151
|
Bains AK, Biswas A, Kundu A, Adhikari D. Nickel‐Catalysis Enabling α‐Alkylation of Ketones by Secondary Alcohols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Ayanangshu Biswas
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Abhishek Kundu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| | - Debashis Adhikari
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) – Mohali SAS Nagar Punjab-140306 India
| |
Collapse
|
152
|
Underlying Mechanisms of Reductive Amination on Pd-Catalysts: The Unique Role of Hydroxyl Group in Generating Sterically Hindered Amine. Int J Mol Sci 2022; 23:ijms23147621. [PMID: 35886969 PMCID: PMC9320161 DOI: 10.3390/ijms23147621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Pd nanospecies supported on porous g-C3N4 nanosheets were prepared for efficient reductive amination reactions. The structures of the catalysts were characterized via FTIR, XRD, XPS, SEM, TEM, and TG analysis, and the mechanisms were investigated using in situ ATR−FTIR spectroscopic analysis complemented by theoretical calculation. It transpired that the valence state of the Pd is not the dominating factor; rather, the hydroxyl group of the Pd(OH)2 cluster is crucial. Thus, by passing protons between different molecules, the hydroxyl group facilitates both the generation of the imine intermediate and the reduction of the C=N unit. As a result, the sterically hindered amines can be obtained at high selectivity (>90%) at room temperature.
Collapse
|
153
|
Singh T, Jalwal S, Chakraborty S. Homogeneous First‐row Transition Metal Catalyzed Carbon dioxide Hydrogenation to Formic acid/Formate, and Methanol. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tushar Singh
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Sachin Jalwal
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Subrata Chakraborty
- Indian Institute of Technology Jodhpur Chemistry Department of ChemistryNH62, Nagaur RoadKarwar 342037 Jodhpur INDIA
| |
Collapse
|
154
|
Liu X, Sotiropoulos J, Taillefer M. A New Route to
E
‐Stilbenes through the Transition‐Metal‐Free KO
t
Bu/DMF‐Promoted Direct Coupling of Alcohols with Phenyl Acetonitriles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Liu
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| | | | - Marc Taillefer
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| |
Collapse
|
155
|
Maji A, Gupta S, Maji M, Kundu S. Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. J Org Chem 2022; 87:8351-8367. [PMID: 35726206 DOI: 10.1021/acs.joc.2c00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we report a simple, phosphine-free, and inexpensive catalytic system based on a manganese(II) complex for synthesizing different important N-heterocycles such as quinolines, pyrroles, and pyridines from amino alcohols and ketones. Several control experiments, kinetic studies, and DFT calculations were carried out to support the plausible reaction mechanism. We also detected two potential intermediates in the catalytic cycle using ESI-MS analysis. Based on these studies, a metal-ligand cooperative mechanism was proposed.
Collapse
Affiliation(s)
- Ankur Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivangi Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Milan Maji
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
156
|
Song A, Liu Y, Jin X, Su D, Li Z, Yu S, Xing L, Xu X, Wang R, Li F. Metal-ligand cooperative iridium complex catalyzed C-alkylation of oxindole and 1,3-dimethylbarbituric acid using alcohols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
157
|
Zhao M, Li X, Zhang X, Shao Z. Efficient Synthesis of C3-Alkylated and Alkenylated Indoles via Manganese-Catalyzed Dehydrogenation. Chem Asian J 2022; 17:e202200483. [PMID: 35771722 DOI: 10.1002/asia.202200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The catalytic dehydrogenation of alcohols is essential for the sustainable production of valuable products. This provids a new strategy for green organic synthesis in chemical industries. Herein, we describe a manganese-based catalytic system that enables the efficient synthesis of C3-alkylated indoles from benzyl alcohols and indoles via the borrowing hydrogen process. Furthermore, dehydrogenative coupling of 2-arylethanols and indoles yields C3-alkenylated indoles. Meanwhile, reacting 2-aminophenethanol instead of indoles can also obtain the corresponding indole products with high selectivity under the same conditions.
