151
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
152
|
Kong X, Chen L, Li B, Quan C, Wu J. Applications of oxidized alginate in regenerative medicine. J Mater Chem B 2021; 9:2785-2801. [PMID: 33683259 DOI: 10.1039/d0tb02691c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because of its ideal degradation rate and features, oxidized alginate (OA) is selected as an appropriate substitute and has been introduced into hydrogels, microspheres, 3D-printed/composite scaffolds, membranes, and electrospinning and coating materials. By taking advantage of OA, the OA-based materials can be easily functionalized and deliver drugs or growth factors to promote tissue regeneration. In 1928, it was first found that alginate could be oxidized using periodate, yielding OA. Since then, considerable progress has been made in the research on the modification and application of alginate after oxidation. In this article, we summarize the key properties and existing applications of OA and various OA-based materials and discuss their prospects in regenerative medicine.
Collapse
Affiliation(s)
- Xiaoli Kong
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China.
| | | | | | | | | |
Collapse
|
153
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
154
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
155
|
Neuronal Differentiation from Induced Pluripotent Stem Cell-Derived Neurospheres by the Application of Oxidized Alginate-Gelatin-Laminin Hydrogels. Biomedicines 2021; 9:biomedicines9030261. [PMID: 33808044 PMCID: PMC8000907 DOI: 10.3390/biomedicines9030261] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Biodegradable hydrogels that promote stem cell differentiation into neurons in three dimensions (3D) are highly desired in biomedical research to study drug neurotoxicity or to yield cell-containing biomaterials for neuronal tissue repair. Here, we demonstrate that oxidized alginate-gelatin-laminin (ADA-GEL-LAM) hydrogels facilitate neuronal differentiation and growth of embedded human induced pluripotent stem cell (hiPSC) derived neurospheres. ADA-GEL and ADA-GEL-LAM hydrogels exhibiting a stiffness close to ~5 kPa at initial cell culture conditions of 37 °C were prepared. Laminin supplemented ADA-GEL promoted an increase in neuronal differentiation in comparison to pristine ADA-GEL, with enhanced neuron migration from the neurospheres to the bulk 3D hydrogel matrix. The presence of laminin in ADA-GEL led to a more than two-fold increase in the number of neurospheres with migrated neurons. Our findings suggest that laminin addition to oxidized alginate-gelatin hydrogel matrices plays a crucial role to tailor oxidized alginate-gelatin hydrogels suitable for 3D neuronal cell culture applications.
Collapse
|
156
|
Distler T, Kretzschmar L, Schneidereit D, Girardo S, Goswami R, Friedrich O, Detsch R, Guck J, Boccaccini AR, Budday S. Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomater Sci 2021; 9:3051-3068. [PMID: 33666608 DOI: 10.1039/d0bm02117b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
3D-printing technologies, such as biofabrication, capitalize on the homogeneous distribution and growth of cells inside biomaterial hydrogels, ultimately aiming to allow for cell differentiation, matrix remodeling, and functional tissue analogues. However, commonly, only the mechanical properties of the bioinks or matrix materials are assessed, while the detailed influence of cells on the resulting mechanical properties of hydrogels remains insufficiently understood. Here, we investigate the properties of hydrogels containing cells and spherical PAAm microgel beads through multi-modal complex mechanical analyses in the small- and large-strain regimes. We evaluate the individual contributions of different filler concentrations and a non-fibrous oxidized alginate-gelatin hydrogel matrix on the overall mechanical behavior in compression, tension, and shear. Through material modeling, we quantify parameters that describe the highly nonlinear mechanical response of soft composite materials. Our results show that the stiffness significantly drops for cell- and bead concentrations exceeding four million per milliliter hydrogel. In addition, hydrogels with high cell concentrations (≥6 mio ml-1) show more pronounced material nonlinearity for larger strains and faster stress relaxation. Our findings highlight cell concentration as a crucial parameter influencing the final hydrogel mechanics, with implications for microgel bead drug carrier-laden hydrogels, biofabrication, and tissue engineering.
Collapse
Affiliation(s)
- T Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - L Kretzschmar
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - D Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - S Girardo
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - R Goswami
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91056 Erlangen, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - J Guck
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen-Nürnberg, 91058 Erlangen, Germany and Chair of Biological Optomechanics, Department of Physics, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | - S Budday
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
157
|
Genç H, Hazur J, Karakaya E, Dietel B, Bider F, Groll J, Alexiou C, Boccaccini AR, Detsch R, Cicha I. Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts. Int J Mol Sci 2021; 22:2358. [PMID: 33652991 PMCID: PMC7956320 DOI: 10.3390/ijms22052358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell-bioink interactions are not completely understood and the potential effects of free aldehyde groups on the living cells have not been investigated. In this study, alginate, ADA and ADA-GEL were characterized via FTIR and NMR, and their effect on cell viability was investigated. In the tested cell lines, there was a concentration-dependent effect of oxidation degree on cell viability, with the strongest cytotoxicity observed after 72 h of culture. Subsequently, primary human cells, namely fibroblasts and endothelial cells (ECs) were grown in ADA and ADA-GEL hydrogels to investigate the molecular effects of oxidized material. In ADA, an extremely strong ROS generation resulting in a rapid depletion of cellular thiols was observed in ECs, leading to rapid necrotic cell death. In contrast, less pronounced cytotoxic effects of ADA were noted on human fibroblasts. Human fibroblasts had higher cellular thiol content than primary ECs and entered apoptosis under strong oxidative stress. The presence of gelatin in the hydrogel improved the primary cell survival, likely by reducing the oxidative stress via binding to the CHO groups. Consequently, ADA-GEL was better tolerated than ADA alone. Fibroblasts were able to survive the oxidative stress in ADA-GEL and re-entered the proliferative phase. To the best of our knowledge, this is the first report that shows in detail the relationship between oxidative stress-induced intracellular processes and alginate di-aldehyde-based bioinks.
Collapse
Affiliation(s)
- Hatice Genç
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.); (C.A.)
| | - Jonas Hazur
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (J.H.); (E.K.); (F.B.)
| | - Emine Karakaya
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (J.H.); (E.K.); (F.B.)
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Faina Bider
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (J.H.); (E.K.); (F.B.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Christoph Alexiou
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.); (C.A.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (J.H.); (E.K.); (F.B.)
