151
|
Ghosh S, Biswas S. Ultrafast and nanomolar level detection of H 2S in aqueous medium using a functionalized UiO-66 metal-organic framework based fluorescent chemosensor. Dalton Trans 2021; 50:11631-11639. [PMID: 34355723 DOI: 10.1039/d1dt01456k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we present a 4-nitrophenyl functionalized Zr-UiO-66 MOF (MOF = metal-organic framework) and its applications towards the selective, sensitive and rapid detection of H2S both in the aqueous medium and vapour phase. The MOF material was synthesized using the 2-(nitrophenoxy)terepththalic acid (H2BDC-O-Ph-NO2) linker and ZrCl4 salt in the presence of a benzoic acid modulator. It was carefully characterized by thermogravimetric analysis (TGA), elemental analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy and surface area analysis. Noticeable thermal stability up to a temperature of 390 °C under air and the considerable chemical stability in different liquid media (H2O, 1 M HCl, glacial acetic acid, NaOH in the pH = 8 to 10 range) confirmed the robustness of the MOF. The BET surface area (1040 m2 g-1) indicated the porous nature of the MOF. Remarkable selectivity of the MOF towards H2S over other potential congeners of H2S was observed in the aqueous medium. A very high fluorescence increment (∼77 fold) was observed after adding an aqueous Na2S solution to the MOF suspension. The MOF probe displayed the lowest limit of detection (12.58 nM) among the existing MOF-based chemosensors of H2S. Furthermore, it exhibited a very quick (60 s) response towards H2S detection. The MOF compound could also detect H2S in the vapour phase as well as in real water samples. Furthermore, we developed inexpensive MOF-coated paper strips for the naked-eye sensing of H2S. A thorough investigation was carried out in order to elucidate the fluorescence turn-on sensing mechanism.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | |
Collapse
|
152
|
Yang L, Cai P, Zhang L, Xu X, Yakovenko AA, Wang Q, Pang J, Yuan S, Zou X, Huang N, Huang Z, Zhou HC. Ligand-Directed Conformational Control over Porphyrinic Zirconium Metal-Organic Frameworks for Size-Selective Catalysis. J Am Chem Soc 2021; 143:12129-12137. [PMID: 34340311 DOI: 10.1021/jacs.1c03960] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have aroused enormous interest owing to their superior stability, flexible structures, and intriguing functions. Precise control over their crystalline structures, including topological structures, porosity, composition, and conformation, constitutes an important challenge to realize the tailor-made functionalization. In this work, we developed a new Zr-MOF (PCN-625) with a csq topological net, which is similar to that of the well-known PCN-222 and NU-1000. However, the significant difference lies in the conformation of porphyrin rings, which are vertical to the pore surfaces rather than in parallel. The resulting PCN-625 exhibits two types of one-dimensional channels with concrete diameters of 2.03 and 0.43 nm. Furthermore, the vertical porphyrins together with shrunken pore sizes could limit the accessibility of substrates to active centers in the framework. On the basis of the structural characteristics, PCN-625(Fe) can be utilized as an efficient heterogeneous catalyst for the size-selective [4 + 2] hetero-Diels-Alder cycloaddition reaction. Due to its high chemical stability, this catalyst can be repeatedly used over six times. This work demonstrates that Zr-MOFs can serve as tailor-made scaffolds with enhanced flexibility for target-oriented functions.
Collapse
Affiliation(s)
- Liting Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Liangliang Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Andrey A Yakovenko
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Qi Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Shuai Yuan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiaodong Zou
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.,Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| | - Zhehao Huang
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
153
|
Wang GF, Sun SW. TWO INTERPENETRATING COBALT COORDINATION POLYMERS CONSTRUCTED BY DICARBOXYLATE AND V-SHAPED N-DONOR LIGANDS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621080138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
154
|
Zhang YF, Zhang ZH, Ritter L, Fang H, Wang Q, Space B, Zhang YB, Xue DX, Bai J. New Reticular Chemistry of the Rod Secondary Building Unit: Synthesis, Structure, and Natural Gas Storage of a Series of Three-Way Rod Amide-Functionalized Metal-Organic Frameworks. J Am Chem Soc 2021; 143:12202-12211. [PMID: 34328001 DOI: 10.1021/jacs.1c04946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reticular chemistry and methane storage materials have been predominately focused on finite metal-cluster-based metal-organic frameworks (MOFs). In contrast, MOFs constructed from infinite rod secondary building units (SBUs), i.e., rod MOFs, are less developed, and the existing ones are typically built from simple one-way helical, zigzag, or (mixed)polyhedron SBUs. Herein, inspired by a recent unveiled structure of Zn6(H2O)3(BTP)4 and by means of an amide-functionalized preliminary single tricarboxylate, a subsequent mixed tricarboxylate, and dicarboxylate linkers, an intricate three-way rod MOF and the next three isoreticular three-way rod MOFs have been successfully realized, namely, 3W-ROD-1 and 3W-ROD-2-X (X = -OH, -F, and -CH3), respectively. The structural analyses disclosed that the four compounds were constructed from unprecedented three-way invariant nonintersecting trigonal rod-packing SBUs cross-linked via the noncovalent-interaction-driven self-assembly of pseudo hexacarboxylates with the original tricarboxylate or different functional ditopic linkers, resulting in cage-like pore geometries accessible via ultramicroporous apertures concomitant with the complex topology transitivity, namely, 18 42 and 18 44. Sorption studies show that the apparent surface areas of these materials are among the most highly porous materials for rod MOFs. Due to the presence of favorable pocket sites created by X, ketone, and proximal amide groups as revealed by Monte Carlo molecular dynamics (MCMD) computational calculations, the MOFs exhibit impressive methane storage working capacities, outperforming the well-known rod Ni-MOF-74 and representing the highest values among rigid rod MOFs.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Logan Ritter
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qian Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
155
|
Bruno R, Mastropietro TF, De Munno G, Armentano D. A Nanoporous Supramolecular Metal-Organic Framework Based on a Nucleotide: Interplay of the π···π Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules 2021; 26:molecules26154594. [PMID: 34361760 PMCID: PMC8347718 DOI: 10.3390/molecules26154594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.