Collapse
Affiliation(s)
- Mingqin Zhao
- Henan University, College of Tobacco Science, CHINA
| | - Xinyan Li
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Xiaoyu Zhang
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Zhihui Shao
- Henan Agricultural University, College of Tobacco Science, Wenhua Road, 450002, Zhengzhou, CHINA
| |
Collapse
|
158
|
Wang Y, Zhang FL, Liu ZJ, Yao ZJ. Half-Sandwich Iridium Complexes with Hydrazone Ligands: Synthesis and Catalytic Activity in N-Alkylation of Anilines or Nitroarenes with Alcohols via Hydrogen Autotransfer. Inorg Chem 2022; 61:10310-10320. [PMID: 35767836 DOI: 10.1021/acs.inorgchem.2c00703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we synthesize a series of hydrazone-based N,O-chelate half-sandwich iridium complexes through a facile route. All air-stable iridium complexes show high catalytic activity in N-alkylation of a broad scope of aniline derivatives and alcohols with liberating water as the sole byproduct. This reaction provides a smooth route to synthesize diverse monoalkylated amines in good to excellent yields at moderate temperature with a low catalyst loading. Moreover, the challenging N-alkylation process using nitroarene substrates as coupling partners is also carried out in this catalytic system. The mechanistic study shows that the present iridium catalysis process proceeds through a hydrogen borrowing mechanism. All iridium(III) complexes 1-4 are characterized by infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fang-Lei Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
159
|
Chang X, Cheng X, Liu XT, Fu C, Wang WY, Wang CJ. Stereodivergent Construction of 1,4‐Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xiang Cheng
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Xue-Tao Liu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Cong Fu
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Wei-Yi Wang
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Chun-Jiang Wang
- Wuhan University Department of Chemistry Bayi road 430072 wuhan CHINA
| |
Collapse
|
160
|
Roemer M, Luck I, Proschogo N. Cu(I) Mediated Azidation of Halobenzenes, and Cu Catalysed Selective Azide Reduction to Corresponding Amines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Ian Luck
- The University of Sydney AUSTRALIA
| | | |
Collapse
|
161
|
Chandrashekhar VG, Baumann W, Beller M, Jagadeesh RV. Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. Science 2022; 376:1433-1441. [PMID: 35737797 DOI: 10.1126/science.abn7565] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Efficient and general methods for the synthesis of amines remain in high demand in the chemical industry. Among the many known processes, catalytic hydrogenation is a cost-effective and industrially proven reaction and currently used to produce a wide array of such compounds. We report a homogeneous nickel catalyst for hydrogenative cross coupling of a range of aromatic, heteroaromatic, and aliphatic nitriles with primary and secondary amines or ammonia. This general hydrogenation protocol is showcased by straightforward and highly selective synthesis of >230 functionalized and structurally diverse amines including pharmaceutically relevant and chiral products, as well as 15N-isotope labeling applications.
Collapse
Affiliation(s)
| | | | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | | |
Collapse
|
162
|
Pham HH, Donnadieu B, Hollis TK. Synthesis of a CCC‐NHC pincer Re complex. An air stable catalyst for coupling ketones with primary alcohols via borrowing hydrogen. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hoang H. Pham
- Department of Chemistry Mississippi State University Mississippi State MS USA
| | - Bruno Donnadieu
- Department of Chemistry Mississippi State University Mississippi State MS USA
| | - T. Keith Hollis
- Department of Chemistry Mississippi State University Mississippi State MS USA
| |
Collapse
|
163
|
Biswal P, Siva Subramani M, Samser S, Chandrasekhar V, Venkatasubbaiah K. Ligand-Controlled Ruthenium-Catalyzed Borrowing-Hydrogen and Interrupted-Borrowing-Hydrogen Methodologies: Functionalization of Ketones Using Methanol as a C1 Source. J Org Chem 2022; 88:5135-5146. [PMID: 35695675 DOI: 10.1021/acs.joc.2c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report simple, highly efficient, and phosphine-free N,C-Ru and N,N-Ru catalysts for ligand-controlled borrowing-hydrogen (BH) and interrupted-borrowing-hydrogen (I-BH) methods, respectively. This protocol has been employed on a variety of ketones using MeOH as a green, sustainable, and alternative C1 source to form a C-C bond through the BH and I-BH methods. Reasonably good substrate scope, functional group tolerance, and good-to-excellent yields at 70 °C are the added highlights of these methodologies. Controlled experiments reveal that an in situ formed formaldehyde is one of the crucial elements in this ligand-controlled selective protocol, which upon reaction with a ketone generates an enone as an intermediate. This enone in the presence of the N,C-Ru catalyst and N,N-Ru catalyst through the BH and I-BH pathways yields methylated ketones and 1,5-diketones, respectively.
