151
|
Rajendran M, Yapici E, Miller LW. Lanthanide-based imaging of protein-protein interactions in live cells. Inorg Chem 2014; 53:1839-53. [PMID: 24144069 PMCID: PMC3944735 DOI: 10.1021/ic4018739] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) were imaged at high signal-to-noise ratio with fast (1-3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive, and technically simple imaging of protein-protein interactions in live cells.
Collapse
Affiliation(s)
- Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Engin Yapici
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| | - Lawrence W. Miller
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607
| |
Collapse
|
152
|
Gianolio E, Cabella C, Colombo Serra S, Valbusa G, Arena F, Maiocchi A, Miragoli L, Tedoldi F, Uggeri F, Visigalli M, Bardini P, Aime S. B25716/1: a novel albumin-binding Gd-AAZTA MRI contrast agent with improved properties in tumor imaging. J Biol Inorg Chem 2014; 19:715-26. [DOI: 10.1007/s00775-014-1111-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
|
153
|
Cheng W, Haedicke IE, Nofiele J, Martinez F, Beera K, Scholl TJ, Cheng HLM, Zhang XA. Complementary strategies for developing Gd-free high-field T₁ MRI contrast agents based on Mn(III) porphyrins. J Med Chem 2014; 57:516-20. [PMID: 24328058 DOI: 10.1021/jm401124b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mn(III) porphyrin (MnP) holds the promise of addressing the emerging challenges associated with Gd-based clinical MRI contrast agents (CAs), namely, Gd-related adverse effect and decreasing sensitivity at high clinical magnetic fields. Two complementary strategies for developing new MnPs as Gd-free CAs with optimized biocompatibility were established to improve relaxivity or clearance rate. MnPs with distinct and tunable pharmacokinetic properties can consequently be constructed for different in vivo applications at clinical field of 3 T.
Collapse
Affiliation(s)
- Weiran Cheng
- Department of Chemistry, University of Toronto , Toronto, Ontario, M5S 3H6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Gallo J, Alam IS, Jin J, Gu YJ, Aboagye EO, Wong WT, Long NJ. PET imaging with multimodal upconversion nanoparticles. Dalton Trans 2014; 43:5535-45. [DOI: 10.1039/c3dt53095g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
155
|
Kim KS, Park W, Hu J, Bae YH, Na K. A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle. Biomaterials 2014; 35:337-43. [DOI: 10.1016/j.biomaterials.2013.10.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/01/2013] [Indexed: 02/07/2023]
|
156
|
Gallo J, Alam IS, Lavdas I, Wylezinska-Arridge M, Aboagye EO, Long NJ. RGD-targeted MnO nanoparticles as T1contrast agents for cancer imaging – the effect of PEG length in vivo. J Mater Chem B 2014; 2:868-876. [DOI: 10.1039/c3tb21422b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
157
|
Cantarelli IX, Pedroni M, Piccinelli F, Marzola P, Boschi F, Conti G, Sbarbati A, Bernardi P, Mosconi E, Perbellini L, Marongiu L, Donini M, Dusi S, Sorace L, Innocenti C, Fantechi E, Sangregorio C, Speghini A. Multifunctional nanoprobes based on upconverting lanthanide doped CaF2: towards biocompatible materials for biomedical imaging. Biomater Sci 2014; 2:1158-1171. [DOI: 10.1039/c4bm00119b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lanthanide doped CaF2 nanoparticles are useful for in vivo optical and MR imaging and as nanothermometer probes, which do not induce pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
| | - Marco Pedroni
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Fabio Piccinelli
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Pasquina Marzola
- Dipartimento di Informatica
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Federico Boschi
- Dipartimento di Informatica
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| | - Giamaica Conti
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Andrea Sbarbati
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Paolo Bernardi
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Elisa Mosconi
- Dipartimento di Scienze Neurologiche e del Movimento
- Università di Verona
- Verona, Italy
| | - Luigi Perbellini
- Dipartimento di Sanità Pubblica e Medicina di Comunità
- Università di Verona
- Verona, Italy
| | - Laura Marongiu
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Marta Donini
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Stefano Dusi
- Dipartimento di Patologia e Diagnostica
- Sezione di Patologia Generale
- Università di Verona
- Verona, Italy
| | - Lorenzo Sorace
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | - Claudia Innocenti
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | - Elvira Fantechi
- INSTM and Dipartimento di Chimica “U. Schiff”
- Università degli Studi di Firenze
- Firenze, Italy
| | | | - Adolfo Speghini
- Dipartimento di Biotecnologie
- Università di Verona and INSTM
- UdR Verona
- Verona, Italy
| |
Collapse
|
158
|
Li Y, Qian Y, Liu T, Zhang G, Hu J, Liu S. Asymmetrically functionalized β-cyclodextrin-based star copolymers for integrated gene delivery and magnetic resonance imaging contrast enhancement. Polym Chem 2014. [DOI: 10.1039/c3py01278f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
159
|
Loving GS, Caravan P. Activation and Retention: A Magnetic Resonance Probe for the Detection of Acute Thrombosis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
160
|
Loving GS, Caravan P. Activation and retention: a magnetic resonance probe for the detection of acute thrombosis. Angew Chem Int Ed Engl 2013; 53:1140-3. [PMID: 24338877 DOI: 10.1002/anie.201308607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/11/2022]
Abstract
Blood-clot formation that results in the complete occlusion of a blood vessel (thrombosis) often leads to serious life-threatening events, such as strokes and heart attacks. As the composition of a thrombus changes as it matures, new imaging methods that are capable of distinguishing new clots from old clots may yield important diagnostic and prognostic information. To address this need, an activatable magnetic resonance (MR) probe that is responsive to a key biochemical process associated with recently formed clots has been developed.
