151
|
Malevanets A, Wodak SJ. Multiple replica repulsion technique for efficient conformational sampling of biological systems. Biophys J 2011; 101:951-60. [PMID: 21843487 DOI: 10.1016/j.bpj.2011.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/10/2011] [Accepted: 06/21/2011] [Indexed: 11/17/2022] Open
Abstract
Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed "multiple replica repulsion" (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems.
Collapse
Affiliation(s)
- Anatoly Malevanets
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
152
|
Bucher D, Grant BJ, McCammon JA. Induced fit or conformational selection? The role of the semi-closed state in the maltose binding protein. Biochemistry 2011; 50:10530-9. [PMID: 22050600 PMCID: PMC3226325 DOI: 10.1021/bi201481a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
A full characterization of the thermodynamic forces underlying
ligand-associated conformational changes in proteins is essential
for understanding and manipulating diverse biological processes, including
transport, signaling, and enzymatic activity. Recent experiments on
the maltose binding protein (MBP) have provided valuable data about
the different conformational states implicated in the ligand recognition
process; however, a complete picture of the accessible pathways and
the associated changes in free energy remains elusive. Here we describe
results from advanced accelerated molecular dynamics (aMD) simulations,
coupled with adaptively biased force (ABF) and thermodynamic integration
(TI) free energy methods. The combination of approaches allows us
to track the ligand recognition process on the microsecond time scale
and provides a detailed characterization of the protein’s dynamic
and the relative energy of stable states. We find that an induced-fit
(IF) mechanism is most likely and that a mechanism involving both
a conformational selection (CS) step and an IF step is also possible.
The complete recognition process is best viewed as a “Pac Man”
type action where the ligand is initially localized to one domain
and naturally occurring hinge-bending vibrations in the protein are
able to assist the recognition process by increasing the chances of
a favorable encounter with side chains on the other domain, leading
to a population shift. This interpretation is consistent with experiments
and provides new insight into the complex recognition mechanism. The
methods employed here are able to describe IF and CS effects and provide
formally rigorous means of computing free energy changes. As such,
they are superior to conventional MD and flexible docking alone and
hold great promise for future development and applications to drug
discovery.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, United States.
| | | | | |
Collapse
|
153
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
154
|
Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure 2011; 19:859-67. [PMID: 21645856 PMCID: PMC3145976 DOI: 10.1016/j.str.2011.03.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 11/20/2022]
Abstract
Protein interactions are often accompanied by significant changes in conformation. We have analyzed the relationships between protein structures and the conformational changes they undergo upon binding. Based upon this, we introduce a simple measure, the relative solvent accessible surface area, which can be used to predict the magnitude of binding-induced conformational changes from the structures of either monomeric proteins or bound subunits. Applying this to a large set of protein complexes suggests that large conformational changes upon binding are common. In addition, we observe considerable enrichment of intrinsically disordered sequences in proteins predicted to undergo large conformational changes. Finally, we demonstrate that the relative solvent accessible surface area of monomeric proteins can be used as a simple proxy for protein flexibility. This reveals a powerful connection between the flexibility of unbound proteins and their binding-induced conformational changes, consistent with the conformational selection model of molecular recognition.
Collapse
|
155
|
Leis S, Zacharias M. Efficient inclusion of receptor flexibility in grid-based protein-ligand docking*. J Comput Chem 2011; 32:3433-9. [DOI: 10.1002/jcc.21923] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/29/2011] [Indexed: 11/10/2022]
|
156
|
Sidhu NS, Delbaere LTJ, Sheldrick GM. Structure of a highly NADP+-specific isocitrate dehydrogenase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:856-69. [PMID: 21931217 DOI: 10.1107/s0907444911028575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/16/2011] [Indexed: 11/10/2022]
Abstract
Isocitrate dehydrogenase catalyzes the first oxidative and decarboxylation steps in the citric acid cycle. It also lies at a crucial bifurcation point between CO2-generating steps in the cycle and carbon-conserving steps in the glyoxylate bypass. Hence, the enzyme is a focus of regulation. The bacterial enzyme is typically dependent on the coenzyme nicotinamide adenine dinucleotide phosphate. The monomeric enzyme from Corynebacterium glutamicum is highly specific towards this coenzyme and the substrate isocitrate while retaining a high overall efficiency. Here, a 1.9 Å resolution crystal structure of the enzyme in complex with its coenzyme and the cofactor Mg2+ is reported. Coenzyme specificity is mediated by interactions with the negatively charged 2'-phosphate group, which is surrounded by the side chains of two arginines, one histidine and, via a water, one lysine residue, forming ion pairs and hydrogen bonds. Comparison with a previous apoenzyme structure indicates that the binding site is essentially preconfigured for coenzyme binding. In a second enzyme molecule in the asymmetric unit negatively charged aspartate and glutamate residues from a symmetry-related enzyme molecule interact with the positively charged arginines, abolishing coenzyme binding. The holoenzyme from C. glutamicum displays a 36° interdomain hinge-opening movement relative to the only previous holoenzyme structure of the monomeric enzyme: that from Azotobacter vinelandii. As a result, the active site is not blocked by the bound coenzyme as in the closed conformation of the latter, but is accessible to the substrate isocitrate. However, the substrate-binding site is disrupted in the open conformation. Hinge points could be pinpointed for the two molecules in the same crystal, which show a 13° hinge-bending movement relative to each other. One of the two pairs of hinge residues is intimately flanked on both sides by the isocitrate-binding site. This suggests that binding of a relatively small substrate (or its competitive inhibitors) in tight proximity to a hinge point could lead to large conformational changes leading to a closed, presumably catalytically active (or inactive), conformation. It is possible that the small-molecule concerted inhibitors glyoxylate and oxaloacetate similarly bind close to the hinge, leading to an inactive conformation of the enzyme.