Collapse
Affiliation(s)
- Priyabrata Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - M Siva Subramani
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Shaikh Samser
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Krishnan Venkatasubbaiah
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, an OCC of Homi Bhabha National Institute, Bhubaneswar-752050, Odisha, India
| |
Collapse
|
164
|
Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
165
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
166
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
167
|
Ubale AS, Londhe GS, Shaikh MA, Gnanaprakasam B. Transition-Metal-Free Alkylative Aromatization of Tetralone Using Alcohol/Amino Alcohol towards the Synthesis of Bioactive Naphthol and Benzo[ e/ g]indole Derivatives. J Org Chem 2022; 87:8104-8117. [PMID: 35612287 DOI: 10.1021/acs.joc.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report alkylative aromatization of tetralone for the synthesis of bioactive naphthols and benzo[e/g]indole derivatives using alcohols in the presence of NaOH via an aerobic oxidative cross-coupling protocol. This is a general and transition-metal-free method, which uses an inexpensive base, avoids inert conditions, and furnishes water and hydrogen peroxide as the byproducts. Moreover, this method demonstrated with wide substrate scope and obtained exclusive regioselectivity.
Collapse
Affiliation(s)
- Akash S Ubale
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Gokul S Londhe
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Moseen A Shaikh
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
168
|
González-Lainez M, Jiménez MV, Azpiroz R, Passarelli V, Modrego FJ, Pérez-Torrente JJ. N-Methylation of Amines with Methanol Catalyzed by Iridium(I) Complexes Bearing an N,O-Functionalized NHC Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Ramón Azpiroz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - F. Javier Modrego
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
169
|
Zheng Y, Long Y, Gong H, Xu J, Zhang C, Fu H, Zheng X, Chen H, Li R. Ruthenium-Catalyzed Divergent Acceptorless Dehydrogenative Coupling of 1,3-Diols with Arylhydrazines: Synthesis of Pyrazoles and 2-Pyrazolines. Org Lett 2022; 24:3878-3883. [PMID: 35609118 DOI: 10.1021/acs.orglett.2c01497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, the divergent transformations of 1,3-diols with arylhydrazines via acceptorless dehydrogenative coupling reactions to selectively synthesize pyrazoles and 2-pyrazolines were reported, which were based on Ru3(CO)12/NHC-phosphine-phosphine catalytic systems. The reactions featured low catalyst loading, high selectivity, wide substrate scope, and good yields, with only water and hydrogen gas (H2) as the byproducts.
Collapse
Affiliation(s)
- Yanling Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yang Long
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Huihua Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
170
|
Davies AM, Li ZY, Stephenson CRJ, Szymczak NK. Valorization of Ethanol: Ruthenium-Catalyzed Guerbet and Sequential Functionalization Processes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alex M. Davies
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Zhong-Yuan Li
- University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
171
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
172
|
Li Z, Hu R, Ye S, Song J, Liu L, Qu J, Song W, Cao C. High-Performance Heterogeneous Thermocatalysis Caused by Catalyst Wettability Regulation. Chemistry 2022; 28:e202104588. [PMID: 35253287 DOI: 10.1002/chem.202104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 01/11/2023]
Abstract
Catalyst wettability regulation has emerged as an attractive approach for high catalytic performance for the past few years. By introducing appropriate wettability, the molecule diffusion of reactants and products can be enhanced, leading to high activity. Besides this, undesired molecules are isolated for high selectivity of target products and long-term stability of catalyst. Herein, we summarize wettability-induced high-performance heterogeneous thermocatalysis in recent years, including hydrophilicity, hydrophobicity, hybrid hydrophilicity-hydrophobicity, amphiphilicity, and superaerophilicity. Relevant reactions are further classified and described according to the reason for the performance improvement. It should be pointed out that studies of utilizing superaerophilicity to improve heterogeneous thermocatalytic performance have been included for the first time, so this is a comparatively comprehensive review in this field as yet.
Collapse
Affiliation(s)
- Zhaohua Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russian Federation
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
173
|
Towards ligand simplification in manganese-catalyzed hydrogenation and hydrosilylation processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
174
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
175
|
Guan R, Zhao H, Zhang M. Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines. Org Lett 2022; 24:3048-3052. [DOI: 10.1021/acs.orglett.2c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
- Qingyuan Huayuan Institute of Science and Technology Collaborative InnovationCo., Ltd., China
| |
Collapse
|
176
|
Zhuang X, Zhu M, Hong CM, Luo Z, Li WF, Li QH, Luo QL, Liu TL. Alkynyl Borrowing: Silver-Catalyzed Amination of Secondary Propargylic Alcohols via C(sp 3)-C(sp) Bond Cleavage. J Org Chem 2022; 87:5395-5403. [PMID: 35385662 DOI: 10.1021/acs.joc.2c00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The silver-catalyzed alkynyl borrowing amination of secondary propargyl alcohols via C(sp3)-C(sp) bond cleavage has been developed. This new strategy was based on the β-alkynyl elimination of propargyl alcohols and alkynyl as the borrowing subject. This alkynyl borrowing amination featured high atom economy, wide functional group tolerance, and high efficiency.