Collapse
Affiliation(s)
- Galen S Loving
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129 (USA)
| | | |
Collapse
|
161
|
Vibhute SM, Engelmann J, Verbić T, Maier ME, Logothetis NK, Angelovski G. Synthesis and characterization of pH-sensitive, biotinylated MRI contrast agents and their conjugates with avidin. Org Biomol Chem 2013; 11:1294-305. [PMID: 23223612 DOI: 10.1039/c2ob26555a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Responsive or smart contrast agents (SCAs) provide new opportunities in magnetic resonance imaging (MRI) to examine a number of physiological and pathological events. However, their application in vivo remains challenging. Therefore, much research is focused on the optimization of their properties, to enable their use in additional imaging modalities, pre-targeted delivery, or to increase the local concentration of the agent. The key feature in the SCA synthetic modification is the retention of their physicochemical properties related to the specific MR response. Here, we report the preparation and characterization of pH sensitive SCAs appended with a phosphonate pendant arm and either an aliphatic (GdL(1)) or aromatic linker (GdL(2)). The longitudinal relaxivity of GdL(1) and GdL(2) increases by 146% and 31%, respectively, while the pH decreases from 9 to 5. These two SCAs were converted to the biotinylated systems GdL(3) and GdL(4) and their interaction with avidin was investigated. The binding affinity with avidin was assessed with a fluorescence displacement assay and with MRI phantom experiments in a 3T MRI scanner. The fluorometric assay and MRI E-titrations revealed a 3 : 1 binding mode of GdL(3-4) to avidin with the binding affinity as high as that of the parent avidin-biotin complex. The high binding affinity was confirmed with MRI by a competitive assay. The avidin-GdL(3-4) complexes thus obtained exhibit changes in both r(1) and r(2) that are pH dependent. The results reveal a new pathway for the modification and improvement of SCAs to make them more suitable for in vivo application.
Collapse
Affiliation(s)
- Sandip M Vibhute
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Crans DC, Meade TJ. Preface for the Forum on Metals in Medicine and Health: New Opportunities and Approaches to Improving Health. Inorg Chem 2013; 52:12181-3. [DOI: 10.1021/ic402341n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debbie C. Crans
- Department of Chemistry
and Cell and Molecular Biology Program, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences,
Neurobiology, Biomedical Engineering and Radiology, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
163
|
Matosziuk LM, Leibowitz JH, Heffern MC, MacRenaris KW, Ratner MA, Meade TJ. Structural optimization of Zn(II)-activated magnetic resonance imaging probes. Inorg Chem 2013; 52:12250-61. [PMID: 23777423 PMCID: PMC3805786 DOI: 10.1021/ic400681j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the structural optimization and mechanistic investigation of a series of bioactivated magnetic resonance imaging contrast agents that transform from low relaxivity to high relaxivity in the presence of Zn(II). The change in relaxivity results from a structural transformation of the complex that alters the coordination environment about the Gd(III) center. Here, we have performed a series of systematic modifications to determine the structure that provides the optimal change in relaxivity in response to the presence of Zn(II). Relaxivity measurements in the presence and absence of Zn(II) were used in conjunction with measurements regarding water access (namely, number of water molecules bound) to the Gd(III) center and temperature-dependent (13)C NMR spectroscopy to determine how the coordination environment about the Gd(III) center is affected by the distance between the Zn(II)-binding domain and the Gd(III) chelate, the number of functional groups on the Zn(II)-binding domain, and the presence of Zn(II). The results of this study provide valuable insight into the design principles for future bioactivated magnetic resonance probes.
Collapse
Affiliation(s)
- Lauren M. Matosziuk
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Jonathan H. Leibowitz
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Marie C. Heffern
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Keith W. MacRenaris
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Mark A. Ratner
- Department of Chemistry, and Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
164
|
Abstract
Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents.
Collapse
Affiliation(s)
- Gemma-Louise Davies
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | |
Collapse
|
165
|
Kotková Z, Helm L, Kotek J, Hermann P, Lukeš I. Gadolinium complexes of monophosphinic acid DOTA derivatives conjugated to cyclodextrin scaffolds: efficient MRI contrast agents for higher magnetic fields. Dalton Trans 2013; 41:13509-19. [PMID: 23018269 DOI: 10.1039/c2dt30858d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Middle-molecular-weight MRI contrast agents based on conjugates of a phosphinic acid DOTA analogue, 1,4,7,10-tetraazacyclododecane-4,7,10-triacetic-1-{methyl[(4-aminophenyl)methyl]phosphinic acid} (DO3AP(ABn)), with amino-substituted cyclodextrins were prepared and studied by a variety of physico-chemical methods. The conjugates were formed by reaction of the corresponding isothiocyanate with per-6-amino-α/β-cyclodextrin and were complexed with the Ln(III) ion to get the final complexes, (LnL)(6)-α-CD and (LnL)(7)-β-CD. Solution structure of the complexes was estimated by investigation of the Eu(III) complexes. The Gd(III) conjugate complexes are endowed with a short water residence time (τ(M) ∼ 10-15 ns at 298 K) and a high abundance of the twisted-square antiprismatic diastereoisomer. They show a high (1)H relaxivity at high fields due to a convenient combination of the fast water exchange rate and the slow rate of the molecular tumbling given by their macromolecular nature. The (1)H relaxation enhancements per molecule of a contrast agent (CA) are very high reaching for a larger (GdL)(7)-β-CD conjugate ∼140 s(-1) mM(-1) and ∼100 s(-1) mM(-1) at 25 °C and magnetic fields 1.5 T and 3 T, respectively, which is the highest reported longitudinal relaxivity for kinetically stable contrast agents of an intermediate molecular mass (<10 kDa) with one water molecule in the first coordination sphere.