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (J.H.); (E.K.); (F.B.)
| | - Iwona Cicha
- Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Endowed Professorship for Nanomedicine, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.G.); (C.A.)
| |
Collapse
|
158
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021; 6:154-176. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2025]
Abstract
AbstractBiopolymers are considered as a favorable group of substances with a broad array of applications, of which biomedical field stands out. The interesting features of biopolymers such as low‐cost, non‐cytotoxicity, hydrophilicity, biodegradation and biocompatibility make them promising and excellent feedstock to be used in implantable devices. The bounteous reactive functional groups in the backbone structure of polysaccharides and its derivatives could be utilized to develop hydrogels, nano‐composite and 3D scaffolds with appealing structures and desired features, leading to promising research attention towards biomedical fields. The present review describes the foremost properties as well as potential of different biopolymers, and their composites for application in implantable biomedical systems. This work may introduce readers about the comprehension of state‐of‐the‐art advances, real present challenges along with the future anticipation of eco‐friendly and biomimetic techniques for the modification of biopolymeric materials to improve their biomedical applications.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
159
|
Abstract
AbstractAlginate is a polysaccharide of natural origin, which shows outstanding properties of biocompatibility, gel forming ability, non-toxicity, biodegradability and easy to process. Due to these excellent properties of alginate, sodium alginate, a hydrogel form of alginate, oxidized alginate and other alginate based materials are used in various biomedical fields, especially in drug delivery, wound healing and tissue engineering. Alginate can be easily processed as the 3D scaffolding materials which includes hydrogels, microcapsules, microspheres, foams, sponges, and fibers and these alginate based bio-polymeric materials have particularly used in tissue healing, healing of bone injuries, scars, wound, cartilage repair and treatment, new bone regeneration, scaffolds for the cell growth. Alginate can be easily modified and blended by adopting some physical and chemical processes and the new alginate derivative materials obtained have new different structures, functions, and properties having improved mechanical strength, cell affinity and property of gelation. This can be attained due to combination with other different biomaterials, chemical and physical crosslinking, and immobilization of definite ligands (sugar and peptide molecules). Hence alginate, its modified forms, derivative and composite materials are found to be more attractive towards tissue engineering. This article provides a comprehensive outline of properties, structural aspects, and application in tissue engineering.
Collapse
|
160
|
Reakasame S, Jin A, Zheng K, Qu M, Boccaccini AR. Biofabrication and Characterization of Alginate Dialdehyde-Gelatin Microcapsules Incorporating Bioactive Glass for Cell Delivery Application. Macromol Biosci 2021; 20:e2000138. [PMID: 33405347 DOI: 10.1002/mabi.202000138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The effect of the incorporation of 45S5 bioactive glass (BG) microparticles (mean particle size ≈ 2 µm) on the fabrication and physicochemical properties of alginate dialdehyde-gelatin hydrogel capsules is investigated. The addition of BG particles decreases the hydrogel gelation time by ≈79% and 91% for the samples containing 0.1% w/v and 0.5% w/v BG, respectively. Moreover, it results in increasing average diameter of hydrogel capsules produced via a pressure-driven extrusion technique from about 1000 µm for the samples without BG to about 1700 and 1900 µm for the samples containing BG at concentrations of 0.1% w/v and 0.5% w/v, respectively. The presence of BG particles in the capsules decreases the degradation rate and improves the bioactivity of the materials. The viability of MG-63 cells encapsulated in all samples increases during the first 7 d of cultivation and maintains the same level during 21 d of cultivation. The early cell viability in samples containing BG is lower than that in samples without BG. The results show that 45S5 BG can positively regulate the osteogenic activity of cells incorporated in hydrogel capsules. The fabricated composite capsules exhibit promising potential for cell delivery in bone regeneration applications.
Collapse
Affiliation(s)
- Supachai Reakasame
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Anbang Jin
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Muchao Qu
- Institute of Polymer Materials, University of Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| |
Collapse
|
161
|
Yamashita C, Freitas Moraes IC, Ferreira AG, Zanini Branco CC, Branco IG. Multi-response optimization of alginate bleaching technology extracted from brown seaweeds by an eco-friendly agent. Carbohydr Polym 2021; 251:116992. [PMID: 33142563 DOI: 10.1016/j.carbpol.2020.116992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/12/2023]
Abstract
Alginate only finds industrial applicability after undergoing a bleaching process to improve its visual appearance. Box-Behnken Design was used to optimize bleaching parameters (time, oxygen flow and temperature) for sodium alginate (SA) extracted from seaweeds using ozone as the bleaching agent. The optimal conditions (oxygen flow 2 L/min for 35 min at 25 °C) resulted in an ozone-bleached SA with a mannuronic/guluronic acids ratio of 0.70, viscosity-average molecular weight of 66.30 kDa and dynamic viscosity of 1.39 mPa.s, aligned to strong and brittle gels formation, which are potentially suitable for hydrogels and bioink application. Results indicated that ozonation caused depolymerization of the SA chain. Colorimetric parameters showed that ozone has a great bleaching efficacy. The bleached sample presented high antioxidant capacity, highlighting that discoloration by ozone might have minimal effects on the bioactive compounds which are valuable ingredients for food-based products.
Collapse
Affiliation(s)
- Camila Yamashita
- São Paulo State University (UNESP), Biological Sciences Department, 19806-900 Assis, São Paulo, Brazil.
| | | | - Antonio Gilberto Ferreira
- Federal University of Sao Carlos (UFSCAR), Chemistry Department, 13565-905, São Carlos, São Paulo, Brazil
| | - Ciro Cesar Zanini Branco
- São Paulo State University (UNESP), Biological Sciences Department, 19806-900 Assis, São Paulo, Brazil
| | - Ivanise Guilherme Branco
- São Paulo State University (UNESP), Biological Sciences Department, 19806-900 Assis, São Paulo, Brazil
| |
Collapse
|
162
|
Fan Z, Chen Z, Zhang H, Nie Y, Xu S. Gradient Mineralized and Porous Double-Network Hydrogel Effectively Induce the Differentiation of BMSCs into Osteochondral Tissue In Vitro for Potential Application in Cartilage Repair. Macromol Biosci 2020; 21:e2000323. [PMID: 33356012 DOI: 10.1002/mabi.202000323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Indexed: 02/06/2023]
Abstract
At present, it is a considerable challenge to mimic the complex architecture of osteochondral (OC) tissue. In this study, a porous and gradient mineralized double-network hydrogel is synthesized and used to induce bone marrow mesenchymal stem cells (BMSCs) to differentiate into the desired OC tissue depending only on the material and mechanical properties. Physical and chemical characterizations show that hydroxyapatite nanoparticles grow and fill into the pores of the hydrogel, and their content presents a gradient change in different layers of hydrogel. The synthesized hydrogel has excellent mechanical properties and the compression strength with different mineralization degrees varies from 27 to 380 kPa, which fully meets the needs of increased mechanical strength of articular cartilage from the surface to the deep layer. Besides, the synthesized hydrogel has good biocompatibility that can promote the proliferation and growth of BMSCs. More importantly, the results of histochemistry, immunohistochemistry, and real time polymerase chain reaction show that gradient mineralized hydrogel can induce BMSCs to differentiate into the desired chondrocytes and osteoblasts in different layers of hydrogels, indicating that OC tissues can be successfully constructed through a simple induction differentiation of gradient mineralized hydrogel.