Collapse
Affiliation(s)
- Navdeep S Sidhu
- Department of Structural Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
157
|
What history tells us XXV. Construction of the ribbon model of proteins (1981). The contribution of Jane Richardson. J Biosci 2011; 36:571-4. [PMID: 21857104 DOI: 10.1007/s12038-011-9110-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
158
|
Kitao A. Transform and relax sampling for highly anisotropic systems: Application to protein domain motion and folding. J Chem Phys 2011; 135:045101. [DOI: 10.1063/1.3613676] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
159
|
Takayama Y, Nakasako M. A few low-frequency normal modes predominantly contribute to conformational responses of hen egg white lysozyme in the tetragonal crystal to variations of molecular packing controlled by environmental humidity. Biophys Chem 2011; 159:237-46. [PMID: 21802827 DOI: 10.1016/j.bpc.2011.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/03/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
The structures of proteins in crystals are fixed by molecular interactions with neighboring molecules, except in non-contacting flexible regions. Thus, it is difficult to imagine what conformational changes occur in solution. However, if molecular interactions can be changed by manipulating molecular packing in crystals, it may be possible to visualize conformational responses of proteins at atomic resolution by diffraction experiments. For this purpose, it is suitable to control the molecular packing in protein crystals by changing the volume of solvent channels through variation of the environmental relative humidity. Here, we studied conformational responses of hen egg white lysozyme (HEWL) in the tetragonal crystal by X-ray diffraction experiments using a humidity-control apparatus, which provided air flow of 20-98%rh at 298 K. First, we monitored the lattice parameters and crystalline order during dehydration and rehydration of HEWL crystal between 61 and 94%rh at 300 K. Then two crystal structures at a resolution of 2.1 Å using diffraction data obtained at 84.2 and 71.9%rh were determined to discuss the conformational responses of HEWL against the external perturbation induced by changes in molecular packing. The structure at 71.9%rh displayed a closure movement that was likely induced by the molecular contacts formed during dehydration and could be approximated by ten low-frequency normal modes for the crystal structure obtained at 84.2%rh. In addition, we observed reorganization of hydration structures at the molecular interfaces between symmetry neighbors. These findings suggest that humidity-controlled X-ray crystallography is an effective tool to investigate the responses of inherent intramolecular motions of proteins to external perturbations.
Collapse
Affiliation(s)
- Yuki Takayama
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kanagawa 223-8522, Japan
| | | |
Collapse
|
160
|
Ochoa-Leyva A, Barona-Gómez F, Saab-Rincón G, Verdel-Aranda K, Sánchez F, Soberón X. Exploring the Structure-Function Loop Adaptability of a (β/α)(8)-Barrel Enzyme through Loop Swapping and Hinge Variability. J Mol Biol 2011; 411:143-57. [PMID: 21635898 DOI: 10.1016/j.jmb.2011.05.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/31/2011] [Accepted: 05/18/2011] [Indexed: 11/26/2022]
Abstract
Evolution of proteins involves sequence changes that are frequently localized at loop regions, revealing their important role in natural evolution. However, the development of strategies to understand and imitate such events constitutes a challenge to design novel enzymes in the laboratory. In this study, we show how to adapt loop swapping as semiautonomous units of functional groups in an enzyme with the (β/α)(8)-barrel and how this functional adaptation can be measured in vivo. To mimic the natural mechanism providing loop variability in antibodies, we developed an overlap PCR strategy. This includes introduction of sequence diversity at two hinge residues, which connect the new loops with the rest of the protein scaffold, and we demonstrate that this is necessary for a successful exploration of functional sequence space. This design allowed us to explore the sequence requirements to functional adaptation of each loop replacement that may not be sampled otherwise. Libraries generated following this strategy were evaluated in terms of their folding competence and their functional proficiency, an observation that was formalized as a Structure-Function Loop Adaptability value. Molecular details about the function and structure of some variants were obtained by enzyme kinetics and circular dichroism. This strategy yields functional variants that retain the original activity at higher frequencies, suggesting a new strategy for protein engineering that incorporates a more divergent sequence exploration beyond that limited to point mutations. We discuss how this approach may provide insights into the mechanism of enzyme evolution and function.
Collapse
Affiliation(s)
- Adrián Ochoa-Leyva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, C.P. 62210, México
| | | | | | | | | | | |
Collapse
|
161
|
Zerrad L, Merli A, Schröder GF, Varga A, Gráczer É, Pernot P, Round A, Vas M, Bowler MW. A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J Biol Chem 2011; 286:14040-8. [PMID: 21349853 PMCID: PMC3077604 DOI: 10.1074/jbc.m110.206813] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/22/2011] [Indexed: 11/06/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is the enzyme responsible for the first ATP-generating step of glycolysis and has been implicated extensively in oncogenesis and its development. Solution small angle x-ray scattering (SAXS) data, in combination with crystal structures of the enzyme in complex with substrate and product analogues, reveal a new conformation for the resting state of the enzyme and demonstrate the role of substrate binding in the preparation of the enzyme for domain closure. Comparison of the x-ray scattering curves of the enzyme in different states with crystal structures has allowed the complete reaction cycle to be resolved both structurally and temporally. The enzyme appears to spend most of its time in a fully open conformation with short periods of closure and catalysis, thereby allowing the rapid diffusion of substrates and products in and out of the binding sites. Analysis of the open apoenzyme structure, defined through deformable elastic network refinement against the SAXS data, suggests that interactions in a mostly buried hydrophobic region may favor the open conformation. This patch is exposed on domain closure, making the open conformation more thermodynamically stable. Ionic interactions act to maintain the closed conformation to allow catalysis. The short time PGK spends in the closed conformation and its strong tendency to rest in an open conformation imply a spring-loaded release mechanism to regulate domain movement, catalysis, and efficient product release.
Collapse
Affiliation(s)
- Louiza Zerrad
- From the Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble, France
| | - Angelo Merli
- the Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze, 23/A 43100, Parma, Italy
| | - Gunnar F. Schröder
- the Institute of Structural Biology and Biophysics, Structural Biochemistry, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Andrea Varga
- the Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and
| | - Éva Gráczer
- the Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and
| | - Petra Pernot
- From the Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble, France
| | - Adam Round
- the European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France
| | - Mária Vas
- the Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary, and
| | - Matthew W. Bowler
- From the Structural Biology Group, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble, France
| |
Collapse
|
162
|
Murphy WL. Emerging area: biomaterials that mimic and exploit protein motion. SOFT MATTER 2011; 7:3679-3688. [PMID: 25214879 PMCID: PMC4159092 DOI: 10.1039/c0sm01351j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Traditional dynamic hydrogels have been designed to respond to changes in physicochemical inputs, such as pH and temperature, for a wide range of biomedical applications. An emerging strategy that may allow for more specific "bio-responsiveness" in synthetic hydrogels involves mimicking or exploiting nature's dynamic proteins. Hundreds of proteins are known to undergo pronounced conformational changes in response to specific biochemical triggers, and these responses represent a potentially attractive toolkit for design of dynamic materials. This "emerging area" review focuses on the use of protein motions as a new paradigm for design of dynamic hydrogels. In particular, the review emphasizes early examples of dynamic hydrogels that harness well-known protein motions. These examples then serve as templates to discuss challenges and suggest emerging directions in the field. Successful early examples of this approach, coupled with the fundamental properties of nature's protein motions, suggest that protein-based materials may ultimately achieve specific, multiplexed responses to a range of biochemical triggers. Applications of this new class of materials include drug delivery, biosensing, bioactuation, and tissue engineering.
