151
|
Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 2011; 9:30-40. [PMID: 22158596 DOI: 10.1038/nrurol.2011.194] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K(+) channels, including voltage-gated K(+) (K(V)) channels, Ca(2+)-activated K(+) (K(Ca)) channels, inward-rectifying ATP-sensitive K(+) (K(ir), K(ATP)) channels, and two-pore-domain K(+) (K(2P)) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K(+) channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K(+) channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K(+) channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K(+) channels in DSM in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
152
|
Rodríguez A, Córdoba JJ, Werning ML, Andrade MJ, Rodríguez M. Duplex real-time PCR method with internal amplification control for quantification of verrucosidin producing molds in dry-ripened foods. Int J Food Microbiol 2011; 153:85-91. [PMID: 22119450 DOI: 10.1016/j.ijfoodmicro.2011.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
Verrucosidin, which is a tremorgenic mycotoxin responsible for neurological diseases, has been detected in different dry-ripened foods as consequence of the growth of toxigenic molds. To improve food safety, the presence of verrucosidin producing molds in these kind foods should be quantified. The aim of this study was to design a duplex real-time PCR (qPCR) protocol based on TaqMan methodology with an internal amplification control (IAC). Eleven verrucosidin producing and 11 non producing strains belonging to different species often reported in food products were used. Verrucosidin production was tested by micellar electrokinetic capillary electrophoresis (MECE) and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). A primer pair (VerF1/VerR1) and a TaqMan probe (Verprobe) were designed from the SVr1 probe sequence of a verrucosidin producing Penicillium polonicum. The conserved regions of the β-tubulin gene were used to design primers (TubF1/TubR1) and probe (Tubprobe) of the non-competitive IAC. The functionality of the developed method was demonstrated by the high linear relationship of the standard curves which relating Ct values and DNA template of the tested verrucosidin producers using the verrucosidin and IAC primers. The ability to quantify verrucosidin producers of the developed TaqMan assay in all artificially inoculated food samples was successful, with a minimum detection limit of 1 log cfu per gram of food. This qPCR protocol including an IAC could be very useful to quantify verrucosidin producing molds in dry-ripened foods avoiding false negative results. This method should be proposed to monitor the target molds in HACCP programs to prevent the risk of verrucosidin formation and consequently avoid its presence in the food chain.
Collapse
Affiliation(s)
- Alicia Rodríguez
- Food Hygiene and Safety, Faculty of Veterinary Science, University of Extremadura, Avda. de Universidad, s/n. 10003-Cáceres, Spain
| | | | | | | | | |
Collapse
|
153
|
Kang YJ, Kim IY, Kim EH, Yoon MJ, Kim SU, Kwon TK, Choi KS. Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Exp Mol Med 2011; 43:24-34. [PMID: 21150246 DOI: 10.3858/emm.2011.43.1.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) induces apoptosis selectively in cancer cells while sparing normal cells. However, many cancer cells are resistant to TRAIL-induced cell death. Here, we report that paxilline, an indole alkaloid from Penicillium paxilli, can sensitize various glioma cells to TRAIL-mediated apoptosis. While treatment with TRAIL alone caused partial processing of caspase-3 to its p20 intermediate in TRAIL-resistant glioma cell lines, co-treatment with TRAIL and subtoxic doses of paxilline caused complete processing of caspase-3 into its active subunits. Paxilline treatment markedly upregulated DR5, a receptor of TRAIL, through a CHOP/GADD153-mediated process. In addition, paxilline treatment markedly downregulated the protein levels of the short form of the cellular FLICE-inhibitory protein (c-FLIPs) and the caspase inhibitor, survivin, through proteasome-mediated degradation. Taken together, these results show that paxilline effectively sensitizes glioma cells to TRAIL-mediated apoptosis by modulating multiple components of the death receptor-mediated apoptotic pathway. Interestingly, paxilline/TRAIL co-treatment did not induce apoptosis in normal astrocytes, nor did it affect the protein levels of CHOP, DR5 or survivin in these cells. Thus, combined treatment regimens involving paxilline and TRAIL may offer an attractive strategy for safely treating resistant gliomas.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Molecular Science and Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
154
|
Gamelli AE, McKinney BC, White JA, Murphy GG. Deletion of the L-type calcium channel Ca(V) 1.3 but not Ca(V) 1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons. Hippocampus 2011; 21:133-41. [PMID: 20014384 DOI: 10.1002/hipo.20728] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium-dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age-related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium-activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage-gated L-type calcium channels (L-VGCCs) contributes to the generation of the AHP. Two L-VGCC subtypes are predominately expressed in the hippocampus, Ca(V) 1.2 and Ca(V) 1.3; however, it is not known which L-VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit-specific agonists or antagonists. Therefore, using mice in which the gene encoding Ca(V) 1.2 or Ca(V) 1.3 was deleted, we sought to determine the impact of alterations in levels of these two L-VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from Ca(V) 1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from Ca(V) 1.3 knockout mice as compared with neurons from wild-type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from Ca(V) 1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via Ca(V) 1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of Ca(V) 1.3, but not Ca(V) 1.2, significantly impacts the generation of the sAHP.
Collapse
Affiliation(s)
- Amy E Gamelli
- Molecular & Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
155
|
SLO-1-channels of parasitic nematodes reconstitute locomotor behaviour and emodepside sensitivity in Caenorhabditis elegans slo-1 loss of function mutants. PLoS Pathog 2011; 7:e1001330. [PMID: 21490955 PMCID: PMC3072372 DOI: 10.1371/journal.ppat.1001330] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/04/2011] [Indexed: 11/24/2022] Open
Abstract
The calcium-gated potassium channel SLO-1 in Caenorhabditis elegans was recently identified as key component for action of emodepside, a new anthelmintic drug with broad spectrum activity. In this study we identified orthologues of slo-1 in Ancylostoma caninum, Cooperia oncophora, and Haemonchus contortus, all important parasitic nematodes in veterinary medicine. Furthermore, functional analyses of these slo-1 orthologues were performed using heterologous expression in C. elegans. We expressed A. caninum and C. oncophora slo-1 in the emodepside-resistant genetic background of the slo-1 loss-of-function mutant NM1968 slo-1(js379). Transformants expressing A. caninum slo-1 from C. elegans slo-1 promoter were highly susceptible (compared to the fully emodepside-resistant slo-1(js379)) and showed no significant difference in their emodepside susceptibility compared to wild-type C. elegans (p = 0.831). Therefore, the SLO-1 channels of A. caninum and C. elegans appear to be completely functionally interchangeable in terms of emodepside sensitivity. Furthermore, we tested the ability of the 5′ flanking regions of A. caninum and C. oncophora slo-1 to drive expression of SLO-1 in C. elegans and confirmed functionality of the putative promoters in this heterologous system. For all transgenic lines tested, expression of either native C. elegans slo-1 or the parasite-derived orthologue rescued emodepside sensitivity in slo-1(js379) and the locomotor phenotype of increased reversal frequency confirming the reconstitution of SLO-1 function in the locomotor circuits. A potent mammalian SLO-1 channel inhibitor, penitrem A, showed emodepside antagonising effects in A. caninum and C. elegans. The study combined the investigation of new anthelmintic targets from parasitic nematodes and experimental use of the respective target genes in C. elegans, therefore closing the gap between research approaches using model nematodes and those using target organisms. Considering the still scarcely advanced techniques for genetic engineering of parasitic nematodes, the presented method provides an excellent opportunity for examining the pharmacofunction of anthelmintic targets derived from parasitic nematodes. In parasitic nematodes, experiments at the molecular level are currently not feasible, since in vitro culture and genetic engineering are still in their infancy. In the present study we chose the model organism Caenorhabditis elegans not only as a mere expression system for genes from parasitic nematodes, but used the transformants to examine the functionality of the expressed proteins for mediating anthelmintic effects in vivo. The results of our experiments confirmed that SLO-1 channels mediate the activity of the new anthelmintic drug emodepside and showed that the mode of action is conserved through several nematode species. The chosen method allowed us to examine the functionality of proteins from parasitic nematodes in a defined genetic background. Notably, expression of the parasitic nematode gene in anthelmintic-resistant C. elegans completely restored drug susceptibility. As C. elegans is highly tractable to molecular genetic and pharmacological approaches, the generation of lines expressing the parasite drug target will greatly facilitate structure-function analysis of the interaction between emodepside and ion channels with direct relevance to its anthelmintic properties. In a broader context, the demonstration of C. elegans as a heterologous expression system for functional analysis of parasite proteins further strengthens this as a model for anthelmintic studies.