Collapse
Affiliation(s)
- Zuzana Kotková
- Department of Inorganic Chemistry, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
166
|
Zhang HW, Wang LQ, Xiang QF, Zhong Q, Chen LM, Xu CX, Xiang XH, Xu B, Meng F, Wan YQ, Deng DYB. Specific lipase-responsive polymer-coated gadolinium nanoparticles for MR imaging of early acute pancreatitis. Biomaterials 2013; 35:356-67. [PMID: 24103651 DOI: 10.1016/j.biomaterials.2013.09.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Currently, available methods for diagnosis of acute pancreatitis (AP) are mainly dependent on serum enzyme analysis and imaging techniques that are too low in sensitivity and specificity to accurately and promptly diagnose AP. The lack of early diagnostic tools highlights the need to search for a highly effective and specific diagnostic method. In this study, we synthesized a conditionally activated, gadolinium-containing, nanoparticle-based MRI nanoprobe as a diagnostic tool for the early identification of AP. Gadolinium diethylenetriaminepentaacetic fatty acid (Gd-DTPA-FA) nanoparticles were synthesized by conjugation of DTPA-FA ligand and gadolinium acetate. Gd-DTPA-FA exhibited low cytotoxicity and excellent biocompatibility when characterized in vitro and in vivo studies. L-arginine induced a gradual increase in the intensity of the T1-weighted MRI signal from 1 h to 36 h in AP rat models. The increase in signal intensity was most significant at 1 h, 6 h and 12 h. These results suggest that the Gd-DTPA-FA as an MRI contrast agent is highly efficient and specific to detect early AP.
Collapse
Affiliation(s)
- Hong-Wu Zhang
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 58# Zhongshan 2nd Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Maldonado CR, Salassa L, Gomez-Blanco N, Mareque-Rivas JC. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
168
|
Kong J, Liu T, Bao Y, Jin K, Zhang X, Tang Q, Duan C. Naphthyridine-based lanthanide complexes worked as magnetic resonance imaging contrast for guanosine 5'-monophosphate in vivo. Talanta 2013; 117:412-8. [PMID: 24209361 DOI: 10.1016/j.talanta.2013.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/24/2022]
Abstract
New lanthanide complex Gd-ANAMD containing 2-amino-7-methyl-1,8-naphthyridine was achieved for selective magnetic resonance imaging towards guanosine 5'-monophosphate over other ribonucleotide polyphosphates in aqueous media and in vivo. The formation of strong multi-hydrogen bonds between naphthyridine and guanosine made the phosphate in guanosine 5'-monophosphate positioned on a suitable site to coordinate with the lanthanide ion. The substitution of the coordination naphthyridine by the phosphate oxygen atoms caused obvious relaxivity decrease. The negligible cytotoxicity and appropriate blood circulation time of Gd-ANAMD allow potential application of Magnetic Resonance Imaging in vivo. (1)H NMR confirmed that the selectivity of these lanthanide complexes towards guanosine was attributed to the formation of hydrogen bonds between the guanine moeity and the naphthyridine. The fluorescence detection and lifetime measurement of Tb-ANAMD and Eu-ANAMD suggested that the decrease of the relaxivity is not attributed to the change of the q value, but caused by the prolonging of the residence lifetime of inner-sphere water.
Collapse
Affiliation(s)
- Jichuan Kong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012, PR China; Institute of Physics and Chemistry, Henan Polytechnic University, 454000 Jiaozuo, PR China
| | | | | | | | | | | | | |
Collapse
|
169
|
Hong BJ, Swindell EP, MacRenaris KW, Hankins PL, Chipre AJ, Mastarone DJ, Ahn RW, Meade TJ, O’Halloran TV, Nguyen ST. pH-Responsive Theranostic Polymer-Caged Nanobins (PCNs): Enhanced Cytotoxicity and T1 MRI Contrast by Her2-Targeting. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2013; 30:770-774. [PMID: 24516291 PMCID: PMC3916701 DOI: 10.1002/ppsc.201300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A PCN theranostic platform comprises a doxorubicin (DXR)-loaded liposomal core and an acid-sensitive polymer shell that is functionalized with Herceptin and GdIII-based MRI contrast agents. In vitro testing reveals a 14-fold increase in DXR-based cytotoxicity versus a non-targeted analogue and an 120-fold improvement in cellular GdIII-uptake in comparison with clinically approved DOTA-GdIII, leading to significant T1 MRI contrast enhancement.
