrocytic damage in seronegative NMOSD. J Neurol Neurosurg Psychiatry 2020; 91:605-611. [PMID: 32217788 DOI: 10.1136/jnnp-2019-322286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To explore levels of astrocytopathy in neuromyelitis optica spectrum disorder (NMOSD) by measuring levels of the astrocytic enzyme glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), an established astrocytic biomarker known to be associated with disease activity in multiple sclerosis. METHODS Cerebrospinal fluid concentrations of GS and GFAP were measured by ELISA in patients with NMOSD (n=39, 28 aquaporin-4 (AQP4)-Ab-seropositive, 3 double-Ab-seronegative, 4 myelin oligodendrocyte glycoprotein (MOG)-Ab-seropositive and 4 AQP4-Ab-seronegative with unknown MOG-Ab-serostatus), multiple sclerosis (MS) (n=69), optic neuritis (n=5) and non-neurological controls (n=37). RESULTS GFAP and GS concentrations differed significantly across groups (both p<0.001), showing a similar pattern of elevation in patients with AQP4-Ab-seropositive NMOSD. GS and GFAP were significantly correlated, particularly in patients with AQP4-Ab-seropositive NMOSD (rs=0.70, p<0.001). Interestingly, GFAP levels in some patients with double-Ab-seronegative NMOSD were markedly increased. CONCLUSIONS Our data indicate astrocytic injury occurs in some patients with double-Ab-seronegative NMOSD, which hints at the possible existence of yet undiscovered astrocytic autoimmune targets. We hypothesise that elevated GS and GFAP levels could identify those double-Ab-seronegative patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies.
Collapse
Affiliation(s)
- Iris Kleerekooper
- Department of Neuroinflammation, University College London, London, UK .,Department of Neuro-Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Megan K Herbert
- Department of Neurology and Department of Laboratory Medicine, Radboud University Nijmegen Faculty of Medical Sciences, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Douglas Kazutoshi Sato
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan.,Brain Institute, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kazuo Fujihara
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan
| | - Dagoberto Callegaro
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Romain Marignier
- Service de neurologie, sclérose en plaques, pathologies de la myéline et neuro-inflammation, Centre de Référence pour les maladies inflammatoires rares du cerveau et de la moelle (MIRCEM), Hopital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France
| | - Albert Saiz
- Service of Neurology, Hospital Clinic and Inistitut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Makbule Senel
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University of Ulm, Ulm, Germany.,Specialist Clinic of Neurology Dietenbronn, Dietenbronn, Germany
| | - Brigit A De Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC-Locatie VUMC, Amsterdam, The Netherlands
| | - S Anand Trip
- Department of Neuroinflammation, University College London, London, UK
| | - Ichiro Nakashima
- Department of Neurology, Tohoku University School of Medicine, Sendai, The Japan.,Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Marcel M Verbeek
- Department of Neurology and Department of Laboratory Medicine, Radboud University Nijmegen Faculty of Medical Sciences, Nijmegen, The Netherlands.,Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Axel Petzold
- Institute of Neurology, Neuroimmunology and CSF Laboratory, University College London, London, UK.,Neurology & Ophthalmology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
185
|
Rocca MA, Cacciaguerra L, Filippi M. Moving beyond anti-aquaporin-4 antibodies: emerging biomarkers in the spectrum of neuromyelitis optica. Expert Rev Neurother 2020; 20:601-618. [DOI: 10.1080/14737175.2020.1764352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
186
|
Abstract
Neuromyelitis optica (NMO) is a rare and chronic disabling autoimmune astrocytopathy of the central nervous system. Current advances regarding aquaporin-4 antibody function facilitate the understanding of clinical manifestations and imaging findings beyond optic neuritis and transverse myelitis. The current definition of NMO spectrum disorder (NMOSD) includes both aquaporin-4-IgG seropositive and seronegative patients who present with characteristic findings. This review will briefly summarize the pathophysiology and the latest NMOSD diagnostic criteria and focus on the NMOSD imaging findings and its differential diagnosis.