Collapse
|
156
|
Wu W, Feng S, Zheng W, Shao C, Jiang Z. Enhancing visible-light photocatalytic degradation of tetracycline by ZnFe2O4 loaded on UiO-66-NH2 under activated persulfate. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04434-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Zhang L, Lin YJ, Li ZH, Fraser Stoddart J, Jin GX. Coordination-Driven Selective Formation of D 2 Symmetric Octanuclear Organometallic Cages. Chemistry 2021; 27:9524-9528. [PMID: 33882176 DOI: 10.1002/chem.202101204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/09/2022]
Abstract
The coordination-driven self-assembly of organometallic half-sandwich iridium(III)- and rhodium(III)-based building blocks with asymmetric ambidentate pyridyl-carboxylate ligands is described. Despite the potential for obtaining a statistical mixture of multiple products, D2 symmetric octanuclear cages were formed selectively by taking advantage of the electronic effects emanating from the two types of chelating sites - (O,O') and (N,N') - on the tetranuclear building blocks. The metal sources and the lengths of bridging ligands influence the selectivity of the self-assembly. Experimental observations, supported by computational studies, suggest that the D2 symmetric cages are the thermodynamically favored products. Overall, the results underline the importance of electronic effects on the selectivity of coordination-driven self-assembly, and demonstrate that asymmetric ambidentate ligands can be used to control the design of discrete supramolecular coordination complexes.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China.,Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310021, P.R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, P.R. China
| |
Collapse
|
158
|
Zhang Z, Peh SB, Krishna R, Kang C, Chai K, Wang Y, Shi D, Zhao D. Optimal Pore Chemistry in an Ultramicroporous Metal-Organic Framework for Benchmark Inverse CO 2 /C 2 H 2 Separation. Angew Chem Int Ed Engl 2021; 60:17198-17204. [PMID: 34043271 DOI: 10.1002/anie.202106769] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Isolation of CO2 from acetylene (C2 H2 ) via CO2 -selective sorbents is an energy-efficient technology for C2 H2 purification, but a strategic challenge due to their similar physicochemical properties. There is still no specific methodology for constructing sorbents that preferentially trap CO2 over C2 H2 . We report an effective strategy to construct optimal pore chemistry in a CeIV -based ultramicroporous metal-organic framework CeIV -MIL-140-4F, based on charge-transfer effects, for efficient inverse CO2 /C2 H2 separation. The ligand-to-metal cluster charge transfer is facilitated by CeIV with low-lying unoccupied 4f orbitals and electron-withdrawing F atoms functionalized tetrafluoroterephthalate, affording a perfect pore environment to match CO2 . The exceptional CO2 uptake (151.7 cm3 cm-3 ) along with remarkable separation selectivities (above 40) set a new benchmark for inverse CO2 /C2 H2 separation, which is verified via simulated and experimental breakthrough experiments. The unique CO2 recognition mechanism is further unveiled by in situ powder X-ray diffraction experiments, Fourier-transform infrared spectroscopy measurements, and molecular calculations.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Kungang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| |
Collapse
|
159
|
Zhang Z, Peh SB, Krishna R, Kang C, Chai K, Wang Y, Shi D, Zhao D. Optimal Pore Chemistry in an Ultramicroporous Metal–Organic Framework for Benchmark Inverse CO
2
/C
2
H
2
Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kungang Chai
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Dongchen Shi
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
160
|
Semrau AL, Zhou Z, Mukherjee S, Tu M, Li W, Fischer RA. Surface-Mounted Metal-Organic Frameworks: Past, Present, and Future Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6847-6863. [PMID: 34081473 DOI: 10.1021/acs.langmuir.1c00245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are an emerging class of porous materials composed of organic linkers and metal centers/clusters. The integration of MOFs onto the solid surface as thin films/coatings has spurred great interest, thanks to leveraging control over their morphology (such as size- and shape-regulated crystals) and orientation, flexible processability, and easy recyclability. These aspects, in synergy, promise a wide range of applications, including but not limited to gas/liquid separations, chemical sensing, and electronics. Dozens of innovative methods have been developed to manipulate MOFs on various solid substrates for academic studies and potential industrial applications. Among the developed deposition methods, the liquid-phase epitaxial layer-by-layer (LPE-LbL) method has demonstrated its merits over precise control of the thickness, roughness, homogeneity, and orientations, among others. Herein, we discuss the major developments of surface-mounted MOFs (SURMOFs) in LbL process optimization, summarizing the SURMOFs' performance in different applications, and put forward our perspective on the future of SURMOFs in terms of advances in the formulation, applications, and challenges. Finally, future prospects and challenges with respect to SURMOFs growth will be discussed, keeping the focus on their widening applications.