Collapse
Affiliation(s)
- William L. Murphy
- Departments of Biomedical Engineering, Pharmacology, Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
163
|
Abstract
Large conformational transitions play an essential role in the function of many proteins, but experiments do not provide the atomic details of the path followed in going from one end structure to the other. For the hemoglobin tetramer, the transition path between the unliganded (T) and tetraoxygenated (R) structures is not known, which limits our understanding of the cooperative mechanism in this classic allosteric system, where both tertiary and quaternary changes are involved. The conjugate peak refinement algorithm is used to compute an unbiased minimum energy path at atomic detail between the two end states. Although the results confirm some of the proposals of Perutz [Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726-734], the subunit motions do not follow the textbook description of a simple rotation of one αβ-dimer relative to the other. Instead, the path consists of two sequential quaternary rotations, each involving different subdomains and axes. The quaternary transitions are preceded and followed by phases of tertiary structural changes. The results explain the recent photodissociation measurements, which suggest that the quaternary transition has a fast (2 μs) as well as a slow (20 μs) component and provide a testable model for single molecule FRET experiments.
Collapse
|
164
|
Armenta-Medina D, Pérez-Rueda E, Segovia L. Identification of functional motions in the adenylate kinase (ADK) protein family by computational hybrid approaches. Proteins 2011; 79:1662-71. [PMID: 21365689 DOI: 10.1002/prot.22995] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/03/2010] [Accepted: 12/07/2010] [Indexed: 02/02/2023]
Abstract
Based on integrative computational hybrid approaches that combined statistical coupling analysis (SCA), molecular dynamics (MD), and normal mode analysis (NMA), evolutionarily coupled residues involved in functionally relevant motion in the adenylate kinase protein family were identified. The hybrids identified four top-ranking site pairs that belong to a conserved hydrogen bond network that is involved in the enzyme's flexibility. A second group of top-ranking site pairs was identified in critical regions for functional dynamics, such as those related to enzymatic turnover. The high consistency of the results obtained by SCA with NMA (SCA.NMA) and by SCA.MD hybrid analyses suggests that suitable replacement of the matrix of cross-correlation analysis of atomic fluctuations (derived by using NMA) with those based on MD contributes to the identification of such sites by means of a fast computational calculation. The analysis presented here strongly supports the hypothesis that evolutionary forces, such as coevolution at the sequence level, have promoted functional dynamic properties of the adenylate kinase protein family. Finally, these hybrid approaches can be used to identify, at the residue level, protein motion coordination patterns not previously observed, such as in hinge regions.
Collapse
Affiliation(s)
- Dagoberto Armenta-Medina
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
165
|
Large domain fluctuations on 50-ns timescale enable catalytic activity in phosphoglycerate kinase. Biophys J 2011; 99:2309-17. [PMID: 20923666 DOI: 10.1016/j.bpj.2010.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022] Open
Abstract
Large-scale domain motions of enzymes are often essential for their biological function. Phosphoglycerate kinase has a wide open domain structure with a hinge near the active center between the two domains. Applying neutron spin echo spectroscopy and small-angle neutron scattering we have investigated the internal domain dynamics. Structural analysis reveals that the holoprotein in solution seems to be more compact compared to the crystal structure but would not allow the functionally important phosphoryl transfer between the substrates if the protein were static. Brownian large-scale domain fluctuation dynamics on a timescale of 50 ns was revealed by neutron spin echo spectroscopy. The dynamics observed was compared to the displacement patterns of low-frequency normal modes. The displacements along the normal-mode coordinates describe our experimental results reasonably well. In particular, the domain movements facilitate a close encounter of the key residues in the active center to build the active configuration. The observed dynamics shows that the protein has the flexibility to allow fluctuations and displacements that seem to enable the function of the protein. Moreover, the presence of the substrates increases the rigidity, which is deduced from a faster dynamics with smaller amplitude.
Collapse
|
166
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
167
|
King WJ, Murphy WL. Bioinspired conformational changes: an adaptable mechanism for bio-responsive protein delivery. Polym Chem 2011. [DOI: 10.1039/c0py00244e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
168
|
Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 2010; 1:111. [DOI: 10.1038/ncomms1106] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 10/05/2010] [Indexed: 11/09/2022] Open
|
169
|
Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc Natl Acad Sci U S A 2010; 107:17586-91. [PMID: 20921368 DOI: 10.1073/pnas.1006760107] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function, and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal), and Sph (spherical compact). With an adjustment for viscosity, crowded wild-type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a previously undescribed solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: Rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates. We also examine T-jump unfolding of PGK as a function of crowding experimentally. We uncover a nonmonotonic folding relaxation time vs. Ficoll concentration. Theory and modeling explain why an optimum concentration exists for fastest folding. Below the optimum, folding slows down because the unfolded state is stabilized relative to the transition state. Above the optimum, folding slows down because of increased viscosity.
Collapse
|
170
|
Rashin AA, Rashin AHL, Jernigan RL. Diversity of function-related conformational changes in proteins: coordinate uncertainty, fragment rigidity, and stability. Biochemistry 2010; 49:5683-704. [PMID: 20469886 DOI: 10.1021/bi100110x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It was found that the variety of function-related conformational changes ("movements") in proteins is beyond the earlier simple classifications. Here we offer biochemists a more comprehensive, transparent, and easy-to-use approach allowing a detailed and accurate interpretation of such conformational changes. It makes possible a more multifaceted characterization of protein flexibility via identification of rigidly and nonrigidly repositioned fragments, stable and nonstable fragments, and domain and nondomain repositioning. "Coordinate uncertainty thresholds" derived from computed differences between independently determined coordinates of the same molecules are used as the criteria for conformational identity. "Identical" rigid substructures are localized in the distance difference matrices (DDMs). A sequence of simple transformations determines whether a structural change occurs by rigid-body movements of fragments or largely through non-rigid-body deformations. We estimate the stability of protein fragments and compare stable and rigidly moving fragments. The motions computed with the coarse-grained elastic networks are also compared to those of their DDM analogues. We study and suggest a classification for 17 structural pairs, differing in their functional states. For five of the 17 proteins, conformational change cannot be accomplished by rigid-body transformations and requires significant non-rigid-body deformations. Stable fragments rarely coincide with rigidly moving fragments and often disagree with the CATH identifications of domains. Almost all monomeric apo chains, containing stable fragments and/or domains, indicate instability of the entire molecule, suggesting the importance of fragments and domains motions prior to stabilization by substrate binding or crystallization. Notably, kinases exhibit the greatest extent of nonrigidity among the proteins investigated.