Collapse
|
156
|
Gao X, Chooi YH, Ames BD, Wang P, Walsh CT, Tang Y. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 2011; 133:2729-41. [PMID: 21299212 PMCID: PMC3045477 DOI: 10.1021/ja1101085] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline (2) that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine (1), which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2.
Collapse
Affiliation(s)
- Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Brian D. Ames
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Christopher T. Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
157
|
Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 2011; 300:H1616-30. [PMID: 21357503 DOI: 10.1152/ajpheart.00728.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.
Collapse
Affiliation(s)
- Erika B Westcott
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA.
| | | |
Collapse
|
158
|
Imlach WL, Finch SC, Zhang Y, Dunlop J, Dalziel JE. Mechanism of action of lolitrem B, a fungal endophyte derived toxin that inhibits BK large conductance Ca²+-activated K+ channels. Toxicon 2011; 57:686-94. [PMID: 21300077 DOI: 10.1016/j.toxicon.2011.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/22/2011] [Accepted: 01/24/2011] [Indexed: 12/18/2022]
Abstract
The aim of this study was to compare the mode of action of the commonly used BK inhibitor paxilline with that of the more recently discovered lolitrem B. Similarities and differences in characteristics of inhibition between the two compounds were investigated. We have previously shown that lolitrem B does not affect the BK channel G-V, in contrast to the rightward shift produced by paxilline. These different effects on the voltage-dependence of activation suggest different modes of action for these two compounds. In this study we show that inhibition by both paxilline and lolitrem B is characterized by an open state preference for BK (hSlo) channels. Both compounds had a 3-fold higher apparent affinity under conditions likely to favour the open state, suggesting they have a similar BK conformational preference for binding. Furthermore, both compounds had a calcium concentration-dependence to their inhibitory effects. The G-V shift induced by paxilline was calcium concentration-dependent.
Collapse
Affiliation(s)
- Wendy L Imlach
- AgResearch, Grasslands Research Centre, Private Bag 11008, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
159
|
Düfer M, Neye Y, Hörth K, Krippeit-Drews P, Hennige A, Widmer H, McClafferty H, Shipston MJ, Häring HU, Ruth P, Drews G. BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 2011; 54:423-32. [PMID: 20981405 PMCID: PMC4005923 DOI: 10.1007/s00125-010-1936-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/08/2010] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Evidence is accumulating that Ca(2+)-regulated K(+) (K(Ca)) channels are important for beta cell function. We used BK channel knockout (BK-KO) mice to examine the role of these K(Ca) channels for glucose homeostasis, beta cell function and viability. METHODS Glucose and insulin tolerance were tested with male wild-type and BK-KO mice. BK channels were detected by single-cell RT-PCR, cytosolic Ca(2+) concentration ([Ca(2+)](c)) by fura-2 fluorescence, and insulin secretion by radioimmunoassay. Electrophysiology was performed with the patch-clamp technique. Apoptosis was detected via caspase 3 or TUNEL assay. RESULTS BK channels were expressed in murine pancreatic beta cells. BK-KO mice were normoglycaemic but displayed markedly impaired glucose tolerance. Genetic or pharmacological deletion of the BK channel reduced glucose-induced insulin secretion from isolated islets. BK-KO and BK channel inhibition (with iberiotoxin, 100 nmol/l) broadened action potentials and abolished the after-hyperpolarisation in glucose-stimulated beta cells. However, BK-KO did not affect action potential frequency, the plateau potential at which action potentials start or glucose-induced elevation of [Ca(2+)](c). BK-KO had no direct influence on exocytosis. Importantly, in BK-KO islet cells the fraction of apoptotic cells and the rate of cell death induced by oxidative stress (H(2)O(2), 10-100 μmol/l) were significantly increased compared with wild-type controls. Similar effects were obtained with iberiotoxin. Determination of H(2)O(2)-induced K(+) currents revealed that BK channels contribute to the hyperpolarising K(+) current activated under conditions of oxidative stress. CONCLUSIONS/INTERPRETATION Ablation or inhibition of BK channels impairs glucose homeostasis and insulin secretion by interfering with beta cell stimulus-secretion coupling. In addition, BK channels are part of a defence mechanism against apoptosis and oxidative stress.
Collapse
Affiliation(s)
- M Düfer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kaufman EH, Fryer AD, Jacoby DB. Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs. J Allergy Clin Immunol 2010; 127:462-9. [PMID: 21167577 DOI: 10.1016/j.jaci.2010.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 09/07/2010] [Accepted: 10/19/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND Respiratory tract viral infections result in asthma exacerbations. Toll-like receptor (TLR) 7 is a receptor for viral single-stranded RNA and is expressed at high levels in the lungs. OBJECTIVE Because TLR7 polymorphisms are associated with asthma, we examined the effects of TLR7 agonists in guinea pig airways. METHODS We induced bronchoconstriction in guinea pigs in vivo by means of electrical stimulation of the vagus nerve or intravenous administration of acetylcholine and measured the effect of a TLR7 agonist administered intravenously. We induced contraction of airway smooth muscle in segments of isolated guinea pig tracheas in vitro and measured the effect of TLR7 agonists, antagonists, and pharmacologic inhibitors of associated signaling pathways administered directly to the bath. RESULTS TLR7 agonists acutely inhibited bronchoconstriction in vivo and relaxed contraction of airway smooth muscle in vitro within minutes of administration. Airway relaxation induced by the TLR7 agonist R837 (imiquimod) was partially blocked with a TLR7 antagonist and was also blocked by inhibitors of large-conductance, calcium-activated potassium channels; prostaglandin synthesis; and nitric oxide generation. Another TLR7 agonist, 21-mer single-stranded phosphorothioated polyuridylic acid (PolyUs), mediated relaxation that was completely blocked by a TLR7 antagonist. CONCLUSIONS These data demonstrate a novel protective mechanism to limit bronchoconstriction and maintain airflow during respiratory tract viral infections. The fast time frame is inconsistent with canonical TLR7 signaling. R837 mediates bronchodilation by means of TLR7-dependent and TLR7-independent mechanisms, whereas PolyUs does so through only the TLR7-dependent mechanism. TLR7-independent mechanisms involve prostaglandins and large-conductance, calcium-activated potassium channels, whereas TLR7-dependent mechanisms involve nitric oxide. TLR7 is an attractive therapeutic target for its ability to reverse bronchoconstriction within minutes.