Collapse
Affiliation(s)
- Sheng-Che Hung
- Division of Neuroradiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
187
|
Marrodan M, Gaitán MI, Correale J. Spinal Cord Involvement in MS and Other Demyelinating Diseases. Biomedicines 2020; 8:E130. [PMID: 32455910 PMCID: PMC7277673 DOI: 10.3390/biomedicines8050130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Diagnostic accuracy is poor in demyelinating myelopathies, and therefore a challenge for neurologists in daily practice, mainly because of the multiple underlying pathophysiologic mechanisms involved in each subtype. A systematic diagnostic approach combining data from the clinical setting and presentation with magnetic resonance imaging (MRI) lesion patterns, cerebrospinal fluid (CSF) findings, and autoantibody markers can help to better distinguish between subtypes. In this review, we describe spinal cord involvement, and summarize clinical findings, MRI and diagnostic characteristics, as well as treatment options and prognostic implications in different demyelinating disorders including: multiple sclerosis (MS), neuromyelitis optica spectrum disorder, acute disseminated encephalomyelitis, anti-myelin oligodendrocyte glycoprotein antibody-associated disease, and glial fibrillary acidic protein IgG-associated disease. Thorough understanding of individual case etiology is crucial, not only to provide valuable prognostic information on whether the disorder is likely to relapse, but also to make therapeutic decision-making easier and reduce treatment failures which may lead to new relapses and long-term disability. Identifying patients with monophasic disease who may only require acute management, symptomatic treatment, and subsequent rehabilitation, rather than immunosuppression, is also important.
Collapse
Affiliation(s)
| | | | - Jorge Correale
- Neurology Department, Fleni, C1428AQK Buenos Aires, Argentina; (M.M.); (M.I.G.)
| |
Collapse
|
188
|
Diagnostic and therapeutic issues of inflammatory diseases of the elderly. Rev Neurol (Paris) 2020; 176:739-749. [PMID: 32312496 DOI: 10.1016/j.neurol.2020.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
Inflammatory diseases of the central nervous system (CNS) mainly occur during early adulthood and multiple sclerosis (MS) represents the overwhelming majority of these disorders. Nevertheless, MS only rarely begins after 50 years and a diagnosis of late-onset MS should only be done when clinical as well as radiological and biological findings are typical of MS since the probability of misdiagnosis is higher in elderly patients. Indeed, in patients aged over 50 years, along with a relative decrease of MS incidence, other inflammatory diseases of the CNS but also differential diagnoses including neoplastic as well as infectious disorders should be thoroughly searched to avoid diagnostic mistakes and the prescription of inadequate and potentially harmful immunomodulatory/immunosuppressive therapies. Moreover, aging is associated with diverse immune changes also known as immunosenescence resulting in, notably, higher risk of comorbidities (including vascular diseases) and infections which need to be considered when planning medical treatments of elderly patients with inflammatory diseases of the CNS. Herein, therapeutic and diagnostic challenges faced by neurologists are reviewed to ease patient management.
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW This review discusses concepts for diagnosing neuromyelitis optica spectrum disorders (NMOSD), distinguishing NMOSD from other inflammatory diseases of the central nervous system, and highlights recent and forthcoming data on acute and maintenance therapy of NMOSD. RECENT FINDINGS The neurologic manifestations of NMOSD are heterogenous, extending beyond classic presentations of optic neuritis and longitudinally extensive transverse myelitis. NMOSD may be comorbid with rheumatologic diseases, such as systemic lupus erythematosus, but is recognized as a distinct entity. Recent studies of acute treatment of NMOSD support early use of plasmapheresis. Relapse prevention is essential, as relapses can be disabling and patients may have only partial recovery. Current practice generally recommends at least 5 years of maintenance treatment. Recent randomized data demonstrates superiority of rituximab over azathioprine. Phase 3 trials have recently been completed or are underway studying novel therapies employing B-cell depletion, complement inhibition, and cell-based mechanisms (among other mechanisms) for maintenance therapy of NMOSD. SUMMARY NMOSD is a heterogeneous but well-defined clinical entity, distinct from other neurologic and systemic inflammatory diseases, and treatment is poised for expansion.