Collapse
Affiliation(s)
- Zengjie Fan
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zizi Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Hui Zhang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Yingying Nie
- Institute of Sensing Technology, Gansu Academy of Sciences, Lanzhou, Gansu, 730000, P. R. China
| | - Shumei Xu
- Department of General Surgery, the 940th Hospital of Joint Logistics Support Force, PLA, Lanzhou, Gansu, 730050, P. R. China
| |
Collapse
|
163
|
Phan VHG, Trang Duong HT, Tran PT, Thambi T, Ho DK, Murgia X. Self-Assembled Amphiphilic Starch Based Drug Delivery Platform: Synthesis, Preparation, and Interactions with Biological Barriers. Biomacromolecules 2020; 22:572-585. [PMID: 33346660 DOI: 10.1021/acs.biomac.0c01430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Core-shell structured nanoparticles (NPs) render the simultaneous coloading capacity of both hydrophobic and hydrophilic drugs and may eventually enhance therapeutic efficacy. In this study, we employed a facile squalenoylation technology to synthesize a new amphiphilic starch derivative from partially oxidized starch, which self-assembled into core-shell starch NPs (StNPs) only at a squalenyl degree of substitution (DoS) of ∼1%. The StNPs characteristics could be tuned as the functions of the polymer molecular weight, DoS, and NPs concentration. The biopharmaceutical features of the StNPs, including colloidal stability, carrier properties, and biocompatibility, were carefully investigated. The interaction study between StNPs and mucin glycoproteins, the main organic component of mucus, revealed a moderate mucin interacting profile. Furthermore, the StNPs also showed good penetration through Pseudomonas aeruginosa biofilms. These results nominate StNPs as a versatile drug delivery platform with potential applications for mucosal drug delivery and the treatment of persistent infections.
Collapse
Affiliation(s)
- V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Huu Thuy Trang Duong
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Phu-Tri Tran
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | | | - Duy-Khiet Ho
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Xabier Murgia
- Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, Donostia-San, Sebastián 20014, Spain
| |
Collapse
|
164
|
Guan N, Liu Z, Zhao Y, Li Q, Wang Y. Engineered biomaterial strategies for controlling growth factors in tissue engineering. Drug Deliv 2020; 27:1438-1451. [PMID: 33100031 PMCID: PMC7594870 DOI: 10.1080/10717544.2020.1831104] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Growth factors are multi-functional signaling molecules that coordinate multi-stage process of wound healing. During wound healing, growth factors are transmitted to wound environment in a positive and physiologically related way, therefore, there is a broad prospect for studying the mediated healing process through growth factors. However, growth factors (GFs) themselves have disadvantages of instability, short life, rapid inactivation of physiological conditions, low safety and easy degradation, which hinder the clinical use of GFs. Rapid development of delivery strategies for GFs has been trying to solve the instability and insecurity of GFs. Particularly, in recent years, GFs delivered by scaffolds based on biomaterials have become a hotspot in this filed. This review introduces various delivery strategies for growth factors based on new biodegradable materials, especially polysaccharides, which could provide guidance for the development of the delivery strategies for growth factors in clinic.
Collapse
Affiliation(s)
- Na Guan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
| | - Yonghui Zhao
- Qingdao Central Hospital, The Second Affiliated Hospital of Qingdao University, Qingdao, P. R. China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
165
|
Weizel A, Distler T, Schneidereit D, Friedrich O, Bräuer L, Paulsen F, Detsch R, Boccaccini A, Budday S, Seitz H. Complex mechanical behavior of human articular cartilage and hydrogels for cartilage repair. Acta Biomater 2020; 118:113-128. [PMID: 33080391 DOI: 10.1016/j.actbio.2020.10.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022]
Abstract
The mechanical behavior of cartilage tissue plays a crucial role in physiological mechanotransduction processes of chondrocytes and pathological changes like osteoarthritis. Therefore, intensive research activities focus on the identification of implant substitute materials that mechanically mimic the cartilage extracellular matrix. This, however, requires a thorough understanding of the complex mechanical behavior of both native cartilage and potential substitute materials to treat cartilage lesions. Here, we perform complex multi-modal mechanical analyses of human articular cartilage and two surrogate materials, commercially available ChondroFillerliquid, and oxidized alginate-gelatin (ADA-GEL) hydrogels. We show that all materials exhibit nonlinearity and compression-tension asymmetry. However, while hyaline cartilage yields higher stresses in tension than in compression, ChondroFillerliquid and ADA-GEL exhibit the opposite trend. These characteristics can be attributed to the materials' underlying microstructure: Both cartilage and ChondroFillerliquid contain fibrillar components, but the latter constitutes a bi-phasic structure, where the 60% nonfibrillar hydrogel proportion dominates the mechanical response. Of all materials, ChondroFillerliquid shows the most pronounced viscous effects. The present study provides important insights into the microstructure-property relationship of cartilage substitute materials, with vital implications for mechanically-driven material design in cartilage engineering. In addition, we provide a data set to create mechanical simulation models in the future.