Collapse
Affiliation(s)
- Bong Jin Hong
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Elden P. Swindell
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Keith W. MacRenaris
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Patrick L. Hankins
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Anthony J. Chipre
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Daniel J. Mastarone
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Richard W. Ahn
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Thomas J. Meade
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - Thomas V. O’Halloran
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| | - SonBinh T. Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, IL 60208-3113 (USA)
| |
Collapse
|
170
|
Eggenspiller A, Michelin C, Desbois N, Richard P, Barbe JM, Denat F, Licona C, Gaiddon C, Sayeh A, Choquet P, Gros CP. Design of Porphyrin-dota-Like Scaffolds as All-in-One Multimodal Heterometallic Complexes for Medical Imaging. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
171
|
Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z, Gao J. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 2013; 4:2266. [DOI: 10.1038/ncomms3266] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/05/2013] [Indexed: 12/23/2022] Open
|
172
|
Sasmal PK, Streu CN, Meggers E. Metal complex catalysis in living biological systems. Chem Commun (Camb) 2013; 49:1581-7. [PMID: 23250079 DOI: 10.1039/c2cc37832a] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article discusses synthetic metal complexes that are capable of catalyzing chemical transformations in living organisms. Photodynamic therapy exemplifies what is probably the most established artificial catalytic process exploited in medicine, namely the photosensitized catalytic generation of cell-damaging singlet oxygen. Different redox catalysts have been designed over the last two decades to target a variety of redox alterations in cancer and other diseases. For example, pentaazamacrocyclic manganese(ii) complexes catalyze the dismutation of superoxide to O(2) and H(2)O(2)in vivo and thus reduce oxidative stress in analogy to the native enzyme superoxide dismutase. Recently, piano-stool ruthenium and iridium complexes were reported to influence cellular redox homeostasis indirectly by catalytic glutathione oxidation and catalytic transfer hydrogenation using the coenzyme NADH, respectively. Over the last few years, significant progress has been made towards the application of non-biological reactions in living systems, ranging from the organoruthenium-catalyzed cleavage of allylcarbamates and a gold-catalyzed intramolecular hydroarylation to palladium-catalyzed Suzuki-Miyaura and Sonogashira cross-couplings within the cytoplasm or on the surface of living cells. The design of bioorthogonal catalyst/substrate pairs, which can passively diffuse into cells, combines the advantages of small molecules with catalysis and promises to provide exciting new tools for future chemical biology studies.
Collapse
Affiliation(s)
- Pijus K Sasmal
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | | | | |
Collapse
|
173
|
Zigelboim I, Weissberg A, Cohen Y. Target-Specific Ligands and Gadolinium-Based Complexes for Imaging of Dopamine Receptors: Synthesis, Binding Affinity, and Relaxivity. J Org Chem 2013; 78:7001-12. [DOI: 10.1021/jo400646k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isaac Zigelboim
- School of Chemistry, the Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Avi Weissberg
- School of Chemistry, the Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | - Yoram Cohen
- School of Chemistry, the Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
174
|
Cheng CY, Ou KL, Huang WT, Chen JK, Chang JY, Yang CH. Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4389-4400. [PMID: 23618366 DOI: 10.1021/am401428n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new magnetic resonance/optical nanoprobe with specific cellular targeting capabilities based on nontoxic CuInS2/ZnS quantum dots (QDs) with direct covalent attachment of a Gd(III)-complex for tumor-specific imaging is reported. We introduce amphiphilic poly(maleic anhydride-alt-1-octadecene) to interdigitate with hydrophobic, protective agents on the surface of CuInS2/ZnS QDs that allows phase transfer of hydrophobic QDs from the organic into aqueous phase. Carbodiimide chemistry is used to covalently couple the Gd(III) complex on the surface of CuInS2/ZnS QDs, and then folic acid is further utilized to functionalize this dual-modality nanoprobe for active tumor targeting based on the fact that the membrane-associated folate receptor is overexpressed in many tumor cells. The longitudinal relaxivity value is 3.72 mM(-1) s(-1) for the dual-modality nanoprobe and a clear, positive, and increasing contrast enhancement of magnetic resonance signals concurrently with increasing Gd(III) concentration is observed. The dual-modality nanoprobe exhibits negligible cytotoxicity with >80% cell viability at a concentration of up to 100 μg/mL in human cervical (HeLa), human liver carcinoma (HepG2), and human breast (MCF-7) cells after 24 h. The specificity of folic-acid-conjugated nanoprobe cellular uptake has been investigated by confocal scanning laser imaging, which revealed that HeLa cells, expressing the folate receptor, internalized a higher level of dual-modality nanoprobes than HepG2 and MCF-7 cells.
Collapse
Affiliation(s)
- Chun-Yi Cheng
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
175
|
Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T(1)-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 2013; 14:10591-607. [PMID: 23698781 PMCID: PMC3676856 DOI: 10.3390/ijms140510591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/29/2022] Open
Abstract
Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.
Collapse
Affiliation(s)
- Derong Zhu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Guangdong Medical College, Dongwan 523770, Guangdong, China; E-Mail:
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| |
Collapse
|
176
|
Viger ML, Sankaranarayanan J, de Gracia Lux C, Chan M, Almutairi A. Collective activation of MRI agents via encapsulation and disease-triggered release. J Am Chem Soc 2013; 135:7847-50. [PMID: 23672342 DOI: 10.1021/ja403167p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An activation mechanism based on encapsulated ultrasmall gadolinium oxide nanoparticles (Gd oxide NPs) in bioresponsive polymer capsules capable of triggered release in response to chemical markers of disease (i.e., acidic pH, H2O2) is presented. Inside the hydrophobic polymeric matrices, the Gd oxide NPs are shielded from the aqueous environment, silencing their ability to enhance water proton relaxation. Upon disassembly of the polymeric particles, activation of multiple contrast agents generates a strong positive contrast enhancement of >1 order of magnitude.