Collapse
|
171
|
Monkenbusch M, Richter D, Biehl R. Observation of protein domain motions by neutron spectroscopy. Chemphyschem 2010; 11:1188-94. [PMID: 19924753 DOI: 10.1002/cphc.200900514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-resolution inelastic neutron scattering, which is available with neutron spin-echo spectroscopy (NSE) is introduced as a tool for the analysis of biomolecule flexibility. Coherent scattering in a range where it is sensitive to length scales of nanometers and covering a time range from picoseconds to several 100 ns makes the motion of larger subdomains within proteins visible. We show that and how the internal domain motion within a protein in solution can be measured. Comparison with displacement patterns from normal mode analysis provides further insight into the nature of the geometry of the motions that lead to the observed dynamic signature. The NSE experiment on alcohol dehydrogenase (ADH) is used as example to illustrate the general principles of the method.
Collapse
Affiliation(s)
- Michael Monkenbusch
- Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
172
|
Abstract
Background Many proteins undergo extensive conformational changes as part of their functionality. Tracing these changes is important for understanding the way these proteins function. Traditional biophysics-based conformational search methods require a large number of calculations and are hard to apply to large-scale conformational motions. Results In this work we investigate the application of a robotics-inspired method, using backbone and limited side chain representation and a coarse grained energy function to trace large-scale conformational motions. We tested the algorithm on four well known medium to large proteins and we show that even with relatively little information we are able to trace low-energy conformational pathways efficiently. The conformational pathways produced by our methods can be further filtered and refined to produce more useful information on the way proteins function under physiological conditions. Conclusions The proposed method effectively captures large-scale conformational changes and produces pathways that are consistent with experimental data and other computational studies. The method represents an important first step towards a larger scale modeling of more complex biological systems.
Collapse
|
173
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
174
|
Schulze RJ, Chen S, Kumru OS, Zückert WR. Translocation of Borrelia burgdorferi surface lipoprotein OspA through the outer membrane requires an unfolded conformation and can initiate at the C-terminus. Mol Microbiol 2010; 76:1266-78. [PMID: 20398211 DOI: 10.1111/j.1365-2958.2010.07172.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.
Collapse
Affiliation(s)
- Ryan J Schulze
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
175
|
Gaddie KJ, Kirley TL. Proline residues link the active site to transmembrane domain movements in human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). Purinergic Signal 2010; 6:327-37. [PMID: 21103216 DOI: 10.1007/s11302-010-9180-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022] Open
Abstract
The active sites of the membrane-bound nucleoside triphosphate diphosphohydrolases (NTPDases) regulate and are regulated by coordinated and spatially distant movements of their transmembrane helices, modulating enzyme activity, and substrate specificity. Using site-directed mutagenesis, the roles of the conserved proline residues (N-terminal: P52 and P53; C-terminal: P472, P476, P481, P484, and P485) of human NTPDase3, located in the "linker regions" that connect the N- and C-terminal transmembrane helices with the extracellular active site, were examined. Single cysteine substitutions were strategically placed in the transmembrane domain (N-terminal helix: V42C; C-terminal helix: G489C) to serve as cross-linking "sensors" of helical interactions. These "sensor" background mutant proteins (V42C and G489C NTPDase3) are enzymatically active and are cross-linked by copper phenanthroline less efficiently in the presence of adenosine triphosphate (ATP). Proline to alanine substitutions at P53, P481, P484, and P485 in the V42C background, as well as P53, P481, and P484 in the G489C background, exhibited decreased nucleotidase activities. More importantly, alanine substitutions at P53 and P481 in the V42C background and P481 in the G489C background no longer exhibited the ATP-induced decrease in transmembrane cross-linking efficiency. Interestingly, the P485A mutation abolished oxidative cross-linking at G489C both in the presence and absence of ATP. Taken together, these results suggest a role for proline residues 53 and 481 in the linker regions of human NTPDase3 for coupling nucleotide binding at the enzyme active site to movements and/or rearrangements of the transmembrane helices necessary for optimal nucleotide hydrolysis.
Collapse
Affiliation(s)
- Keith J Gaddie
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, P.O. Box 670575, Cincinnati, OH 45267-0575 USA
| | | |
Collapse
|
176
|
Aguilar B, Anandakrishnan R, Ruscio JZ, Onufriev AV. Statistics and physical origins of pK and ionization state changes upon protein-ligand binding. Biophys J 2010; 98:872-80. [PMID: 20197041 PMCID: PMC2830434 DOI: 10.1016/j.bpj.2009.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 10/21/2009] [Accepted: 11/04/2009] [Indexed: 10/19/2022] Open
Abstract
This work investigates statistical prevalence and overall physical origins of changes in charge states of receptor proteins upon ligand binding. These changes are explored as a function of the ligand type (small molecule, protein, and nucleic acid), and distance from the binding region. Standard continuum solvent methodology is used to compute, on an equal footing, pK changes upon ligand binding for a total of 5899 ionizable residues in 20 protein-protein, 20 protein-small molecule, and 20 protein-nucleic acid high-resolution complexes. The size of the data set combined with an extensive error and sensitivity analysis allows us to make statistically justified and conservative conclusions: in 60% of all protein-small molecule, 90% of all protein-protein, and 85% of all protein-nucleic acid complexes there exists at least one ionizable residue that changes its charge state upon ligand binding at physiological conditions (pH = 6.5). Considering the most biologically relevant pH range of 4-8, the number of ionizable residues that experience substantial pK changes (DeltapK > 1.0) due to ligand binding is appreciable: on average, 6% of all ionizable residues in protein-small molecule complexes, 9% in protein-protein, and 12% in protein-nucleic acid complexes experience a substantial pK change upon ligand binding. These changes are safely above the statistical false-positive noise level. Most of the changes occur in the immediate binding interface region, where approximately one out of five ionizable residues experiences substantial pK change regardless of the ligand type. However, the physical origins of the change differ between the types: in protein-nucleic acid complexes, the pK values of interface residues are predominantly affected by electrostatic effects, whereas in protein-protein and protein-small molecule complexes, structural changes due to the induced-fit effect play an equally important role. In protein-protein and protein-nucleic acid complexes, there is a statistically significant number of substantial pK perturbations, mostly due to the induced-fit structural changes, in regions far from the binding interface.
Collapse
Affiliation(s)
- Boris Aguilar
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia
| | | | - Jory Z. Ruscio
- Department of Bioengineering, University of California, Berkeley, California
| | - Alexey V. Onufriev
- Departments of Computer Science and Physics, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
177
|
Abstract
Structural biology is rapidly accumulating a wealth of detailed information about protein function, binding sites, RNA, large assemblies and molecular motions. These data are increasingly of interest to a broader community of life scientists, not just structural experts. Visualization is a primary means for accessing and using these data, yet visualization is also a stumbling block that prevents many life scientists from benefiting from three-dimensional structural data. In this review, we focus on key biological questions where visualizing three-dimensional structures can provide insight and describe available methods and tools.