Collapse
Affiliation(s)
- Anna Lisa Semrau
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany
| | - Zhenyu Zhou
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany
| | - Soumya Mukherjee
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany
| | - Min Tu
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Weijin Li
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center, Ernst-Otto-Fischer Straße 1 and Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching b. München, Germany
| |
Collapse
|
161
|
Chen Z, Chen Z, Farha OK, Chapman KW. Mechanistic Insights into Nanoparticle Formation from Bimetallic Metal-Organic Frameworks. J Am Chem Soc 2021; 143:8976-8980. [PMID: 34115476 DOI: 10.1021/jacs.1c04269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and controlling nanomaterial structure, chemistry, and defects represents a synthetic and characterization challenge. Metal-organic frameworks (MOFs) have recently been explored as unconventional precursors from which to prepare nanomaterials. Here we use in situ X-ray pair distribution function analysis to probe the mechanism through which MOFs transform into nanomaterials during pyrolysis. By comparing a series of bimetallic MOFs with trimeric node different compositions (Fe3, Fe2Co, and Fe2Ni) linked by carboxylate ligands in a PCN-250 lattice, we demonstrate that the resulting nanoparticle structure, chemistry, and defect concentration depend on the node chemistry of the original MOF. These results suggest that the preorganized structure and chemistry of the MOF offer new potential control over the nanomaterial synthesis under mild reaction conditions. In the case of Fe2Ni-PCN-250, selective extraction of one Ni ion from each node without collapsing the framework (i.e., node-ligand connectivity) leaves a metal-deficient MOF state that may provide a new route to post-synthetically tune the chemistry the MOF and subsequent nanomaterials.
Collapse
Affiliation(s)
- Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
162
|
Lei XW, Yang H, Wang Y, Wang Y, Chen X, Xiao Y, Bu X, Feng P. Tunable Metal-Organic Frameworks Based on 8-Connected Metal Trimers for High Ethane Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003167. [PMID: 32844577 DOI: 10.1002/smll.202003167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Metal trimers [M3 (O/OH)](OOCR)6 are among the most important structural building blocks. From these trimers, a great success has been achieved in the design of 6- or 9-connected framework materials with various topological features and outstanding gas-sorption properties. In comparison, 8-connected trimer-based metal-organic frameworks (MOFs) are rare. Given multiple competitive pathways for the formation of 6- or 9-connected frameworks, it remains challenging to identify synthetic or structural parameters that can be used to direct the self-assembly process toward trimer-based 8-connected materials. Here, a viable strategy called angle bending modulation is revealed for creating a prototypical MOF type based on 8-connected M3 (OH)(OOCR)5 (Py-R)3 trimers (M = Zn, Co, Fe). As a proof of concept, six members in this family are synthesized using three types of ligands (CPM-80, -81, and -82). These materials do not possess open-metal sites and show excellent uptake capacity for various hydrocarbon gas molecules and inverse C2 H6 /C2 H4 selectivity. CPM-81-Co, made from 2,5-furandicarboxylate and isonicotinate, features selectivity of 1.80 with high uptake capacity for ethane (123 cm3 g-1 ) and ethylene (113 cm3 g-1 ) at 298 K and 1 bar.
Collapse
Affiliation(s)
- Xiao-Wu Lei
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, P. R. China
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Yong Wang
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Xitong Chen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| |
Collapse
|
163
|
O'Hearn DJ, Bajpai A, Zaworotko MJ. The "Chemistree" of Porous Coordination Networks: Taxonomic Classification of Porous Solids to Guide Crystal Engineering Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006351. [PMID: 33690978 DOI: 10.1002/smll.202006351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
New approaches to gas/vapor storage and purification are urgently needed to address the large energy footprint, cost, and/or risk associated with existing technologies. In this context, new classes of porous physisorbents, exemplified by porous coordination networks (PCNs), have emerged. There are now >100 000 entries in the Cambridge Structural Database (CSD) metal-organic framework (MOF) subset and the rate of publication, >5000 per year, grows unabatedly. The number of PCNs makes it infeasible to test all of them for sorption performance and it is therefore timely to introduce a classification approach based upon taxonomy to supplement topological classification of PCNs. This taxonomic approach complements existing databases such as the CSD and enable the design (crystal engineering) of new families of PCNs. It also categorizes existing PCNs in a manner useful to crystal engineers. The internal consistency of the taxonomic approach is verified by case studies of several well-known PCNs whereas its utility is demonstrated upon understudied topologies and hard-to-rationalize infinite rod building blocks. Overall, taxonomic classification enables a traffic light system to direct crystal engineers towards finding a "needle in haystack," that is, a family (platform) of PCNs that is amenable to crystal engineering and systematic structure/property studies.