Collapse
Affiliation(s)
- Elad H Kaufman
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | | | | |
Collapse
|
161
|
Dendritic spikes mediate negative synaptic gain control in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 2010; 107:22284-9. [PMID: 21131572 DOI: 10.1073/pnas.1008605107] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic spikes appear to be a ubiquitous feature of dendritic excitability. In cortical pyramidal neurons, dendritic spikes increase the efficacy of distal synapses, providing additional inward current to enhance axonal action potential (AP) output, thus increasing synaptic gain. In cerebellar Purkinje cells, dendritic spikes can trigger synaptic plasticity, but their influence on axonal output is not well understood. We have used simultaneous somatic and dendritic patch-clamp recordings to directly assess the impact of dendritic calcium spikes on axonal AP output of Purkinje cells. Dendritic spikes evoked by parallel fiber input triggered brief bursts of somatic APs, followed by pauses in spiking, which cancelled out the extra spikes in the burst. As a result, average output firing rates during trains of input remained independent of the input strength, thus flattening synaptic gain. We demonstrate that this "clamping" of AP output by the pause following dendritic spikes is due to activation of high conductance calcium-dependent potassium channels by dendritic spikes. Dendritic spikes in Purkinje cells, in contrast to pyramidal cells, thus have differential effects on temporally coded and rate coded information: increasing the impact of transient parallel fiber input, while depressing synaptic gain for sustained parallel fiber inputs.
Collapse
|
162
|
Eriksen GS, Jäderlund KH, Moldes-Anaya A, Schönheit J, Bernhoft A, Jaeger G, Rundberget T, Skaar I. Poisoning of dogs with tremorgenic Penicillium toxins. Med Mycol 2010; 48:188-96. [PMID: 19886763 DOI: 10.3109/13693780903225821] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fungi in the genus Penicillium, particularly P. crustosum, produce tremorgenic mycotoxins, as well as suspected tremorgenic compounds. The accidental intoxication of six dogs with such toxins are reported. The clinical signs included vomiting, convulsions, tremors, ataxia, and tachycardia, all of which are indicators of intoxications affecting the nervous system. This symptomatology caused us to think that the dog poisoning was the result of tremorgenic mycotoxins. One dog was euthanized in the acute phase, while three others recovered completely within a few days. However, neurological symptoms were still observed four months after the poisoning of two of the dogs. One of these recovered completely within the next 2-3 months, while the other still suffers from ataxia three years later. Available samples of feed, stomach content and/or tissues from the intoxications were subjected to mycological and chemical analysis. Penitrem A was found in all reported poisonings and roquefortine C in all cases when this toxin was included in the analysis. The producer of these toxins, Penicillium crustosum, was detected in all cases where material suitable for mycological examinations (feed or vomit) was available. To our knowledge, this is the first report documenting the presence of penitrems and roquefortine C in organs from poisoned dogs. Furthermore, the report indicates that the recovery period after severe poisonings with P. crustosum may be protracted.
Collapse
Affiliation(s)
- G S Eriksen
- National Veterinary Institute, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Calcium-activated potassium channels BK and IK1 are functionally expressed in human gliomas but do not regulate cell proliferation. PLoS One 2010; 5:e12304. [PMID: 20808839 PMCID: PMC2924897 DOI: 10.1371/journal.pone.0012304] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 07/25/2010] [Indexed: 01/15/2023] Open
Abstract
Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance (BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1 inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target actions.
Collapse
|
164
|
Zhou Y, Tang QY, Xia XM, Lingle CJ. Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix. ACTA ACUST UNITED AC 2010; 135:481-94. [PMID: 20421373 PMCID: PMC2860595 DOI: 10.1085/jgp.201010403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
165
|
Houamed KM, Sweet IR, Satin LS. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J Physiol 2010; 588:3511-23. [PMID: 20643769 DOI: 10.1113/jphysiol.2009.184341] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BK channels are large unitary conductance K(+) channels cooperatively activated by intracellular calcium and membrane depolarisation. We show that BK channels regulate electrical activity in β-cells of mouse pancreatic islets exposed to elevated glucose. In 11.1 mM glucose, the non-peptidyl BK channel blocker paxilline increased the height of β-cell action potentials (APs) by 21 mV without affecting burst- or silent-period durations. In isolated β-cells, paxilline increased AP height by 16 mV without affecting resting membrane potential. In voltage clamp, paxilline blocked a transient component of outward current activated by a short depolarisation, which accounted for at least 90% of the initial outward K(+) current. This BK current (I(BK)) was blocked by the Ca(2+) channel blockers Cd(2+) (200 μM) or nimodipine (1 μM), and potentiated by FPL-64176 (1 μM). I(BK) was also 56% blocked by the BK channel blocker iberiotoxin (100 nM). I(BK) activated more than 10-fold faster than the delayed rectifier I(Kv) over the physiological voltage range, and partially inactivated. An AP-like command revealed that I(BK) activated and deactivated faster than I(Kv) and accounted for 86% of peak I(K), explaining why I(BK) block increased AP height. A higher amplitude AP-like command, patterned on an AP recorded in 11.1 mM glucose plus paxilline, activated 4-fold more I(Kv) and significantly increased Ca(2+) entry. Paxilline increased insulin secretion in islets exposed to 11.1 mM glucose by 67%, but did not affect basal secretion in 2.8 mM glucose. These data suggest a modified model of β-cell AP generation where I(BK) and I(Kv) coordinate the AP repolarisation.
Collapse
Affiliation(s)
- Khaled M Houamed
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
166
|
Funabashi K, Ohya S, Yamamura H, Hatano N, Muraki K, Giles W, Imaizumi Y. Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am J Physiol Cell Physiol 2010; 298:C786-97. [DOI: 10.1152/ajpcell.00469.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In articular cartilage inflammation, histamine release from mast cells is a key event. It can enhance cytokine production and matrix synthesis and also promote cell proliferation by stimulating chondrocytes. In this study, the functional impact of Ca2+-activated K+ (KCa) channels in the regulation of intracellular Ca2+ concentration ([Ca2+]i) in chondrocytes in response to histamine was examined using OUMS-27 cells, as a model of chondrocytes derived from human chondrosarcoma. Application of histamine induced a significant [Ca2+]i rise and also membrane hyperpolarization, and both effects were mediated by the stimulation of H1 receptors. The histamine-induced membrane hyperpolarization was attenuated to ∼50% by large-conductance KCa (BK) channel blockers, and further reduced by intermediate (IK) and small conductance KCa (SK) channel blockers. The tonic component of histamine-induced [Ca2+]i rise strongly depended on the presence of extracellular Ca2+ ([Ca2+]o) and was markedly reduced by La3+ or Gd3+ but not by nifedipine. It was significantly attenuated by BK channel blockers, and further blocked by the cocktail of BK, IK, and SK channel blockers. The KCa blocker cocktail also significantly reduced the store-operated Ca2+ entry (SOCE), which was induced by Ca2+ addition after store-depletion by thapsigargin in [Ca2+]o free solution. Our results demonstrate that the histamine-induced membrane hyperpolarization in chondrocytes due to KCa channel activation contributes to sustained Ca2+ entry mainly through SOCE channels in OUMS-27 cells. Thus, KCa channels appear to play an important role in the positive feedback mechanism of [Ca2+]i regulation in chondrocytes in the presence of articular cartilage inflammation.