Collapse
|
178
|
Chan S, Giuroiu I, Chernishof I, Sawaya MR, Chiang J, Gunsalus RP, Arbing MA, Perry LJ. Apo and ligand-bound structures of ModA from the archaeon Methanosarcina acetivorans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:242-50. [PMID: 20208152 PMCID: PMC2833028 DOI: 10.1107/s1744309109055158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022]
Abstract
The trace-element oxyanion molybdate, which is required for the growth of many bacterial and archaeal species, is transported into the cell by an ATP-binding cassette (ABC) transporter superfamily uptake system called ModABC. ModABC consists of the ModA periplasmic solute-binding protein, the integral membrane-transport protein ModB and the ATP-binding and hydrolysis cassette protein ModC. In this study, X-ray crystal structures of ModA from the archaeon Methanosarcina acetivorans (MaModA) have been determined in the apoprotein conformation at 1.95 and 1.69 A resolution and in the molybdate-bound conformation at 2.25 and 2.45 A resolution. The overall domain structure of MaModA is similar to other ModA proteins in that it has a bilobal structure in which two mixed alpha/beta domains are linked by a hinge region. The apo MaModA is the first unliganded archaeal ModA structure to be determined: it exhibits a deep cleft between the two domains and confirms that upon binding ligand one domain is rotated towards the other by a hinge-bending motion, which is consistent with the 'Venus flytrap' model seen for bacterial-type periplasmic binding proteins. In contrast to the bacterial ModA structures, which have tetrahedral coordination of their metal substrates, molybdate-bound MaModA employs octahedral coordination of its substrate like other archaeal ModA proteins.
Collapse
Affiliation(s)
- Sum Chan
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Iulia Giuroiu
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Irina Chernishof
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Janet Chiang
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Robert P. Gunsalus
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
- The Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Mark A. Arbing
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - L. Jeanne Perry
- UCLA–DOE Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
179
|
Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics. Proc Natl Acad Sci U S A 2010; 107:4961-6. [PMID: 20194785 DOI: 10.1073/pnas.0914540107] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We show how to apply the method of temperature-accelerated molecular dynamics (TAMD) in collective variables [Maragliano L, Vanden-Eijnden E (2006) Chem Phys Lett 426:168-175] to sample the conformational space of multidomain proteins in all-atom, explicitly solvated molecular dynamics simulations. The method allows the system to hyperthermally explore the free-energy surface in a set of collective variables computed at the physical temperature. As collective variables, we pick Cartesian coordinates of centers of contiguous subdomains. The method is applied to the GroEL subunit, a 55-kDa, three-domain protein, and HIV-1 gp120. For GroEL, the method induces in about 40 ns conformational changes that recapitulate the t --> r('') transition and are not observed in unaccelerated molecular dynamics: The apical domain is displaced by 30 A, with a twist of 90 degrees relative to the equatorial domain, and the root-mean-squared deviation relative to the r('') conformer is reduced from 13 to 5 A, representing fairly high predictive capability. For gp120, the method predicts both counterrotation of inner and outer domains and disruption of the so-called bridging sheet. In particular, TAMD on gp120 initially in the CD4-bound conformation visits conformations that deviate by 3.6 A from the gp120 conformer in complex with antibody F105, again reflecting good predictive capability. TAMD generates plausible all-atom models of the so-far structurally uncharacterized unliganded conformation of HIV-1 gp120, which may prove useful in the development of inhibitors and immunogens. The fictitious temperature employed also gives a rough estimate of 10 kcal/mol for the free-energy barrier between conformers in both cases.
Collapse
|
180
|
Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme. Structure 2010; 17:1356-67. [PMID: 19836335 DOI: 10.1016/j.str.2009.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 11/24/2022]
Abstract
Arginine kinase catalyzes reversible phosphoryl transfer between ATP and arginine, buffering cellular ATP concentrations. Structures of substrate-free and -bound enzyme have highlighted a range of conformational changes thought to occur during the catalytic cycle. Here, NMR is used to characterize the intrinsic backbone dynamics over multiple timescales. Relaxation dispersion indicates rigid-body motion of the N-terminal domain and flexible dynamics in the I182-G209 loop, both at millisecond rates commensurate with k(cat), implying that either might be rate limiting upon catalysis. Lipari-Szabo analysis indicates backbone flexibility on the nanosecond timescale in the V308-V322 loop, while the rest of the enzyme is more rigid in this timescale. Thus, intrinsic dynamics are most prominent in regions that have been independently implicated in conformational changes. Substrate-free enzyme may sample an ensemble of different conformations, of which a subset is selected upon substrate binding, with critical active site residues appropriately configured for binding and catalysis.
Collapse
|
181
|
Abstract
The rational design of artificial enzymes, either by applying physico-chemical intuition of protein structure and function or with the aid of computational methods, is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way from simple α-helical peptide catalysts to proteins that facilitate multistep chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes that could be used to improve the speed and selectivity of artificial catalysts.
Collapse
|
182
|
Koike R, Kidera A, Ota M. Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Protein Sci 2009; 18:2060-6. [PMID: 19670211 DOI: 10.1002/pro.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand-binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.
Collapse
|
183
|
Luo J, Bruice TC. Envisioning the Loop Movements and Rotation of the Two Subdomains of Dihydrofolate Reductase by Elastic Normal Mode Analysis. J Biomol Struct Dyn 2009; 27:245-58. [DOI: 10.1080/07391102.2009.10507313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
184
|
Loeffler HH, Kitao A. Collective dynamics of periplasmic glutamine binding protein upon domain closure. Biophys J 2009; 97:2541-9. [PMID: 19883597 PMCID: PMC2770614 DOI: 10.1016/j.bpj.2009.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/31/2009] [Accepted: 08/05/2009] [Indexed: 11/15/2022] Open
Abstract
The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous beta-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when the associated magnitudes of the eigenvalues are well separated.