Collapse
Affiliation(s)
- Mathieu L Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, 92093, USA
| | | | | | | | | |
Collapse
|
177
|
Hussain A, Somyajit K, Banik B, Banerjee S, Nagaraju G, Chakravarty AR. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation. Dalton Trans 2013; 42:182-95. [PMID: 23108133 DOI: 10.1039/c2dt32042h] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lanthanide(III) complexes [Ln(R-tpy)(cur)(NO3)2] (Ln = La(III) in 1, 2; Gd(III) in 5, 6) and [Ln(R-tpy)(scur)(NO3)2] (Ln = La(III) in 3, 4; Gd(III) in 7, 8), where R-tpy is 4′-phenyl-2,2′:6′,2′′-terpyridine (ph-tpy in 1, 3, 5, 7), 4′-(1-pyrenyl)-2,2′:6′,2′′-terpyridine (py-tpy in 2, 4, 6, 8), Hcur is curcumin (in 1, 2, 5, 6) and Hscur is diglucosylcurcumin (in 3, 4, 7, 8), were prepared and their DNA photocleavage activity and photocytotoxicity studied. Complexes [La(ph-tpy)(cur)(NO3)2] (1) and [Gd(ph-tpy)(cur)(NO3)2] (5) were structurally characterized. The complexes in aqueous-DMF showed an absorption band near 430 nm and an emission band near 515 nm when excited at 420 nm. The complexes are moderate binders to calf-thymus DNA. They cleave plasmid supercoiled DNA to its nicked circular form in UV-A (365 nm) and visible light (454 nm) via (1)O2 and ˙OH pathways. The complexes are remarkably photocytotoxic in HeLa cells in visible light (λ = 400–700 nm) and are non-toxic in the dark. FACScan analysis of the HeLa cells treated with 2 and 4 showed cell death via an apoptotic pathway. Nuclear localization of 1–4 is evidenced from confocal imaging on HeLa cells. The hydrolytic instability of curcumin gets significantly reduced upon binding to the lanthanide ions while retaining its photocytotoxic potential.
Collapse
Affiliation(s)
- Akhtar Hussain
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | |
Collapse
|
178
|
Gopal V. Bioinspired peptides as versatile nucleic acid delivery platforms. J Control Release 2013; 167:323-32. [DOI: 10.1016/j.jconrel.2013.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
|
179
|
Irure A, Marradi M, Arnáiz B, Genicio N, Padro D, Penadés S. Sugar/gadolinium-loaded gold nanoparticles for labelling and imaging cells by magnetic resonance imaging. Biomater Sci 2013; 1:658-668. [PMID: 32481838 DOI: 10.1039/c3bm60032g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted magnetic resonance imaging (MRI) probes for selective cell labelling and tracking are highly desired. We here present biocompatible sugar-coated paramagnetic Gd-based gold nanoparticles (Gd-GNPs) and test them as MRI T1 reporters in different cellular lines at a high magnetic field (11.7 T). With an average number of 20 Gd atoms per nanoparticle, Gd-GNPs show relaxivity values r1 ranging from 7 to 18 mM-1 s-1 at 1.41 T. The multivalent presentation of carbohydrates on the Gd-GNPs enhances the avidity of sugars for carbohydrate-binding receptors at the cell surface and increases the local concentration of the probes. A large reduction in longitudinal relaxation times T1 is achieved with both fixed cells and live cells. Differences in cellular labelling are obtained by changing the type of sugar on the gold surface, indicating that simple monosaccharides and disaccharides are able to modulate the cellular uptake. These results stress the benefits of using sugars to produce nanoparticles for cellular labelling. To the best of our knowledge this is the first report on labelling and imaging cells with Gd-based gold nanoparticles which use simple sugars as receptor reporters.
Collapse
Affiliation(s)
- Ainhoa Irure
- Laboratory of Glyconanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, P° Miramón 182, 20009 San Sebastián, Spain.
| | | | | | | | | | | |
Collapse
|
180
|
Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 2013; 36:1060-71. [PMID: 23090917 DOI: 10.1002/jmri.23725] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging (MRI) contrast agents are pharmaceuticals used widely in MRI examinations. Gadolinium-based MRI contrast agents (GBCAs) are by far the most commonly used. To date, nine GBCAs have been commercialized for clinical use, primarily indicated in the central nervous system, vasculature, and whole body. GBCAs primarily lower the T(1) in vivo to create higher signal in T(1)-weighted MRI scans where GBCAs are concentrated. GBCAs are unique among pharmaceuticals, being water proton relaxation catalysts whose effectiveness is characterized by a rate constant known as relaxivity. The relaxivity of each GBCAs depends on a variety of factors that are discussed in terms of both the existing agents and future molecular imaging agents under study by current researchers. Current GBCAs can be divided into four different structural types (macrocyclic, linear, ionic, and nonionic) based on the chemistry of the chelating ligands whose primary purpose is to protect the body from dissociation of the relatively toxic Gd(3+) ion from the ligand. This article discusses how the chemical structure influences inherent and in vivo stability toward dissociation, and how it affects important formulation properties. Although GBCAs have a lower rate of serious adverse events than iodinated contrast agents, they still present some risk.
Collapse
Affiliation(s)
- Dapeng Hao
- Department of Radiology, Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong, China
| | | | | | | | | | | |
Collapse
|
181
|
Napolitano R, Pariani G, Fedeli F, Baranyai Z, Aswendt M, Aime S, Gianolio E. Synthesis and relaxometric characterization of a MRI Gd-based probe responsive to glutamic acid decarboxylase enzymatic activity. J Med Chem 2013; 56:2466-77. [PMID: 23469759 DOI: 10.1021/jm301831f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Novel contrast agent based systems, which selectively visualize specific cells, e.g., neurons in the brain, would be of substantial importance for the fast developing field of molecular magnetic resonance imaging (MRI). We report here the synthesis and in vitro validation of a Gd(III)-based contrast agent designed to act as an MRI responsive probe for imaging the activity of the enzyme glutamic acid decarboxylase (GAD) present in neurons. Upon the action of the enzyme, the Gd(III) complex increases its hydration sphere and takes on a residual positive charge that promotes its binding to endogenous macromolecules. Both effects contribute in a synergic way to generate a marked relaxation enhancement, which directly reports enzyme activity and will allow activity detection of GAD positive cells in vitro and in vivo selectively.