Collapse
|
190
|
Abstract
We review state-of-the-art monitoring techniques for acute, severe traumatic spinal cord injury (TSCI) to facilitate targeted perfusion of the injured cord rather than applying universal mean arterial pressure targets. Key concepts are discussed such as intraspinal pressure and spinal cord perfusion pressure (SCPP) at the injury site, respectively, analogous to intracranial pressure and cerebral perfusion pressure for traumatic brain injury. The concept of spinal cord autoregulation is introduced and quantified using spinal pressure reactivity index (sPRx), which is analogous to pressure reactivity index for traumatic brain injury. The U-shaped relationship between sPRx and SCPP defines the optimum SCPP as the SCPP that minimizes sPRx (i.e., maximizes autoregulation), and suggests that not only ischemia but also hyperemia at the injury site may be detrimental. The observation that optimum SCPP varies between patients and temporally in each patient supports individualized management. We discuss multimodality monitoring, which revealed strong correlations between SCPP and injury site metabolism (tissue glucose, lactate, pyruvate, glutamate, glycerol), monitored by surface microdialysis. Evidence is presented that the dura is a major, but unappreciated, cause of spinal cord compression after TSCI; we thus propose expansion duroplasty as a novel treatment. Monitoring spinal cord blood flow at the injury site has revealed novel phenomena, e.g., 3 distinct blood flow patterns, local steal, and diastolic ischemia. We conclude that monitoring from the injured spinal cord in the intensive care unit is a safe technique that appears to enable optimized and individualized spinal cord perfusion.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
191
|
Tradtrantip L, Asavapanumas N, Verkman AS. Emerging therapeutic targets for neuromyelitis optica spectrum disorder. Expert Opin Ther Targets 2020; 24:219-229. [PMID: 32070155 DOI: 10.1080/14728222.2020.1732927] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease of the central nervous system affecting primarily the spinal cord and optic nerves. Most NMOSD patients are seropositive for immunoglobulin G autoantibodies against astrocyte water channel aquaporin-4, called AQP4-IgG, which cause astrocyte injury leading to demyelination and neurological impairment. Current therapy for AQP4-IgG seropositive NMOSD includes immunosuppression, B cell depletion, and plasma exchange. Newer therapies target complement, CD19 and IL-6 receptors.Areas covered: This review covers early-stage pre-clinical therapeutic approaches for seropositive NMOSD. Targets include pathogenic AQP4-IgG autoantibodies and their binding to AQP4, complement-dependent and cell-mediated cytotoxicity, blood-brain barrier, remyelination and immune effector and regulatory cells, with treatment modalities including small molecules, biologics, and cells.Expert opinion: Though newer NMOSD therapies appear to have increased efficacy in reducing relapse rate and neurological deficit, increasingly targeted therapies could benefit NMOSD patients with ongoing relapses and could potentially be superior in efficacy and safety. Of the various early-stage therapeutic approaches, IgG inactivating enzymes, aquaporumab blocking antibodies, drugs targeting early components of the classical complement system, complement regulator-targeted drugs, and Fc-based multimers are of interest. Curative strategies, perhaps involving AQP4 tolerization, remain intriguing future possibilities.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
192
|
Vandebroek A, Yasui M. Regulation of AQP4 in the Central Nervous System. Int J Mol Sci 2020; 21:E1603. [PMID: 32111087 PMCID: PMC7084855 DOI: 10.3390/ijms21051603] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporin-4 (AQP4) is the main water channel protein expressed in the central nervous system (CNS). AQP4 is densely expressed in astrocyte end-feet, and is an important factor in CNS water and potassium homeostasis. Changes in AQP4 activity and expression have been implicated in several CNS disorders, including (but not limited to) epilepsy, edema, stroke, and glioblastoma. For this reason, many studies have been done to understand the various ways in which AQP4 is regulated endogenously, and could be regulated pharmaceutically. In particular, four regulatory methods have been thoroughly studied; regulation of gene expression via microRNAs, regulation of AQP4 channel gating/trafficking via phosphorylation, regulation of water permeability using heavy metal ions, and regulation of water permeability using small molecule inhibitors. A major challenge when studying AQP4 regulation is inter-method variability. A compound or phosphorylation which shows an inhibitory effect in vitro may show no effect in a different in vitro method, or even show an increase in AQP4 expression in vivo. Although a large amount of variability exists between in vitro methods, some microRNAs, heavy metal ions, and two small molecule inhibitors, acetazolamide and TGN-020, have shown promise in the field of AQP4 regulation.