Collapse
|
166
|
Recovery of humic acids from anaerobic sewage sludge: Extraction, characterization and encapsulation in alginate beads. Int J Biol Macromol 2020; 164:277-285. [DOI: 10.1016/j.ijbiomac.2020.07.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022]
|
167
|
The development of laminin-alginate microspheres encapsulated with Ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact Mater 2020; 6:1699-1710. [PMID: 33313449 PMCID: PMC7710511 DOI: 10.1016/j.bioactmat.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many technologies have been developed for breast reconstruction after lumpectomy. Although the technologies achieved promising success in clinical, there are still many shortages hanging over and trouble the researchers. Tissue engineering technology was introduced to plastic surgery that gave a light to lumpectomy patients in breast reconstruction. The unexpected absorption rate, resulting from limited vascularization and low cell survival rate, is a major factor that leads to unsatisfactory results for the previous studies in our lab. In the study, the laminin-modified alginate synthesized by a new method of low concertation of sodium periodate would be mixed with ADSCs and Rg1 in the medium; and then sprayed into a calcium chloride (CaCl2) solution to prepare into microsphere (abbreviated as ADSC–G-LAMS) by bio-electrospray with a power syringe for the mass production and smaller bead size. The developed ADSC–G-LAMS microspheres had the diameter of 232 ± 42 μm. Sustained-release of the Rg1 retained its biological activity. WST-1, live/dead staining, and chromosome aberration assay were evaluated to confirm the safety of the microspheres. In in vivo study, ADSC–G-LAMS microspheres combined with autologous adipocytes were transplanted into the dorsum of rats by subcutaneous injection. The efficacy was investigated by H&E and immunofluorescence staining. The results showed that the bioactive ADSC–G-LAMS microspheres could integrate well into the host adipose tissue with an adequate rate of angiogenesis by constantly releasing Rg1 to enhance the ADSC or adipocyte survival rate to join tissue growth and repair with adipogenesis for breast reconstruction after lumpectomy. Laminin-modified alginate was successfully synthesized to mimic early embryonic environment. Adipose-derived stem cells (ADSCs) and ginsenoside Rg1 were encapsulated into laminin-alginate microspheres (ADSC–G-LAMS) by bio-electrospray method. ADSC–G-LAMS microspheres integrated into the host adipose tissue with an adequate rate of angiogenesis by constantly releasing Rg1. The developed bioactive ADSC–G-LAMS microspheres can be potential scaffolds for stem cells and angiogenic factor carriers for tissue engineering.
Collapse
|
168
|
Khrunyk Y, Lach S, Petrenko I, Ehrlich H. Progress in Modern Marine Biomaterials Research. Mar Drugs 2020; 18:E589. [PMID: 33255647 PMCID: PMC7760574 DOI: 10.3390/md18120589] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for new, sophisticated, multifunctional materials has brought natural structural composites into focus, since they underwent a substantial optimization during long evolutionary selection pressure and adaptation processes. Marine biological materials are the most important sources of both inspiration for biomimetics and of raw materials for practical applications in technology and biomedicine. The use of marine natural products as multifunctional biomaterials is currently undergoing a renaissance in the modern materials science. The diversity of marine biomaterials, their forms and fields of application are highlighted in this review. We will discuss the challenges, solutions, and future directions of modern marine biomaterialogy using a thorough analysis of scientific sources over the past ten years.
Collapse
Affiliation(s)
- Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620990 Ekaterinburg, Russia
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
169
|
Sun X, Agate S, Salem KS, Lucia L, Pal L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS APPLIED BIO MATERIALS 2020; 4:140-162. [DOI: 10.1021/acsabm.0c01011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaohang Sun
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sachin Agate
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Khandoker Samaher Salem
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lucian Lucia
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, 431 Dan Allen Dr., Raleigh, North Carolina 27695, United States
| |
Collapse
|
170
|
Biomimetic Alginate/Gelatin Cross-Linked Hydrogels Supplemented with Polyphosphate for Wound Healing Applications. Molecules 2020; 25:molecules25215210. [PMID: 33182366 PMCID: PMC7664853 DOI: 10.3390/molecules25215210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
In the present study, the fabrication of a biomimetic wound dressing that mimics the extracellular matrix, consisting of a hydrogel matrix composed of non-oxidized and periodate-oxidized marine alginate, was prepared to which gelatin was bound via Schiff base formation. Into this alginate/oxidized-alginate-gelatin hydrogel, polyP was stably but reversibly integrated by ionic cross-linking with Zn2+ ions. Thereby, a soft hybrid material is obtained, consisting of a more rigid alginate scaffold and porous structures formed by the oxidized-alginate-gelatin hydrogel with ionically cross-linked polyP. Two forms of the Zn-polyP-containing matrices were obtained based on the property of polyP to form, at neutral pH, a coacervate—the physiologically active form of the polymer. At alkaline conditions (pH 10), it will form nanoparticles, acting as a depot that is converted at pH 7 into the coacervate phase. Both polyP-containing hydrogels were biologically active and significantly enhanced cell growth/viability and attachment/spreading of human epidermal keratinocytes compared to control hydrogels without any adverse effect on reconstructed human epidermis samples in an in vitro skin irritation test system. From these data, we conclude that polyP-containing alginate/oxidized-alginate-gelatin hydrogels may provide a suitable regeneratively active matrix for wound healing for potential in vivo applications.
Collapse
|
171
|
Puiggalí-Jou A, Cazorla E, Ruano G, Babeli I, Ginebra MP, García-Torres J, Alemán C. Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs. ACS Biomater Sci Eng 2020; 6:6228-6240. [PMID: 33449669 DOI: 10.1021/acsbiomaterials.0c01400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimuli-responsive biomaterials have attracted significant attention for the construction of on-demand drug release systems. The possibility of using external stimulation to trigger drug release is particularly enticing for hydrophobic compounds, which are not easily released by simple diffusion. In this work, an electrochemically active hydrogel, which has been prepared by gelling a mixture of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and alginate (Alg), has been loaded with curcumin (CUR), a hydrophobic drug with a wide spectrum of clinical applications. The PEDOT/Alg hydrogel is electrochemically active and organizes as segregated PEDOT- and Alg-rich domains, explaining its behavior as an electroresponsive drug delivery system. When loaded with CUR, the hydrogel demonstrates a controlled drug release upon application of a negative electrical voltage. Comparison with the release profiles obtained applying a positive voltage and in the absence of electrical stimuli indicates that the release mechanism dominating this system is complex because of not only the intermolecular interactions between the drug and the polymeric network but also the loading of a hydrophobic drug in a water-containing delivery system.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain
| | - Eric Cazorla
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Guillem Ruano
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Ismael Babeli
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain
| | - Maria-Pau Ginebra
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain.,Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), Barcelona 08930, Spain
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain.,Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), Barcelona 08930, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08930, Spain
| |
Collapse
|
172
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
173
|
Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact Mater 2020; 6:890-904. [PMID: 33073063 PMCID: PMC7548431 DOI: 10.1016/j.bioactmat.2020.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Biopolymer based hydrogels are characteristic of their biocompatibility and capability of mimicking extracellular matrix structure to support cellular behavior. However, these hydrogels suffer from low mechanical properties, uncontrolled degradation, and insufficient osteogenic activity, which limits their applications in bone regeneration. In this study, we developed hybrid gelatin (Gel)/oxidized chondroitin sulfate (OCS) hydrogels that incorporated mesoporous bioactive glass nanoparticles (MBGNs) as bioactive fillers for bone regeneration. Gel-OCS hydrogels could be self-crosslinked in situ under physiological conditions in the presence of borax. The incorporation of MBGNs enhanced the crosslinking and accelerated the gelation. The gelation time decreased with increasing the concentration of MBGNs added. Incorporation of MBGNs in the hydrogels significantly improved the mechanical properties in terms of enhanced storage modulus and compressive strength. The injectability of the hydrogels was not significantly affected by the MBGN incorporation. Also, the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro and rat cranial defect restoration in vivo were significantly promoted by the hydrogels in the presence of MBGNs. The hybrid Gel-OCS/MBGN hydrogels show promising potential as injectable biomaterials or scaffolds for bone regeneration/repair applications given their tunable degradation and gelation behavior as well as favorable mechanical behavior and osteogenic activities. In situ self-crosslinking of hybrid Gel-OCS/MBGN hydrogels. Hybrid hydrogels are porous, injectable and bioadhesive. Incorporation of MBGNs enhances mechanical and mineralization properties of hydrogels. Osteogenic differentiation of BMSCs enhanced after incorporating MBGNs into hydrogels. The presence of MBGNs enhances in vivo rat cranial defect restoration.