Collapse
Affiliation(s)
- Roberta Napolitano
- Department of Molecular Biotechnologies and Health Sciences and Molecular Imaging Center, University of Torino, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
182
|
Goswami LN, Ma L, Cai Q, Sarma SJ, Jalisatgi SS, Hawthorne MF. cRGD peptide-conjugated icosahedral closo-B12(2-) core carrying multiple Gd3+-DOTA chelates for α(v)β3 integrin-targeted tumor imaging (MRI). Inorg Chem 2013; 52:1701-9. [PMID: 23391150 PMCID: PMC3593306 DOI: 10.1021/ic302340c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A vertex-differentiated icosahedral closo-B(12)(2-) core was utilized to construct a α(v)β(3) integrin receptor-targeted (via cRGD peptide) high payload MRI contrast agent (CA-12) carrying 11 copies of Gd(3+)-DOTA chelates attached to the closo-B(12)(2-) surface via suitable linkers. The resulting polyfunctional MRI contrast agent possessed a higher relaxivity value per-Gd compared to Omniscan, a small molecular contrast agent commonly used in clinical settings. The α(v)β(3) integrin receptor specificity of CA-12 was confirmed via in vitro cellular binding experiments and in vivo MRI of mice bearing human PC-3 prostate cancer xenografts. Integrin α(v)β(3)-positive MDA-MB-231 cells exhibited 300% higher uptake of CA-12 than α(v)β(3)-negative T47D cells. Serial T1-weighted MRI showed superior contrast enhancement of tumors by CA-12 compared to both a nontargeted 12-fold Gd(3+)-DOTA closomer control (CA-7) and Omniscan. Contrast enhancement by CA-12 persisted for 4 h postinjection, and subsequent enhancement of kidney tissue indicated a renal elimination route similar to Omniscan. No toxic effects of CA-12 were apparent in any mice for up to 24 h postinjection. Post-mortem ICP-OES analysis at 24 h detected no residual Gd in any of the tissue samples analyzed.
Collapse
Affiliation(s)
- Lalit N. Goswami
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Lixin Ma
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Quanyu Cai
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Saurav J. Sarma
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - Satish S. Jalisatgi
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| | - M. Frederick Hawthorne
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri, Columbia, Missouri 65211-3450
| |
Collapse
|
183
|
Suchý M, Li AX, Milne M, Bartha R, Hudson RHE. DOTAM-type ligands possessing arginine pendant groups for use in PARACEST MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:441-9. [PMID: 22821878 DOI: 10.1002/cmmi.1461] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A synthetic methodology was developed for the preparation of metal-chelating ligands that possess arginine pendant groups relying on the alkylation of 1,4,7,10-tetraazacyclododecane (cyclen) with arginine-containing electrophiles. Conditions for the selective trialkylation or peralkylation of cyclen are described, the outcome being dependent on the nature of the arginine-derived electrophile and the solvent used for the reaction. Lanthanide metal complexes of the ligands prepared by the described route were evaluated for their suitability as PARACEST contrast agents for use in magnetic resonance imaging. The Dy(3+) and Tm(3+) complexes display CEST effects that are associated with the amide protons proximate to the metal center. These signals exhibit pH dependence in the range of 6.0-8.0 and thus may have the potential for pH measurement in physiological range.
Collapse
Affiliation(s)
- Mojmír Suchý
- Department of Chemistry, The University of Western Ontario, London, ON, Canada, N6A 5B7
| | | | | | | | | |
Collapse
|
184
|
Winter MB, Klemm PJ, Phillips-Piro CM, Raymond KN, Marletta MA. Porphyrin-substituted H-NOX proteins as high-relaxivity MRI contrast agents. Inorg Chem 2013; 52:2277-9. [PMID: 23394479 DOI: 10.1021/ic302685h] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heme proteins are exquisitely tuned to carry out diverse biological functions while employing identical heme cofactors. Although heme protein properties are often altered through modification of the protein scaffold, protein function can be greatly expanded and diversified through replacement of the native heme with an unnatural porphyrin of interest. Thus, porphyrin substitution in proteins affords new opportunities to rationally tailor heme protein chemical properties for new biological applications. Here, a highly thermally stable Heme Nitric oxide/OXygen binding (H-NOX) protein is evaluated as a magnetic resonance imaging (MRI) contrast agent. T1 and T2 relaxivities measured for the H-NOX protein containing its native heme are compared to the protein substituted with unnatural manganese(II/III) and gadolinium(III) porphyrins. H-NOX proteins are found to provide unique porphyrin coordination environments and have enhanced relaxivities compared to commercial small-molecule agents. Porphyrin substitution is a promising strategy to encapsulate MRI-active metals in heme protein scaffolds for future imaging applications.
Collapse
Affiliation(s)
- Michael B Winter
- Department of Chemistry, California Institute for Quantitative Biosciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-3220, United States
| | | | | | | | | |
Collapse
|
185
|
Xue S, Qiao J, Pu F, Cameron M, Yang JJ. Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:163-79. [PMID: 23335551 DOI: 10.1002/wnan.1205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) of disease biomarkers, especially cancer biomarkers, could potentially improve our understanding of the disease and drug activity during preclinical and clinical drug treatment and patient stratification. MRI contrast agents with high relaxivity and targeting capability to tumor biomarkers are highly required. Extensive work has been done to develop MRI contrast agents. However, only a few limited literatures report that protein residues can function as ligands to bind Gd(3+) with high binding affinity, selectivity, and relaxivity. In this paper, we focus on reporting our current progress on designing a novel class of protein-based Gd(3+) MRI contrast agents (ProCAs) equipped with several desirable capabilities for in vivo application of MRI of tumor biomarkers. We will first discuss our strategy for improving the relaxivity by a novel protein-based design. We then discuss the effect of increased relaxivity of ProCAs on improving the detection limits for MRI contrast agent, especially for in vivo application. We will further report our efforts to improve in vivo imaging capability and our achievement in molecular imaging of cancer biomarkers with potential preclinical and clinical applications.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
186
|
|
187
|
Cao CY, Shen YY, Wang JD, Li L, Liang GL. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci Rep 2013; 3:1024. [PMID: 23289066 PMCID: PMC3535584 DOI: 10.1038/srep01024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022] Open
Abstract
Herein we developed a new “smart” Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.