Collapse
Affiliation(s)
- Daniel J O'Hearn
- Department of Chemical Sciences and, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Alankriti Bajpai
- Department of Chemical Sciences and, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences and, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
164
|
Elliott R, Ryan AA, Aggarwal A, Zhu N, Steuber FW, Senge MO, Schmitt W. 2D Porphyrinic Metal-Organic Frameworks Featuring Rod-Shaped Secondary Building Units. Molecules 2021; 26:2955. [PMID: 34065664 PMCID: PMC8156857 DOI: 10.3390/molecules26102955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/02/2022] Open
Abstract
Metal-organic frameworks (MOFs) encompass a rapidly expanding class of materials with diverse potential applications including gas storage, molecular separation, sensing and catalysis. So-called 'rod MOFs', which comprise infinitely extended 1D secondary building units (SBUs), represent an underexplored subclass of MOF. Further, porphyrins are considered privileged ligands for MOF synthesis due to their tunable redox and photophysical properties. In this study, the CuII complex of 5,15-bis(4-carboxyphenyl)-10,20-diphenylporphyrin (H2L-CuII, where H2 refers to the ligand's carboxyl H atoms) is used to prepare two new 2D porphyrinic rod MOFs PROD-1 and PROD-2. Single-crystal X-ray analysis reveals that these frameworks feature 1D MnII- or CoII-based rod-like SBUs that are coordinated by labile solvent molecules and photoactive porphyrin moieties. Both materials were characterised using infrared (IR) spectroscopy, powder X-ray diffraction (PXRD) spectroscopy and thermogravimetric analysis (TGA). The structural attributes of PROD-1 and PROD-2 render them promising materials for future photocatalytic investigations.
Collapse
Affiliation(s)
- Rory Elliott
- School of Chemistry & AMBER Centre, Trinity College, University of Dublin, Dublin, Ireland; (R.E.); (A.A.); (N.Z.); (F.W.S.)
| | - Aoife A. Ryan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College, The University of Dublin, Dublin, Ireland;
| | - Aviral Aggarwal
- School of Chemistry & AMBER Centre, Trinity College, University of Dublin, Dublin, Ireland; (R.E.); (A.A.); (N.Z.); (F.W.S.)
| | - Nianyong Zhu
- School of Chemistry & AMBER Centre, Trinity College, University of Dublin, Dublin, Ireland; (R.E.); (A.A.); (N.Z.); (F.W.S.)
| | - Friedrich W. Steuber
- School of Chemistry & AMBER Centre, Trinity College, University of Dublin, Dublin, Ireland; (R.E.); (A.A.); (N.Z.); (F.W.S.)
| | - Mathias O. Senge
- Focus Group—Molecular and Interfacial Engineering of Organic Nanosystems, Institute for Advanced Study (TUM-IAS), Technical University of Munich, Lichtenberg-Str. 2a, 85748 Garching, Germany;
| | - Wolfgang Schmitt
- School of Chemistry & AMBER Centre, Trinity College, University of Dublin, Dublin, Ireland; (R.E.); (A.A.); (N.Z.); (F.W.S.)
| |
Collapse
|
165
|
Wu JP, Cheng YC, Lu L, Wang J, Qiao SB. A fourfold interpenetrating three-dimensional cadmium(II) coordination polymer: synthesis, crystal structure and physical properties. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:257-261. [PMID: 34089248 DOI: 10.1107/s2053229621004642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Abstract
A novel three-dimensional CdII coordination framework, namely, poly[{μ-bis[4-(2-methylimidazol-1-yl)phenyl] ether-κ2N3:N3'}(μ-naphthalene-1,4-dicarboxylato-κ3O1:O4,O4')cadmium(II)], [Cd(C12H6O4)(C20H18N4O)]n or [Cd(1,4-NDC)(BMIOPE)]n, where 1,4-H2NDC is naphthalene-1,4-dicarboxylic acid and BMIOPE is bis[4-(2-methylimidazol-1-yl)phenyl] ether, has been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric analysis. The compound displays a novel fourfold interpenetrating diamond-like network. In addition, it not only shows a strong fluorescence emission in the solid state, but also exhibits excellent photocatalytic activity for the degradation of methylene blue (MB) at room temperature.
Collapse
Affiliation(s)
- Ji Pei Wu
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Yi Chuan Cheng
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Lei Lu
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Jun Wang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| | - Shan Bao Qiao
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224007, People's Republic of China
| |
Collapse
|
166
|
Ma ZL, Liu PX, Liu ZY, Wang JJ, Li LB, Tian L. A Thermally and Chemically Stable Copper(II) Metal-Organic Framework with High Performance for Gas Adsorption and Separation. Inorg Chem 2021; 60:6550-6558. [PMID: 33861587 DOI: 10.1021/acs.inorgchem.1c00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A versatile microporous metal-organic framework (MOF), {[Cu(TIA)]·1.5CH3OH}n (Cu-1), was successfully obtained via the solvothermal reaction of cuprous(II) salt with the bifunctional ligand 3-(1H-1,2,4-triazol-1-yl)isophthalic acid. Single-crystal X-ray diffraction studies indicate that Cu-1 contains an apo three-dimensional skeleton and two types of one-dimensional channels. The framework of Cu-1 has excellent acid-alkali resistance and thermal stability, which is stable in a pH = 2-13 aqueous solution and an 260 °C air environment. In addition, the microporous copper MOF shows very high uptakes of CO2 (180 cm3·g-1) and C2H2 (113 cm3·g-1) at 273 K and displays excellent adsorption selectivity for small molecular gases. The ideal adsorbed solution theory selectivity values for C2H2/C2H4, CO2/CH4, and CO2/N2 are 2, 9, and 22 at 298 K, respectively. At the same time, breakthrough experiments for CO2/CH4, CO2/N2, and C2H2/C2H4 were further conducted to verify the efficient separation performances.