Collapse
|
174
|
Abdollahiyan P, Baradaran B, de la Guardia M, Oroojalian F, Mokhtarzadeh A. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today. J Control Release 2020; 328:514-531. [PMID: 32956710 DOI: 10.1016/j.jconrel.2020.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D structure, to protect the embedded cells, and to mimic the native ECM. The hydrophilic nature of hydrogels can provide an ideal milieu for cell viability and structure, which simulate the native tissues. Hydrogel systems have been applied as a favorable matrix for growth factor delivery and cell immobilization. This study reviews a brief explanation of the structure, characters, applications, fabrication methods, and future outlooks of stimuli responsive hydrogels in tissue engineering and, in particular, 3D bioprinting.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, Valencia 46100, Spain
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
175
|
Bian L. Functional hydrogel bioink, a key challenge of 3D cellular bioprinting. APL Bioeng 2020; 4:030401. [PMID: 32743233 PMCID: PMC7382604 DOI: 10.1063/5.0018548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong
Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
176
|
Gupta S, Sharma A, Vasantha Kumar J, Sharma V, Gupta PK, Verma RS. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. Int J Biol Macromol 2020; 162:1358-1371. [PMID: 32777410 DOI: 10.1016/j.ijbiomac.2020.07.238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Failure of bioengineered meniscus implant after transplantation is a major concern owing to mechanical failure, lack of chondrogenic capability and patient specific design. In this article, we have, for the first time, fabricated a 3D printed scaffold with carbohydrate based self-healing interpenetrating network (IPN) hydrogels-based monolith construct for load bearing meniscus tissue. 3D printed PLA scaffold was surface functionalized and embedded with self-healing IPN hydrogel for interfacial bonding further characterized by micro CT. Using collagen (C), alginate (A) and oxidized alginate (ADA), we developed self-healing IPN hydrogels with dual crosslinking (Ca2+ based ionic crosslinking and Schiff base (A-A, A-ADA)) capability and studied their physicochemical properties. Further, we studied human stem cells behaviour and chondrogenic differentiation potential within these IPN hydrogels. In-vivo heterotopic implantation confirmed biocompatibility of the monolith showing the feasibility of using carbohydrate based IPN hydrogel embedded in 3D printed scaffold for meniscal tissue development.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Akriti Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - J Vasantha Kumar
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Vineeta Sharma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Piyush Kumar Gupta
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
177
|
Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 2020; 12:045005. [PMID: 32485696 DOI: 10.1088/1758-5090/ab98e4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biofabrication can be a tool to three-dimensionally (3D) print muscle cells embedded inside hydrogel biomaterials, ultimately aiming to mimic the complexity of the native muscle tissue and to create in-vitro muscle analogues for advanced repair therapies and drug testing. However, to 3D print muscle analogues of high cell alignment and synchronous contraction, the effect of biofabrication process parameters on myoblast growth has to be understood. A suitable biomaterial matrix is required to provide 3D printability as well as matrix degradation to create space for cell proliferation, matrix remodelling capacity, and cell differentiation. We demonstrate that by the proper selection of nozzle size and extrusion pressure, the shear stress during extrusion-bioprinting of mouse myoblast cells (C2C12) can achieve cell orientation when using oxidized alginate-gelatin (ADA-GEL) hydrogel bionk. The cells grow in the direction of printing, migrate to the hydrogel surface over time, and differentiate into ordered myotube segments in areas of high cell density. Together, our results show that ADA-GEL hydrogel can be a simple and cost-efficient biodegradable bioink that allows the successful 3D bioprinting and cultivation of C2C12 cells in-vitro to study muscle engineering.
Collapse
Affiliation(s)
- Thomas Distler
- Department of Materials Science and Engineering, Institute of Biomaterials, Erlangen 91058, Germany. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
178
|
Hazur J, Detsch R, Karakaya E, Kaschta J, Teßmar J, Schneidereit D, Friedrich O, Schubert DW, Boccaccini AR. Improving alginate printability for biofabrication: establishment of a universal and homogeneous pre-crosslinking technique. Biofabrication 2020; 12:045004. [PMID: 32485692 DOI: 10.1088/1758-5090/ab98e5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many different biofabrication approaches as well as a variety of bioinks have been developed by researchers working in the field of tissue engineering. A main challenge for bioinks often remains the difficulty to achieve shape fidelity after printing. In order to overcome this issue, a homogeneous pre-crosslinking technique, which is universally applicable to all alginate-based materials, was developed. In this study, the Young's Modulus after post-crosslinking of selected hydrogels, as well as the chemical characterization of alginate in terms of M/G ratio and molecular weight, were determined. With our technique it was possible to markedly enhance the printability of a 2% (w/v) alginate solution, without using a higher polymer content, fillers or support structures. 3D porous scaffolds with a height of around 5 mm were printed. Furthermore, the rheological behavior of different pre-crosslinking degrees was studied. Shear forces on cells as well as the flow profile of the bioink inside the printing nozzle during the process were estimated. A high cell viability of printed NIH/3T3 cells embedded in the novel bioink of more than 85% over a time period of two weeks could be observed.