Collapse
Affiliation(s)
- Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wan-Fang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qun-Li Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
177
|
Liu P, Chen X, Xu X, Yang L, Zeng G, Ye C, Shi Q, Yang J, Li F. From hydrogen autotransfer process to deuterium autotransfer process: The N-trideuteromethylation of amines with deuterated methanol to trideuteromethylated amines catalyzed by a Cp*Ir complex bearing a flexible bridging and functional ligand. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
178
|
Patra K, Laskar RA, Nath A, Bera JK. A Protic Mn(I) Complex Based on a Naphthyridine- N-oxide Scaffold: Protonation/Deprotonation Studies and Catalytic Applications for Alkylation of Ketones. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kamaless Patra
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Roshayed Ali Laskar
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anubhav Nath
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
179
|
Mao W, Zhao H, Zhang M. Hydride transfer-initiated synthesis of 3-functionalized quinolines by deconstruction of isoquinoline derivatives. Chem Commun (Camb) 2022; 58:4380-4383. [PMID: 35297459 DOI: 10.1039/d2cc00127f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Under transition metal catalyst-free conditions, we herein present a hydride transfer-initiated construction of novel 3-(2-aminomethyl)aryl quinolines from N-isoquinolinium salts and 2-aminobenzaldehydes, proceeding with the merits of operational simplicity, high step and atom efficiency, good substrate and functional group compatibility, and mild conditions. The products are formed by reacting with the isoquinolyl motif as a two-carbon synthon along with the cleavage of its C3-N bond. Given the interesting applications of 3-aryl quinolines, the developed chemistry is anticipated to be further applied to develop new functional products.
Collapse
Affiliation(s)
- Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
180
|
Zhang R, Xia Y, Yan Y, Ouyang L. Cu-catalyzed, Mn-mediated propargylation and allenylation of aldehydes with propargyl bromides. BMC Chem 2022; 16:14. [PMID: 35303949 PMCID: PMC8933908 DOI: 10.1186/s13065-022-00803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
A simple, practical, and high chemo-selective method for the synthesis of propargyl alcohol and allenyl alcohols via Cu-catalyzed, Mn-mediated propargylation and allenylation of aldehydes with propargyl bromides has been established. When 3-bromo-1-propyne was conducted under the standard condition, the aldehydes were transformed to the corresponding propargylation products completely, while when 1-bromo-2-pentyne was used, allenic alcohol was the only product. Variety of homopropargyl alcohols and allenyl alcohols were obtained in high yields and the reaction is compatible with broad substrate scopes. In addition, the large-scale reaction could also be proceeded smoothly indicating the potential synthetic applications of this transformation.
Collapse
Affiliation(s)
- Rongli Zhang
- Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, China.
| | - Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yuchen Yan
- Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, China
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
181
|
Tunable synthesis of furfurylamines or β-amino alcohols via Ru-catalyzed N–H functionalization using biomass-derived polyols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
182
|
Jia L, Li CJ, Zeng H. Cleavage∕cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
183
|
Wu J, Darcel C. Tandem Fe/Zn or Fe/In catalysis for the selective synthesis of primary and secondary amines via selective reduction of primary amides. ChemCatChem 2022. [DOI: 10.1002/cctc.202101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajun Wu
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes, OMC team 263 aveneue fu Général LeclercBat 10C 35042 Rennes FRANCE
| | - Christophe Darcel
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes Avenue du Général LeclercCampus de Beaulieu, Bat 10C, bureau 040 35000 Rennes FRANCE
| |
Collapse
|
184
|
Coomber C, Diorazio L. N‐Alkylation of α‐Amino Esters and Amides via Hydrogen Borrowing. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Charlotte Coomber
- AstraZeneca Chemical Development Pharmaceutical Technology&DevelopmentOperationsAstraZeneca SK10 2NA Macclesfield UNITED KINGDOM
| | - Louis Diorazio
- AstraZeneca UK Ltd Chemical Development Charter Way Macclesfield UNITED KINGDOM
| |
Collapse
|
185
|
Delolo FG, Fessler J, Neumann H, Junge K, dos Santos EN, Gusevskaya EV, Beller M. Cobalt‐Catalysed Reductive Etherification Using Phosphine Oxide Promoters under Hydroformylation Conditions. Chemistry 2022; 28:e202103903. [DOI: 10.1002/chem.202103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Fábio G. Delolo
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 MG 31270-901 Belo Horizonte Brazil
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Johannes Fessler
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Eduardo N. dos Santos
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 MG 31270-901 Belo Horizonte Brazil
| | - Elena V. Gusevskaya
- Departamento de Química Universidade Federal de Minas Gerais Av. Antônio Carlos 6627 MG 31270-901 Belo Horizonte Brazil
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
186
|
Li X, Wu J, Tang W. General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- trans-Diols to 1,2- cis-Diols. J Am Chem Soc 2022; 144:3727-3736. [PMID: 35168319 DOI: 10.1021/jacs.1c13399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human glycans are primarily composed of nine common sugar building blocks. On the other hand, several hundred monosaccharides have been discovered in bacteria and most of them are not readily available. The ability to access these rare sugars and the corresponding glycoconjugates can facilitate the studies of various fundamentally important biological processes in bacteria, including interactions between microbiota and the human host. Many rare sugars also exist in a variety of natural products and pharmaceutical reagents with significant biological activities. Although several methods have been developed for the synthesis of rare monosaccharides, most of them involve lengthy steps. Herein, we report an efficient and general strategy that can provide access to rare sugars from commercially available common monosaccharides via a one-step Ru(II)-catalyzed and boron-mediated selective epimerization of 1,2-trans-diols to 1,2-cis-diols. The formation of boronate esters drives the equilibrium toward 1,2-cis-diol products, which can be immediately used for further selective functionalization and glycosylation. The utility of this strategy was demonstrated by the efficient construction of glycoside skeletons in natural products or bioactive compounds.
Collapse
Affiliation(s)
- Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jicheng Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
187
|
Wang Q, Ni S, Wang X, Wang Y, Pan Y. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1170-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
188
|
Song A, Liu S, Wang M, Lu Y, Wang R, Xing LB. Iridium-catalyzed synthesis of β-methylated secondary alcohols using methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
189
|
A Palladium Complex Dispersed in Ionic Liquid as an Efficient Catalytic Combination for the Synthesis of Benzazoles. Top Catal 2022. [DOI: 10.1007/s11244-021-01554-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
190
|
Jin MY, Zhou Y, Xiao D, You Y, Zhen Q, Tao G, Yu P, Xing X. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Yu Jin
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yipeng You
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qianqian Zhen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
191
|
Construction of a (NNN)Ru-Incorporated Porous Organic Polymer with High Catalytic Activity for β-Alkylation of Secondary Alcohols with Primary Alcohols. Polymers (Basel) 2022; 14:polym14020231. [PMID: 35054638 PMCID: PMC8780954 DOI: 10.3390/polym14020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.
Collapse
|
192
|
Stachowiak H, Kuciński K, Kallmeier F, Kempe R, Hreczycho G. Cobalt-Catalyzed Dehydrogenative C-H Silylation of Alkynylsilanes. Chemistry 2022; 28:e202103629. [PMID: 34634167 PMCID: PMC9299208 DOI: 10.1002/chem.202103629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/07/2023]
Abstract
Herein, we report that a cobalt catalyst permits the general synthesis of substituted alkynylsilanes through dehydrogenative coupling of alkynylsilanes and hydrosilanes. Several silylated alkynes, including di- and trisubstituted ones, were prepared in a one-step procedure. Thirty-seven compounds were synthesized for the first time by applying our catalyst system. The alkynylsilanes bearing hydrosilyl moieties provide an opportunity for further functionalization (e. g., hydrosilylation). The use of primary silanes as substrates and precatalyst activators permits the use of inexpensive and easily accessible 3d metal precatalysts, and avoids the presence of additional activators.