Collapse
Affiliation(s)
- Kenji Funabashi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan; and
| | - Wayne Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
167
|
Asano S, Tune JD, Dick GM. Bisphenol A activates Maxi-K (K(Ca)1.1) channels in coronary smooth muscle. Br J Pharmacol 2010; 160:160-70. [PMID: 20331605 DOI: 10.1111/j.1476-5381.2010.00687.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Bisphenol A (BPA) is used to manufacture plastics, including containers for food into which it may leach. High levels of exposure to this oestrogenic endocrine disruptor are associated with diabetes and heart disease. Oestrogen and oestrogen receptor modulators increase the activity of large conductance Ca(2+)/voltage-sensitive K(+) (Maxi-K; K(Ca)1.1) channels, but the effects of BPA on Maxi-K channels are unknown. We tested the hypothesis that BPA activates Maxi-K channels through a mechanism that depends upon the regulatory beta1 subunit. EXPERIMENTAL APPROACH Patch-clamp recordings of Maxi-K channels were made in human and canine coronary smooth muscle cells as well as in AD-293 cells expressing pore-forming alpha or alpha plus beta1 subunits. KEY RESULTS BPA (10 microM) activated an outward current in smooth muscle cells that was inhibited by penitrem A (1 microM), a Maxi-K blocker. BPA increased Maxi-K activity in inside-out patches from coronary smooth muscle, but had no effect on single channel conductance. In AD-293 cells with Maxi-K channels composed of alpha subunits alone, 10 microM BPA did not affect channel activity. When channels in AD-293 cells contained beta1 subunits, 10 microM BPA increased channel activity. Effects of BPA were rapid (<1 min) and reversible. A higher concentration of BPA (100 microM) increased Maxi-K current independent of the beta1 subunit. CONCLUSIONS AND IMPLICATIONS Our data indicate that BPA increased the activity of Maxi-K channels and may represent a basis for some potential toxicological effects.
Collapse
Affiliation(s)
- Shinichi Asano
- Division of Exercise Physiology, Center for Cardiovascular & Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | | |
Collapse
|
168
|
Akiyama T, Yamazaki T, Kawada T, Shimizu S, Sugimachi M, Shirai M. Role of Ca2+-activated K+ channels in catecholamine release from in vivo rat adrenal medulla. Neurochem Int 2010; 56:263-9. [DOI: 10.1016/j.neuint.2009.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 01/19/2023]
|
169
|
Abstract
Humans are exposed to mycotoxins via ingestion, contact and inhalation. This must have occurred throughout human history and led to severe outbreaks. Potential diseases range from akakabio-byo to stachybotryotoxicosis and cancer. The known molecular bases of toxicology run the gamut of 23 compounds, from aflatoxins (AFs) to zearalenone, ochratoxin A and deoxynivalenol. Ergotism is one of the oldest recognized mycotoxicosis, although mycotoxin science only commenced in the 1960s with the discovery of AFs in turkey feed. AFs are carcinogenic. Some others are suspected carcinogens. The effects of mycotoxins are acute or chronic in nature. Mycotoxins are well known in the scientific community, although they have a low profile in the general population. An incongruous situation occurs in United States where mycotoxins from "moldy homes" are considered to be a significant problem, although there is a general debate about seriousness. This contrasts with the thousands of deaths from mycotoxins that occur, even now, in the technologically less developed countries (e.g., Indonesia, China, and Africa). Mycotoxins are more toxic than pesticides. Studies are moving from whole animal work to investigating the biochemical mechanisms in isolated cells, and the mechanisms of toxicity at the molecular level are being elucidated. The stereochemical nature of AFs has been shown to be important. In addition, the effect of multiple mycotoxins is being increasingly investigated, which will more accurately represent the situation in nature. It is anticipated that more fungal metabolites will be recognized as dangerous toxins and permitted statutory levels will decrease in the future.
Collapse
Affiliation(s)
- Robert R M Paterson
- IBB-Institute for Biotechnology and Bioengineering, Universidade do Minho, Portugal.
| | | |
Collapse
|
170
|
Su W, Song X, Ji JJ. Functional expression of a large-conductance Ca2+-activated K+ channel in mouse substantia nigra pars compacta dopaminergic neurons. Neurosci Lett 2009; 471:1-5. [PMID: 20036716 DOI: 10.1016/j.neulet.2009.12.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 12/17/2022]
Abstract
The existence of large-conductance Ca(2+)-activated K(+) (BK) channels in substantia nigra pars compacta (SNc) has been a matter of debate. Using the patch-clamp technique in the inside-out configuration, we have recorded BK channel currents in SNc dopaminergic neurons. The channel has a conductance of 301 pS with a slight inward rectification and is both voltage- and calcium-dependent. Paxilline, a specific BK channel blocker, can completely block the channel, while tetraethylammonium (TEA), a nonspecific blocker of voltage-gated potassium channels, reduces its conductance and a high concentration of TEA (30 mM) inhibits its activity. ATP and GTP reduce the channel activity, while ADP is less potent, and AMP has no effect. The channel is also sensitive to changes in intracellular pH. Our results indicate that functional BK channels are expressed in SNc and suggest the possibility that the BK channel may be involved in the response of SNc dopaminergic neurons to metabolic stress.
Collapse
Affiliation(s)
- Wenting Su
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | | | | |
Collapse
|
171
|
|
172
|
Nicholson MJ, Koulman A, Monahan BJ, Pritchard BL, Payne GA, Scott B. Identification of two aflatrem biosynthesis gene loci in Aspergillus flavus and metabolic engineering of Penicillium paxilli to elucidate their function. Appl Environ Microbiol 2009; 75:7469-81. [PMID: 19801473 PMCID: PMC2786402 DOI: 10.1128/aem.02146-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/28/2009] [Indexed: 01/07/2023] Open
Abstract
Aflatrem is a potent tremorgenic toxin produced by the soil fungus Aspergillus flavus, and a member of a structurally diverse group of fungal secondary metabolites known as indole-diterpenes. Gene clusters for indole-diterpene biosynthesis have recently been described in several species of filamentous fungi. A search of Aspergillus complete genome sequence data identified putative aflatrem gene clusters in the genomes of A. flavus and Aspergillus oryzae. In both species the genes for aflatrem biosynthesis cluster at two discrete loci; the first, ATM1, is telomere proximal on chromosome 5 and contains a cluster of three genes, atmG, atmC, and atmM, and the second, ATM2, is telomere distal on chromosome 7 and contains five genes, atmD, atmQ, atmB, atmA, and atmP. Reverse transcriptase PCR in A. flavus demonstrated that aflatrem biosynthesis transcript levels increased with the onset of aflatrem production. Transfer of atmP and atmQ into Penicillium paxilli paxP and paxQ deletion mutants, known to accumulate paxilline intermediates paspaline and 13-desoxypaxilline, respectively, showed that AtmP is a functional homolog of PaxP and that AtmQ utilizes 13-desoxypaxilline as a substrate to synthesize aflatrem pathway-specific intermediates, paspalicine and paspalinine. We propose a scheme for aflatrem biosynthesis in A. flavus based on these reconstitution experiments in P. paxilli and identification of putative intermediates in wild-type cultures of A. flavus.
Collapse
Affiliation(s)
- Matthew J. Nicholson
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| | - Albert Koulman
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| | - Brendon J. Monahan
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| | - Beth L. Pritchard
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| | - Gary A. Payne
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| | - Barry Scott
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand, AgResearch Grasslands, Tennent Drive, Palmerston North, New Zealand, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7567
| |
Collapse
|
173
|
Wondergem R, Bartley JW. Menthol increases human glioblastoma intracellular Ca2+, BK channel activity and cell migration. J Biomed Sci 2009; 16:90. [PMID: 19778436 PMCID: PMC2758849 DOI: 10.1186/1423-0127-16-90] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/24/2009] [Indexed: 12/14/2022] Open
Abstract
This study examined the effect of menthol, an agonist for transient receptor potential melastatin 8 (TRPM8) ion channels, to increase intracellular Ca2+ concentration, [Ca2+]i, in human glioblastoma cells (DBTRG cells), which resulted in activation of the large-conductance Ca2+-activated K+ membrane ion channels (BK channels). Voltage ramps applied over 300 ms from -100 to 100 mV resulted in membrane currents with marked inwardly- and outwardly-rectifying components. Paxilline (2 microM) abolished the outwardly-rectifying current. Outwardly-rectifying on-cell patch currents were increased markedly by menthol (100 microM) added to the bath. The estimated on-cell conductance of these channels was 253 pS. Kinetic analysis showed that added menthol increased channel open probability and mean open frequency after 5 min. In a similar time course menthol increased [Ca2+]i, and this increase was abolished either by added paxilline, tetraethylammonium ion or by Ca2+-free external solution. Finally, menthol stimulated the rate of DBTRG cell migration into scratch wounds made in confluent cells, and this also was inhibited by paxilline or by tetraethylammonium ion. We conclude that menthol, a TRPM8 agonist, increases DBTRG cell [Ca2+]i that in turn activates membrane BK ion channels. Inhibition of BK channels by paxilline reverses menthol-stimulated increase of [Ca2+]i and of cell migration. Thus, BK channels function to maintain elevations in [Ca2+]i needed to sustain increases in DBTRG cell migration.