Collapse
Affiliation(s)
- Jonas Hazur
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr.6, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Balitaan JNI, Hsiao CD, Yeh JM, Santiago KS. Innovation inspired by nature: Biocompatible self-healing injectable hydrogels based on modified-β-chitin for wound healing. Int J Biol Macromol 2020; 162:723-736. [PMID: 32553972 DOI: 10.1016/j.ijbiomac.2020.06.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Remarkable properties of hydrogels are compromised by failure to recover from damage, bringing their intended functions to an end. To address this, hydrogels can be functionalized with self-healing property to enable them to restore themselves after damage, thus, extending their lifetime. Herein, hydrogels were prepared by cross-linking acrylamide-modified β-chitin (Am-β-Chn) with alginate dialdehyde (ADA) to form Schiff base, showing IR characteristic peak at 1650 cm-1, attributed to the stretching vibration of CN. The dynamic Schiff base and H-bond rendered the double crosslinked hydrogels self-healing as demonstrated by continuous step strain rheology. Characterization of the hydrogels revealed excellent biocompatibility, biodegradability, injectability and self-healing properties. Furthermore, the wound healing property of the hydrogels was investigated in vivo using zebrafish as a model system. Indirect application of Am-β-Chn/ADA hydrogel remarkably led to ~87% wound healing as compared to control which gave ~50%, suggesting that hydrogels are effective in accelerating wound healing. However, a clear understanding of the exact mechanism of its wound healing property remains to be investigated. To the best of our knowledge, this is the first innovation of developing novel double crosslinked Am-β-Chn/ADA hydrogels with both self-healing and accelerated wound healing properties, directly from marine-food wastes.
Collapse
Affiliation(s)
- Jolleen Natalie I Balitaan
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Karen S Santiago
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines; Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines.
| |
Collapse
|
180
|
Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:3899-3914. [PMID: 33463325 DOI: 10.1021/acsbiomaterials.0c00677] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels that allow for the successful long-term in vitro culture of cell-biomaterial systems to enable the maturation of tissue engineering constructs are highly relevant in regenerative medicine. Naturally derived polysaccharide-based hydrogels promise to be one material group with enough versatility and chemical functionalization capability to tackle the challenges associated with long-term cell culture. We report a marine derived oxidized alginate, alginate dialdehyde (ADA), and gelatin (GEL) system (ADA-GEL), which is cross-linked via ionic (Ca2+) and enzymatic (microbial transglutaminase, mTG) interaction to form dually cross-linked hydrogels. The cross-linking approach allowed us to tailor the stiffness of the hydrogels in a wide range (from <5 to 120 kPa), without altering the initial ADA and GEL hydrogel chemistry. It was possible to control the degradation behavior of the hydrogels to be stable for up to 30 days of incubation. Increasing concentrations of mTG cross-linker solutions allowed us to tune the degradation behavior of the ADA-GEL hydrogels from fast (<7 days) to moderate (14 days) and slow (>30 days) degradation kinetics. The cytocompatibility of mTG cross-linked ADA-GEL was assessed using NIH-3T3 fibroblasts and ATDC-5 mouse teratocarcinoma cells. Both cell types showed highly increased cellular attachment on mTG cross-linked ADA-GEL in comparison to Ca2+ cross-linked hydrogels. In addition, ATDC-5 cells showed a higher proliferation on mTG cross-linked ADA-GEL hydrogels in comparison to tissue culture polystyrene control substrates. Further, the attachment of human umbilical vein endothelial cells (HUVEC) on ADA-GEL (+) mTG was confirmed, proving the suitability of mTG+Ca2+ cross-linked ADA-GEL for several cell types. Summarizing, a promising platform to control the properties of ADA-GEL hydrogels is presented, with the potential to be applied in long-term cell culture investigations such as cartilage, bone, and blood-vessel engineering, as well as for biofabrication.
Collapse
Affiliation(s)
- Thomas Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Kilian McDonald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Susanne Heid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
181
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
182
|
Heo DN, Alioglu MA, Wu Y, Ozbolat V, Ayan B, Dey M, Kang Y, Ozbolat IT. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20295-20306. [PMID: 32274920 DOI: 10.1021/acsami.0c05096] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Extrusion-based bioprinting of hydrogels in a granular secondary gel enables the fabrication of cell-laden three-dimensional (3D) constructs in an anatomically accurate manner, which is challenging using conventional extrusion-based bioprinting processes. In this study, carbohydrazide-modified gelatin (Gel-CDH) was synthesized and deposited into a new multifunctional support bath consisting of gelatin microparticles suspended in an oxidized alginate (OAlg) solution. During extrusion, Gel-CDH and OAlg were rapidly cross-linked because of the Schiff base formation between aldehyde groups of OAlg and amino groups of Gel-CDH, which has not been demonstrated in the domain of 3D bioprinting before. Rheological results indicated that hydrogels with lower OAlg to Gel-CDH ratios possessed superior mechanical rigidity. Different 3D geometrically intricate constructs were successfully created upon the determination of optimal bioprinting parameters. Human mesenchymal stem cells and human umbilical vein endothelial cells were also bioprinted at physiologically relevant cell densities. The presented study has offered a novel strategy for bioprinting of natural polymer-based hydrogels into 3D complex-shaped biomimetic constructs, which eliminated the need for cytotoxic supplements as external cross-linkers or additional cross-linking processes, therefore expanding the availability of bioinks.