Collapse
Affiliation(s)
- Hannes H Loeffler
- Laboratory of Molecular Design, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
185
|
Stember JN, Wriggers W. Bend-twist-stretch model for coarse elastic network simulation of biomolecular motion. J Chem Phys 2009; 131:074112. [PMID: 19708737 DOI: 10.1063/1.3167410] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The empirical harmonic potential function of elastic network models (ENMs) is augmented by three- and four-body interactions as well as by a parameter-free connection rule. In the new bend-twist-stretch (BTS) model the complexity of the parametrization is shifted from the spatial level of detail to the potential function, enabling an arbitrary coarse graining of the network. Compared to distance cutoff-based Hookean springs, the approach yields a more stable parametrization of coarse-grained ENMs for biomolecular dynamics. Traditional ENMs give rise to unbounded zero-frequency vibrations when (pseudo)atoms are connected to fewer than three neighbors. A large cutoff is therefore chosen in an ENM (about twice the average nearest-neighbor distance), resulting in many false-positive connections that reduce the spatial detail that can be resolved. More importantly, the required three-neighbor connectedness also limits the coarse graining, i.e., the network must be dense, even in the case of low-resolution structures that exhibit few spatial features. The new BTS model achieves such coarse graining by extending the ENM potential to include three-and four-atom interactions (bending and twisting, respectively) in addition to the traditional two-atom stretching. Thus, the BTS model enables reliable modeling of any three-dimensional graph irrespective of the atom connectedness. The additional potential terms were parametrized using continuum elastic theory of elastic rods, and the distance cutoff was replaced by a competitive Hebb connection rule, setting all free parameters in the model. We validate the approach on a carbon-alpha representation of adenylate kinase and illustrate its use with electron microscopy maps of E. coli RNA polymerase, E. coli ribosome, and eukaryotic chaperonin containing T-complex polypeptide 1, which were difficult to model with traditional ENMs. For adenylate kinase, we find excellent reproduction (>90% overlap) of the ENM modes and B factors when BTS is applied to the carbon-alpha representation as well as to coarser descriptions. For the volumetric maps, coarse BTS yields similar motions (70%-90% overlap) to those obtained from significantly denser representations with ENM. Our Python-based algorithms of ENM and BTS implementations are freely available.
Collapse
Affiliation(s)
- Joseph N Stember
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave., New York, New York 10065, USA
| | | |
Collapse
|
186
|
Palmai Z, Chaloin L, Lionne C, Fidy J, Perahia D, Balog E. Substrate binding modifies the hinge bending characteristics of human 3-phosphoglycerate kinase: A molecular dynamics study. Proteins 2009; 77:319-29. [DOI: 10.1002/prot.22437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
187
|
Rashin AA, Rashin AHL, Jernigan RL. Protein flexibility: coordinate uncertainties and interpretation of structural differences. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:1140-61. [PMID: 19923711 PMCID: PMC2777169 DOI: 10.1107/s090744490903145x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 08/10/2009] [Indexed: 11/10/2022]
Abstract
Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent 'noise', showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.
Collapse
|
188
|
Krishnamurthy H, Munro K, Yan H, Vieille C. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C. Biochemistry 2009; 48:2723-39. [PMID: 19220019 DOI: 10.1021/bi802001w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Backbone conformational dynamics of Thermotoga neapolitana adenylate kinase in the free form (TNAK) and inhibitor-bound form (TNAK*Ap5A) were investigated at 30 degrees C using (15)N NMR relaxation measurements and NMR monitored hydrogen-deuterium exchange. With kinetic parameters identical to those of Escherichia coli AK (ECAK) at 30 degrees C, TNAK is a unique hyperthermophilic enzyme. These catalytic properties make TNAK an interesting and novel model to study the interplay between protein rigidity, stability, and activity. Comparison of fast time scale dynamics (picosecond to nanosecond) in the open and closed states of TNAK and ECAK at 30 degrees C reveals a uniformly higher rigidity across all domains of TNAK. Within this framework of a rigid TNAK structure, several residues located in the AMP-binding domain and in the core-lid hinge regions display high picosecond to nanosecond time scale flexibility. Together with the recent comparison of ECAK dynamics with those of hyperthermophilic Aquifex aeolicus AK (AAAK), our results provide strong evidence for the role of picosecond to nanosecond time scale fluctuations in both stability and activity. In the slow time scales, TNAK's increased rigidity is not uniform but localized in the AMP-binding and lid domains. The core domain amides of ECAK and TNAK in the open and closed states show comparable protection against exchange. Significantly, the hinges framing the lid domain show similar exchange data in ECAK and TNAK open and closed forms. Our NMR relaxation and hydrogen-deuterium exchange studies therefore suggest that TNAK maintains high activity at 30 degrees C by localizing flexibility to the hinge regions that are key to facilitating conformational changes.
Collapse
Affiliation(s)
- Harini Krishnamurthy
- Program in Cell and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
189
|
Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: inhibition of E. coli glycerol kinase. Arch Biochem Biophys 2009; 492:29-39. [PMID: 19819219 DOI: 10.1016/j.abb.2009.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 11/21/2022]
Abstract
Unlike those for monomeric superfamily members, heterotropic allosteric effectors of the tetrameric Escherichia coli glycerol kinase (EGK) bind to only one of the two domains that define the catalytic cleft and far from the active site. An R369A amino acid substitution removes oligomeric interactions of a novel mini domain-swap loop of one subunit with the catalytic site of another subunit, and an A65T substitution perturbs oligomeric interactions in a second interface. Linked-functions enzyme kinetics, analytical ultracentrifugation, and FRET are used to assess effects of these substitutions on the allosteric control of catalysis. Inhibition by phosphotransferase system protein IIA(Glc) is reduced by the R369A substitution, and inhibition by fructose 1,6-bisphosphate is abolished by the A65T substitution. The oligomeric interactions enable the heterotropic allosteric effectors to act on both domains and modulate the catalytic cleft closure despite binding to only one domain.
Collapse
|
190
|
Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase. Proc Natl Acad Sci U S A 2009; 106:15673-8. [PMID: 19706894 DOI: 10.1073/pnas.0907684106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many proteins function through conformational transitions between structurally disparate states, and there is a need to explore transition pathways between experimentally accessible states by computation. The sizes of systems of interest and the scale of conformational changes are often beyond the scope of full atomic models, but appropriate coarse-grained approaches can capture significant features. We have designed a comprehensive knowledge-based potential function based on a C alpha representation for proteins that we call the virtual atom molecular mechanics (VAMM) force field. Here, we describe an algorithm for using the VAMM potential to describe conformational transitions, and we validate this algorithm in application to a transition between open and closed states of adenylate kinase (ADK). The VAMM algorithm computes normal modes for each state and iteratively moves each structure toward the other through a series of intermediates. The move from each side at each step is taken along that normal mode showing greatest engagement with the other state. The process continues to convergence of terminal intermediates to within a defined limit--here, a root-mean-square deviation of 1 A. Validations show that the VAMM algorithm is highly effective, and the transition pathways examined for ADK are compatible with other structural and biophysical information. We expect that the VAMM algorithm can address many biological systems.