Collapse
Affiliation(s)
- Zhi Long Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Pu Xu Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zhong Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jia Jun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Li Bo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Li Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
167
|
Saura‐Sanmartin A, Martinez‐Cuezva A, Marin‐Luna M, Bautista D, Berna J. Effective Encapsulation of C
60
by Metal–Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Adrian Saura‐Sanmartin
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Alberto Martinez‐Cuezva
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Marta Marin‐Luna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC) Area Cientifica y Tecnica de Investigacion (ACTI) Universidad de Murcia 30100 Murcia Spain
| | - Jose Berna
- Departamento de Quimica Organica Facultad de Quimica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
168
|
Huai R, Xu M, Dou Y, Wang Z, Xue Z, Zhang Y, Lv H, Qin L, Zhang D, Zhou Z, Yang L. Synthesis of a tetraphenylethylene-based metal-organic framework as the luminescent sensor for selective sensing of Cr2O72− in aqueous solution. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
169
|
Wu N, Guo H, Wang X, Sun L, Zhang T, Peng L, Yang W. A water-stable lanthanide-MOF as a highly sensitive and selective luminescence sensor for detection of Fe3+ and benzaldehyde. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
170
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Rosales-Vázquez LD, Dorazco-González A, Sánchez-Mendieta V. Efficient chemosensors for toxic pollutants based on photoluminescent Zn(ii) and Cd(ii) metal-organic networks. Dalton Trans 2021; 50:4470-4485. [PMID: 33877166 DOI: 10.1039/d0dt04403b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be realized by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(ii) and Cd(ii) crystalline coordination arrays (CPs and MOFs). In these materials with emission centers typically based on charge transfer and intraligand emissions, the quantitative detection of specific analytes, as pesticides or anions, is probed by monitoring real-time changes in their photoluminescence and color emission properties. Pesticides/herbicides have extensive uses in agriculture and household applications. Also, a large amount of metal salts of cyanide is widely used in several industrial processes such as mining and plastic manufacturing. Acute or chronic exposure to these compounds can produce high levels of toxicity in humans, animals and plants. Due to environmental concerns associated with the accumulation of these noxious species in food products and water supplies, there is an urgent and growing need to develop direct, fast, accurate and low-cost sensing methodologies. In this critical frontier, we discuss the effective strategies, chemical stability, luminescence properties, sensitivity and selectivity of recently developed hybrid Zn(ii)/Cd(ii)-organic materials with analytical applications in the direct sensing of pesticides, herbicides and cyanide ions in the aqueous phase and organic solvents.
Collapse
Affiliation(s)
- Luis D Rosales-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico.
| | | | | |
Collapse
|
172
|
Chen F, Hu X, Yan X, Feng R, Zhou M, Fan S. A microstructured catalyst made of prussian blue analogues/copper foam for effective reduction of 4-nitrophenol. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
173
|
Guo H, Wang F, Ma R, Zhang M, Fu L, Zhou T, Liu S, Guo X. Lanthanide post-functionalized UiO-67 type metal–organic frameworks for tunable light-emission and stable multi-sensors in aqueous media. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
174
|
Zhang S. Anion-directed two cadmium(II) metal–organic frameworks based on bis(imidazol-1-yl)methane with diverse supramolecular structures and luminescence properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
175
|
Saura-Sanmartin A, Martinez-Cuezva A, Marin-Luna M, Bautista D, Berna J. Effective Encapsulation of C 60 by Metal-Organic Frameworks with Polyamide Macrocyclic Linkers. Angew Chem Int Ed Engl 2021; 60:10814-10819. [PMID: 33617658 DOI: 10.1002/anie.202100996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Indexed: 12/14/2022]
Abstract
A flexible benzylic amide macrocycle, functionalized with two carboxylic acid groups, was employed as the organic ligand for the preparation of robust copper(II)- and zinc(II)-based metal-organic frameworks. These polymers crystallized in the C2/m space group of the monoclinic crystal system, creating non-interpenetrated channels in one direction with an extraordinary solvent-accessible volume of 46 %. Unlike metal-organic rotaxane frameworks having benzylic amide macrocycles as linkers, the absence of the thread in these novel reticular materials causes a decrease of dimensionality and an improvement of pore size and dynamic guest adaptability. We studied the incorporation of fullerene C60 inside the adjustable pocket generated between two macrocycles connected to the same dinuclear clusters, occupying a remarkable 98 % of the cavities inside the network. The use of these materials as hosts for the selective recognition of different fullerenes was evaluated, mainly encapsulating the smaller size fullerene derivative in several mixtures of C60 and C70 .
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Alberto Martinez-Cuezva
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| | - Delia Bautista
- Seccion Universitaria de Instrumentacion Científica (SUIC), Area Cientifica y Tecnica de Investigacion (ACTI), Universidad de Murcia, 30100, Murcia, Spain
| | - Jose Berna
- Departamento de Quimica Organica, Facultad de Quimica, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
176
|
Colmenero F. Negative linear compressibility in nanoporous metal-organic frameworks rationalized by the empty channel structural mechanism. Phys Chem Chem Phys 2021; 23:8508-8524. [PMID: 33876014 DOI: 10.1039/d1cp00214g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zinc squarate tetrahydrate (ZnC4O4·4H2O) and titanium oxalate trioxide dihydrate (Ti2(C2O4)O3·2H2O) are nanoporous metal-organic frameworks possessing empty channels in their crystal structures. The crystal structures and mechanical properties of these materials are studied using first principles solid-state methods based on Density Functional Theory. The results show that they exhibit the negative linear compressibility (NLC) and negative Poisson's ratio (NPR) phenomena. The absolute value of the negative compressibilities are significant and the range of pressure for which NLC effects are shown is very wide. The detailed study of the deformation of the crystal structures under pressure reveals that the NLC effect in these compounds can be rationalized using the empty channel structural mechanism. Under isotropic compression, the channels are elongated along the direction of minimum compressibiity, leading to NLC. Furthermore, under compression along the direction of minimum compressibity, the unit-cell volume increases leading to negative volumetric compressibilty. The effect of hydration on the NLC effect in titanium oxalate trioxide dihydrate is investigated by studying the parent compound titanium oxalate trioxide trihydrate (Ti2(C2O4)O3·3H2O). The NLC effect in this material is reduced due to the reinforcement of the walls of the structural channels.