Collapse
Affiliation(s)
- Robert Wondergem
- Department of Physiology, James H Quillen College of Medicine, East Tennessee State University, PO Box 70,576, Johnson City, Tennessee 37614-1708, USA.
| | | |
Collapse
|
174
|
Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD. Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 2009; 297:H1629-37. [PMID: 19749164 DOI: 10.1152/ajpheart.00466.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3-6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that induces MetS (45% kcal from fat, 2% cholesterol, 20% kcal from fructose). MetS significantly impaired coronary vasodilation to the BK(Ca) opener NS-1619 in vivo (30-100 microg) and reduced the contribution of these channels to adenosine-induced microvascular vasodilation in vitro (1-100 microM). MetS reduced whole cell penitrem A (1 microM)-sensitive K(+) current and NS-1619-activated (10 microM) current in isolated coronary vascular smooth muscle cells. MetS increased the concentration of free intracellular Ca(2+) and augmented coronary vasoconstriction to the L-type Ca(2+) channel agonist BAY K 8644 (10 pM-10 nM). BK(Ca) channel alpha and beta(1) protein expression was increased in coronary arteries from MetS swine. Coronary vascular dysfunction in MetS is related to impaired BK(Ca) channel function and is accompanied by significant increases in L-type Ca(2+) channel-mediated coronary vasoconstriction.
Collapse
Affiliation(s)
- Léna Borbouse
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Sones WR, Leblanc N, Greenwood IA. Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels. Br J Pharmacol 2009; 158:521-31. [PMID: 19645713 DOI: 10.1111/j.1476-5381.2009.00332.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent pharmacological studies have proposed there is a high degree of similarity between calcium-activated Cl(-) channels (CaCCs) and large conductance, calcium-gated K(+) channels (K(Ca)1.1). The goal of the present study was to ascertain whether blockers of K(Ca)1.1 inhibited calcium-activated Cl(-) currents (I(ClCa)) and if the pharmacological overlap between K(Ca)1.1 and CaCCs extends to intermediate and small conductance, calcium-activated K(+) channels. EXPERIMENTAL APPROACHES Whole-cell Cl(-) and K(+) currents were recorded from murine portal vein myocytes using the whole-cell variant of the patch clamp technique. CaCC currents were evoked by pipette solutions containing 500 nM free [Ca(2+)]. KEY RESULTS The selective K(Ca)1.1 blocker paxilline (1 microM) inhibited I(ClCa) by approximately 90%, whereas penitrem A (1 microM) and iberiotoxin (100 and 300 nM) reduced the amplitude of I(ClCa) by approximately 20%, as well as slowing channel deactivation. Paxilline also abolished the stimulatory effect of niflumic acid on the CaCC. In contrast, an antibody against the Ca(2+)-binding domain of murine K(Ca)1.1 had no effect on I(ClCa) while inhibiting spontaneous K(Ca)1.1 currents. Structurally different modulators of small and intermediate conductance calcium-activated K(+) channels (K(Ca)2.1 and K(Ca)2.3), namely 1-EBIO, (100 microM); NS309, (1 microM); TRAM-34, (10 microM); UCL 1684, (1 microM) had no effect on I(ClCa). CONCLUSIONS AND IMPLICATIONS These data show that the selective K(Ca)1.1 blockers also reduce I(ClCa) considerably. However, the pharmacological overlap that exists between CaCCs and K(Ca)1.1 does not extend to the calcium-binding domain or to other calcium-gated K(+) channels.
Collapse
Affiliation(s)
- W R Sones
- Division of Basic Medical Sciences, St George's, University of London, London, UK
| | | | | |
Collapse
|
176
|
Yang CT, Zeng XH, Xia XM, Lingle CJ. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function. PLoS One 2009; 4:e6135. [PMID: 19578543 PMCID: PMC2701609 DOI: 10.1371/journal.pone.0006135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 06/01/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The pH and voltage-regulated Slo3 K(+) channel, a homologue of the Ca(2+)- and voltage-regulated Slo1 K(+) channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels. METHODOLOGY/PRINCIPAL FINDINGS To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm. CONCLUSIONS/SIGNIFICANCE These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.
Collapse
Affiliation(s)
- Cheng-Tao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xu-Hui Zeng
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XHZ); (CJL)
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher J. Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (XHZ); (CJL)
| |
Collapse
|
177
|
Toenjes KA, Stark BC, Brooks KM, Johnson DI. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans. J Med Microbiol 2009; 58:779-790. [PMID: 19429755 DOI: 10.1099/jmm.0.006841-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The pathogenic yeast Candida albicans can grow in multiple morphological states including budded, pseudohyphal and true hyphal forms. The ability to interconvert between budded and hyphal forms, herein termed the budded-to-hyphal transition (BHT), is important for C. albicans virulence, and is regulated by multiple environmental and cellular signals. To identify small-molecule inhibitors of known cellular processes that can also block the BHT, a microplate-based morphological assay was used to screen the BIOMOL-Institute of Chemistry and Cell Biology (ICCB) Known Bioactives collection from the ICCB-Longwood Screening Facility (Harvard Medical School, Boston, MA, USA). Of 480 molecules tested, 53 were cytotoxic to C. albicans and 16 were able to block the BHT without inhibiting budded growth. These 16 BHT inhibitors affected protein kinases, protein phosphatases, Ras signalling pathways, G protein-coupled receptors, calcium homeostasis, nitric oxide and guanylate cyclase signalling, and apoptosis in mammalian cells. Several of these molecules were also able to inhibit filamentous growth in other Candida species, as well as the pathogenic filamentous fungus Aspergillus fumigatus, suggesting a broad fungal host range for these inhibitory molecules. Results from secondary assays, including hyphal-specific transcription and septin localization analysis, were consistent with the inhibitors affecting known BHT signalling pathways in C. albicans. Therefore, these molecules will not only be invaluable in deciphering the signalling pathways regulating the BHT, but also may serve as starting points for potential new antifungal therapeutics.
Collapse
Affiliation(s)
- Kurt A Toenjes
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101, USA.,Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Benjamin C Stark
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Krista M Brooks
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Douglas I Johnson
- Markey Center for Molecular Genetics, Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
178
|
Genovese S, Curini M, Epifano F. Chemistry and biological activity of azoprenylated secondary metabolites. PHYTOCHEMISTRY 2009; 70:1082-1091. [PMID: 19660768 DOI: 10.1016/j.phytochem.2009.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
N-Prenyl secondary metabolites (isopentenylazo-, geranylazo-, farnesylazo- and their biosynthetic derivatives) represent a family of extremely rare natural products. Only in recent years have these alkaloids been recognized as interesting and valuable biologically active secondary metabolites. To date about 35 alkaloids have been isolated from plants mainly belonging to the Rutaceae family, and from fungi, bacteria, and/or obtained by chemical synthesis. These metabolites comprise anthranilic acid derivatives, diazepinones, and indole, and xanthine alkaloids. Many of the isolated prenylazo secondary metabolites and their semisynthetic derivatives are shown to exert valuable in vitro and in vivo anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, and anti-fungal effects. The aim of this comprehensive review is to examine the different types of prenylazo natural products from a chemical, phytochemical and biological perspective.