Collapse
|
191
|
Keating KS, Flores SC, Gerstein MB, Kuhn LA. StoneHinge: hinge prediction by network analysis of individual protein structures. Protein Sci 2009; 18:359-71. [PMID: 19180449 DOI: 10.1002/pro.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hinge motions are important for molecular recognition, and knowledge of their location can guide the sampling of protein conformations for docking. Predicting domains and intervening hinges is also important for identifying structurally self-determinate units and anticipating the influence of mutations on protein flexibility and stability. Here we present StoneHinge, a novel approach for predicting hinges between domains using input from two complementary analyses of noncovalent bond networks: StoneHingeP, which identifies domain-hinge-domain signatures in ProFlex constraint counting results, and StoneHingeD, which does the same for DomDecomp Gaussian network analyses. Predictions for the two methods are compared to hinges defined in the literature and by visual inspection of interpolated motions between conformations in a series of proteins. For StoneHingeP, all the predicted hinges agree with hinge sites reported in the literature or observed visually, although some predictions include extra residues. Furthermore, no hinges are predicted in six hinge-free proteins. On the other hand, StoneHingeD tends to overpredict the number of hinges, while accurately pinpointing hinge locations. By determining the consensus of their results, StoneHinge improves the specificity, predicting 11 of 13 hinges found both visually and in the literature for nine different open protein structures, and making no false-positive predictions. By comparison, a popular hinge detection method that requires knowledge of both the open and closed conformations finds 10 of the 13 known hinges, while predicting four additional, false hinges.
Collapse
Affiliation(s)
- Kevin S Keating
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
192
|
Bhardwaj N, Gerstein M. Relating protein conformational changes to packing efficiency and disorder. Protein Sci 2009; 18:1230-40. [PMID: 19472340 DOI: 10.1002/pro.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Changes in protein conformation play key roles in facilitating various biochemical processes, ranging from signaling and phosphorylation to transport and catalysis. While various factors that drive these motions such as environmental changes and binding of small molecules are well understood, specific causative effects on the structural features of the protein due to these conformational changes have not been studied on a large scale. Here, we study protein conformational changes in relation to two key structural metrics: packing efficiency and disorder. Packing has been shown to be crucial for protein stability and function by many protein design and engineering studies. We study changes in packing efficiency during conformational changes, thus extending the analysis from a static context to a dynamic perspective and report some interesting observations. First, we study various proteins that adopt alternate conformations and find that tendencies to show motion and change in packing efficiency are correlated: residues that change their packing efficiency show larger motions. Second, our results suggest that residues that show higher changes in packing during motion are located on the changing interfaces which are formed during these conformational changes. These changing interfaces are slightly different from shear or static interfaces that have been analyzed in previous studies. Third, analysis of packing efficiency changes in the context of secondary structure shows that, as expected, residues buried in helices show the least change in packing efficiency, whereas those embedded in bends are most likely to change packing. Finally, by relating protein disorder to motions, we show that marginally disordered residues which are ordered enough to be crystallized but have sequence patterns indicative of disorder show higher dislocation and a higher change in packing than ordered ones and are located mostly on the changing interfaces. Overall, our results demonstrate that between the two conformations, the cores of the proteins remain mostly intact, whereas the interfaces display the most elasticity, both in terms of disorder and change in packing efficiency. By doing a variety of tests, we also show that our observations are robust to the solvation state of the proteins.
Collapse
Affiliation(s)
- Nitin Bhardwaj
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
193
|
Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model. BMC STRUCTURAL BIOLOGY 2009; 9:45. [PMID: 19591676 PMCID: PMC2719638 DOI: 10.1186/1472-6807-9-45] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 07/10/2009] [Indexed: 11/10/2022]
Abstract
Backgrounds It is increasingly recognized that protein functions often require intricate conformational dynamics, which involves a network of key amino acid residues that couple spatially separated functional sites. Tremendous efforts have been made to identify these key residues by experimental and computational means. Results We have performed a large-scale evaluation of the predictions of dynamically important residues by a variety of computational protocols including three based on the perturbation and correlation analysis of a coarse-grained elastic model. This study is performed for two lists of test cases with >500 pairs of protein structures. The dynamically important residues predicted by the perturbation and correlation analysis are found to be strongly or moderately conserved in >67% of test cases. They form a sparse network of residues which are clustered both in 3D space and along protein sequence. Their overall conservation is attributed to their dynamic role rather than ligand binding or high network connectivity. Conclusion By modeling how the protein structural fluctuations respond to residue-position-specific perturbations, our highly efficient perturbation and correlation analysis can be used to dissect the functional conformational changes in various proteins with a residue level of detail. The predictions of dynamically important residues serve as promising targets for mutational and functional studies.
Collapse
|
194
|
Abstract
AbstractProtein kinase A (cAMP dependent protein kinase catalytic subunit, EC 2.7.11.11) binds simultaneously ATP and a phosphorylatable peptide. These structurally dissimilar allosteric ligands influence the binding effectiveness of each other. The same situation is observed with substrate congeners, which reversibly inhibit the enzyme. In this review these allosteric effects are quantified using the interaction factor, which compares binding effectiveness of ligands with the free enzyme and the pre-loaded enzyme complex containing another ligand. This analysis revealed that the allosteric effect depends upon structure of the interacting ligands, and the principle “better binding: stronger allostery” observed can be formalized in terms of linear free-energy relationships, which point to similar mechanism of the allosteric interaction between the enzyme-bound substrates and/or inhibitor molecules. On the other hand, the type of effect is governed by ligand binding effectiveness and can be inverted from positive allostery to negative allostery if we move from effectively binding ligands to badly binding compounds. Thus the outcome of the allostery in this monomeric enzyme is the same as defined by classical theories for multimeric enzymes: making the enzyme response more efficient if appropriate ligands bind.
Collapse
|
195
|
Olson AL, Yao H, Herdendorf TJ, Miziorko HM, Hannongbua S, Saparpakorn P, Cai S, Sem DS. Substrate induced structural and dynamics changes in human phosphomevalonate kinase and implications for mechanism. Proteins 2009; 75:127-38. [PMID: 18798562 DOI: 10.1002/prot.22228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphomevalonate kinase (PMK) catalyzes an essential step in the mevalonate pathway, which is the only pathway for synthesis of isoprenoids and steroids in humans. PMK catalyzes transfer of the gamma-phosphate of ATP to mevalonate 5-phosphate (M5P) to form mevalonate 5-diphosphate. Bringing these phosphate groups in proximity to react is especially challenging, given the high negative charge density on the four phosphate groups in the active site. As such, conformational and dynamics changes needed to form the Michaelis complex are of mechanistic interest. Herein, we report the characterization of substrate induced changes (Mg-ADP, M5P, and the ternary complex) in PMK using NMR-based dynamics and chemical shift perturbation measurements. Mg-ADP and M5P K(d)'s were 6-60 microM in all complexes, consistent with there being little binding synergy. Binding of M5P causes the PMK structure to compress (tau(c) = 13.5 nsec), whereas subsequent binding of Mg-ADP opens the structure up (tau(c) = 15.6 nsec). The overall complex seems to stay very rigid on the psec-nsec timescale with an average NMR order parameter of S(2) approximately 0.88. Data are consistent with addition of M5P causing movement around a hinge region to permit domain closure, which would bring the M5P domain close to ATP to permit catalysis. Dynamics data identify potential hinge residues as H55 and R93, based on their low order parameters and their location in extended regions that connect the M5P and ATP domains in the PMK homology model. Likewise, D163 may be a hinge residue for the lid region that is homologous to the adenylate kinase lid, covering the "Walker-A" catalytic loop. Binding of ATP or ADP appears to cause similar conformational changes; however, these observations do not indicate an obvious role for gamma-phosphate binding interactions. Indeed, the role of gamma-phosphate interactions may be more subtle than suggested by ATP/ADP comparisons, because the conservative O to NH substitution in the beta-gamma bridge of ATP causes a dramatic decrease in affinity and induces few chemical shift perturbations. In terms of positioning of catalytic residues, binding of M5P induces a rigidification of Gly21 (adjacent to the catalytically important Lys22), although exchange broadening in the ternary complex suggests some motion on a slower timescale does still occur. Finally, the first nine residues of the N-terminus are highly disordered, suggesting that they may be part of a cleavable signal or regulatory peptide sequence.