Collapse
Affiliation(s)
- Francisco Colmenero
- Instituto de Estructura de la Materia (IEM-CSIC), C/Serrano, 113 - 28006 Madrid, Spain.
| |
Collapse
|
177
|
Kamakura Y, Tanaka D. Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. CHEM LETT 2021. [DOI: 10.1246/cl.200777] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshinobu Kamakura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Daisuke Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
- JST PRESTO, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
178
|
Su C, Guo F. A Cd(II)-based MOF as a dual-responsive luminescent probe for highly selective detection of Fe3+ cation and nitrofurantoin. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
179
|
Zhou Y, Han L. Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213665] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
180
|
Yin MJ, Xiong XH, Feng XF, Xu WY, Krishna R, Luo F. A Robust Cage-Based Metal-Organic Framework Showing Ultrahigh SO 2 Uptake for Efficient Removal of Trace SO 2 from SO 2/CO 2 and SO 2/CO 2/N 2 Mixtures. Inorg Chem 2021; 60:3447-3451. [PMID: 33595299 DOI: 10.1021/acs.inorgchem.1c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Removal of trace SO2 from an SO2-containing product is now receiving increasing attention. However, designing a robust porous adsorbent with high SO2 adsorption capacity and good SO2/CO2 selectivity, as well as validity under humid conditions, is still a challenging task. Herein, we report a porous cage-based metal-organic framework, namely ECUT-111, which contains two distinct cages with apertures of 5.4 and 10.2 Å, respectively, and shows high a BET of up to 1493 m2/g and a pore volume of 0.629 cm3/g. Impressively, ECUT-111 enables an ultrahigh SO2 uptake of up to 11.56 mmol/g, exceeding most reported top-performing adsorbents for such a use. More importantly, complete separation of trace SO2 from SO2/CO2 and SO2/CO2/N2 mixtures, especially under humid conditions, and excellent recycle use were observed for ECUT-111, suggesting its superior application in desulfurization of SO2-containing products.
Collapse
Affiliation(s)
- Meng Jia Yin
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, People's Republic of China
| | - Xiao Hong Xiong
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, People's Republic of China
| | - Xue Feng Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, People's Republic of China
| | - Wen Yuan Xu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Rajamani Krishna
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, People's Republic of China
| |
Collapse
|
181
|
De S, Devic T, Fateeva A. Porphyrin and phthalocyanine-based metal organic frameworks beyond metal-carboxylates. Dalton Trans 2021; 50:1166-1188. [PMID: 33427825 DOI: 10.1039/d0dt03903a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the ubiquitous role of porphyrins in natural systems, these molecules and related derivatives such as phthalocyanines are fascinating building units to achieve functional porous materials. Porphyrin-based MOFs have been developed over the past three decades, yet chemically robust frameworks, necessary for applications, have been achieved much more recently and this field is expanding. This progress is partially driven by the development of porphyrins and phthalocyanines bearing alternative coordinating groups (phosphonate, azolates, phenolates…) that allowed moving the related MOFs beyond metal-carboxylates and achieving new topologies and properties. In this perspective article we first give a brief outline of the synthetic pathways towards simple porphyrins and phthalocyanines bearing these complexing groups. The related MOF compounds are then described; their structural and textural properties are discussed, as well as their stability and physical properties. An overview of the resulting nets and topologies is proposed, showing both the similarities with metal-carboxylate phases and the peculiarities related to the alternative coordinating groups. Eventually, the opportunities offered by this recent research topic, in terms of both synthesis pathways and modulation of pore size and shape, stability and physical properties, are discussed.
Collapse
Affiliation(s)
- Siddhartha De
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| | - Thomas Devic
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Alexandra Fateeva
- Univ. Lyon, Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, F-69622 Villeurbanne, France.