Collapse
Affiliation(s)
- Salvatore Genovese
- Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio" di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Massimo Curini
- Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Organica, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio" di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
179
|
Bingham JP, Chun JB, Ruzicka MR, Li QX, Tan ZY, Kaulin YA, Englebretsen DR, Moczydlowski EG. Synthesis of an iberiotoxin derivative by chemical ligation: a method for improved yields of cysteine-rich scorpion toxin peptides. Peptides 2009; 30:1049-57. [PMID: 19463736 PMCID: PMC2998342 DOI: 10.1016/j.peptides.2009.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
Automated and manual solid phase peptide synthesis techniques were combined with chemical ligation to produce a 37-residue peptide toxin derivative of iberiotoxin which contained: (i) substitution of Val(16) to Ala, to facilitate kinetic feasibility of native chemical ligation, and; (ii) substitution of Asp(19) to orthogonally protected Cys-4-MeOBzl for chemical conjugate derivatization following peptide folding and oxidation. This peptide ligation approach increased synthetic yields approximately 12-fold compared to standard linear peptide synthesis. In a functional inhibition assay, the ligated scorpion toxin derivative, iberiotoxin V16A/D19-Cys-4-MeOBzl, exhibited 'native-like' affinity (K(d)=1.9 nM) and specificity towards the BK Ca(2+)-activated K(+) Channel (K(Ca)1.1). This was characterized by the rapid association and slow dissociation rates (k(on)=4.59 x 10(5)M(-1)s(-1); k(off)=8.65 x 10(-4) s(-1)) as determined by inhibition of macroscopic whole-cell currents of cloned human K(Ca)1.1 channel. These results illustrate the successful application of peptide chemical ligation to improve yield of cysteine-rich peptide toxins over traditional solid phase peptide synthesis. Native chemical ligation is a promising method for improving production of biologically active disulfide containing peptide toxins, which have diverse applications in studies of ion-channel function.
Collapse
Affiliation(s)
- Jon-Paul Bingham
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Moldes-Anaya A, Wilkins AL, Rundberget T, Fæste CK. In vitroandin vivohepatic metabolism of the fungal neurotoxin penitrem A. Drug Chem Toxicol 2009; 32:26-37. [DOI: 10.1080/01480540802416232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
181
|
Sheehan JJ, Benedetti BL, Barth AL. Anticonvulsant effects of the BK-channel antagonist paxilline. Epilepsia 2008; 50:711-20. [PMID: 19054419 DOI: 10.1111/j.1528-1167.2008.01888.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Mutations that enhance currents through the Ca(2+)- and voltage-gated K(+) channel BK (Slo, maxiK, KCNMA1) have been associated with seizure disorders in both rodent models and humans. Previously we have found that seizures themselves induce a gain-of-function in BK channels that is associated with elevated excitability in neocortical neurons. In this study, we sought to examine whether administration of BK-channel antagonists possess anticonvulsant activity in vivo. METHODS Seizures were induced in animals by intraperitoneal (i.p.) injection of the gamma-aminobutyric acid (GABA)(A) antagonists picrotoxin or pentylenetetrazole. Twenty-four hours following induction of the initial seizure episode, animals were reinjected with chemoconvulsant in the presence of the BK-channel antagonist paxilline or saline. The presence and duration of tonic-clonic seizures were evaluated. RESULTS Intraperitoneal injection of paxilline was sufficient to eliminate tonic-clonic seizures in picrotoxin-treated animals. Paxilline reduced seizure duration and intensity in pentylenetetrazole-injected animals. DISCUSSION The BK-channel antagonist paxilline possesses significant anticonvulsant activity in both picrotoxin and pentylenetetrazole seizure models, an effect that may be related to the seizure-dependent gain-of-function in BK channel previously observed in neocortical neurons in vitro.
Collapse
Affiliation(s)
- Jesse J Sheehan
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
182
|
Imlach WL, Finch SC, Dunlop J, Meredith AL, Aldrich RW, Dalziel JE. The Molecular Mechanism of “Ryegrass Staggers,” a Neurological Disorder of K+ Channels. J Pharmacol Exp Ther 2008; 327:657-64. [DOI: 10.1124/jpet.108.143933] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
183
|
Benhassine N, Berger T. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons. Pflugers Arch 2008; 457:1133-45. [PMID: 18762971 DOI: 10.1007/s00424-008-0569-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 06/25/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
184
|
Nguyen CT, Lu Q, Wang Y, Chen JN. Zebrafish as a model for cardiovascular development and disease. ACTA ACUST UNITED AC 2008; 5:135-140. [PMID: 22275951 DOI: 10.1016/j.ddmod.2009.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
185
|
Zeng H, Gordon E, Lin Z, Lozinskaya IM, Willette RN, Xu X. 1-[1-Hexyl-6-(methyloxy)-1H-indazol-3-yl]-2-methyl-1-propanone, a Potent and Highly Selective Small Molecule Blocker of the Large-Conductance Voltage-Gated and Calcium-Dependent K+Channel. J Pharmacol Exp Ther 2008; 327:168-77. [DOI: 10.1124/jpet.108.139733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
186
|
Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL. Temporal profile of potassium channel dysfunction in cerebrovascular smooth muscle after experimental subarachnoid haemorrhage. Neurosci Lett 2008; 440:81-6. [PMID: 18547725 DOI: 10.1016/j.neulet.2008.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 04/26/2008] [Accepted: 05/07/2008] [Indexed: 11/15/2022]
Abstract
The pathogenesis of cerebral vasospasm after subarachnoid haemorrhage (SAH) involves sustained contraction of arterial smooth muscle cells that is maximal 6-8 days after SAH. We reported that function of voltage-gated K+ (KV) channels was significantly decreased during vasospasm 7 days after SAH in dogs. Since arterial constriction is regulated by membrane potential that in turn is determined predominately by K+ conductance, the compromised K+ channel dysfunction may cause vasospasm. Additional support for this hypothesis would be demonstration that K+ channel dysfunction is temporally coincident with vasospasm. To test this hypothesis, SAH was created using the double haemorrhage model in dogs and smooth muscle cells from the basilar artery, which develops vasospasm, were isolated 4 days (early vasospasm), 7 days (during vasospasm) and 21 days (after vasospasm) after SAH and studied using patch-clamp electrophysiology. We investigated the two main K+ channels (KV and large-conductance voltage/Ca2+-activated (KCa) channels). Electrophysiologic function of KCa channels was preserved at all times after SAH. In contrast, function of KV channels was significantly decreased at all times after SAH. The decrease in cell size and degree of KV channel dysfunction was maximal 7 days after SAH. The results suggest that KV channel dysfunction either only partially contributes to vasospasm after SAH or that compensatory mechanisms develop that lead to resolution of vasospasm before KV channels recover their function.