Collapse
Affiliation(s)
- Andrew L Olson
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Gloor SL, Falke JJ. Thermal domain motions of CheA kinase in solution: Disulfide trapping reveals the motional constraints leading to trans-autophosphorylation. Biochemistry 2009; 48:3631-44. [PMID: 19256549 DOI: 10.1021/bi900033r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histidine kinase CheA is a central component of the bacterial chemotaxis signaling cluster, in which transmembrane receptors regulate CheA autokinase activity. CheA is a homodimer, and each of the two identical subunits possesses five different domains with distinct structures and functions. The free enzyme, like the receptor-bound enzyme, catalyzes a trans-autokinase reaction in which the catalytic domain (P4) of one subunit phosphorylates the substrate domain (P1) of the other subunit. Molecular analysis of CheA domain motions has important implications for the mechanism of CheA trans-autophosphorylation, for CheA assembly into the signaling cluster and for receptor regulation of CheA activity. In this initial study of the free CheA dimer, we employ disulfide trapping to analyze collisions between pairs of domains, thereby mapping out the ranges and kinetics of domain motions. A library of 33 functional single-cysteine CheA mutants, all retaining normal autokinase activity, is used to analyze intradimer collisions between symmetric domain pairs. The homodimeric structure of CheA ensures that each mutant contains a pair of symmetric, surface-exposed cysteine residues. Cysteine-cysteine collisions trapped by disulfide bond formation indicate that P1 is the most mobile CheA domain, but large amplitude P2, P4, and P5 domain motions are also detected. The mobility of P1 is further analyzed using a library of 17 functional dicysteine CheA mutants, wherein each mutant subunit possesses one cysteine at a fixed probe position on the P1 domain and a second cysteine on a different domain. The resulting CheA homodimers contain four cysteine residues; thus disulfide trapping yields multiple products that are identified by assignment methods. The findings reveal that the P1 substrate domain collides rapidly with residues on the P4' catalytic domain in the sister subunit, but no intrasubunit collisions are detected. This observation provides a direct, motional explanation for CheA trans-autophosphorylation, explains why the long linkers of the P1-P2 region do not become tangled in the dimer, and has important implications for other aspects of CheA function. Finally, a working model is proposed for the motional constraints that limit the P1 domain to the region of space near the P4' catalytic domain of the sister subunit.
Collapse
Affiliation(s)
- Susan L Gloor
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, 80309-0215, USA
| | | |
Collapse
|
197
|
Mobley DL, Dill KA. Binding of small-molecule ligands to proteins: "what you see" is not always "what you get". Structure 2009; 17:489-98. [PMID: 19368882 PMCID: PMC2756098 DOI: 10.1016/j.str.2009.02.010] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/21/2009] [Accepted: 02/05/2009] [Indexed: 01/24/2023]
Abstract
We review insights from computational studies of affinities of ligands binding to proteins. The power of structural biology is in translating knowledge of protein structures into insights about their forces, binding, and mechanisms. However, the complementary power of computer modeling is in showing "the rest of the story" (i.e., how motions and ensembles and alternative conformers and the entropies and forces that cannot be seen in single molecular structures also contribute to binding affinities). Upon binding to a protein, a ligand can bind in multiple orientations; the protein or ligand can be deformed by the binding event; waters, ions, or cofactors can have unexpected involvement; and conformational or solvation entropies can sometimes play large and otherwise unpredictable roles. Computer modeling is helping to elucidate these factors.
Collapse
Affiliation(s)
- David L Mobley
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|
198
|
Qi G, Hayward S. Database of ligand-induced domain movements in enzymes. BMC STRUCTURAL BIOLOGY 2009; 9:13. [PMID: 19267915 PMCID: PMC2672080 DOI: 10.1186/1472-6807-9-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. DESCRIPTION The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. CONCLUSION The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do.
Collapse
Affiliation(s)
- Guoying Qi
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Steven Hayward
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
199
|
Rosaria Coscia M, Oreste U. Exploring Antarctic teleost immunoglobulin genes. Mar Genomics 2009; 2:19-25. [DOI: 10.1016/j.margen.2009.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/26/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
|
200
|
Velázquez-Muriel JA, Rueda M, Cuesta I, Pascual-Montano A, Orozco M, Carazo JM. Comparison of molecular dynamics and superfamily spaces of protein domain deformation. BMC STRUCTURAL BIOLOGY 2009; 9:6. [PMID: 19220918 PMCID: PMC2666742 DOI: 10.1186/1472-6807-9-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/17/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND It is well known the strong relationship between protein structure and flexibility, on one hand, and biological protein function, on the other hand. Technically, protein flexibility exploration is an essential task in many applications, such as protein structure prediction and modeling. In this contribution we have compared two different approaches to explore the flexibility space of protein domains: i) molecular dynamics (MD-space), and ii) the study of the structural changes within superfamily (SF-space). RESULTS Our analysis indicates that the MD-space and the SF-space display a significant overlap, but are still different enough to be considered as complementary. The SF-space space is wider but less complex than the MD-space, irrespective of the number of members in the superfamily. Also, the SF-space does not sample all possibilities offered by the MD-space, but often introduces very large changes along just a few deformation modes, whose number tend to a plateau as the number of related folds in the superfamily increases. CONCLUSION Theoretically, we obtained two conclusions. First, that function restricts the access to some flexibility patterns to evolution, as we observe that when a superfamily member changes to become another, the path does not completely overlap with the physical deformability. Second, that conformational changes from variation in a superfamily are larger and much simpler than those allowed by physical deformability. Methodologically, the conclusion is that both spaces studied are complementary, and have different size and complexity. We expect this fact to have application in fields as 3D-EM/X-ray hybrid models or ab initio protein folding.
Collapse
|