Collapse
Affiliation(s)
- Chun-Yan Cao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
188
|
Abstract
To date, several stem cell labeling protocols have been developed, contributing to a fast growing and promising field of stem cell imaging by MRI (magnetic resonance imaging). Most of these methods utilize iron oxide nanoparticles (MION, SPIO, USPIO, VSIOP) for cell labeling, which provide negative (dark) signal effects on T2-weighted MR images. The following protocol describes stem cell labeling techniques with commercially available gadolinium chelates, which provide positive contrast on T1-weighted MR images, which can be advantageous for specific applications.
Collapse
|
189
|
Huang Y, Hu L, Zhang T, Zhong H, Zhou J, Liu Z, Wang H, Guo Z, Chen Q. Mn₃[Co(CN)₆]₂@SiO₂ core-shell nanocubes: novel bimodal contrast agents for MRI and optical imaging. Sci Rep 2013; 3:2647. [PMID: 24026007 PMCID: PMC3770959 DOI: 10.1038/srep02647] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/28/2013] [Indexed: 12/22/2022] Open
Abstract
Nanoprobes with dual modal imaging of magnetic resonance imaging (MRI) and two-photon fluorescence (TPF) can serve as promising platforms for clinical diagnosis. A wide range of molecules and nanoparticles have been investigated as agents for contrast enhanced MRI and fluorescence imaging in cancer diagnosis. However, a single material with dual modal imaging of MRI and TPF is rarely reported. We found that Mn₃[Co(CN)₆]₂@SiO₂ nanocubes can serve as agents for both T₁- and T₂-weighted MRI, and TPF imaging. The nanocubes coated with silica to form Mn₃[Co(CN)₆]₂@SiO₂ core-shell nanocubes were readily internalized by cells without showing cytotoxicity. In vitro tests, the core-shell nanocubes display relatively high longitudinal (r₁) and transverse (r₂) relaxivities, they also manifest a remarkable T₁ and T₂ contrast effects at in-vivo imaging of internal organs in Mice. Moreover, the core-shell nanocubes could offer high-resolution cell fluorescence imaging by two-photon excitation (720 nm) or by conventional fluorescence with 403- or 488-nm excitation.
Collapse
Affiliation(s)
- Yimin Huang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Lin Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Tingting Zhang
- Radiology Department of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hao Zhong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiajia Zhou
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zhenbang Liu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Haibao Wang
- Radiology Department of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
190
|
Su H, Wu C, Zhu J, Miao T, Wang D, Xia C, Zhao X, Gong Q, Song B, Ai H. Rigid Mn(II) chelate as efficient MRI contrast agent for vascular imaging. Dalton Trans 2012; 41:14480-3. [PMID: 23108333 DOI: 10.1039/c2dt31696j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aza-semi-crown pentadentate ligand rigidified by pyridine and piperidine rings was designed and synthesized. It can react with Mn(II) in water to form complex with improved longitudinal relaxivity, leading to efficient signal intensity enhancement of vascular vessels under a clinical magnetic resonance imaging scanner.
Collapse
Affiliation(s)
- Hongying Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
192
|
Hu J, Liu T, Zhang G, Jin F, Liu S. Synergistically Enhance Magnetic Resonance/Fluorescence Imaging Performance of Responsive Polymeric Nanoparticles Under Mildly Acidic Biological Milieu. Macromol Rapid Commun 2012. [DOI: 10.1002/marc.201200613] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
193
|
Boros E, Polasek M, Zhang Z, Caravan P. Gd(DOTAla): a single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development. J Am Chem Soc 2012; 134:19858-68. [PMID: 23157602 DOI: 10.1021/ja309187m] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MR imaging at high magnetic fields benefits from an increased signal-to-noise ratio; however T(1)-based MR contrast agents show decreasing relaxivity (r(1)) at higher fields. High field, high relaxivity contrast agents can be designed by carefully controlling the rotational dynamics of the molecule. To this end, we investigated applications of the alanine analogue of Gd(DOTA), Gd(DOTAla). Fmoc-protected DOTAla suitable for solid phase peptide synthesis was synthesized and integrated into polypeptide structures. Gd(III) coordination results in very rigid attachment of the metal chelate to the peptide backbone through both the amino acid side chain and coordination of the amide carbonyl. Linear and cyclic monomers (GdL1, GdC1), dimers (Gd(2)L2, Gd(2)C2), and trimers (Gd(3)L3, Gd(3)C3) were prepared and relaxivities were determined at different field strengths ranging from 0.47 to 11.7 T. Amide carbonyl coordination was indirectly confirmed by determination of the hydration number q for the EuL1 integrated into a peptide backbone, q = 0.96 ± 0.09. The water residency time of GdL1 at 37 °C was optimal for relaxivity, τ(M) = 17 ± 2 ns. Increased molecular size leads to increased per Gd relaxivity (from r(1) = 7.5 for GdL1 to 12.9 mM(-1) s(-1) for Gd(3)L3 at 1.4 T, 37 °C). The cyclic, multimeric derivatives exhibited slightly higher relaxivities than the corresponding linearized multimers (Gd(2)C2: r(1) = 10.5 mM(-1) s(-1) versus Gd(2)C2-red r(1) = 9 mM(-1) s(-1) at 1.4 T, 37 °C). Overall, all six synthesized Gd complexes had higher relaxivities at low, intermediate, and high fields than the clinically used small molecule contrast agent [Gd(HP-DO3A)(H(2)O)].