Collapse
Affiliation(s)
- Hanna Stachowiak
- Department of Chemistry and Technology of Silicon CompoundsFaculty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 861-614PoznańPoland
| | - Krzysztof Kuciński
- Department of Chemistry and Technology of Silicon CompoundsFaculty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 861-614PoznańPoland
| | - Fabian Kallmeier
- Inorganic Chemistry II–Catalyst DesignSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Rhett Kempe
- Inorganic Chemistry II–Catalyst DesignSustainable Chemistry CentreUniversity of Bayreuth95440BayreuthGermany
| | - Grzegorz Hreczycho
- Department of Chemistry and Technology of Silicon CompoundsFaculty of ChemistryAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 861-614PoznańPoland
- Centre for Advanced TechnologiesAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 1061-614PoznańPoland
| |
Collapse
|
193
|
Borthakur I, Sau A, Kundu S. Cobalt-catalyzed dehydrogenative functionalization of alcohols: Progress and future prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
194
|
Ma Z, Chandrashekhar VG, Zhou B, Alenad AM, Rockstroh N, Bartling S, Beller M, Jagadeesh RV. Stable and reusable Ni-based nanoparticles for general and selective hydrogenation of nitriles to amines. Chem Sci 2022; 13:10914-10922. [PMID: 36320707 PMCID: PMC9491304 DOI: 10.1039/d2sc02961h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenation of all kinds of nitriles to primary amines under mild conditions. By calcination of a template material generated from Ni(ii)nitrate and colloidal silica under air and subsequent reduction in the presence of molecular hydrogen the optimal catalyst is prepared. The prepared supported nanoparticles are stable, can be conveniently used and easily recycled. The applicability of the optimal catalyst material is shown by hydrogenation of >110 diverse aliphatic and aromatic nitriles including functionalized and industrially relevant substrates. Challenging heterocyclic nitriles, specifically cyanopyridines, provided the corresponding primary amines in good to excellent yields. The resulting amines serve as important precursors and intermediates for the preparation of numerous life science products and polymers. Silica supported ultrasmall Ni-nanoparticles allow for general and selective hydrogenations of all kinds of nitriles to primary amines under mild conditions.![]()
Collapse
Affiliation(s)
- Zhuang Ma
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | | | - Bei Zhou
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Asma M. Alenad
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | | |
Collapse
|
195
|
Heterogeneously catalyzed direct cross-coupling of secondary alcohols to β-disubstituted ketones by Cu/γ-Al2O3. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
196
|
Yu K, Chen Q, Liu W. Iron-catalysed quinoline synthesis via acceptorless dehydrogenative coupling. Org Chem Front 2022. [DOI: 10.1039/d2qo01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An iron-catalysed atom-economical and straightforward methodology for the synthesis of quinolines from α-2-aminoaryl alcohols and secondary alcohols is presented.
Collapse
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weiping Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
197
|
Illam PM, Rit A. Electronically tuneable orthometalated RuII–NHC complexes as efficient catalysts for C–C and C–N bond formations via borrowing hydrogen strategy. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01767e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of simple and electronically tuneable cyclometalated RuII–NHC complexes have been explored as efficient catalysts for various C–C/N bond forming reactions via a BH methodology.
Collapse
Affiliation(s)
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
198
|
Hong CM, Zhuang X, Luo Z, Xiong SQ, Liu ZQ, Li QL, Zou FF, Li QH, Liu TL. Copper-catalyzed transfer methylenation via C(sp 3)–C(sp 3) bond cleavage of alcohols. Org Chem Front 2022. [DOI: 10.1039/d2qo01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transfer Methylenation: A copper-catalyzed transfer methylenation via the cleavage of unstrained C(sp3)-C(sp3) bonds is developted. This is a de novo report for transfer hydrocarbylation between alcohols and carbonyl compounds.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Si-Qi Xiong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
199
|
Donthireddy SNR, Singh VK, Rit A. A heteroditopic NHC and phosphine ligand supported ruthenium( ii)-complex: an effective catalyst for the N-alkylation of amides using alcohols. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heteroditopic Ru(ii)-bis-NHC complex in combination with dppe was developed as an effective catalyst system (0.2 mol% loading) for the N-alkylation of amides and selective mono-/di-alkylation of 4-aminobenzamide derivatives in excellent yields.
Collapse
Affiliation(s)
- S. N. R. Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| | - Vivek Kumar Singh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai- 600036, India
| |
Collapse
|
200
|
Narjinari H, Tanwar N, Kathuria L, Jasra RV, Kumar A. Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00759b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
β-Alkylation of alcohols has been efficiently accomplished using readily available 3d metal Cr under microwave conditions in air. Well-defined molecular Cr is involved with a KIE of 7.33 and insertion of α-alkylated ketone into Cr–H bond as the RDS.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Reliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
- Jyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|