Collapse
Affiliation(s)
- Dong Nyoung Heo
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mecit Altan Alioglu
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Yang Wu
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Department of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana 01950, Turkey
| | - Bugra Ayan
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Madhuri Dey
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Chemistry Department, Penn State University, University Park, State College, Pennsylvania 16802, United States
| | - Youngnam Kang
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Ibrahim T Ozbolat
- Department of Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Biomedical Engineering Department, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
- Neurosurgery Department, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
183
|
Lee J, Kim G. A cryopreservable cell-laden GelMa-based scaffold fabricated using a 3D printing process supplemented with an in situ photo-crosslinking. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
184
|
Eggermont LJ, Rogers ZJ, Colombani T, Memic A, Bencherif SA. Injectable Cryogels for Biomedical Applications. Trends Biotechnol 2020; 38:418-431. [DOI: 10.1016/j.tibtech.2019.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
|
185
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
186
|
Wei S, Liu X, Zhou J, Zhang J, Dong A, Huang P, Wang W, Deng L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int J Biol Macromol 2020; 155:153-162. [PMID: 32224179 DOI: 10.1016/j.ijbiomac.2020.03.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022]
Abstract
Bacterial infections caused by S. aureus are prevalent all over the world. Antibiotic-loaded hydrogel has been reported as a promising drug delivery system for the treatment. However, the direct incorporation of antibiotics into the hydrogel leads to quick initial burst release, which results in a sub-inhibition concentration of antibiotics in local environment and induces the antibiotic resistance of bacteria. In this work, a novel dual-crosslinked nanocomposite hydrogel (imine bond and nanoparticle crosslinking) was prepared based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles. Dual-crosslinked nanocomposite structure endowed the hydrogel with considerable mechanical and injectable properties. Dual pH responses were introduced into the hydrogel, and a controlled clindamycin release was observed in the acidic environment, which might avoid inducing the antibiotic resistance of bacteria. What's more, the antibacterial results demonstrated an excellent antibacterial activity of the hydrogel for not only E. coli and S. aureus, but also Methicillin-resistant S. aureus (MRSA). Nearly 90% of bacteria was killed after contacting with the hydrogel. In addition, the in vitro cell cytotoxicity test results showed that the hydrogel owned good biocompatibility. The in vitro cell viability was >90%. Above all, this dual-crosslinked nanocomposite hydrogel owned possibility for potential antibacterial applications.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiang Liu
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
187
|
The air-liquid interface culture of the mechanically isolated seminiferous tubules embedded in agarose or alginate improves in vitro spermatogenesis at the expense of attenuating their integrity. In Vitro Cell Dev Biol Anim 2020; 56:261-270. [PMID: 32212030 DOI: 10.1007/s11626-020-00437-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
Abstract
Optimization of tissue culture systems able to complete male germ cell maturation to post-meiotic stages is considered as an important matter in reproductive biology. Considering that hypoxia is one of the factors limiting the efficiency of organ culture, the aim of this study was to use isolated seminiferous tubules (STs), having more surface and less thickness, in an organotypic culture system in order to improve oxygen diffusion and reduce hypoxia. The mechanically separated STs embedded in agarose or alginate and 1-3-mm3 testicular tissue fragments of 3 adult mice were separately placed on the flat surface of agarose gel that was half-soaked in the medium. Survival and differentiation of germ cells using PLZF and SCP3 markers, identity of Sertoli cell using GATA4, cell proliferation with the Ki67 marker, and ST integrity using a ST scoring were evaluated up to 36 d at different culture times, each corresponding to the duration of one spermatogenic cycle. We observed a significantly reduced ST integrity in STs embedded in agarose or alginate on day 9 (versus tissue fragments p ≤ 0.05). There was no difference in the number of PLZF-positive cells between groups, but the number of SCP3 (in all-time points) and GATA4-positive cells was significantly higher in the culture of embedded STs. Although embedding STs can be useful for the progress of in vitro spermatogenesis, it makes them sensitive to degeneration. Further improvements are required to modify the air-liquid interface method to maintain ST integrity.
Collapse
|
188
|
Basu S, Pacelli S, Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 2020; 105:159-169. [PMID: 31972367 DOI: 10.1016/j.actbio.2020.01.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023]
Abstract
Injectable hydrogels represent a valuable tool for the delivery of therapeutic molecules aimed to restore the functionality of damaged tissues. In this study, we report the design of a nanocomposite DNA-based hydrogel crosslinked with oxidized alginate (OA) via the formation of reversible imine linkages. The formulated hydrogel functioned as an injectable carrier for the sustained delivery of a small molecule drug, simvastatin. The degree of oxidation of alginate and the concentration of silicate-based nanoparticles (nSi) were varied to modulate the rheological properties of the hydrogels. Specifically, the formulations consisting of OA with higher degree of oxidation displayed the highest value of storage moduli, yield stress, yield strain, and rapid recovery after removal of cyclic stress. The hydrogel formulations exhibited self-healing and shear-thinning properties due to the reversible nature of the covalent imine bonds formed between the aldehyde groups of OA and the amine groups present in the DNA nucleotides. Moreover, the incorporation of charged nSi further enhanced the shear strength of the formulated hydrogels by establishing electrostatic interactions with the phosphate groups of the DNA network. The optimized hydrogel was able to promote the sustained release of simvastatin for more than a week. The bioactivity of the released drug was confirmed by testing its ability to induce osteogenic differentiation and migration of human adipose-derived stem cells in vitro. Overall, the results obtained from this study demonstrate that DNA could be used as a natural biopolymer to fabricate self-healing injectable hydrogels with sustained release properties for minimally invasive therapeutic approaches. STATEMENT OF SIGNIFICANCE: Dynamic covalent chemistry, especially Schiff base reactions have emerged as a promising route for the formation of injectable hydrogels. Our study demonstrated the development of a DNA-based self-healing hydrogel formed via Schiff base reaction occurring at physiological conditions. The hydrogels functioned as sustained delivery vehicles for the hydrophobic drug simvastatin, which requires a polymeric carrier for controlled delivery of therapeutic concentrations of the drug without exhibiting cytotoxic effects. Presently available hydrogel-based drug delivery systems encounter major challenges for the delivery of hydrophobic drugs due to the hydrophilic nature of the base matrix. Our strategy presents a platform technology for the design of minimally invasive approaches for the sustained delivery of hydrophobic drugs similar to simvastatin.
Collapse
Affiliation(s)
- Sayantani Basu
- Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada.
| |
Collapse
|
189
|
Lee M, Bae K, Levinson C, Zenobi-Wong M. Nanocomposite bioink exploits dynamic covalent bonds between nanoparticles and polysaccharides for precision bioprinting. Biofabrication 2020; 12:025025. [PMID: 32078578 DOI: 10.1088/1758-5090/ab782d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of bioprinting has made significant recent progress towards engineering tissues with increasing complexity and functionality. It remains challenging, however, to develop bioinks with optimal biocompatibility and good printing fidelity. Here, we demonstrate enhanced printability of a polymer-based bioink based on dynamic covalent linkages between nanoparticles (NPs) and polymers, which retains good biocompatibility. Amine-presenting silica NPs (ca. 45 nm) were added to a polymeric ink containing oxidized alginate (OxA). The formation of reversible imine bonds between amines on the NPs and aldehydes of OxA lead to significantly improved rheological properties and high printing fidelity. In particular, the yield stress increased with increasing amounts of NPs (14.5 Pa without NPs, 79 Pa with 2 wt% NPs). In addition, the presence of dynamic covalent linkages in the gel provided improved mechanical stability over 7 d compared to ionically crosslinked gels. The nanocomposite ink retained high printability and mechanical strength, resulting in generation of centimeter-scale porous constructs and an ear structure with overhangs and high structural fidelity. Furthermore, the nanocomposite ink supported both in vitro and in vivo maturation of bioprinted gels containing chondrocytes. This approach based on simple oxidation can be applied to any polysaccharide, thus the widely applicability of the method is expected to advance the field towards the goal of precision bioprinting.