Collapse
Affiliation(s)
- Babak S Jahromi
- Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
188
|
Zavala-Tecuapetla C, Aguileta MA, Lopez-Guerrero JJ, González-Marín MC, Peña F. Calcium-activated potassium currents differentially modulate respiratory rhythm generation. Eur J Neurosci 2008; 27:2871-84. [PMID: 18445052 DOI: 10.1111/j.1460-9568.2008.06214.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pre-Bötzinger complex (PBC) generates eupnea and sighs in normoxia and gasping during hypoxia through particular mixtures of intrinsic and synaptic properties. Among intrinsic properties, little is known about the role of Ca(2+)-activated potassium channels in respiratory rhythms generation. To examine this role, we tested the effects of openers and blockers of the large-conductance (BK) and small-conductance (SK) Ca(2+)-activated potassium channels on the respiratory rhythms recorded both in vitro and in vivo, as well as on the discharge pattern of respiratory neurons in the PBC. Activation of SK channels with 1-ethyl-2-benzimidazolinone (1-EBIO) abolished sigh-like activity and inhibited eupneic-like activity, whereas blockade of SK channels with apamine (APA) increased frequency in both rhythms. In hypoxia, APA did not affect the transition to gasping-like activity. At the cellular level, activation of SK channels abolished pacemaker activity and decreased non-pacemaker neurons discharge; opposite effects were observed with SK blockade. In contrast to SK channel modulation, either activation or blockade of BK channels with NS 1619 or iberiotoxin and paxilline, respectively, produced mild effects on eupneic-like and sigh-like bursts during normoxia in vitro. However, BK blockers prevented the changes associated with the transition to gasping-like activity in vitro and perturbed gasping generation and autoresuscitation in vivo. At the cellular level BK channel modulation did not affect respiratory neurons discharge. We conclude that K(Ca) participate in rhythm generation in a state-dependent manner; SK channels are preferentially involved in rhythm generation in normoxia whereas BK channels participate in the transition to gasping generation in hypoxia.
Collapse
Affiliation(s)
- C Zavala-Tecuapetla
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del I.P.N., México, DF, México
| | | | | | | | | |
Collapse
|
189
|
Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. ACTA ACUST UNITED AC 2008; 112:184-99. [DOI: 10.1016/j.mycres.2007.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
|
190
|
|
191
|
Gáspár T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem 2007; 105:1115-28. [PMID: 18182041 DOI: 10.1111/j.1471-4159.2007.05210.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,3-Dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS1619), a potent activator of the large conductance Ca2+ activated potassium (BK(Ca)) channel, has been demonstrated to induce preconditioning (PC) in the heart. The aim of our study was to test the delayed PC effect of NS1619 in rat cortical neuronal cultures against oxygen-glucose deprivation, H2O2, or glutamate excitotoxicity. We also investigated its actions on reactive oxygen species (ROS) generation, and on mitochondrial and plasma membrane potentials. Furthermore, we tested the activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, and the effect of NS1619 on caspase-3/7. NS1619 dose-dependently protected the cells against the toxic insults, and the protection was completely blocked by a superoxide dismutase mimetic and a PI3K antagonist, but not by BK(Ca) channel inhibitors. Application of NS1619 increased ROS generation, depolarized isolated mitochondria, hyperpolarized the neuronal cell membrane, and activated the PI3K signaling cascade. However, only the effect on the cell membrane potential was antagonized by BK(Ca) channel blockers. NS1619 inhibited the activation of capase-3/7. In summary, NS1619 is a potent inducer of delayed neuronal PC. However, the neuroprotective effect seems to be independent of cell membrane and mitochondrial BK(Ca) channels. Rather it is the consequence of ROS generation, activation of the PI3K pathway, and inhibition of caspase activation.
Collapse
Affiliation(s)
- Tamás Gáspár
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:145-55. [PMID: 17932654 DOI: 10.1007/s00210-007-0193-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/19/2007] [Indexed: 12/22/2022]
Abstract
Large-conductance Ca2+-activated K+ channels (BK Ca or maxiK channels) are expressed in different cell types. They play an essential role in the regulation of various cell functions. In particular, BK Ca channels have been extensively studied in vascular smooth muscle cells, where they contribute to the control of vascular tone. They facilitate the feedback regulation against the rise of intracellular Ca2+, membrane depolarization and vasoconstriction. BK Ca channels promote a K+ outward current and lead to membrane hyperpolarization. In endothelial cells expression and function of BK Ca channels play an important role in the regulation of the vascular smooth muscle activity. Endothelial BK Ca channels modulate the biosyntheses and release of various vasoactive modulators and regulate the membrane potential. Because of their regulatory role in vascular tone, endothelial BK Ca channels have been suggested as therapeutic targets for the treatment of cardiovascular diseases. Hypertension, atherosclerosis, and diabetes are associated with altered current amplitude, open probability, and Ca2+-sensing of BK Ca channels. The properties of BK Ca channels and their role in endothelial and vascular smooth muscle cells would address them as potential therapeutic targets. Further studies are necessary to identify the detailed molecular mechanisms of action and to investigate selective BK Ca channels openers as possible therapeutic agents for clinical use.
Collapse
|
193
|
Dalziel JE, Wong SS, Phung T, Zhang YL, Dunlop J. Expression of human BK ion channels in Sf9 cells, their purification using metal affinity chromatography, and functional reconstitution into planar lipid bilayers. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 857:315-21. [PMID: 17706472 DOI: 10.1016/j.jchromb.2007.07.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/05/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
This report describes a procedure for purification of large conductance calcium-activated potassium (BK, maxi-K) channels using immobilised metal affinity chromatography (IMAC) under non-denaturing conditions. An amino-terminal histidine fusion tag was added to hSlo, the human BK channel, and expressed in Sf9 insect cells. Following IMAC purification and production of proteoliposomes, protein function was assessed electrophysiologically in planar bilayer lipid membranes. Single channel openings had conductances of 250-300 pS and were inhibited by paxilline, demonstrating that the BK channels remained functional following IMAC purification. This method to obtain functional human ion channels will be useful in assays to screen potential pharmaceuticals.
Collapse
Affiliation(s)
- Julie E Dalziel
- Biomembrane Laboratory, AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
194
|
Beckett EAH, Hollywood MA, Thornbury KD, McHale NG. Spontaneous electrical activity in sheep mesenteric lymphatics. Lymphat Res Biol 2007; 5:29-43. [PMID: 17508900 DOI: 10.1089/lrb.2007.5104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND It has recently become apparent that the lymph pump is an electrical entity that rivals the heart in complexity. Many interesting currents have been demonstrated by voltage clamping isolated lymphatic smooth muscle cells, but until now the role of these currents in the intact syncitium has not been studied. METHODS AND RESULTS Intracellular microelectrode recordings were made from smooth muscle of sheep mesenteric lymphatics to investigate the electrophysiological basis of lymphatic pumping. Approximately 50% of the vessels exhibited spontaneous electrical activity, varying from regular oscillations in membrane potential to spike complexes. Spike complexes generally consisted of one or more action potentials superimposed on a slower depolarization or 'plateau' phase and were often preceded by a slow diastolic depolarization or 'pre-potential'. Norepinephrine (5 microM) induced depolarizing events in quiescent preparations. Both agonist-induced oscillations and spike complexes were attenuated or completely abolished by 2-aminoethoxydiphenyl borate (2-APB); 10-100 microM). Cesium (1 mM) reduced the frequency of spontaneous firing by approximately 30% by flattening the pre-potential phase. In addition to having a negative inotropic effect, 10 mM Cs(+) also caused gradual membrane depolarization and prolonged the plateau. 1 microM nifedipine abolished spontaneous events while tetrodotoxin (TTX; 0.5-1 muM) decreased the amplitude and maximum dV/dt of the spike upstroke or stopped activity completely. Spontaneously active segments of lymphatic vessel were inhibited by the chloride channel blocker, anthracene-9-carboxylic acid (9-AC; 250 microM - 1 mM) suggesting that I(Cl(Ca)) plays a significant role in the generation of spontaneous activity in this tissue. Penitrem-A (0.1 microM) did not affect resting membrane potential but increased action potential amplitude and prolonged the plateau, suggesting that calcium-activated potassium current does not make a significant contribution to resting membrane conductance but is important in membrane repolarization following calcium influx during the action potential. In contrast 4-aminopyridine (4-AP; 5 microM) caused significant membrane depolarization, suggesting the existence of an active 4-AP-sensitive current at rest. CONCLUSIONS These results demonstrate that the currents found in isolated voltage-clamped cells from sheep mesenteric lymphatics do play a significant role in the shaping of spontaneous electrical activity of the intact syncitium.