Collapse
Affiliation(s)
- Arno Vandebroek
- Department of Pharmacology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| | | |
Collapse
|
193
|
Simaniv TO, Vasiliev AV, Askarova LS, Zakharova MN. [Neuromyelitis optica and neuromyelitis optica spectrum disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:35-48. [PMID: 31934987 DOI: 10.17116/jnevro20191191035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to up-to-date data on epidemiology, aspects of the pathogenesis of neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorders (NMOSD). The authors consider a role of myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG) in the syndromes phenotypically similar to NMO and NMOSD. Special attention is drawn to the methods of MOG-IgG antibodies detection and indications for testing. The approaches and management for treatment and prevention of NMO relapses, risks of complications during pregnancy and immediately after delivery, as well as methods for their prevention and treatment, are described.
Collapse
Affiliation(s)
- T O Simaniv
- Research Center of Neurology, Moscow, Russia
| | | | | | | |
Collapse
|
194
|
Naser Moghadasi A. Environmental and genetic risk factors in the development of neuromyelitis optica. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1723416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
195
|
Shi Z, Qiu Y, Wang J, Fang Y, Zhang Y, Chen H, Du Q, Zhao Z, Yan C, Yang M, Zhou H. Dysbiosis of gut microbiota in patients with neuromyelitis optica spectrum disorders: A cross sectional study. J Neuroimmunol 2020; 339:577126. [DOI: 10.1016/j.jneuroim.2019.577126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
196
|
Fang W, Zheng Y, Yang F, Cai MT, Shen CH, Liu ZR, Zhang YX, Ding MP. Short segment myelitis as the initial and only manifestation of aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorders. Ther Adv Neurol Disord 2020; 13:1756286419898594. [PMID: 32010226 PMCID: PMC6971969 DOI: 10.1177/1756286419898594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
Background: Short segment myelitis (SSM, < 3 vertebral segments) is an under-recognized initial manifestation of neuromyelitis optica spectrum disorders (NMOSD). Though infrequent, failure to recognize SSM in patients with NMOSD would lead to incorrect diagnosis and treatment. Therefore, delineation of features of NMOSD-associated SSM is of paramount importance. Objective: Our study aimed to determine the demographic, clinical and radiological features of NMOSD-associated SSM, and compare those with NMOSD-associated longitudinally extensive transverse myelitis (LETM) and multiple sclerosis (MS)-associated SSM, respectively. Methods: Chinese patients presenting initially only with acute myelitis and diagnosed with NMOSD (n = 46) and MS (n = 11) were included. Clinical, serological, imaging and disability data were collected. Mann–Whitney U test or two-tailed Fisher’s exact tests were used to analyse the data. Results: Of the 46 enrolled NMOSD patients, 34 (74%) collectively had 38 LETM lesions, while 12 (26%) had 14 SSM lesions. When compared with LETM, NMOSD presenting with SSM were more likely to have a delayed diagnosis and a lower level of disability at nadir during the first attack. T1-weighted imaging hypointensity was more prominent in NMOSD-associated LETM lesions than NMOSD-associated SSM lesions. When compared with MS-associated SSM, NMOSD-associated SSM lesions were more likely to be centrally located, grey matter involving and transversally extensive on axial imaging and spanned no less than 2 vertebral segments on sagittal imaging. Conclusion: These findings suggest that SSM does not preclude the possibility of a NMOSD diagnosis. Testing for serum aquaporin-4 immunoglobulin G (AQP4-IgG) and careful study of lesions on spinal cord magnetic resonance imaging could aid in an earlier and correct diagnosis.