Collapse
Affiliation(s)
- Eszter Boros
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | | | | | | |
Collapse
|
194
|
Ruangchaithaweesuk S, Yu DS, Garcia NC, Yao L, Xu S. Applications of optically detected MRI for enhanced contrast and penetration in metal. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 223:20-24. [PMID: 22954614 DOI: 10.1016/j.jmr.2012.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/06/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6s(-1) mM(-1) per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T(1) relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.
Collapse
|
195
|
Vithanarachchi SM, Allen MJ. Strategies for Target-Specific Contrast Agents for Magnetic Resonance Imaging. ACTA ACUST UNITED AC 2012; 1:12-25. [PMID: 23316452 DOI: 10.2174/2211555211201010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent research efforts focused on increasing the specificity of contrast agents for proton magnetic resonance imaging (MRI). Contrast agents play an indispensable role in MRI by enhancing the inherent contrast of images; however, the non-specific nature of current clinical contrast agents limits their usefulness. This limitation can be addressed by conjugating contrast agents or contrast-agent-loaded carriers-including polymers, nanoparticles, dendrimers, and liposomes-to molecules that bind to biological sites of interest. An alternative approach to conjugation is synthetically mimicking biological structures with metal complexes that are also contrast agents. In this review, we describe the advantages and limitations of these two targeting strategies with respect to translation from in vitro to in vivo imaging while focusing on advances from the last ten years.
Collapse
|
196
|
Santra S, Jativa SD, Kaittanis C, Normand G, Grimm J, Perez JM. Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent. ACS NANO 2012; 6:7281-94. [PMID: 22809405 PMCID: PMC3429787 DOI: 10.1021/nn302393e] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.
Collapse
Affiliation(s)
- Santimukul Santra
- Nanoscience Technology Center and Chemistry Department, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. USA
| | - Samuel D. Jativa
- Nanoscience Technology Center and Chemistry Department, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. USA
| | - Charalambos Kaittanis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Guillaume Normand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - J. Manuel Perez
- Nanoscience Technology Center and Chemistry Department, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826. USA
| |
Collapse
|
197
|
Yu M, Beyers RJ, Gorden JD, Cross JN, Goldsmith CR. A Magnetic Resonance Imaging Contrast Agent Capable of Detecting Hydrogen Peroxide. Inorg Chem 2012; 51:9153-5. [DOI: 10.1021/ic3012603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center, Auburn,
Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Justin N. Cross
- Department of Chemistry
and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christian R. Goldsmith
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
198
|
Manus LM, Strauch RC, Hung AH, Eckermann AL, Meade TJ. Analytical methods for characterizing magnetic resonance probes. Anal Chem 2012; 84:6278-87. [PMID: 22624599 PMCID: PMC3418482 DOI: 10.1021/ac300527z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The efficiency of Gd(III) contrast agents in magnetic resonance image enhancement is governed by a set of tunable structural parameters. Understanding and measuring these parameters requires specific analytical techniques. This Feature describes strategies to optimize each of the critical Gd(III) relaxation parameters for molecular imaging applications and the methods employed for their evaluation.
Collapse
Affiliation(s)
- Lisa M. Manus
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Renee C. Strauch
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Andy H. Hung
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Amanda L. Eckermann
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
199
|
Mohandessi S, Rajendran M, Magda D, Miller LW. Cell-penetrating peptides as delivery vehicles for a protein-targeted terbium complex. Chemistry 2012; 18:10825-9. [PMID: 22807190 DOI: 10.1002/chem.201201805] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 11/07/2022]
Abstract
Release after transmission: Arginine-rich, cell-penetrating peptides (CPPs) mediate cytoplasmic delivery of trimethoprim (TMP)-terbium complex conjugates and selective, intracellular labeling of E. coli dihydrofolate reductase (eDHFR) fusion proteins. A disulfide bond linking CPP and cargo is reduced following uptake. CPP conjugation can be used to deliver otherwise cell-impermeable, ligand-fluorophore conjugates.
Collapse
Affiliation(s)
- Shabnam Mohandessi
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
200
|
Klemm PJ, Floyd WC, Smiles DE, Fréchet JMJ, Raymond KN. Improving T₁ and T₂ magnetic resonance imaging contrast agents through the conjugation of an esteramide dendrimer to high-water-coordination Gd(III) hydroxypyridinone complexes. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:95-9. [PMID: 22344885 DOI: 10.1002/cmmi.483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Commercial gadolinium magnetic resonance imaging (MRI) contrast agents are limited by low relaxivity (r₁) and coordination to only a single water molecule (q = 1). Consequently, gram quantities of these agents must be injected to obtain sufficient diagnostic contrast. In this study, MRI contrast agents for T(1) and T₂ relaxivity were synthesized using hydroxypyridinone and terephthalamide chelators with mesityl and 1,4,7-triazacyclononane capping moieties. When covalently conjugated to a highly biocompatible esteramide dendrimer, T₂ relaxation rates up to 52 mm(-1) s(-1) and T₁ relaxation rates up to 31 mm(-1) s(-1) per gadolinium were observed under clinically relevant conditions. These values are believed to be brought about by using a dendritic macromolecule to decrease the molecular tumbling time of the small molecule complexes. These agents also show high aqueous solubility and low toxicity in vitro. In this study we report six new compounds: three discrete complexes and three dendrimer conjugates.
Collapse
Affiliation(s)
- Piper J Klemm
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | | | | | |
Collapse
|