Collapse
Affiliation(s)
- E A H Beckett
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, County Louth, Ireland
| | | | | | | |
Collapse
|
195
|
Shieh CC, Turner SC, Zhang XF, Milicic I, Parihar A, Jinkerson T, Wilkins J, Buckner SA, Gopalakrishnan M. A-272651, a nonpeptidic blocker of large-conductance Ca2+-activated K+ channels, modulates bladder smooth muscle contractility and neuronal action potentials. Br J Pharmacol 2007; 151:798-806. [PMID: 17519951 PMCID: PMC2014127 DOI: 10.1038/sj.bjp.0707278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The large-conductance Ca(2+)-activated K(+) channel (BK(Ca), K(Ca)1.1) links membrane excitability with intracellular Ca(2+) signaling and plays important roles in smooth muscle contraction, neuronal firing, and neuroendocrine secretion. This study reports the characterization of a novel BK(Ca) channel blocker, 2,4-dimethoxy-N-naphthalen-2-yl-benzamide (A-272651). EXPERIMENTAL APPROACH (86)Rb(+) efflux in HEK-293 cells expressing BK(Ca) was measured. Effects of A-272651 on BK(Ca) alpha- and BK(Ca) alphabeta1-mediated currents were evaluated by patch-clamp. Effects on contractility were assessed using low-frequency electrical field stimulated pig detrusor and spontaneously contracting guinea pig detrusor. Effects of A-272651 on neuronal activity were determined in rat small diameter dorsal root ganglia (DRG). KEY RESULTS A-272651 (10 microM) inhibited (86)Rb(+) efflux evoked by NS-1608 in HEK-293 cells expressing BK(Ca) currents. A-272651 concentration-dependently inhibited BK(Ca) currents with IC(50) values of 4.59 microM (Hill coefficient 1.04, measured at +40 mV), and 2.82 microM (Hill coefficient 0.89), respectively, for BK(Ca) alpha and BK(Ca) alphabeta1-mediated currents. Like iberiotoxin, A-272651 enhanced field stimulated twitch responses in pig detrusor and spontaneous contractions in guinea pig detrusor with EC(50) values of 4.05+/-0.05 and 37.95+/-0.12 microM, respectively. In capsaicin-sensitive DRG neurons, application of A-272651 increased action potential firing and prolonged action potential duration. CONCLUSIONS AND IMPLICATIONS These data demonstrate that A-272651 modulates smooth muscle contractility and neuronal firing properties. Unlike previously reported peptide BK(Ca) blockers, A-272651 represents one of the first small molecule BK(Ca) channel blockers that could serve as a useful tool for further characterization of BK(Ca) channels in physiological and pathological states.
Collapse
Affiliation(s)
- C-C Shieh
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Characteristics of paxilline-sensitive calcium-dependent potassium current in isolated intestine myocytes. NEUROPHYSIOLOGY+ 2007. [DOI: 10.1007/s11062-007-0023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
197
|
McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, Simpson DA, Scholfield CN, McGeown JG, Curtis TM. Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 2007; 100:703-11. [PMID: 17293477 PMCID: PMC2596350 DOI: 10.1161/01.res.0000260182.36481.c9] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.
Collapse
Affiliation(s)
- Mary K McGahon
- Centre for Vision Sciences, School of Biomedical Sciences, The Queen's University of Belfast, Institute of Clinical Sciences, The Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Vrudhula VM, Dasgupta B, Qian-Cutrone J, Kozlowski ES, Boissard CG, Dworetzky SI, Wu D, Gao Q, Kimura R, Gribkoff VK, Starrett JE. Atropisomeric 3-(β-hydroxyethyl)-4-arylquinolin-2-ones as Maxi-K Potassium Channel Openers. J Med Chem 2007; 50:1050-7. [PMID: 17274609 DOI: 10.1021/jm061093j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a series of 3-beta-hydroxyethyl-4-arylquinolin-2-ones is described. These compounds contain hydrophilic and hydrophobic substituents ortho to the phenolic OH in the C ring of the quinolinone. Electrophysiological evaluation of the panel of compounds revealed that 11 and 16 with an unbranched ortho substituent retain activity as maxi-K ion channel openers. Members of this series of compounds can exist as stable atropisomers. Calculated estimates of the energy barrier for rotation around the aryl-aryl single bond in 3 is 31 kcal/mol. The atropisomers of (+/-)-3, (+/-)-4, and (+/-)-11 were separated by chiral HPLC and tested for their effect on maxi-K mediated outward current in hSlo injected X. laevis oocytes. The (-) isomer in each case was found to be more active than the corresponding (+) isomer, suggesting that the ion channel exhibits stereoselective activation. X-ray crystallographic structures of (+)-3 and (+)-11 were determined. Evaluation of the stability of (-)-3 at 80 degrees C in n-butanol indicated a 19.6% conversion to (+)-3 over 72 h. In human serum at 37 degrees C (-)-3 did not racemize over the course of the 30 h study.
Collapse
Affiliation(s)
- Vivekananda M Vrudhula
- Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, Connecticut 06492, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Huang CW, Huang CC, Wu SN. Activation by zonisamide, a newer antiepileptic drug, of large-conductance calcium-activated potassium channel in differentiated hippocampal neuron-derived H19-7 cells. J Pharmacol Exp Ther 2007; 321:98-106. [PMID: 17255467 DOI: 10.1124/jpet.106.116954] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Zonisamide (ZNS; 3-sulfamoylmethyl-1,2-benzisoxazole), as one of the newer antiepileptic drugs, has been demonstrated its broad-spectrum clinical efficacy on various neuropsychiatric disorders. However, little is known regarding the mechanism of ZNS actions on ion currents in neurons. We thus investigated its effect on ion currents in differentiated hippocampal 19-7 cells. In whole-cell configuration of patch-clamp technology, the ZNS (30 microM) reversibly increased the amplitude of K+ outward currents, and paxilline (1 microM) was effective in suppressing the ZNS-induced increase of K+ outward currents. In inside-out configuration, ZNS (30 microM) applied to the intracellular face of the membrane did not alter single-channel conductance; however, it did enhance the activity of large-conductance Ca2+-activated K+ (BK(Ca)) channels primarily by decreasing mean closed time. In addition, the EC50 value for ZNS-stimulated BK(Ca) channels was 34 microM. This drug caused a left shift in the activation curve of BK(Ca) channels, with no change in the gating charge of these channels. Moreover, ZNS at a concentration greater than 100 microM also reduced the amplitude of A-type K+ current in these cells. A simulation modeling based on hippocampal CA3 pyramidal neurons (Pinsky-Rinzel model) was also analyzed to investigate the inhibitory effect of ZNS on the firing of simulated action potentials. Taken together, this study suggests that, in hippocampal neurons during the exposure to ZNS, the ZNS-mediated effects on BK(Ca) channels and A-type K+ current could be potential mechanisms through which it affects neuronal excitability.
Collapse
Affiliation(s)
- Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Medical College, 1 University Road, Tainan 70101, Taiwan
| | | | | |
Collapse
|
200
|
Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci 2007; 7:921-31. [PMID: 17115074 DOI: 10.1038/nrn1992] [Citation(s) in RCA: 414] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-conductance, 'big' potassium (BK) channels encoded by the Slo gene family are among the largest and most complex of the extended family of potassium channels. The family of SLO channels apparently evolved from voltage-dependent potassium channels, but acquired a large conserved carboxyl extension, which allows channel gating to be altered in response to the direct sensing of several different intracellular ions, and by other second-messenger systems, such as those activated following neurotransmitter binding to G-protein-coupled receptors (GPCRs). This versatility has been exploited to serve many cellular roles, both within and outside the nervous system.
Collapse
Affiliation(s)
- Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|