Collapse
Affiliation(s)
- Wei Fang
- Department of Neurology, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yang Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng-Ting Cai
- Department of Neurology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Chun-Hong Shen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Rong Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin-Xi Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mei-Ping Ding
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| |
Collapse
|
197
|
Wildner P, Stasiołek M, Matysiak M. Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Mult Scler Relat Disord 2020; 37:101452. [DOI: 10.1016/j.msard.2019.101452] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
|
198
|
Flanagan EP. Neuromyelitis Optica Spectrum Disorder and Other Non-Multiple Sclerosis Central Nervous System Inflammatory Diseases. Continuum (Minneap Minn) 2019; 25:815-844. [PMID: 31162318 DOI: 10.1212/con.0000000000000742] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW This article reviews the clinical features, diagnostic approach, treatment, and prognosis of central nervous system inflammatory diseases that mimic multiple sclerosis (MS), including those defined by recently discovered autoantibody biomarkers. RECENT FINDINGS The discovery of autoantibody biomarkers of inflammatory demyelinating diseases of the central nervous system (aquaporin-4 IgG and myelin oligodendrocyte glycoprotein IgG) and the recognition that, despite some overlap, their clinical phenotypes are distinct from MS have revolutionized this field of neurology. These autoantibody biomarkers assist in diagnosis and have improved our understanding of the underlying disease pathogenesis. This has allowed targeted treatments to be translated into clinical trials, three of which are now under way in aquaporin-4 IgG-seropositive neuromyelitis optica (NMO) spectrum disorder. SUMMARY Knowledge of the clinical attributes, MRI findings, CSF parameters, and accompanying autoantibody biomarkers can help neurologists distinguish MS from its inflammatory mimics. These antibody biomarkers provide critical diagnostic and prognostic information and guide treatment decisions. Better recognition of the clinical, radiologic, and laboratory features of other inflammatory MS mimics that lack autoantibody biomarkers has allowed us to diagnose these disorders faster and initiate disease-specific treatments more expeditiously.
Collapse
|
199
|
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16:272. [PMID: 31870389 PMCID: PMC6929340 DOI: 10.1186/s12974-019-1674-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory-neurodegenerative disease of the central nervous system presenting with significant inter- and intraindividual heterogeneity. However, the application of clinical and imaging biomarkers is currently not able to allow individual characterization and prediction. Complementary, molecular biomarkers which are easily quantifiable come from the areas of immunology and neurobiology due to the causal pathomechanisms and can excellently complement other disease characteristics. Only a few molecular biomarkers have so far been routinely used in clinical practice as their validation and transfer take a long time. This review describes the characteristics that an ideal MS biomarker should have and the challenges of establishing new biomarkers. In addition, clinically relevant and promising biomarkers from the blood and cerebrospinal fluid are presented which are useful for MS diagnosis and prognosis as well as for the assessment of therapy response and side effects.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany.
| | - Katja Akgün
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
200
|
Chen B, Qin C, Tao R, Dong YJ, Ma X, Chen M, Wu LJ, Bu BT, Tian DS. The clinical value of the albumin quotient in patients with neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2019; 38:101880. [PMID: 31812873 DOI: 10.1016/j.msard.2019.101880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/24/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The disruption of the blood-brain barrier (BBB) is common in patients with neuromyelitis optica spectrum disorder (NMOSD), causing pro-inflammatory immune cells to migrate into the central nervous system (CNS) and active demyelinating lesions. Albumin quotient is commonly used as an indicator for BBB permeability or dysfunction, but its potential clinical value in NMOSD treatment has never been explored. The present study investigated the differences in the albumin quotient level among NMOSD patients with different antibodies (AQP4-IgG and MOG-IgG) and the relationship between the albumin quotient and neurological dysfunction. METHODS We retrospectively collected data from 141 patients with NMOSD (104 with AQP4-IgG and 37 with MOG-IgG) and reviewed their clinical features and albumin quotient levels. RESULTS The percentage of patients with an abnormal albumin quotient was significantly higher in the MOG-IgG group than in the AQP4-IgG group (48.6% vs 27.9%, P = 0.026); albumin quotient levels in the AQP4-IgG-positive group were similar to those in the MOG-IgG groups (5.65 vs 5.8, P = 0.23). Among those with an abnormal quotient, no differences in the proportions of severe neurological disability across treatment were found between patients with AQP4-IgG and those with MOG-IgG (pre-treatment: AQP4-IgG group vs MOG-IgG group: 58.6% vs 38.9%, P = 0.24; post-treatment: AQP4-IgG group vs MOG-IgG group: 31.0% vs 22.2%, P = 0.74). CONCLUSIONS The BBB breakdown in NMOSD patients with MOG-IgG may be more common than in those with AQP4-IgG. AQP4-IgG-positive patients and MOG-IgG-positive patients with severe neurological disability tend to exhibit similar disruptions to the BBB.
Collapse
Affiliation(s)
- Bo Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ran Tao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan-Ji Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue Ma
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bi-Tao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|