Collapse
Affiliation(s)
- Mihyun Lee
- Tissue Engineering and Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
190
|
Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym 2020; 229:115514. [DOI: 10.1016/j.carbpol.2019.115514] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
|
191
|
Wu L, Zhang Z, Yang M, Yuan J, Li P, Men X. Graphene enhanced and in situ-formed alginate hydrogels for reducing friction and wear of polymers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
192
|
Zhuang B, Chen T, Xiao Z, Jin Y. Drug-loaded implantable surgical cavity-adaptive hydrogels for prevention of local tumor recurrence. Int J Pharm 2020; 577:119048. [PMID: 31978462 DOI: 10.1016/j.ijpharm.2020.119048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
High local post-surgical cancer recurrence severely impairs the patients' prognosis and survival rates. Here, an injectable in situ forming hydrogel was designed to locally controlled release gemcitabine (GEM) and doxorubicin (DOX) to prevent local cancer recurrence. The hydrogel was rapidly formed at the post-surgical cavity after the aldehyde hyaluronic acid (HA-CHO) and the carboxymethyl chitosan (CM-CS) were mixed and immediately injected. Meanwhile, DOX was conjugated to HA-CHO and GEM was doped in CM-CS to obtain GD-HA/CS-Gel. The drug-free hydrogels showed low cytotoxicity on L929 cells and good in vivo biocompatibility. The hydrogels had appropriate viscoelasticity and rapid self-healing ability, favoring long-term local residence at the injected site where GEM quickly released and DOX slowly released. GEM and DOX showed the synergistic anticancer effect on 4T1 cells. Breast cancer 4T1-cell xenograft models were established and the tumors were surgically resected. GD-HA/CS-Gel was implanted in the post-surgical cavity and cancer recurrence and distant lung metastasis were completely prevented in comparison with the single drug-loaded hydrogel or drug solutions. The locally implanted dual drug-loaded cavity-adaptive hydrogel is a promising medication for prevention of post-surgical tumor recurrence.
Collapse
Affiliation(s)
- Bo Zhuang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Ting Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhimei Xiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Guangdong Pharmaceutical University, Guangzhou 510006, China; Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China.
| |
Collapse
|
193
|
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, Chen Q, Ngondi DG, Miao Y, Hu Z. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Am J Cancer Res 2020; 10:1454-1478. [PMID: 31938074 PMCID: PMC6956798 DOI: 10.7150/thno.39566] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Hair regeneration has long captured researchers' attention because alopecia is a common condition and current therapeutic approaches have significant limitations. Dermal papilla (DP) cells serve as a signaling center in hair follicles and regulate hair formation and cycling by paracrine secretion. Secreted EVs are important signaling mediators for intercellular communication, and DP-derived extracellular vesicles (DP-EVs) may play an important role in hair regeneration. However, the instability of EVs in vivo and their low long-term retention after transplantation hinder their use in clinical applications. Methods: Human DP-EVs were encapsulated in partially oxidized sodium alginate (OSA) hydrogels, yielding OSA-encapsulated EVs (OSA-EVs), which act as a sustained-release system to increase the potential therapeutic effect of DP-EVs. The ability of the OSA-EVs to protect protein was assessed. The hair regeneration capacity of OSA-EVs, as well as the underlying mechanism, was explored in hair organ culture and a mouse model of depilation. Results: The OSA-EVs were approximately 100 μm in diameter, and as the hydrogel degraded, DP-EVs were gradually released. In addition, the hydrogel markedly increased the stability of vesicular proteins and increased the retention of EVs in vitro and in vivo. The OSA-EVs significantly facilitated proliferation of hair matrix cells, prolonged anagen phase in cultured human hairs, and accelerated the regrowth of back hair in mice after depilation. These effects may be due to upregulation of hair growth-promoting signaling molecules such as Wnt3a and β-catenin, and downregulation of inhibitory molecule BMP2. Conclusion: This study demonstrated that OSA hydrogels promote the therapeutic effects of DP-EVs, and indicate that our novel OSA-EVs could be used to treat alopecia.
Collapse
|
194
|
Maity S, Chatterjee A, Ganguly J. Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. GREEN APPROACHES IN MEDICINAL CHEMISTRY FOR SUSTAINABLE DRUG DESIGN 2020:617-649. [DOI: 10.1016/b978-0-12-817592-7.00018-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
195
|
Preparation of photo-crosslinkable cinnamate modified hyaluronic acid for immobilization of horseradish peroxidase. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
196
|
Zhao J, He N. A mini-review of embedded 3D printing: supporting media and strategies. J Mater Chem B 2020; 8:10474-10486. [DOI: 10.1039/d0tb01819h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embedded 3D printing is an additive manufacturing method based on a material extrusion strategy.
Collapse
Affiliation(s)
- Jingzhou Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Jiangsu 210096
- China
| | - Nongyue He
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Jiangsu 210096
- China
| |
Collapse
|
197
|
Liu B, Li J, Lei X, Miao S, Zhang S, Cheng P, Song Y, Wu H, Gao Y, Bi L, Pei G. Cell-loaded injectable gelatin/alginate/LAPONITE® nanocomposite hydrogel promotes bone healing in a critical-size rat calvarial defect model. RSC Adv 2020; 10:25652-25661. [PMID: 35518607 PMCID: PMC9055310 DOI: 10.1039/d0ra03040f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
An injectable cell-laden nanocomposite hydrogel simulate natural ECM, promote cell proliferation, and accelerate bone healing of critical-size rat calvarial defects.
Collapse
|
198
|
Homaeigohar S, Tsai TY, Young TH, Yang HJ, Ji YR. An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering. Carbohydr Polym 2019; 224:115112. [DOI: 10.1016/j.carbpol.2019.115112] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
199
|
Xiang G, Lippens E, Hafeez S, Duda GN, Geissler S, Qazi TH. Oxidized alginate beads for tunable release of osteogenically potent mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109911. [DOI: 10.1016/j.msec.2019.109911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/26/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022]
|
200
|
Torabi A, Sahraro M, Barikani M, Daemi H. Green synthesis of in situ forming alginate-urethane hydrogel through Schiff base reaction. MATERIALS LETTERS 2019; 254:194-197. [DOI: 10.1016/j.matlet.2019.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|