| |
Collapse
|
182
|
Younis SA, Bhardwaj N, Bhardwaj SK, Kim KH, Deep A. Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213620] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
183
|
Xue W, Deng W, Chen H, Liu R, Taylor JM, Li Y, Wang L, Deng Y, Li W, Wen Y, Wang G, Wan C, Xu G. MOF‐Directed Synthesis of Crystalline Ionic Liquids with Enhanced Proton Conduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wen‐Long Xue
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Wei‐Hua Deng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 China
| | - Hui Chen
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Rui‐Heng Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Jared M. Taylor
- Department of chemistry University of Calgary Calgary Alberta T2N1N4 Canada
| | - Yu‐kun Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Lu Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yu‐Heng Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Wen‐Hua Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ying‐Yi Wen
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Guan‐E Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Chong‐Qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
184
|
Liu L, Tao ZP, Chi HR, Wang B, Wang SM, Han ZB. The applications and prospects of hydrophobic metal-organic frameworks in catalysis. Dalton Trans 2021; 50:39-58. [PMID: 33306086 DOI: 10.1039/d0dt03635h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, large numbers of hydrophobic/superhydrophobic metal-organic frameworks (MOFs) have been developed. These hydrophobic MOFs not only retain rich structural variety, highly crystalline frameworks, and uniform micropores, but they also have lower affinity towards water and boosted hydrolytic stability. Until now, there were two main strategies to prepare hydrophobic MOFs, including a one-step method and post-synthesis modification (PSM). PSM was an often-used strategy for preparing hydrophobic MOFs. Hydrophobic MOFs showed unique advantages when used as catalysts for various categories of reactions. Herein, recent research advances relating to hydrophobic MOFs in the catalytic field are presented. The catalytic activities of hydrophobic MOFs and corresponding hydrophilic ones are also compared, and the superiority of hydrophobic MOFs or MOF materials as catalysts in 10 reactions is discussed. Finally, the advantages of hydrophobic MOFs as catalysts or auxiliary materials are summarized and promising future developments of hydrophobic MOFs are highlighted.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | | | | | | | | | | |
Collapse
|
185
|
Karim S, Mukherjee S, Mahapatra S, Parveen R, Das D. Green facile synthesis to develop nanoscale coordination polymers as lysosome-targetable luminescent bioprobes. Biomater Sci 2021; 9:124-132. [PMID: 33107498 DOI: 10.1039/d0bm01328e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new coordination polymers (CPs), namely [{M(HL)(L)(H2O)}(ClO4)(H2O)]∞ (M = Zn for CP 1, Mn for CP 2, Cu for CP 3) were synthesized to explore their efficacy as lysosome-targetable luminescent bioprobes. The synthesized CPs were characterized by techniques including single-crystal X-ray analysis, FTIR spectroscopy and elemental analysis. Single-crystal analysis revealed the formation of iso-structural CPs displaying distorted adamantoid topology developed by bridging ligands and H-bonds connections and metals at the nodes. A green hand-grinding technique with a mortar and pestle resulted in nanoscale coordination polymers (NCPs) suitable for cell permeability and was further confirmed by SEM and DLS analyses. Two of these hand-ground nanoscale coordination polymers NCP 1 and NCP 2 showed excellent green luminescence and were explored as potential and selective long-time biotrackers towards lysosome using the human lung carcinoma cell line (A549). Strikingly, the developed bioprobe displayed excellent bio-availability, photostability and excellent selectivity towards lysosomes sustained by various in vitro cell imaging experiments. Moreover, the long-term probing ability of these NCPs turned out to be better than the commercially available lysosome tracker i.e. LysoTracker Red, indicating their potential real-life application in bio-imaging. To the best ofour knowledge, this is the first example of nonexpensive and less toxic essential transition metal-based nanoscale coordination polymers that can behave as effective lysosome-targetable luminescent bioprobes.
Collapse
Affiliation(s)
- Suhana Karim
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700109, India.
| | | | | | | | | |
Collapse
|
186
|
|
187
|
Parshamoni S, Nasani R, Paul A, Konar S. Synthesis of a palladium based MOF via an effective post-synthetic modification approach and its catalytic activity towards Heck type coupling reactions. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01052a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complete exchange of metal nodes in a MOF with the Pd(ii) ions was done without losing the structural integrity. The new MOF turned out to be an excellent catalyst for the C–C bond formation via un-reacted cleavage C–N bond of arylhydrazines.
Collapse
Affiliation(s)
- Srinivasulu Parshamoni
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| | - Rajendar Nasani
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| | - Abhik Paul
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Bhopal-462066
- India
| |
Collapse
|
188
|
Wang L, Jiang T, Duttwyler S, Zhang Y. Supramolecular Cu( ii)–dipyridyl frameworks featuring weakly coordinating dodecaborate dianions for selective gas separation. CrystEngComm 2021. [DOI: 10.1039/d0ce01395a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel weakly coordinating dodecaborate anion hybrid supramolecular Cu(ii)–dipyridyl frameworks were synthesized and characterized by single crystal analysis with one potential for selective C2H2/C2H4 and C2H2/CO2 separation.
Collapse
Affiliation(s)
- Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| | - Tao Jiang
- Department of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang
- China
| | - Simon Duttwyler
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials
- College of Chemistry and Life Sciences
- Zhejiang Normal University
- Jinhua 321004
- China
| |
Collapse
|
189
|
Kumar G, Kumar G, Gupta R. Effect of pyridyl donors from organic ligands versus metalloligands on material design. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00768d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review illustrates designs and structures of various coordination frameworks constructed using assorted organic ligands and metalloligands offering pyridyl donors to evaluate the impact of flexibility versus rigidity on material design.
Collapse
Affiliation(s)
- Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Gulshan Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
190
|
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01153c] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This comprehensive review systematically summarizes the luminescence response mode and chemical sensing mechanism for lanthanide-functionalized MOF hybrids (abbreviated as LnFMOFH).
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- School of Materials Science and Engineering
| |
Collapse
|
191
|
Liu X, Liu Y. Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Trans 2021; 50:3450-3458. [DOI: 10.1039/d0dt04338a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZMOFs are a subset of MOFs that exhibit zeolite-like topologies. Using molecular building block strategy, many ZMOFs with high stability and excellent performance can be rationally designed and synthesized using different secondary building units.
Collapse
Affiliation(s)
- Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
192
|
Zheng J, Wang CG, Zhou H, Ye E, Xu J, Li Z, Loh XJ. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. RESEARCH (WASHINGTON, D.C.) 2021; 2021:3750689. [PMID: 33623916 PMCID: PMC7877397 DOI: 10.34133/2021/3750689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen energy, with environment amicable, renewable, efficiency, and cost-effective advantages, is the future mainstream substitution of fossil-based fuel. However, the extremely low volumetric density gives rise to the main challenge in hydrogen storage, and therefore, exploring effective storage techniques is key hurdles that need to be crossed to accomplish the sustainable hydrogen economy. Hydrogen physically or chemically stored into nanomaterials in the solid-state is a desirable prospect for effective large-scale hydrogen storage, which has exhibited great potentials for applications in both reversible onboard storage and regenerable off-board storage applications. Its attractive points include safe, compact, light, reversibility, and efficiently produce sufficient pure hydrogen fuel under the mild condition. This review comprehensively gathers the state-of-art solid-state hydrogen storage technologies using nanostructured materials, involving nanoporous carbon materials, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, nanoporous organic polymers, and nanoscale hydrides. It describes significant advances achieved so far, and main barriers need to be surmounted to approach practical applications, as well as offers a perspective for sustainable energy research.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Chen-Gang Wang
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Hui Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Jianwei Xu
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| |
Collapse
|
193
|
Xu GR, An ZH, Xu K, Liu Q, Das R, Zhao HL. Metal organic framework (MOF)-based micro/nanoscaled materials for heavy metal ions removal: The cutting-edge study on designs, synthesis, and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213554] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
194
|
Tseng TW, Luo TT, Tseng KY, Hong YX, Huang GC. Bent-bis(triazolyl)-based coordination polymers tuned by dicarboxylate ligands: syntheses, structures and properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00780g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven new coordination polymers based on the bent 1,1'-(oxybis(1,4-phenylene))-bis(1H-1,2,4-triazole) ligand, with diverse structures and novel topologies, that are directed by the dicarboxylate ligands.
Collapse
Affiliation(s)
- Tien-Wen Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Tzuoo-Tsair Luo
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Kuo-Yang Tseng
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Yu-Xian Hong
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Guang-Cheng Huang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Taiwan
| |
Collapse
|
195
|
Chahine AY, Turner DR, Batten SR. Crystal engineering of coordination polymers using flexible tetracarboxylate linkers with embedded cyclohexyldiamine cores. CrystEngComm 2021. [DOI: 10.1039/d0ce01620a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flexible amine-functionalised tetracarboxylate ligands with different length arms generate a large variety of coordination polymers which notably lack topological consistency.
Collapse
|
196
|
Ma ZL, Wang MC, Tian L, Liu ZY. Solvent-controlled metal coordination polymers of Co( ii) with different topological structures and properties. CrystEngComm 2021. [DOI: 10.1039/d1ce01093j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three multidimensional Co-polymers were obtained. Co-1 exhibits as a 2D layer. Co-2 displays as a tetranodal (4,4,5,6)-connected 3D MOFs. Co-3 is a binodal (4,6)-connected 3D framework.
Collapse
Affiliation(s)
- Zhi Long Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Meng Chen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Li Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhong Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
197
|
Rezki M, Septiani NLW, Iqbal M, Harimurti S, Sambegoro P, Adhika DR, Yuliarto B. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors. J Mater Chem B 2021; 9:5711-5721. [PMID: 34223862 DOI: 10.1039/d1tb00222h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.
Collapse
Affiliation(s)
- Muhammad Rezki
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Suksmandhira Harimurti
- Lab-On-a-Chip Research Group, Department of Biomedical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Poetro Sambegoro
- Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Damar Rastri Adhika
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia. and Research Center of Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
198
|
Qin L, Pan Y, Yu L, Huai R, Yang L, Dou Y, Zhou Z. In situ cleavage and rearrangement synthesis of an easy-to-obtain and highly stable Cu( ii)-based MOF for efficient heterogeneous catalysis of carbon dioxide conversion. CrystEngComm 2021. [DOI: 10.1039/d1ce00888a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Cu(ii)-based MOF has been synthesized by the in situ cleavage and rearrangement solvothermal synthesis. This material exhibits highly stabilities and CO2 adsorption ability to catalyze cycloaddition of CO2 with epoxides efficiently.
Collapse
Affiliation(s)
- Lan Qin
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| | - Yu Pan
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| | - Lei Yu
- Jiaxing University, School of Entrepreneurship, Jiaxing, 330400, P. R. China
| | - Ranran Huai
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| | - Lu Yang
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| | - Yong Dou
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| | - Zhen Zhou
- Shandong University of Technology, School of Chemistry and Chemical Engineering, Zibo, 255000, P. R. China
| |
Collapse
|
199
|
Synthesis and selective detection towards TNP of two coordination polymers based on ligand generated by in situ acylation reaction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
200
|
Yu BB, Hua YW, Huang Q, Ye SY, Zhang HD, Yan Z, Li RW, Wu J, Meng Y, Cao X. Two-dimensional stable and ultrathin cluster-based metal–organic layers for efficient electrocatalytic water oxidation. CrystEngComm 2021. [DOI: 10.1039/d1ce00350j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The report describes the successful synthesis of CoNi bimetal two-dimensional CMOLs directly grown on Ni foam (Co0.6Ni0.4-CMOLs/NF), which shows excellent catalytic activity and stability for the OER under alkaline conditions.
Collapse
|